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I. Introduction

The MSP430 is low-power microcontroller 
designed and produced by Texas Instruments, and 
come in a variety of models. The purpose of this 
technical paper is to explain how to perform a 
firmware upgrade over an external peripheral bus 
without relying on the MSP's on-board Bootloader 
(BSL). There may be many reasons to not use the 
BSL to perform a firmware upgrade, however the 
design referenced in this paper was put into place 
without addressing connected BSL pins for the 
sake of both simplicity and complacency. It is 
assumed that the reader has a good understanding 
of the MSP430 architecture, as concepts of ports, 
interrupts, and command execution are not 
explained in any great detail. It is also worth noting
that all code was written in C/C++ and does not 
rely on assembly instructions. The program 
described also allocates no heap and makes static 
instantiations of C++ objects.

II. System Design

The electronics designed include a MSP430-
5438A, a relatively flexible MSP model with a 
large address space and a variety of peripherals that
can be addressed. It's primary purpose is to monitor
activity over a UART bus connected to a Bluetooth
Low Energy controller and respond to commands; 
one of which is to boot up a higher power-
consumption ARM-based SoC, which is then used 
for other purposes such as enabling an 802.11ac 
wireless connection for high speed transmissions 
of compressed image data. The MSP controls the 
power pins to the SoC, and also shares a 3-wire 
SPI bus and two general purpose pins which are 
used for interrupts, one for interrupting the MSP 
from the SoC, and vice-versa. The interrupts are 

crucial to the design, as a SPI slave has no good 
mechanism to signal the master when it has data 
ready since it cannot control the clock. In this 
design, the SoC is the SPI master, and the MSP is 
the SPI slave. A different peripheral bus could be 
used as the communications port, such as I2C or 
UART, however SPI was chosen for it's relative 
simplicity.

Throughout the lifetime of the operation of the 
device, software and firmware updates may come 
through the high-speed wireless connection, both 
for updating the SoC and the MSP. Since the 
design uses a battery, the device includes warning 
systems as to notify the user when a crucial 
segment of the software/firmware update is taking 
place as to ensure the battery is not removed and 
thereby 'bricking' the device.

Figure 1. System Diagram

III. SPI Setup

As mentioned, the MSP is a SPI slave, and 
therefore cannot control the clock, and must send 
notifications through a separate GPIO pin to 
interrupt the SoC. Acting as a SPI slave on the 
MSP comes with some interesting nuances, that are
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weakly documented in the TI User Guide's, but are 
crucial for robust operation. A SPI bus must only 
be setup on the MSP, when acting as a slave, once 
the clock is enabled by the SPI master, in this case 
once the SoC has powered up and setup it's 
peripherals. The MSP handles this by using the 
interrupt mentioned previously on one of the free 
pins, as a trigger that the SoC is alive, and it can 
now setup the SPI pins. An alternative that was 
tested on a development board is to also route the 
SPI clock to an interrupt pin, however this 
potentially wastes a pin and unnecessarily 
complicates routing. It's important to mention that 
on the MSP430-5438A, only Ports 1 and 2 can be 
used as general purpose interrupt receivers. To wait
for a SPI interrupt on the peripheral would result in
a chicken and egg scenario, and thus the above 
solution works quite elegantly.

Example:

bool spiReady = false;

#pragma vector=PORT1_VECTOR
void onPort1Interrupt()
{
  switch (P1IV)
  {
    // ex. schematic uses port 1.2 for
    // interrupt from SoC
    case P1IV_P1IFG2:
      if (!spiReady)
      {
        setupSpi();
        spiReady = true;
      }
      else
        handleInterrupt();
      break;
  }
}

// ex. schematic uses UCA2 for SPI
void setupSpi()
{
  // enable peripheral
  P9SEL |= (BIT0 | BIT3 | BIT | BIT5);
  // reset
  UCA2CTL1 |= UCSWRST;
  // CS, high polarity, MSB
  UCA2CTL0 |= (UCSYNC | UCMODE_2 |
               UCCKPL | UCMSB);
  // finish

  UCA2CTL1 &= ~UCSWRST;
  // enable rx interrupt
  UCA2IE |= UCRXIE;
}

The spiReady flag used in the above example 
should be reset when the MSP powers down the 
SoC, as to ensure the first interrupt always triggers 
a SPI bus configuration.

