

Texas Instruments, Inc.
 C2000 Systems and Applications

2013

Digital Motor Control

Software Library:
Target Independent Math Blocks

v13.1

C2000 Systems and Applications 2

Contents

INTRODUCTION ... 3

ACI_SE .. 4

ACI_FE .. 16

CLARKE .. 31

COMTN_TRIG ... 35

CUR_MOD... 43

IPARK .. 50

IMPULSE ... 54

MOD6_CNT ... 58

PARK ... 62

PHASE_VOLT_CALC ... 66

PI ... 72

PI_REG4.. 78

PI_POS .. 81

PI_POS_REG4 .. 83

PID ... 85

RAMPGEN... 94

RMP_CNTL ... 98

RMP2_CNTL ... 102

RMP3_CNTL ... 106

RESOLVER ... 110

SMO ... 114

SPEED_EST ... 125

SPEED_FR .. 130

SPEED_PRD ... 135

SVGEN .. 142

SVGEN_COMM ... 145

SVGEN_DPWM ... 148

SVGEN_MF ... 151

VHZ_PROFILE .. 162

C2000 Systems and Applications 3

Introduction

 The digital motor control library is composed of C functions (or macros) developed for C2000 motor
control users. These modules are represented as modular blocks in C2000 literature in order to explain
system-level block diagrams clearly by means of software modularity. The DMC library modules cover
nearly all of the target-independent mathematical macros and target-specific peripheral configuration
macros, which are essential for motor control. These modules can be classified as:

Transformation and
Observer Modules

Clarke, Park, Phase Voltage Calculation, Sliding Mode Observer, BEMF
Commutation, Direct Flux Estimator, Speed Calculators and Estimators,
Position Calculators and Estimators etc.

Signal Generators and
Control Modules

PID, Commutation Trigger Generator, V/f Controller, Impulse Generator,
Mod 6 Counter, Slew Rate Controllers, Sawtooth & Ramp generators,
Space Vector Generators etc.

Peripheral Drivers PWM abstraction for multiple topologies and techniques, ADC Drivers,
Hall Sensor Driver, QEP Driver, CAP Driver etc.

Real-Time Debugging
Modules

DLOG module for CCS graph window utility, PWMDAC module for
monitoring the control variables through socilloscope

 In the DMC library, each module is separately documented with source code, use, and background
technical theory. All DMC modules allow users to quickly build, or customize their own systems. The
library supports three principal motor types (induction motor, BLDC and PM motors) but is not limited to
these motors.

 The DMC library components have been used by TI to provide system-level motor control examples. In
the motor control code, all DMC library modules are initialized according to the system specific
parameters, and the modules are inter-connected to each other. At run-time the modules are called in
order. Each motor control system is built using an incremental build approach, which allows some
sections of the code to be built at a time, so that the developer can verify each section of the application
one step at a time. This is critical in real-time control applications, where so many different variables can
affect the system, and where many different motor parameters need to be tuned.

DIGITAL MOTOR CONTROL Software Library

C2000 Systems and Applications 4

ACI SE Speed estimator of the 3-ph induction motor

Description This software module implements a speed estimator of the 3-ph induction motor

based upon its mathematics model. The estimator’s accuracy relies heavily on
knowledge of critical motor parameters.

ACISE

MACRO

PsiDrS

PsiQrS

ThetaFlux

IDsS

WrHat

WrHatRpm

pu

pu

pu

pu

pu

Q0

pu
IQsS

Availability C interface version

Module Properties Type: Target Independent

 Target Devices: 28x Fixed or Floating Point

C Version File Names: aci_se.h

 IQmath library files for C: IQmathLib.h, IQmath.lib

C2000 Systems and Applications 5

ACI SE C Interface

C Interface

Object Definition

The structure of ACISE object is defined by following structure definition

typedef struct { _iq IQsS; // Input: Stationary q-axis stator current
 _iq PsiDrS; // Input: Stationary d-axis rotor flux
 _iq IDsS; // Input: Stationary d-axis stator current
 _iq PsiQrS; // Input: Stationary q-axis rotor flux
 _iq K1; // Parameter: Constant using in speed computation
 _iq SquaredPsi; // Variable: Squared rotor flux
 _iq ThetaFlux; // Input: Rotor flux angle
 _iq21 K2; // Parameter: Constant using in differentiator (Q21)
 _iq OldThetaFlux; // Variable: Previous rotor flux angle
 _iq K3; // Parameter: Constant using in low-pass filter
 _iq21 WPsi; // Variable: Synchronous rotor flux speed in pu (Q21)
 _iq K4; // Parameter: Constant using in low-pass filter
 _iq WrHat; // Output: Estimated speed in per unit
 Uint32 BaseRpm; // Parameter: Base rpm speed (Q0)
 int32 WrHatRpm; // Output: Estimated speed in rpm (Q0)
 _iq Wslip; // Variable: Slip
 _iq Wsyn; // Variable: Synchronous speed
 } ACISE;

Module Terminal Variables

Item Name Description Format
*

Range(Hex)

Inputs PsiDrS stationary d-axis rotor flux GLOBAL_Q 80000000-7FFFFFFF

PsiDrS stationary q-axis rotor flux GLOBAL_Q 80000000-7FFFFFFF

ThetaFlux rotor flux linkage angle GLOBAL_Q 00000000-7FFFFFFF
(0 – 360 degree)

IDsS stationary d-axis stator current GLOBAL_Q 80000000-7FFFFFFF

IQsS stationary q-axis stator current GLOBAL_Q 80000000-7FFFFFFF

Outputs WrHat estimated rotor speed GLOBAL_Q 80000000-7FFFFFFF

WrHatRpm estimated rotor speed in rpm Q0 80000000-7FFFFFFF

ACISE
parameter

K1 K1 = 1/(Wb*Tr) GLOBAL_Q 80000000-7FFFFFFF

K2 K2 = 1/(fb*T) Q21 80000000-7FFFFFFF

K3 K3 = Tau/(Tau+T) GLOBAL_Q 80000000-7FFFFFFF

K4 K4 = T/(Tau+T) GLOBAL_Q 80000000-7FFFFFFF

BaseRpm base speed in rpm Q0 80000000-7FFFFFFF

Internal OldThetaFlux previous rotor flux linkage angle GLOBAL_Q 00000000-7FFFFFFF
(0 – 360 degree)

WPsi synchronous rotor flux speed GLOBAL_Q 80000000-7FFFFFFF

SquaredPsi squared magnitude of rotor flux GLOBAL_Q 80000000-7FFFFFFF

Wslip slip GLOBAL_Q 80000000-7FFFFFFF

WSyn synchronous speed GLOBAL_Q 80000000-7FFFFFFF
 *

GLOBAL_Q valued between 1 and 30 is defined in the IQmathLib.h header file.

C2000 Systems and Applications 6

ACI SE C Interface

Special Constants and Data types

 ACISE

The module definition is created as a data type. This makes it convenient to instance an interface
to the speed estimator of Induction Motor module. To create multiple instances of the module
simply declare variables of type ACISE.

 ACISE_DEFAULTS

Structure symbolic constant to initialize ACISE module. This provides the initial values to the
terminal variables as well as method pointers.

Module Usage

Instantiation

 The following example instances two ACISE objects
 ACISE se1, se2;

 Initialization

To Instance pre-initialized objects
ACISE se1 = ACISE_DEFAULTS;
ACISE se2 = ACISE_DEFAULTS;

Invoking the computation macro
ACISE_MACRO(se1);
ACISE_MACRO(se2);

Example

The following pseudo code provides the information about the module usage.
main()
{

se1.K1 = parem1_1; // Pass parameters to se1
se1.K2 = parem1_2; // Pass parameters to se1
se1.K3 = parem1_3; // Pass parameters to se1
se1.K4 = parem1_4; // Pass parameters to se1
se1.BaseRpm = base_speed_1; // Pass parameters to se1

se2.K1 = parem2_1; // Pass parameters to se2
se2.K2 = parem2_2; // Pass parameters to se2
se2.K3 = parem2_3; // Pass parameters to se2
se2.K4 = parem2_4; // Pass parameters to se2
se2.BaseRpm = base_speed_2; // Pass parameters to se2

}

C2000 Systems and Applications 7

ACI SE C Interface

void interrupt periodic_interrupt_isr()
{

se1.PsiDrS= flux_dq1.d; // Pass inputs to se1
 se1.PsiQrS= flux_dq1.q; // Pass inputs to se1
 se1.IDsS=current_dq1.d; // Pass inputs to se1
 se1.IQsS=current_dq1.q; // Pass inputs to se1
 se1.ThetaFlux=angle1; // Pass inputs to se1

se2.PsiDrS= flux_dq2.d; // Pass inputs to se2

 se2.PsiQrS= flux_dq2.q; // Pass inputs to se2
 se2.IDsS=current_dq2.d; // Pass inputs to se2
 se2.IQsS=current_dq2.q; // Pass inputs to se2
 se2.ThetaFlux=angle2; // Pass inputs to se2

ACISE_MACRO(se1); // Call compute macro for se1

 ACISE_MACRO(se2); // Call compute macro for se2

 speed_pu1 = se1.WrHat; // Access the outputs of se1
 speed_rpm1 = se1.WrHatRpm; // Access the outputs of se1

speed_pu2 = se2.WrHat; // Access the outputs of se2
 speed_rpm2 = se2.WrHatRpm; // Access the outputs of se2
}

C2000 Systems and Applications 8

ACI SE CONST C Interface

Constant Computation Macro

Since the speed estimator of Induction motor module requires four constants (K1,…, K4) to be
input basing on the machine parameters, base quantities, mechanical parameters, and sampling
period. These four constants can be internally computed by the macro (aci_se_const.h). The
followings show how to use the constant computation macro.