IV. SPI Communications

The implemented design makes use of numerous 
types of commands and data exchanges between 
the MSP and the SoC; thus a simple protocol was 
developed using a packet based system, where a 
packet consists of a single header byte, a command
byte, a command info byte, a data byte, and two 
size bytes. The packet can then be followed by an 
arbitrary payload with a size as described in the 
header. The details of the protocol commands do 
not need to be described, but the background is 
important since this packet format is used when 
sending firmware upgrade data to the MSP.

// header for spi packets
typedef struct _spiCommHeader
{
  uint8_t tag_;
  uint8_t command_;
  uint8_t info_;
  uint8_t data_;
  uint16_t payloadSize_;

} spiCommHeader;

The MSP is burned in through a FET interface and 
upon successful bootup, the firmware hash is 
programmed into the MSP info flash memory via 
the SoC. During normal operation the MSP and 
SoC will communicate to operate the device, and 
when there is a software upgrade the embedded 
firmware hash in the upgrade package is compared 
to the hash stored on the MSP's info flash. If they 
do not match, the SoC can notify the user if they 
would like to perform an upgrade, and also check 
that battery levels are sufficient to sustain device 
power for the period of the upgrade.
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V. The Upgrade Process

Once an upgrade has been confirmed by the user, 
many preparations happen on the device to ensure 
that both the SoC and MSP do not get interrupted. 
Wireless communication is shut down, including 
WiFi on the SoC and Bluetooth on the MSP; this is
done by manually powering down the components 
through the respective software interfaces.

V.a. Parsing the Firmware Update

The firmware file comes in the form of a TI-TXT 
file, which is a hex-encoded text file that specifies 
base addresses for various streams of hex bytes. 
The format is very simple to parse and the SoC 
runs through the file, building up a stream of bytes 
with base address information that will be sent to 
the MSP. 

To ensure that the MSP is fully erased, spaces 
between base addresses are padded with 0xFF, 
which is the byte value read back when a flash 
bank has been erased. Without doing this, stray 
instructions may still exist in flash, and although 
theoretically should never get executed, the 
precaution of mimicing the FET upgrade is taken.

A pseudo-code example for parsing the file looks 
similar to the following:

data = readTiTxt(filename)
while (readLine(data))
{
  if (find('@'))
  {
    addr = getStartAddr();
    if (bytesExist)
      padUntilNewAddr(0xFF);
  }
  else if (find('q'))
    padUntilEndOfFlashMem(0xFF);
  else
    addBytesReadFromLine();
}

A version without padding was also created, so that
different 'blocks' were generated at various base 
addresses, however to get the full erase of the 

instruction flash, only a single block will be 
created with the code above, at a base address of 
5C00H (where the MSP430-5438A instruction 
flash starts).

V.b. Setup to Execute from RAM

One of the more complicated, and definitely the 
most important piece of manually upgrading the 
MSP firmware is to execute instructions, and deal 
with interrupts, from RAM, as all of the instruction
flash will eventually be erased and overwritten.

A custom linker file should be created for the MSP 
project so that the memory configuration can be 
split between general purpose execution and 
firmware upgrade execution. The project described
allocates 1KB (400H bytes) of space in instruction 
flash starting at 5C00H, with a corresponding 
RAM space starting at 1C00H

An example linker excerpt is shown below:

MEMORY
{
  RAMSWU   : origin = 0x1C00, length = 0x0400
  RAM      : origin = 0x2000, length = 0x3C00
  FLASHSWU : origin = 0x5C00, length = 0x0400
  FLASH    : origin = 0x6000, length = 0x9F80
  FLASH2   : origin = 0x10000,length = 0x35C0
}

SECTIONS
{
  .bss        : {} > RAM
  .data       : {} > RAM
  .TI.noinit  : {} > RAM
  .sysmem     : {} > RAM
  .stack      : {} > RAM (HIGH)

  .flashswu   : load = FLASHSWU, run = RAMSWU
  .ramswu     : load = FLASHSWU

  .text       : {}>> FLASH2 | FLASH
  .text:_isr  : {} > FLASH
  .cinit      : {} > FLASH
  .const      : {} > FLASH | FLASH2
}

The RAMSWU and FLASHSWU sections are the 
address spaces that are used for exclusively for 
placing and executing instructions for performing 
firmware updates. It is important to note that the 
FLASHSWU section has a special run = 
RAMSWU indication, which forces all instructions 

Version 1.0 - March 2016



located within that section to run out of the RAM 
space that was allocated.

In the MSP program, some initial setup needs to be
written to properly move instructions around, the 
first of which is to create a definition for the 
interrupt vector table. In our example, only two 
interrupts are used:

1. The SPI interrupt on USCI A2
2. The general purpose interrupt on Port 2

A structure similar to below should be setup so that
pointers to functions can be setup.