Object Definition

The structure of ACISE_CONST object is defined by following structure definition

typedef struct { float32 Rr; // Input: Rotor resistance (ohm)
 float32 Lr; // Input: Rotor inductance (H)
 float32 fb; // Input: Base electrical frequency (Hz)
 float32 fc; // Input: Cut-off frequency of low-pass filter (Hz)
 float32 Ts; // Input: Sampling period in sec
 float32 K1; // Output: constant using in rotor flux calculation
 float32 K2; // Output: constant using in rotor flux calculation
 float32 K3; // Output: constant using in rotor flux calculation
 float32 K4; // Output: constant using in stator current calculation
 } ACISE_CONST;

Module Terminal Variables

Item Name Description Format Range(Hex)

Inputs Rr Rotor resistance (ohm) Floating N/A

Lr Rotor inductance (H) Floating N/A

fb Base electrical frequency (Hz) Floating N/A

fc Cut-off frequency of low-pass filter (Hz) Floating N/A

Ts Sampling period (sec) Floating N/A

Outputs K1 constant using in rotor flux calculation Floating N/A

K2 constant using in rotor flux calculation Floating N/A

K3 constant using in rotor flux calculation Floating N/A

K4 constant using in stator current cal. Floating N/A

C2000 Systems and Applications 9

ACI SE CONST C Interface

Special Constants and Data types

 ACISE_CONST

The module definition is created as a data type. This makes it convenient to instance an interface
to the speed estimation of Induction Motor constant computation module. To create multiple
instances of the module simply declare variables of type ACISE_CONST.

 ACISE_CONST_DEFAULTS

Structure symbolic constant to initialize ACISE_CONST module. This provides the initial values to
the terminal variables as well as method pointers.

Module Usage

Instantiation

 The following example instances two ACISE_CONST objects
 ACISE_CONST se1_const, se2_const;

 Initialization
To Instance pre-initialized objects
ACISE_CONST se1_const = ACISE_CONST_DEFAULTS;
ACISE_CONST se2_const = ACISE_CONST_DEFAULTS;

Invoking the computation macro
ACISE_CONST_MACRO(se1_const);
ACISE_CONST_MACRO (se2_const);

C2000 Systems and Applications 10

ACI SE CONST C Interface

Example

The following pseudo code provides the information about the module usage.

main()
{

se1_const.Rr = Rr1; // Pass floating-point inputs to se1_const
se1_const.Lr = Lr1; // Pass floating-point inputs to se1_const
se1_const.fb = Fb1; // Pass floating-point inputs to se1_const
se1_const.fc = Fc1; // Pass floating-point inputs to se1_const
se1_const.Ts = Ts1; // Pass floating-point inputs to se1_const

se2_const.Rr = Rr2; // Pass floating-point inputs to se2_const
se2_const.Lr = Lr2; // Pass floating-point inputs to se2_const
se2_const.fb = Fb2; // Pass floating-point inputs to se2_const
se2_const.fc = Fc2; // Pass floating-point inputs to se2_const
se2_const.Ts = Ts2; // Pass floating-point inputs to se2_const

ACISE_CONST_MACRO (se1_const); // Call compute macro for se1_const
ACISE_CONST_MACRO (se2_const); // Call compute macro for se2_const

se1.K1 = _IQ(se1_const.K1); // Access the floating-point outputs of se1_const
se1.K2 = _IQ(se1_const.K2); // Access the floating-point outputs of se1_const
se1.K3 = _IQ(se1_const.K3); // Access the floating-point outputs of se1_const
se1.K4 = _IQ(se1_const.K4); // Access the floating-point outputs of se1_const

se2.K1 = _IQ(se2_const.K1); // Access the floating-point outputs of se2_const
se2.K2 = _IQ(se2_const.K2); // Access the floating-point outputs of se2_const
se2.K3 = _IQ(se2_const.K3); // Access the floating-point outputs of se2_const
se2.K4 = _IQ(se2_const.K4); // Access the floating-point outputs of se2_const

}

C2000 Systems and Applications 11

ACI SE Technical Background

Technical Background

The open-loop speed estimator [1] is derived basing on the mathematics equations of induction
motor in the stationary reference frame. The precise values of machine parameters are
unavoidably required, otherwise the steady-state speed error may happen. However, the
structure of the estimator is much simple comparing with other advanced techniques. All
equations represented here are in the stationary reference frame (with superscript “s”). Firstly, the
rotor flux linkage equations can be shown as below:

s

dsm

s

drr

s

dr iLiL (1)

s

qsm

s

qrr

s

qr iLiL (2)

where Lr, and Lm are rotor, and magnetizing inductance (H), respectively.
According to equations (1)-(2), the rotor currents can be expressed as

 s

dsm

s

dr

r

s

dr iL
L

1
i (3)

 s

qsm

s

qr

r

s

qr iL
L

1
i (4)

Secondly, the rotor voltage equations are used to find the rotor flux linkage dynamics.

dt

d
iR0

s

drs

qrr

s

drr

 (5)

dt

d
iR0

s

qrs

drr

s

qrr

 (6)

where r is electrically angular velocity of rotor (rad/sec), and Rr is rotor resistance ().
Substituting the rotor currents from (3)-(4) into (5)-(6), then the rotor flux linkage dynamics can be
found as

s

qrr

s

ds

r

ms

dr

r

s

dr i
L1

dt

d

 (7)

 s

drr

s

qs

r

ms

qr

r

s

qr
i

L1

dt

d

 (8)

where

r

r
r

R

L
 is rotor time constant (sec).

Suppose that the rotor flux linkages in (7)-(8) are known, therefore, its magnitude and angle can
be computed as

 2s

qr

2s

dr

s

r (9)

 s

dr

s

qr1tan
r

 (10)

Next, the rotor flux (i.e., synchronous) speed, e, can be easily calculated by derivative of the
rotor flux angle in (10).

C2000 Systems and Applications 12

ACI SE Technical Background

dt

tand

dt

d
s

dr

s

qr1

e
r

 (11)

Referring to the derivative table, equation (11) can be solved as

dt

du

u1

1

dt

utand
2

1

 (12)

where
s

dr

s

qr
u

 , yields

2s

dr

s

drs

qr

s

qrs

dr

2s

r

2s

dr

e

dt

d

dt

d

dt

d
r

 (13)

Substituting (7)-(8) into (13), and rearranging, then finally it gives

 s

ds

s

qr

s

qs

s

dr

r

m

2s

r

re ii
L1

dt

d
r

 (14)

The second term of the left hand in (14) is known as slip that is proportional to the
electromagnetic torque when the rotor flux magnitude is maintaining constant. The
electromagnetic torque can be shown here for convenience.

 s

ds

s

qr

s

qs

s

dr

r

m
e ii

L

L

2

p

2

3
T (15)

where p is the number of poles. Thus, the rotor speed can be found as

 s

ds

s

qr

s

qs

s

dr

r

m

2s

r

er ii
L1

 (16)

Now, the per-unit concept is applied to (16), then, the equation (16) becomes

2s

pu,r

s

pu,ds

s

pu,qr

s

pu,qs

s

pu,dr

rb

pu,epu,r

ii1
 pu (17)

where
bb f2 is the base electrically angular velocity (rad/sec), bmb IL is the base flux

linkage (volt.sec), and Ib is the base current (amp). Equivalently, another form is

2s

pu,r

s

pu,ds

s

pu,qr

s

pu,qs

s

pu,dr

1pu,epu,r

ii
K pu (18)

where

rb

1

1
K

 .

The per-unit synchronous speed can be calculated as

C2000 Systems and Applications 13

ACI SE Technical Background

dt

d

f

1

dt

d

f2

1 pu,

bb

pu,e
rr

 pu (19)

where fb is the base electrical (supplied) frequency (Hz) and 2 is the base angle (rad).

Discretizing equation (19) by using the backward approximation, yields

T

)1k()k(

f

1
)k(

pu,pu,

b

pu,e
rr pu (20)

where T is the sampling period (sec). Equivalently, another form is

)1k()k(K)k(pu,pu,2pu,e rr
 pu (21)

where
Tf

1
K

b

2 is usually a large number.

In practice, the typical waveforms of the rotor flux angle, pu,r
 , in both directions can be seen in

Figure 1. To take care the discontinuity of angle from 360
o
 to 0

o
 (CCW) or from 0

o
 to 360

o
 (CW),

the differentiator is simply operated only within the differentiable range as seen in this Figure.
This differentiable range does not significantly lose the information to compute the estimated
speed.

Counterclockwise Direction

Clockwise Direction

 pu
r

 pu
r

time

time

0

1.0

1.0

0

reedeg360pu0.1thatNote
r

DIFF_MAX_LIMIT

DIFF_MIN_LIMIT

DIFF_MAX_LIMIT

DIFF_MIN_LIMIT

Differentiable

Range

Figure 1: The waveforms of rotor flux angle in both directions

In addition, the synchronous speed in (21) is necessary to be filtered out by the low-pass filter in
order to reduce the amplifying noise generated by the pure differentiator in (21). The simple 1

st
-

order low-pass filter is used, then the actual synchronous speed to be used is the output of the

low-pass filter, pu,ê , seen in following equation. The continuous-time equation of 1
st
-order low-

pass filter is as

C2000 Systems and Applications 14

ACI SE Technical Background

pu,epu,e

c

pu,e
ˆ

1

dt

ˆd

 pu (22)

where

c

c
f2

1

 is the low-pass filter time constant (sec), and fc is the cut-off frequency (Hz).

Using backward approximation, then (22) finally becomes

)k(K)1k(ˆK)k(ˆ
pu,e4pu,e3pu,e pu (23)

where
T

K
c

c

3

 , and

T

T
K

c

4

 .

In fact, only three equations (18), (21), and (23) are mainly employed to compute the estimated
speed in per-unit. The required parameters for this module are summarized as follows:

The machine parameters:
- number of poles (p)
- rotor resistance (Rr)
- rotor leakage inductance (Lrl)
- magnetizing inductance (Lm)

The based quantities:
- base current (Ib)

- base electrically angular velocity (b)

The sampling period:
- sampling period (T)

Low-pass filter:
- cut-off frequency (fc)

Notice that the rotor self inductance is
mrlr LLL (H).

Next, Table 1 shows the correspondence of notations between variables used here and variables
used in the program (i.e. aci_se.h). The software module requires that both input and output
variables are in per unit values.

C2000 Systems and Applications 15

ACI SE Technical Background

 Equation Variables Program Variables

Inputs

s

dr PsiDrS

s

qr PsiQrS

r
 ThetaFlux

s

dsi IDsS

s

qsi IQsS

Output r WrHat

Others

 2s

r SquaredPsi

e WPsi

Table 1: Correspondence of notations

References:

[1] A.M. Trzynadlowski, The Field Orientation Principle in Control of Induction Motors,

Kluwer Academic Publishers, 1994, pp. 176-180.

C2000 Systems and Applications 16

ACI FE Flux estimator of the 3-ph induction motor

Description This software module implements the flux estimator with the rotor flux angle for

the 3-ph induction motor based upon the integral of back emf’s (voltage model)
approach. To reduce the errors due to pure integrator and stator resistance
measurement, the compensated voltages produced by PI compensators are
introduced. Therefore, this flux estimator can be operating over a wide range of
speed, even at very low speed.

ACIFE

MACRO

UQsS

UDsS

IDsS

PsiDrS

ThetaFlux

pu

pu

pu

pu

pu

puIQsS

PsiQrS
pu

Availability C interface version

Module Properties Type: Target Independent

 Target Devices: 28x Fixed or Floating Point

C Version File Names: aci_fe.h

 IQmath library files for C: IQmathLib.h, IQmath.lib

C2000 Systems and Applications 17

ACI FE C Interface

C Interface

Object Definition

The structure of ACIFE object is defined by following structure definition

 typedef struct { _iq ThetaFlux; // Output: Rotor flux angle
 _iq IQsS; // Input: Stationary q-axis stator current
 _iq IDsS; // Input: Stationary d-axis stator current
 _iq K1; // Parameter: Constant using in current model
 _iq FluxDrE; // Variable: Rotating d-axis rotor flux (current model)
 _iq K2; // Parameter: Constant using in current model
 _iq FluxQrS; // Variable: Stationary q-axis rotor flux (current model)
 _iq FluxDrS; // Variable: Stationary d-axis rotor flux (current model)
 _iq K3; // Parameter: Constant using in stator flux computation
 _iq K4; // Parameter: Constant using in stator flux computation
 _iq FluxDsS; // Variable: Stationary d-axis stator flux (current model)
 _iq FluxQsS; // Variable: Stationary q-axis stator flux (current model)
 _iq PsiQsS; // Variable: Stationary d-axis stator flux (voltage model)
 _iq Kp; // Parameter: PI proportional gain
 _iq UiDsS; // Variable: Stationary d-axis integral term
 _iq UCompDsS; // Variable: Stationary d-axis compensated voltage
 _iq Ki; // Parameter: PI integral gain
 _iq PsiQsS; // Variable: Stationary q-axis stator flux (voltage model)
 _iq UiQsS; // Variable: Stationary q-axis integral term
 _iq UCompQsS; // Variable: Stationary q-axis compensated voltage
 _iq EmfDsS; // Variable: Stationary d-axis back emf
 _iq UDsS; // Input: Stationary d-axis stator voltage
 _iq K5; // Parameter: Constant using in back emf computation
 _iq K6; // Parameter: Constant using in back emf computation
 _iq EmfQsS; // Variable: Stationary q-axis back emf
 _iq UQsS; // Input: Stationary q-axis stator voltage
 _iq K8; // Parameter: Constant using in rotor flux computation
 _iq K7; // Parameter: Constant using in rotor flux computation
 _iq PsiDrS; // Output: Stationary d-axis estimated rotor flux
 _iq PsiQrS; // Output: Stationary q-axis estimated rotor flux
 _iq OldEmf; // Variable: Old back emf term
 _iq Sine; // Variable: Sine term
 _iq Cosine; // Variable: Cosine term

 } ACIFE;

C2000 Systems and Applications 18

ACI FE C Interface

Module Terminal Variables

Item Name Description Format
*

Range(Hex)

Inputs UDsS stationary d-axis stator voltage GLOBAL_Q 80000000-7FFFFFFF

UQsS stationary q-axis stator voltage GLOBAL_Q 80000000-7FFFFFFF

IDsS stationary d-axis stator current GLOBAL_Q 80000000-7FFFFFFF

IQsS stationary q-axis stator current GLOBAL_Q 80000000-7FFFFFFF

Outputs PsiDrS stationary d-axis rotor flux linkage GLOBAL_Q 80000000-7FFFFFFF

PsiQrS stationary q-axis rotor flux linkage GLOBAL_Q 80000000-7FFFFFFF

ThetaFlux rotor flux linkage angle GLOBAL_Q 00000000-7FFFFFFF
(0 – 360 degree)

ACIFE
parameter

K1 K1 = Tr/(Tr+T) GLOBAL_Q 80000000-7FFFFFFF

K2 K2 = T/(Tr+T) GLOBAL_Q 80000000-7FFFFFFF

K3 K3 = Lm/Lr GLOBAL_Q 80000000-7FFFFFFF

K4 K4 = (Ls*Lr-Lm*Lm)/(Lr*Lm) GLOBAL_Q 80000000-7FFFFFFF

K5 K5 = Rs*Ib/Vb GLOBAL_Q 80000000-7FFFFFFF

K6 K6 = T*Vb/(Lm*Ib) GLOBAL_Q 80000000-7FFFFFFF

K7 K7 = Lr/Lm GLOBAL_Q 80000000-7FFFFFFF

K8 K8 = (Ls*Lr-Lm*Lm)/(Lm*Lm) GLOBAL_Q 80000000-7FFFFFFF

Internal FluxDrE stationary d-axis rotor flux GLOBAL_Q 80000000-7FFFFFFF

FluxQrE stationary q-axis rotor flux GLOBAL_Q 80000000-7FFFFFFF

FluxDsS stationary d-axis stator flux GLOBAL_Q 80000000-7FFFFFFF

FluxQsS stationary q-axis stator flux GLOBAL_Q 80000000-7FFFFFFF

PsiQsS stationary d-axis stator flux GLOBAL_Q 80000000-7FFFFFFF

PsiQsS stationary q-axis stator flux GLOBAL_Q 80000000-7FFFFFFF

 UiDsS stationary d-axis integral term GLOBAL_Q 80000000-7FFFFFFF

 UiQsS stationary q-axis integral term GLOBAL_Q 80000000-7FFFFFFF

EmfDsS stationary d-axis back emf GLOBAL_Q 80000000-7FFFFFFF

EmfQsS stationary q-axis back emf GLOBAL_Q 80000000-7FFFFFFF

UCompDsS stationary d-axis comp. voltage GLOBAL_Q 80000000-7FFFFFFF

UCompQsS stationary q-axis comp. voltage GLOBAL_Q 80000000-7FFFFFFF

OldEmf old abck emf term GLOBAL_Q 80000000-7FFFFFFF

Sine sine term GLOBAL_Q 80000000-7FFFFFFF

Cosine cosine term GLOBAL_Q 80000000-7FFFFFFF
 *

GLOBAL_Q valued between 1 and 30 is defined in the IQmathLib.h header file.

Special Constants and Data types

 ACIFE

The module definition is created as a data type. This makes it convenient to instance an interface
to the flux estimator of Induction Motor module. To create multiple instances of the module simply
declare variables of type ACIFE.

 ACIFE_DEFAULTS

Structure symbolic constant to initialize ACIFE module. This provides the initial values to the
terminal variables as well as method pointers.

C2000 Systems and Applications 19

ACI FE C Interface

Module Usage

Instantiation

 The following example instances two ACIFE objects
 ACIFE fe1, fe2;

 Initialization

To Instance pre-initialized objects
ACIFE fe1 = ACIFE_DEFAULTS;
ACIFE fe2 = ACIFE_DEFAULTS;
Invoking the computation macro
ACIFE_MACRO(fe1);
ACIFE_MACRO(fe2);

Example
The following pseudo code provides the information about the module usage.

main()
{

fe1.K1 = parem1_1; // Pass parameters to fe1
 . .
 . .
 . .
fe1.K8 = parem1_8; // Pass parameters to fe1

fe2.K1 = parem2_1; // Pass parameters to fe2
 . .
 . .
 . .
fe2.K10_fe = parem2_8; // Pass parameters to fe2

}

void interrupt periodic_interrupt_isr()
{

fe1.UDsS= voltage_dq1.d; // Pass inputs to fe1
 fe1.UQsS= voltage_dq1.q; // Pass inputs to fe1
 fe1.IQsS=current_dq1.d; // Pass inputs to fe1
 fe1.IDsS=current_dq1.q; // Pass inputs to fe1

fe2.UDsS= voltage_dq2.d; // Pass inputs to fe2

 fe2.UQsS= voltage_dq2.q; // Pass inputs to fe2
 fe2.IQsS=current_dq2.d; // Pass inputs to fe2

fe2.IDsS=current_dq2.q; // Pass inputs to fe2

C2000 Systems and Applications 20

ACI FE C Interface

ACIFE_MACRO(fe1); // Call compute macro for fe1
 ACIFE_MACRO(fe2); // Call compute macro for fe2

 flux1.d = fe1.PsiDrS; // Access the outputs of fe1
 flux1.q = fe1.PsiQrS; // Access the outputs of fe1
 angle1 = fe1.ThetaFlux; // Access the outputs of fe1

 flux2.d = fe2.PsiDrS; // Access the outputs of fe2
 flux2.q = fe2.PsiQrS; // Access the outputs of fe2
 angle2 = fe2.ThetaFlux; // Access the outputs of fe2

}

C2000 Systems and Applications 21

ACI FE CONST C Interface

Constant Computation Macro

Since the flux estimator of Induction motor module requires eight constants (K1,…, K8) to be
input basing on the machine parameters, base quantities, mechanical parameters, and sampling
period. These eight constants can be internally computed by the macro (aci_fe_const.h). The
followings show how to use the C constant computation macro.