// isr function pointer variable type
typedef uint16_t* isr_type_t;

// interrupt vector table data type
typedef struct _isrVect
{
  isr_type_t reserved[41];
  ....
  isr_type_t io_p2;
  ....
  isr_type_t usci_a2_rx_tx;
  ....
  isr_type_t reset;

} isrVect;

Some static variables can be setup and initialized 
when the MSP boots up, or addresses can be hard-
coded, for readability, excerpts from the actual 
source code are found below:

// define important addresses / sizes
#define FLASHSWU    0x5C00
#define RAMSWU      0x1C00
#define TOP_OF_RAM  0x5BFF
#define SWU_SIZE    0x0400

// start address of interrupt vector
// table in RAM
#define IV_START_ADDR /
  (TOP_OF_RAM + 1 – sizeof(isrVect))

isrVect* iv = (isrVect*)(IV_START_ADDR);
uintptr_t flashSwu = FLASHSWU;
uintptr_t ramSwu = RAMSWU;

Casting of functions can be interesting when trying
to assign a function pointer to the interrupt vector 

table, so a special type definition was created.

typedef void (*ivFn)();

When ready to move the flash instructions into 
RAM for execution, a simple memory copy will 
do.

uint8_t* ram = (uint8_t*)ramSwu;
uint8_t* flashmem = (uint8_t*)flashSwu;
memcpy(ram, flashmem, SWU_SIZE);

To move the interrupt vector table into RAM 
requires some special casting as mentioned above 
since we are using a large code model (20 bit 
pointers), and the ISR vector must be 16 bit 
pointers. Note that once this happens, there is no 
turning back, and ALL interrupts will be handled 
through the newly loaded interrupt vector table!

// handler for spi bus interrupts
ivFn fn1 = onSpiData;
void* ptr = *(void**)(&fn1);
iv->usci_a2_rx_tx = 
  (uint16_t*)(*(uint16_t*)(&ptr));

// handler for gp interrupts
ivFn fn2 = onP2Interrupt;
ptr = *(void**)(&fn2);
iv->io_p2 =
  (uint16_t*)(*(uint16_t*)(&ptr));

// move!
SYSCTL |= SYSRIVECT;

That's it. Now everything is ready to execute in 
RAM; the next tricky part is to ensure that ALL 
execution and variable access happens within 
RAM and not in the now very volatile flash that 
will be overwritten during the firmware update.

V.c. Writing Functions to Execute in RAM

Once the interrupt vector table and the appropriate 
instructions have been loaded into RAM, it will be 
important to ensure that ONLY these loaded 
instructions execute and that ALL data access 
happens within RAM.

The typical functions that are required to to execute
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during the firmware update include:
• The SPI interrupt handler
• The general purpose interrupt handler
• Parsing functions when receiving data from

the SPI bus
• Functions to write to the instruction flash 

memory
• A no operation handler 

The simple way to put a function into the proper 
flash/RAM space is to put the following pragma 
command directly before the implementation of the
function:

#pragma CODE_SECTION(".flashswu")

This ensures that the instructions are in the 
FLASHSWU section, and that they get copied into 
RAM when the memcpy() command is executed as
shown in the previous section. Note this works for 
Code Composer Studio (CCS), but IAR has a 
different syntax for moving code into specific 
sections.

A no-operation (nop) handler is important since 
most programs will enter a low power mode, and 
have a main loop which becomes idle at some 
point. An interrupt will then wake up the MSP and 
the main loop can then then process interrupt data. 
Since the general purpose execution must cease to 
exist, running a nop loop is the safest way to 
ensure nothing gets executed outside of RAM, for 
example:

#pragma CODE_SECTION(".flashswu")
// loops continuously while executing
// in ram
void nop()
{
  while (1)
    __no_operation();
}

For C++ classes, it may be cumbersome to 
constantly ensure that functions are placed into 
RAM through pragmas, so one simple method to 
ensure execution from RAM is to create inline 
functions, assuming that they are not inherently 

large. This can be useful to run a simple function to
toggle an LED for sample.

V.d. Data Access From RAM

As mentioned in the previous sections, it is 
imperative that all data access, whether constant or 
variable is done on variables that exist in RAM or 
on the stack. When writing C code, it is pretty 
common that most global variables automatically 
become static, and are therefore automatically 
assigned to RAM, however with C++, class 
members for example may be assigned to flash. It 
is important to look at the mapping file generated 
after compilation to try to understand where 
various variables and functions have been assigned
to.

For C++ classes, ensuring that variables exist in 
RAM can be simply done by using the static 
keyword.

V.e. Firmware Data Exchange

Once the bytes have been loaded into SoC memory
after parsing the TI-TXT file, they are then sent 
over the SPI bus to the MSP in 512 byte chunks. 
512 bytes was chosen because segment erases, 
which are the smallest flash erases that can take 
place, are also aligned at 512 bytes.

The SoC will send setup information first, which 
describes the base address the set of bytes should 
be written to, and how many bytes will be written. 
After the setup information, actual instruction data 
will be sent.

On the MSP side, the SPI interrupt vector that is 
newly loaded into RAM will occur once the SoC 
writes it's commands, and parsing will occur, for 
example:
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#pragma CODE_SECTION(".flashswu")
__interrupt void onSpiData()
{
  switch(__even_in_range(UCA2IV, 4))
  {
  // rx data
  case 2:
      parse(UCA2RXBUF);
      break;
  }
}

The parsing function will handle setup of data, 
actual instruction data, and a reboot command that 
is sent by the SoC once all instruction data has 
been sent.

#pragma CODE_SECTION(".flashswu")
void parse(uint8_t b)
{
  if (parseByte(b))
  {
    uint8_t cmd = parsedCommand();
    switch (cmd)
    {
      // sent by SoC to complete
      // software update
      case swuReboot:
        PMMCTL0 = PMMPW | PMMSWBOR;
        break;
      // sent by SoC to setup 
      // address, size, etc.
      case swuSetup:
        setupWrite();
        notifySoC();
        break;
      // new instruction data sent
      // by SoC (512 bytes)
      case swuData:
        writeData();
        notifySoC();
        break;
    }
  }
}

The code to write to flash is relatively simple and 
for the firmware update, the function analyzes the 
data sent to see if it is padded for an erase, and then
skips the write to save on write time.

#pragma CODE_SECTION(".flashswu")
void writeToFlash(uint32_t addr,
     const uint8_t* data, uint32_t sz)
{

  uint32_t i;
  bool blank = true;

  __disable_interrupt();
  // erase segment
  FCTL3 = FWKEY;
  FCTL1 = FWKEY + ERASE;
  __data20_write_char(addr, 0);
  while (FCTL3 & BUSY);

  // check if the block is blank
  // if so, then skip the write,
  // and just be happy with the erase
  for (i = 0; i < sz; i++)
  {
    if (data[i] != 0xFF)
    {
      blank = false;
      break;
    }
  }
  if (blank)
  {
    FCTL3 = FWKEY + LOCK;
    __enable_interrupt();
    return;
  }

  // enable write
  FCTL1 = FWKEY + WRT;

  // write data
  for (i = 0; i < sz; i++)
  {
    __data20_write_char(addr + i,
                        data[i]);
    while(!(FCTL3 & WAIT));
  }

  // disable wrt
  FCTL1 = FWKEY;
  while (FCTL3 & BUSY);
  // set lock bit
  FCTL3 = FWKEY + LOCK;
  __enable_interrupt();
}

It's also worth mentioning that since we have a 20-
bit address space in the MSP430-5438A, the 
__data20_writeXXX functions are used as opposed
to a simple address assignment. This ensure that 
any instruction outside of the 16-bit address space 
will actually get written.
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VI. Conclusion

The MSP430 is a flexible low-power MCU that 
can perform very well in conjunction with a higher 
power SoC to operate a complex device. Since 
today's developed devices are often out of date 
tomorrow, it is important that over-the-wire or 
wireless (think IoT) updates can happen without 
JTAG or FET connections that require custom 
servicing of the device itself. If MSP430 
upgradeability becomes an afterthought in the 
design process, all is not lost, as long as a bus 
exists that allows for two-way communications.

As shown, the MSP430 can be re-programmed to 
force execution out of RAM to completely 
overwrite it's instruction flash with relative 
simplicity and ease.

The author intends to create a GitHub repository 
with various code examples that were briefly 
shown here. A subsequent version of this paper will
be published with any updates and a repository 
link.

About the Author

Kris studied Computer Systems at the British 
Columbia Institute of Technology, and has since 
been working in the medical device industry for 
over 16 years, helping to design and implement 
real-time imaging devices using a variety of 
platforms and technologies, which include: 
Microsoft Windows, Embedded Linux (ARM 
based), TI C6X DSPs, TI MSP430, ADI Blackfin 
SoC, and Xilinx FGPAs.

Version 1.0 - March 2016