Object Definition

The structure of ACIFE_CONST object is defined by following structure definition

 typedef struct { float32 Rs; // Input: Stator resistantance
 float32 Rr; // Input: Rotor resistance (ohm)

 float32 Ls; // Input: Stator inductance (H)
 float32 Lr; // Input: Rotor inductance (H)
 float32 Lm; // Input: Magnetizing inductance (H)
 float32 Ib; // Input: Base phase current (amp)
 float32 Vb; // Input: Base phase voltage (volt)
 float32 Ts; // Input: Sampling period in sec
 float32 K1; // Output: constant using in rotor flux calculation
 float32 K2; // Output: constant using in rotor flux calculation
 float32 K3; // Output: constant using in rotor flux calculation
 float32 K4; // Output: constant using in stator current calculation
 float32 K5; // Output: constant using in stator current calculation
 float32 K6; // Output: constant using in stator current calculation
 float32 K7; // Output: constant using in stator current calculation
 float32 K8; // Output: constant using in torque calculation
 } ACIFE_CONST;

C2000 Systems and Applications 22

ACI FE CONST C Interface

Module Terminal Variables

Item Name Description Format Range(Hex)

Inputs Rs Stator resistance (ohm) Floating N/A

Rr Rotor resistance (ohm) Floating N/A

Ls Stator inductance (H) Floating N/A

Lr Rotor inductance (H) Floating N/A

Lm Magnetizing inductance (H) Floating N/A

Ib Base phase current (amp) Floating N/A

Vb Base phase voltage (volt) Floating N/A

Ts Sampling period (sec) Floating N/A

Outputs K1 constant using in rotor flux calculation Floating N/A

K2 constant using in rotor flux calculation Floating N/A

K3 constant using in rotor flux calculation Floating N/A

K4 constant using in stator current cal. Floating N/A

K5 constant using in stator current cal. Floating N/A

K6 constant using in stator current cal. Floating N/A

K7 constant using in stator current cal. Floating N/A

K8 constant using in torque calculation Floating N/A

Special Constants and Data types

 ACIFE_CONST

The module definition is created as a data type. This makes it convenient to instance an interface
to the flux estimation of Induction Motor constant computation module. To create multiple
instances of the module simply declare variables of type ACIFE_CONST.

 ACIFE_CONST_DEFAULTS

Structure symbolic constant to initialize ACIFE_CONST module. This provides the initial values to
the terminal variables as well as method pointers.

Module Usage

Instantiation

 The following example instances two ACIFE_CONST objects
 ACIFE_CONST fe1_const, fe2_const;

C2000 Systems and Applications 23

ACI FE CONST C Interface

Initialization
To Instance pre-initialized objects
ACIFE_CONST fe1_const = ACIFE_CONST_DEFAULTS;
ACIFE_CONST fe2_const = ACIFE_CONST_DEFAULTS;

Invoking the computation macro
ACIFE_CONST_MACRO(fe1_const);
ACIFE_CONST_MACRO(fe2_const);

Example
The following pseudo code provides the information about the module usage.

main()
{

fe1_const.Rs = Rs1; // Pass floating-point inputs to fe1_const
fe1_const.Rr = Rr1; // Pass floating-point inputs to fe1_const
fe1_const.Ls = Ls1; // Pass floating-point inputs to fe1_const
fe1_const.Lr = Lr1; // Pass floating-point inputs to fe1_const
fe1_const.Lm = Lm1; // Pass floating-point inputs to fe1_const
fe1_const.Ib = Ib1; // Pass floating-point inputs to fe1_const
fe1_const.Vb = Vb1; // Pass floating-point inputs to fe1_const
fe1_const.Ts = Ts1; // Pass floating-point inputs to fe1_const

fe2_const.Rs = Rs2; // Pass floating-point inputs to fe2_const
fe2_const.Rr = Rr2; // Pass floating-point inputs to fe2_const
fe2_const.Ls = Ls2; // Pass floating-point inputs to fe2_const
fe2_const.Lr = Lr2; // Pass floating-point inputs to fe2_const
fe2_const.Lm = Lm2; // Pass floating-point inputs to fe2_const
fe2_const.Ib = Ib2; // Pass floating-point inputs to fe2_const
fe2_const.Vb = Vb2; // Pass floating-point inputs to fe2_const
fe2_const.Ts = Ts2; // Pass floating-point inputs to fe2_const

ACIFE_CONST_MACRO(fe1_const); // Call compute macro for fe1_const
ACIFE_CONST_MACRO (fe2_const); // Call compute macro for fe2_const

fe1.K1 = _IQ(fe1_const.K1); // Access the floating-point outputs of fe1_const
 . .
 . .
 . .
fe1.K8 = _IQ(fe1_const.K8); // Access the floating-point outputs of fe1_const

fe2.K1 = _IQ(fe2_const.K1); // Access the floating-point outputs of fe2_const
 . .
 . .
 . .
fe2.K8 = _IQ(fe2_const.K8); // Access the floating-point outputs of fe2_const

}

C2000 Systems and Applications 24

ACI FE Technical Background

Technical Background

The overall of the flux estimator [1] can be shown in Figure 1. The rotor flux linkages in the
stationary reference frame are mainly computed by means of the integral of back emf’s in the
voltage model. By introducing the compensated voltages generated by PI compensators, the
errors associated with pure integrator and stator resistance measurement can be taken care. The
equations derived for this flux estimator are summarized as follows:

Continuous time:

Firstly, the rotor flux linkage dynamics in synchronously rotating reference frame
re

can be shown as below:

 i,e

qrre

i,e

dr

r

e

ds

r

m

i,e

dr 1
i

L

dt

d

 (1)

 i,e

drre

i,e

qr

r

e

qs

r

m

i,e

qr 1
i

L

dt

d

 (2)

where Lm is the magnetizing inductance (H),

r

r
r

R

L
 is the rotor time constant (sec), and r is

the electrically angular velocity of rotor (rad/sec).

In the current model, total rotor flux linkage is aligned into the d-axis component, which is
modeled by the stator currents, thus

i,e

dr

i,e

r and 0i,e

qr (3)

Substituting 0i,e

qr into (1)-(2), yields the oriented rotor flux dynamics are

i,e

dr

r

e

ds

r

m

i,e

dr 1
i

L

dt

d

 (4)

 0i,e

qr (5)

Note that (4) and (5) are the classical rotor flux vector control equations. Then, the rotor flux
linkages in (4)-(5) are transformed into the stationary reference frame performed by inverse park
transformation.

rrr

cossincos i,e

dr

i,e

qr

i,e

dr

i,s

dr (6)

rrr

sincossin i,e

dr

i,e

qr

i,e

dr

i,s

qr (7)

where
r is the rotor flux angle (rad).

Then, the stator flux linkages in stationary reference frame are computed from the rotor flux
linkages in (6)-(7)

C2000 Systems and Applications 25

ACI FE Technical Background

Park

Trans.

Current Model

i,e

drs

dsi
s

qsi

e

dsi
e

qsi

v,s

dr

v,s

qr1tan

r

Inverse park

Trans.

i,e

qr

r

v,s

dr

v,s

qr s

s

v,s

s

v,s

r i,

 s

s

i,s

r

i,s

s i,

i,s

dr
i,s

qr

s

dsi
s

qsi

s

dsi
s

qsi

2 PI's

v,s

dr

v,s

qr

Rs

Rs

s

dsu
s

qsu

- +

+-

i,s

ds
i,s

qs

-

-

-
+

-

+

Voltage Model

v,s

ds
v,s

qs

+

+

v,s

dsv,s

qs

v,s

qs
v,s

ds

r

ds,compu

qs,compu

Eqs. (6)-(7)Eqs. (4)-(5) Eqs. (10)-(11)

Eqs. (12)-(13)

Eqs. (14)-(15)

Eqs. (8)-(9)

 Figure 1: Overall system of flux estimator

C2000 Systems and Applications 26

ACI FE Technical Background

 i,s

dr

r

ms

ds

r

2

mrss

drm

s

dss

i,s

ds
L

L
i

L

LLL
iLiL

 (8)

 i,s

qr

r

ms

qs

r

2

mrss

qrm

s

qss

i,s

qs
L

L
i

L

LLL
iLiL

 (9)

where Ls and Lr are the stator and rotor self inductance (H), respectively.

Next, the stator flux linkages in the voltage model is computed by means of back emf’s integration
with compensated voltages.

 dtuRiu ds,comps

s

ds

s

ds

v,s

ds (10)

 dtuRiu qs,comps

s

qs

s

qs

v,s

qs (11)

where Rs is the stator resistance (),
s

qs

s

ds u,u are stationary dq-axis stator voltages, and the

compensated voltages are computed by the PI control law as follows:

 dt
T

K
Ku i,s

ds

v,s

ds

I

pi,s

ds

v,s

dspds,comp (12)

 dt
T

K
Ku i,s

qs

v,s

qs

I

Pi,s

qs

v,s

qspqs,comp (13)

The proportional gain KP and the reset time TI are chosen such that the flux linkages computed by
current model is dominant at low speed because the back emf’s computed by the voltage model
are extremely low at this speed range (even zero back emf’s at zero speed). While at high speed
range, the flux linkages computed by voltage model is dominant.

Once the stator flux linkages in (10)-(11) are calculated, the rotor flux linkages based on the
voltage model are further computed, by rearranging (8)-(9), as

 v,s

ds

m

rs

ds

m

2

mrsv,s

dr
L

L
i

L

LLL

 (14)

 v,s

qs

m

rs

qs

m

2

mrsv,s

qr
L

L
i

L

LLL

 (15)

Then, the rotor flux angle based on the voltage model is finally computed as

 v,s

dr

v,s

qr1tan
r

 (16)

Discrete time:

The oriented rotor flux dynamics in (4) is discretized by using backward approximation as follows:

)k(
1

)k(i
L

T

)1k()k(i,e

dr

r

e

ds

r

m

i,e

dr

i,e

dr

 (17)

where T is the sampling period (sec). Rearranging (17), then it gives

 e,i e,i er m
dr dr ds

r r

L T
(k) (k-1) i (k)

T T

 (18)

C2000 Systems and Applications 27

ACI FE Technical Background

Next, the stator flux linkages in (10)-(11) are discretized by using trapezoidal (or tustin)
approximation as

)1k(e)k(e
2

T
)1k()k(s

ds

s

ds

v,s

ds

v,s

ds (19)

)1k(e)k(e
2

T
)1k()k(s

qs

s

qs

v,s

qs

v,s

qs (20)

where the back emf’s are computed as

)k(uR)k(i)k(u)k(e ds,comps

s

ds

s

ds

s

ds (21)

)k(uR)k(i)k(u)k(e qs,comps

s

qs

s

qs

s

qs (22)

Similarly, the PI control laws in (12)-(13) are also discretized by using trapezoidal approximation
as

)1k(u)k()k(K)k(u i,ds,comp

i,s

ds

v,s

dspds,comp (23)

)1k(u)k()k(K)k(u i,qs,comp

i,s

qs

v,s

qspqs,comp (24)

where the accumulating integral terms are as

)k()k(KK)1k(u

)k()k(
T

TK
)1k(u)k(u

i,s

ds

v,s

dsIPi,ds,comp

i,s

ds

v,s

ds

I

P
i,ds,compi,ds,comp

 (25)

)k()k(KK)1k(u

)k()k(
T

TK
)1k(u)k(u

i,s

qs

v,s

qsIPi,qs,comp

i,s

qs

v,s

qs

I

P
i,qs,compi,qs,comp

 (26)

where

I

I
T

T
K .

Discrete time and Per-unit:

Now all equations are normalized into the per-unit by the specified base quantities. Firstly, the
rotor flux linkage in current model (18) is normalized by dividing the base flux linkage as

 e,i e,i er
dr,pu dr,pu ds,pu

r r

T
(k) (k 1) i (k)

T T

 pu (27)

where
bmb IL is the base flux linkage (volt.sec) and Ib is the base current (amp).

Next, the stator flux linkages in the current model (8)-(9) are similarly normalized by dividing the
base flux linkage as

)k(
L

L
)k(i

LL

LLL
)k(i,s

pu,dr

r

ms

pu,ds

mr

2

mrsi,s

pu,ds

 pu (28)

C2000 Systems and Applications 28

ACI FE Technical Background

)k(
L

L
)k(i

LL

LLL
)k(i,s

pu,qr

r

ms

pu,qs

mr

2

mrsi,s

pu,qs

 pu (29)

Then, the back emf’s in (21)-(22) are normalized by dividing the base phase voltage Vb

)k(u)k(i
V

RI
)k(u)k(e pu,ds,comp

s

pu,ds

b

sbs

pu,ds

s

pu,ds pu (30)

)k(u)k(i
V

RI
)k(u)k(e pu,qs,comp

s

pu,qs

b

sbs

pu,qs

s

pu,qs pu (31)

Next, the stator flux linkages in the voltage model (19)-(20) are divided by the base flux linkage.

2

)1k(e)k(e

IL

TV
)1k()k(

s

pu,ds

s

pu,ds

bm

bv,s

pu,ds

v,s

pu,ds pu (32)

2

)1k(e)k(e

IL

TV
)1k()k(

s

pu,qs

s

pu,qs

bm

bv,s

pu,qs

v,s

pu,qs pu (33)

Similar to (28)-(29), the normalized rotor flux linkages in voltage model are

)k(
L

L
)k(i

LL

LLL
)k(v,s

pu,ds

m

rs

pu,ds

mm

2

mrsv,s

pu,dr

 pu (34)

)k(
L

L
)k(i

LL

LLL
)k(v,s

pu,qs

m

rs

pu,qs

mm

2

mrsv,s

pu,qr

 pu (35)

In conclusion, the discrete-time, per-unit equations are rewritten in terms of constants.

Current model – rotor flux linkage in synchronously rotating reference frame
r

e,i e,i e

dr,pu 1 dr,pu 2 ds,pu(k) K (k 1) K i (k) pu (36)

where
T

K
r

r
1

 , and

T

T
K

r

2

 .

Current model – rotor flux linkages in the stationary reference frame 0

)k(K)k(iK)k(i,s

pu,dr3

s

pu,ds4

i,s

pu,ds pu (37)

)k(K)k(iK)k(i,s

pu,qr3

s

pu,qs4

i,s

pu,qs pu (38)

where

r

m
3

L

L
K , and

mr

2

mrs

4
LL

LLL
K

 .

Voltage model – back emf’s in the stationary reference frame 0

)k(u)k(iK)k(u)k(e pu,ds,comp

s

pu,ds5

s

pu,ds

s

pu,ds pu (39)

)k(u)k(iK)k(u)k(e pu,qs,comp

s

pu,qs5

s

pu,qs

s

pu,qs pu (40)

where

b

sb

5
V

RI
K .

C2000 Systems and Applications 29

ACI FE Technical Background

Voltage model – stator flux linkages in the stationary reference frame 0

2

)1k(e)k(e
K)1k()k(

s

pu,ds

s

pu,ds

6

v,s

pu,ds

v,s

pu,ds pu (41)

2

)1k(e)k(e
K)1k()k(

s

pu,qs

s

pu,qs

6

v,s

pu,qs

v,s

pu,qs pu (42)

where

bm

b

6
IL

TV
K .

Voltage model – rotor flux linkages in the stationary reference frame 0

)k(K)k(iK)k(v,s

pu,ds7

s

pu,ds8

v,s

pu,dr pu

(43)

)k(K)k(iK)k(v,s

pu,qs7

s

pu,qs8

v,s

pu,qr pu (44)

where

m

r
7

L

L
K , and

mm

2

mrs

8
LL

LLL
K

 .

Voltage model – rotor flux angle

)k(

)k(
tan

2

1
)k(

v,s

pu,dr

v,s

pu,qr1

pu,r
 pu (45)

Notice that the rotor flux angle is computed by a look-up table of 0
o
-45

o
 with 256 entries.

In fact, equations (36)-(44) are mainly employed to compute the estimated flux linkages in per-
unit. The required parameters for this module are summarized as follows:

The machine parameters:
- stator resistance (Rs)
- rotor resistance (Rr)
- stator leakage inductance (Lsl)
- rotor leakage inductance (Lrl)
- magnetizing inductance (Lm)

The based quantities:
- base current (Ib)
- base phase voltage (Vb)

The sampling period:
- sampling period (T)

Notice that the stator self inductance is msls LLL (H) and the rotor self inductance is

mrlr LLL (H).

Next, Table 1 shows the correspondence of notations between variables used here and variables
used in the program (i.e. aci_fe.h). The software module requires that both input and output
variables are in per unit values.

C2000 Systems and Applications 30

ACI FE Technical Background

 Equation Variables Program Variables

Inputs

s

dsu UDsS

s

qsu UQsS

s

dsi IDsS

s

qsi IQsS

Outputs

v,s

dr PsiDrS

v,s

qr PsiQrS

r ThetaFlux

Others

i,e

dr FluxDrE

i,s

dr FluxDrS

i,s

qr FluxQrS

i,s

ds FluxDsS

i,s

qs FluxQsS

v,s

ds PsiQsS

v,s

qs PsiQsS

s

dse EmfDsS

s

qse EmfQsS

ds,compu UCompDsS

qs,compu UCompQsS

Table 1: Correspondence of notations

References:

[1] C. Lascu, I. Boldea, and F. Blaabjerg, “A modified direct torque control for induction

motor sensorless drive”, IEEE Trans. Ind. Appl., vol. 36, no. 1, pp. 122-130,
January/February 2000.

C2000 Systems and Applications 31

CLARKE Clarke Transformation

Description Converts balanced three phase quantities into balanced two phase quadrature

quantities.

Availability C interface version

Module Properties Type: Target Independent

 Target Devices: 28x Fixed or Floating Point

C Version File Names: clarke.h

 IQmath library files for C: IQmathLib.h, IQmath.lib

CLARKE
MACRO

Alpha

Beta

As

Bs

C2000 Systems and Applications 32

CLARKE C Interface

C Interface

Object Definition

The structure of CLARKE object is defined by following structure definition

typedef struct { _iq As; // Input: phase-a stator variable
 _iq Bs; // Input: phase-b stator variable

_iq Cs; // Input: phase-c stator variable
 _iq Alpha; // Output: stationary d-axis stator variable
 _iq Beta; // Output: stationary q-axis stator variable
 } CLARKE;

Item Name Description Format
*

Range(Hex)

Inputs

As
Phase ‘a’ component of the

balanced three phase quantities
GLOBAL_Q 80000000-7FFFFFFF

Bs
Phase ‘b’ component of the

balanced three phase quantities
GLOBAL_Q 80000000-7FFFFFFF

Cs
Phase ‘c’ component of the

balanced three phase quantities
GLOBAL_Q 80000000-7FFFFFFF

Outputs
Alpha

Direct axis(d) component of the
transformed signal

GLOBAL_Q 80000000-7FFFFFFF

Beta
Quadrature axis(q) component of

the transformed signal
GLOBAL_Q 80000000-7FFFFFFF

 *
GLOBAL_Q valued between 1 and 30 is defined in the IQmathLib.h header file.

Special Constants and Data types

 CLARKE

The module definition is created as a data type. This makes it convenient to instance an interface
to the Clarke variable transformation. To create multiple instances of the module simply declare
variables of type CLARKE.

 CLARKE_DEFAULTS

Structure symbolic constant to initialize CLARKE module. This provides the initial values to the
terminal variables as well as method pointers.

Module Usage

Instantiation

 The following example instances two CLARKE objects
 CLARKE clarke1, clarke2;

C2000 Systems and Applications 33

CLARKE C Interface

Initialization

To Instance pre-initialized objects
CLARKE clarke1 = CLARKE_DEFAULTS;
CLARKE clarke2 = CLARKE_DEFAULTS;

Invoking the computation macro

CLARKE_MACRO (clarke1);
CLARKE_MACRO (clarke2);

Example
The following pseudo code provides the information about the module usage.

main()
{

}

void interrupt periodic_interrupt_isr()
{

clarke1.As = as1; // Pass inputs to clarke1
 clarke1.Bs = bs1; // Pass inputs to clarke1

clarke2.As = as2; // Pass inputs to clarke2
 clarke2.Bs = bs2; // Pass inputs to clarke2

CLARKE_MACRO (clarke1); // Call compute macro for clarke1
CLARKE_MACRO (clarke2); // Call compute macro for clarke2

 ds1 = clarke1.Alpha; // Access the outputs of clarke1
 qs1 = clarke1.Beta; // Access the outputs of clarke1

 ds2 = clarke2.Alpha; // Access the outputs of clarke2
 qs2 = clarke2.Beta; // Access the outputs of clarke2
}

C2000 Systems and Applications 34

CLARKE Technical Background

Technical Background

Here it is assumed that all three phases are balanced (i.e. Ia + Ib + Ic=0) and they have positive
sequence (ABC) as follows:

This macro implements the following equations:

 which result in

This transformation converts balanced three phase quantities into balanced two phase
quadrature quantities as shown in figure below.

 3-phase Quadrature: 2-phase

Next, Table 1 shows the correspondence of notations between variables used here and variables
used in the program (i.e. clarke.h). The software module requires that both input and output
variables are in per unit values.

Equation Variables Program Variables

Inputs
ia As

ib Bs

ic Cs

Outputs
Iα Alpha

Iβ Beta

Table 1: Correspondence of notations

90

o

0 Iβ

Iα

CLARKE

Ia

Ib

Ib Ia Iα Iβ Ic

120
o

0

C2000 Systems and Applications 35

COMTN_TRIG Commutation Trigger Generator for BLDC Drive

Description This module determines the Bemf zero crossing points of a 3-ph BLDC motor

based on motor phase voltage measurements and then generates the
commutation trigger points for the 3-ph power inverter switches.

Availability C interface version

Module Properties Type: Target Independent

 Target Devices: 28x Fixed or Floating Point

C Version File Names: com_trig.h

 IQmath library files for C: IQmathLib.h, IQmath.lib

CMTN_TRIG
MACRO

Vb

Va

CmtnTrig

CmtnPointer

Vc

VirtualTimer

C2000 Systems and Applications 36

COMTN_TRIG C Interface

C Interface

Object Definition

The structure of CMTN object is defined by following structure definition

typedef struct { Uint32 CmtnTrig; // Output: Commutation trigger output (0 or 00007FFF)
 _iq Va; // Input: Motor phase a voltages referenced to GND
 _iq Vb; // Input: Motor phase b voltages referenced to GND
 _iq Vc; // Input: Motor phase c voltages referenced to GND
 _iq Neutral; // Variable: 3*Motor netural voltage
 Uint32 RevPeriod; // Variable: revolution time counter (Q0)
 Uint32 ZcTrig; // Variable: Zero-Crossing trig flag (0 or 00007FFF)
 Uint32 CmtnPointer; // Input: Commutation state pointer input (Q0)
 _iq DebugBemf; // Variable: 3*Back EMF = 3*(vx=vn), x=a,b,c
 Uint32 NoiseWindowCounter; // Variable: Noise windows counter (Q0)
 Uint32 Delay30DoneFlag; // Variable: 30 Deg delay flag (0 or 0000000F)
 Uint32 NewTimeStamp; // Variable: Time stamp (Q0)
 Uint32 OldTimeStamp; // History: Previous time stamp (Q0)
 Uint32 VirtualTimer; // Input: Virtual timer (Q0)
 Uint32 CmtnDelay; // Variable: Time delay (Q0)
 Uint32 DelayTaskPointer; // Variable: Delay task pointer, see note below (0 or 1)
 Uint32 NoiseWindowMax; // Variable: Maximum noise windows counter (Q0)
 Uint32 CmtnDelayCounter; // Variable: Time delay counter (Q0)
 Uint32 NWDelta; // Variable: Noise windows delta (Q0)
 Uint32 NWDelayThres; // Variable: Noise windows dynamic threshold (Q0)
 } CMTN;

C2000 Systems and Applications 37

COMTN_TRIG C Interface

Item Name Description Format
*

Range(Hex)

Inputs

CmtnPointer

Commutation state pointer
input. This is used for Bemf
zero crossing point calculation
for the appropriate motor
phase.

Q0 0 - 5

Va
Motor phase-a voltages
referenced to GND.

GLOBAL_Q 00000000-7FFFFFFF

Vb
Motor phase-b voltages
referenced to GND.

GLOBAL_Q 00000000-7FFFFFFF

Vc
Motor phase-c voltages
referenced to GND.

GLOBAL_Q 00000000-7FFFFFFF

VirtualTimer

A virtual timer used for
commutation delay angle
calculation.

Q0 80000000-7FFFFFFF

Output CmtnTrig Commutation trigger output. Q0 0 or 00007FFF

Internal

Neutral 3*Motor netural voltage GLOBAL_Q 80000000-7FFFFFFF

RevPeriod revolution time counter Q0 00000000-7FFFFFFF

ZcTrig Zero-Crossing trig flag Q0 0 or 00007FFF

DebugBemf 3*Back EMF GLOBAL_Q 80000000-7FFFFFFF

NoiseWindowCounter Noise windows counter Q0 80000000-7FFFFFFF

Delay30DoneFlag 30 Deg delay flag Q0 0 or 0000000F

NewTimeStamp Time stamp Q0 00000000-7FFFFFFF

OldTimeStamp Previous time stamp Q0 00000000-7FFFFFFF

CmtnDelay
Time delay in terms of number
of sampling time periods

Q0 00000000-7FFFFFFF

DelayTaskPointer Delay task pointer Q0 0 or 1

NoiseWindowMax
Maximum noise windows
counter

Q0 80000000-7FFFFFFF

CmtnDelayCounter Time delay counter Q0 80000000-7FFFFFFF

NWDelta Noise windows delta Q0 80000000-7FFFFFFF

NWDelayThres
Noise windows dynamic
threshold

Q0 80000000-7FFFFFFF

 *
GLOBAL_Q valued between 1 and 30 is defined in the IQmathLib.h header file.

Special Constants and Data types

 CMTN

The module definition is created as a data type. This makes it convenient to instance an interface
to ramp generator. To create multiple instances of the module simply declare variables of type
CMTN.

 CMTN_DEFAULTS

Structure symbolic constant to initialize CMTN module. This provides the initial values to the
terminal variables as well as method pointers.

C2000 Systems and Applications 38

COMTN_TRIG C Interface

Module Usage

Instantiation

 The following example instances two CMTN objects
 CMTN cm_trig1, cm_trig2;

Initialization
To Instance pre-initialized objects
CMTN cm_trig1 = CMTN_DEFAULTS;
CMTN cm_trig2 = CMTN_DEFAULTS;

Invoking the computation macro
CMTN_TRIG_MACRO (cm_trig1);
CMTN_TRIG_MACRO (cm_trig2);

Example
The following pseudo code provides the information about the module usage.

main()
{

}

void interrupt periodic_interrupt_isr()
{

cm_trig1.CmtnPointer = input11; // Pass inputs to cm_trig1
cm_trig1.Va = input12; // Pass inputs to cm_trig1
cm_trig1.Vb = input13; // Pass inputs to cm_trig1
cm_trig1.Vc = input14; // Pass inputs to cm_trig1
cm_trig1.VirtualTimer = input15; // Pass inputs to cm_trig1

cm_trig2.CmtnPointer = input21; // Pass inputs to cm_trig2
cm_trig2.Va = input22; // Pass inputs to cm_trig2
cm_trig2.Vb = input23; // Pass inputs to cm_trig2
cm_trig2.Vc = input24; // Pass inputs to cm_trig2
cm_trig2.VirtualTimer = input25; // Pass inputs to cm_trig2

CMTN_TRIG_MACRO (cm_trig1); // Call compute macro for cm_trig1
CMTN_TRIG_MACRO (cm_trig2); // Call compute macro for cm_trig2

 out1 = cm_trig1.CmtnTrig; // Access the outputs of cm_trig1
 out2 = cm_trig2.CmtnTrig; // Access the outputs of cm_trig2
}

C2000 Systems and Applications 39

COMTN_TRIG Technical Background

Technical Background

Figure 1 shows the 3-phase power inverter topology used to drive a 3-phase BLDC motor. In this
arrangement, the motor and inverter operation is characterized by a two phase ON operation.
This means that two of the three phases are always energized, while the third phase is turned off.

Figure 1: Three Phase Power Inverter for a BLDC Motor Drive

The bold arrows on the wires indicate the Direct Current flowing through two motor stator phases.
For sensorless control of BLDC drives it is necessary to determine the zero crossing points of the
three Bemf voltages and then generate the commutation trigger points for the associated 3-ph
power inverter switches.

The figure below shows the basic hardware necessary to perform these tasks.

ADCINx

ADCINy

Stator Phase #x Cable

Figure 2: Basic Sensorless Additional Hardware

Shunt
Resistor

Q1

Q2

Q3

Q4

Q5

Q6

FULL

COMPARE

UNIT

ADCINy

BLDC

C2000 Systems and Applications 40

The resistor divider circuit is specified such that the maximum output from this voltage sensing
circuit utilizes the full ADC conversion range. The filtering capacitor should filter the chopping
frequency, so only very small values are necessary (in the range of nF). The sensorless algorithm
is based only on the three motor terminal voltage measurements and thus requires only four ADC
input lines.

Figure 3 shows the motor terminal model for phase A, where L is the phase inductance, R is the
phase resistance, Ea is the back electromotive force, Vn is the star connection voltage referenced
to ground and Va is the phase voltage referenced to ground. Va voltages are measured by
means of the DSP controller ADC Unit and via the voltage sense circuit shown in Figure 2.

Shunt Resistor

Ea
Ia

VnVa

L R

Figure 3: Stator Terminal Electrical Model

Assuming that phase C is the non-fed phase it is possible to write the following equations for the
three terminal voltages:

VnEa
dt

dIa
LRIaVa .

VnEb
dt

dIb
LRIbVb

VnEcVc

As only two currents flow in the stator windings at any one time, two phase currents are equal
and opposite. Therefore,

IbIa

Thus, by adding the three terminal voltage equations we have,

Vn3EcEbEaVcVbVa

The instantaneous Bemf waveforms of the BLDC motor are shown in figure 4. From this figure it
is evident that at the Bemf zero crossing points the sum of the three Bemfs is equal to zero.
Therefore the last equation reduces to,

Vn3VcVbVa

COMTN_TRIG Technical Background

C2000 Systems and Applications 41

COMTN_TRIG Technical Background

This equation is implemented in the code to compute the neutral voltage. In the code, the quantity
3Vn is represented by the variable called Neutral.

Figure 4: Instantaneous Bemf Wave-forms

Bemf Zero Crossing Point Computation

For the non-fed phase (zero current flowing), the stator terminal voltage can be rewritten as
follows:

Vn3Vc33Ec .

This equation is used in the code to calculate the Bemf zero crossing point of the non-fed phase
C. Similar equations are used to calculate the Bemf zero crossing points of other Bemf voltages
Ea and Eb. As we are interested in the zero crossing of the Bemf it is possible to check only for
the Bemf sign change; this assumes that the Bemf scanning loop period is much shorter than the
mechanical time constant. This function is computed after the three terminal voltage samples,

e.g., once every 16.7s (60kHz sampling loop).

Electrical Behaviour at Commutation Points

At the instants of phase commutation, high dV/dt and dI/dt glitches may occur due to the direct
current level or to the parasitic inductance and capacitance of the power board. This can lead to a
misreading of the computed neutral voltage. This is overcomed by discarding the first few scans
of the Bemf once a new phase commutation occurs. In the code this is implemented by the
function named ‘NOISE_WIN’. The duration depends on the power switches, the power board
design, the phase inductance and the driven direct current. This parameter is system-dependent
and is set to a large value in the low speed range of the motor. As the speed increases, the s/w
gradually lowers this duration since the Bemf zero crossings also get closer at higher speed.

Ea Eb Ec

C2000 Systems and Applications 42

COMTN_TRIG Technical Background

Commutation Instants Computation

In an efficient sensored control the Bemf zero crossing points are displaced 30º from the instants
of phase commutation. So before running the sensorless BLDC motor with help of the six zero
crossing events it is necessary to compute the time delay corresponding to this 30º delay angle
for exact commutation points. This is achieved by implementing a position interpolation function.
In this software it is implemented as follows: let T be the time that the rotor spent to complete the

previous revolution and be the desired delay angle. By dividing by 360º and multiplying the
result by T we obtain the time duration to be spent before commutating the next phase pair. In the
code this delay angle is fixed to 30º. The corresponding time delay is represented in terms of the
number of sampling time periods and is stored in the variable CmtnDelay. Therefore,

Time delay = CmtnDelay .Ts = T(/360) = VirtualTimer.Ts(/360) = VirtualTimer . Ts/12

Where, Ts is the sampling time period and VirtualTimer is a timer that counts the number of
sampling cycles during the previous revolution of the rotor.

The above equation is further simplified as,

CmtnDelay = VirtualTimer /12

This equation is implemented in the code in order to calculate the time delay corresponding to the
30º commutation delay angle.

C2000 Systems and Applications 43

CUR_MOD Current Model

Description This module takes as input both IQs and IDs, currents coming from the PARK

transform, as well as the rotor mechanical speed and gives the rotor flux position.

CURMOD

MACRO

IQs

IDs

Wr

Theta

Availability C interface version

Module Properties Type: Target Independent

 Target Devices: 28x Fixed or Floating Point

C Version File Names: cur_mod.h

 IQmath library files for C: IQmathLib.h, IQmath.lib

C2000 Systems and Applications 44

CUR_MOD C Interface

C Interface

Object Definition

The structure of CURMOD object is defined by following structure definition

typedef struct { _iq IDs; // Input: Syn. rotating d-axis current
 _iq IQs; // Input: Syn. rotating q-axis current
 _iq Wr; // Input: Rotor electrically angular velocity
 _iq IMDs; // Variable: Syn. rotating d-axis magnetizing current
 _iq Theta; // Output: Rotor flux angle
 _iq Kr; // Parameter: constant using in magnetizing current calc
 _iq Kt; // Parameter: constant using in slip calculation
 _iq K; // Parameter: constant using in rotor flux angle calculation
 } CURMOD;

Module Terminal Variables

Item Name Description Format
*

Range(Hex)

Inputs IDs Syn. rotating d-axis current GLOBAL_Q 80000000-7FFFFFFF

IQs Syn. rotating d-axis current GLOBAL_Q 80000000-7FFFFFFF

Wr Rotor electrically angular velocity GLOBAL_Q 80000000-7FFFFFFF

Outputs Theta Rotor flux angle GLOBAL_Q 00000000-7FFFFFFF

(0 – 360 degree)

CUR_MOD
parameter

Kr Kr = T/Tr GLOBAL_Q 80000000-7FFFFFFF

Kt Kt = 1/(Tr*wb) GLOBAL_Q 80000000-7FFFFFFF

K K = T*fb GLOBAL_Q 80000000-7FFFFFFF

Internal Wslip Slip frequency GLOBAL_Q 80000000-7FFFFFFF

We Synchronous frequency GLOBAL_Q 80000000-7FFFFFFF
 *

GLOBAL_Q valued betWeen 1 and 30 is defined in the IQmathLib.h header file.

Special Constants and Data types

 CURMOD

The module definition is created as a data type. This makes it convenient to instance an interface
to the current model. To create multiple instances of the module simply declare variables of type
CURMOD.

 CURMOD_DEFAULTS

Structure symbolic constant to initialize CURMOD module. This provides the initial values to the
terminal variables as Well as method pointers.

C2000 Systems and Applications 45

CUR_MOD C Interface

Module Usage

Instantiation

 The following example instances two CURMOD objects
 CURMOD cm1, cm2;

 Initialization

To Instance pre-initialized objects
CURMOD cm1 = CURMOD_DEFAULTS;
CURMOD cm2 = CURMOD_DEFAULTS;

Invoking the computation macro
CURMOD_MACRO(cm1);
CURMOD_MACRO(cm2);

Example

The following pseudo code provides the information about the module usage.

main()
{

cm1.Kr = parem1_1; // Pass parameters to cm1
cm1.Kt = parem1_2; // Pass parameters to cm1
cm1.K = parem1_3; // Pass parameters to cm1

cm2.Kr = parem2_1; // Pass parameters to cm2
cm2.Kt = parem2_2; // Pass parameters to cm2
cm2.K = parem2_3; // Pass parameters to cm2

}
void interrupt periodic_interrupt_isr()
{

cm1.IDs = de1; // Pass inputs to cm1
cm1.IQs = qe1; // Pass inputs to cm1

 cm1.Wr = Wr1; // Pass inputs to cm1

cm2.IDs = de2; // Pass inputs to cm2
cm2.IQs = qe2; // Pass inputs to cm2

 cm2.Wr = Wr2; // Pass inputs to cm2

CURMOD_MACRO(cm1); // Call compute macro for cm1
CURMOD_MACRO(cm2); // Call compute macro for cm2

 ang1 = cm1.Theta; // Access the outputs of cm1
 ang2 = cm2.Theta; // Access the outputs of cm2
}

C2000 Systems and Applications 46

CUR_MOD CONST C Interface

Constant Computation Macro

Since the current model module requires three constants (Kr, Kt, and K) to be input basing on the
machine parameters, base quantities, mechanical parameters, and sampling period. These four
constants can be internally computed by the macro (cur_const.h). The followings show how to
use the C constant computation macro.

Object Definition

The structure of CURMOD_CONST object is defined by following structure definition

typedef struct { float32 Rr; // Input: Rotor resistance (ohm)
 float32 Lr; // Input: Rotor inductance (H)
 float32 fb; // Input: Base electrical frequency (Hz)
 float32 Ts; // Input: Sampling period (sec)
 float32 Kr; // Output: constant using in magnetizing current calculation
 float32 Kt; // Output: constant using in slip calculation
 float32 K; // Output: constant using in rotor flux angle calculation
 } CURMOD_CONST;

Module Terminal Variables

Item Name Description Format Range(Hex)

Inputs Rr Rotor resistance (ohm) Floating N/A

Lr Rotor inductance (H) Floating N/A

fb Base electrical frequency (Hz) Floating N/A

Ts Sampling period (sec) Floating N/A

Outputs Kr constant using in current model calculation Floating N/A

Kt constant using in current model calculation Floating N/A

K constant using in current model calculation Floating N/A

Special Constants and Data types

 CURMOD_CONST

The module definition is created as a data type. This makes it convenient to instance an interface
to the current model constant computation module. To create multiple instances of the module
simply declare variables of type CURMOD_CONST.

 CURMOD_CONST_DEFAULTS

Structure symbolic constant to initialize CURMOD_CONST module. This provides the initial
values to the terminal variables as Well as method pointers.

C2000 Systems and Applications 47

CUR_MOD CONST C Interface

Module Usage

Instantiation

 The following example instances two CURMOD_CONST objects
 CURMOD_CONST cm1_const, cm2_const;

 Initialization

To Instance pre-initialized objects
CURMOD_CONST cm1_const = CURMOD_CONST_DEFAULTS;
CURMOD_CONST cm2_const = CURMOD_CONST_DEFAULTS;

Invoking the computation macro
CURMOD_CONST_MACRO (cm1_const);
CURMOD_CONST_MACRO (cm2_const);

Example

The following pseudo code provides the information about the module usage.

main()
{

cm1_const.Rr = Rr1; // Pass floating-point inputs to cm1_const
cm1_const.Lr = Lr1; // Pass floating-point inputs to cm1_const
cm1_const.fb = Fb1; // Pass floating-point inputs to cm1_const
cm1_const.Ts = Ts1; // Pass floating-point inputs to cm1_const

cm2_const.Rr = Rr2; // Pass floating-point inputs to cm2_const
cm2_const.Lr = Lr2; // Pass floating-point inputs to cm2_const
cm2_const.fb = Fb2; // Pass floating-point inputs to cm2_const
cm2_const.Ts = Ts2; // Pass floating-point inputs to cm2_const

CURMOD_CONST_MACRO (cm1_const); // Call compute macro for cm1_const
CURMOD_CONST_MACRO (cm2_const); // Call compute macro for cm2_const

cm1.Kr = _IQ(cm1_const.Kr); // Access the floating-point outputs of cm1_const
cm1.Kt = _IQ(cm1_const.Kt); // Access the floating-point outputs of cm1_const
cm1.K = _IQ(cm1_const.K); // Access the floating-point outputs of cm1_const

cm2.Kr = _IQ(cm2_const.Kr); // Access the floating-point outputs of cm2_const
cm2.Kt = _IQ(cm2_const.Kt); // Access the floating-point outputs of cm2_const
cm2.K = _IQ(cm2_const.K); // Access the floating-point outputs of cm2_const

}

C2000 Systems and Applications 48

CUR_MOD Technical Background

Technical Background

With the asynchronous drive, the mechanical rotor angular speed is not by definition, equal to the
rotor flux angular speed. This implies that the necessary rotor flux position cannot be detected
directly by the mechanical position sensor used with the asynchronous motor (QEP or
tachometer). The current model module be added to the generic structure in the regulation block
diagram to perform a current and speed closed loop for a three phases ACI motor in FOC control.

The current model consists of implementing the following two equations of the motor in d,q
reference frame:

bmRR

qS

b

mR
mR

RdS

ωiT

i
n

dt

dθ

ω

1
fs

i
dt

di
Ti

Where We have:

- is the rotor flux position
-

mRi is the magnetizing current

-

R

R
R

R

L
T is the rotor time constant with

RL the rotor inductance and
RR the rotor resistance.

- fs is the rotor flux speed

- b is the electrical nominal flux speed.

Knowledge of the rotor time constant is critical to the correct functioning of the current model as it
is this system that outputs the rotor flux speed that will be integrated to get the rotor flux position.

Assuming that
k1k qSqS ii

the above equations can be discretized as follows:

1k

k

1k

kkk1k

mR

qS

bR

1kS

mRdS

R

mRmR

i

i

ωT

1
nf

)i(i
T

T
ii

In this equation system, T represents the Main loop control period. In a FOC control this usually
corresponds to the Timer 1 underflow interrupt period.

C2000 Systems and Applications 49

CUR_MOD Technical Background

Let the two above equations constants

RT

T
 and

bRωT

1
 be renamed respectively tK and

RK .

These two constants need to be calculated according to the motor parameters and initialize into
the cur_mod.h file.

Once the motor flux speed (fs) has been calculated, the necessary rotor flux position in per-unit (

) is computed by the integration formula:

ks1-k Kfθθ

where bfTK

The user should be aware that the current model module constants depend on the motor
parameters and need to be calculated for each type of motor. The information needed to do so
are the rotor resistance, the rotor inductance (which is the sum of the magnetizing inductance and

the rotor leakage inductance (σRHR LLL)).

Next, Table 1 shows the correspondence of notations betWeen variables used here and variables
used in the program (i.e. cur_mod.h). The software module requires that both input and output
variables are in per unit values.

 Equation Variables Program Variables
Inputs

qSi
IQs

dSi
IDs

n Wr

Output Theta

Others
mRi IMDs

Table 1: Correspondence of notations

C2000 Systems and Applications 50

IPARK Inverse Park Transformation

Description This transformation projects vectors in orthogonal rotating reference frame into

two phase orthogonal stationary frame.

Availability C interface version

Module Properties Type: Target Independent

 Target Devices: 28x Fixed or Floating Point

C Version File Names: ipark.h

 IQmath library files for C: IQmathLib.h, IQmath.lib

IPARK
MACRO

Ds

 Sine/Cosine

Qs

Alpha

Beta

C2000 Systems and Applications 51

IPARK C Interface

C Interface

Object Definition

The structure of IPARK object is defined by following structure definition

typedef struct { _iq Alpha; // Output: stationary d-axis stator variable
 _iq Beta; // Output: stationary q-axis stator variable
 _iq Ds; // Input: rotating d-axis stator variable
 _iq Qs; // Input: rotating q-axis stator variable
 _iq Sine; // Input: sine term
 _iq Cosine; // Input: cosine term

 } IPARK;

Item Name Description Format
*

Range(Hex)

Inputs
Ds

Direct axis(D) component of
transformed signal in rotating
reference frame

GLOBAL_Q 80000000-7FFFFFFF

Qs
Quadrature axis(Q) component of
transformed signal in rotating
reference frame

GLOBAL_Q 80000000-7FFFFFFF

Sine
Sine of the phase angle between
stationary and rotating frame

GLOBAL_Q 80000000-7FFFFFFF

Cosine
Cosine of the phase angle between
stationary and rotating frame

GLOBAL_Q 80000000-7FFFFFFF

Outputs Alpha
Direct axis(d) component of the
transformed signal

GLOBAL_Q 80000000-7FFFFFFF

Beta
Quadrature axis(q) component of the
transformed signal

GLOBAL_Q 80000000-7FFFFFFF

 *
GLOBAL_Q valued between 1 and 30 is defined in the IQmathLib.h header file.

Special Constants and Data types

 IPARK

The module definition is created as a data type. This makes it convenient to instance an interface
to the Inverse Park variable transformation. To create multiple instances of the module simply
declare variables of type IPARK.

 IPARK_DEFAULTS

Structure symbolic constant to initialize IPARK module. This provides the initial values to the
terminal variables as well as method pointers.

C2000 Systems and Applications 52

IPARK C Interface

Module Usage

Instantiation

 The following example instances two IPARK objects
 IPARK ipark1, ipark2;

Initialization
To Instance pre-initialized objects
IPARK ipark1 = IPARK_DEFAULTS;
IPARK ipark2 = IPARK_DEFAULTS;

Invoking the computation macro
IPARK_MACRO (ipark1);
IPARK_MACRO (ipark2);

Example
The following pseudo code provides the information about the module usage.

main()
{

}

void interrupt periodic_interrupt_isr()
{

ipark1.Ds = de1; // Pass inputs to ipark1
 ipark1.Qs = qe1; // Pass inputs to ipark1
 ipark1.Angle = ang1; // Pass inputs to ipark1

ipark2.Ds = de2; // Pass inputs to ipark2
 ipark2.Qs = qe2; // Pass inputs to ipark2
 ipark2.Angle = ang2; // Pass inputs to ipark2

IPARK_MACRO (ipark1); // Call compute macro for ipark1
IPARK_MACRO (ipark2); // Call compute macro for ipark2

 ds1 = ipark1.Alpha; // Access the outputs of ipark1
 qs1 = ipark1.Beta; // Access the outputs of ipark1

 ds2 = ipark2.Alpha; // Access the outputs of ipark2
 qs2 = ipark2.Beta; // Access the outputs of ipark2

}

C2000 Systems and Applications 53

IPARK Technical Background

Technical Background

Implements the following equations:

Next, Table 1 shows the correspondence of notations between variables used here and variables
used in the program (i.e. ipark.h). The software module requires that both input and output
variables are in per unit values.

 Equation Variables Program Variables

Inputs
ID Ds

IQ Qs

 Angle

sin Sine

cos Cosine

Outputs
id Alpha

iq Beta

Table 1: Correspondence of notations

cossin

sincos

IQIDIq

IQIDId

 ID

IQ

Id

Iq

ID•cos

IQ•sin

ID•sin

IQ•cos

d

D

q
Q

C2000 Systems and Applications 54

IMPULSE Impulse Generator Module

Description This module implements a periodic impulse macro. The output variable Out is set

to 0x00007FFF for 1 sampling period. The period of the output signal Out is
specified by the input Period.

.

Availability C interface version

Module Properties Type: Target Independent

 Target Devices: 28x Fixed or Floating Point

C Version File Names: impulse.h

 IQmath library files for C: IQmathLib.h, IQmath.lib

Out

IMPULSE

Period

C2000 Systems and Applications 55

IMPULSE C Interface

C Interface

Object Definition

The structure of IMPULSE object is defined by following structure definition

typedef struct { Uint32 Period; // Input: Period of output in # of sampling cycles (Q0)
 Uint32 Out; // Output: Impulse output (0x00000000 or 0x00007FFF)
 Uint32 Counter; // Variable: Impulse generator counter (Q0)
 } IMPULSE;

Item Name Description Format
*

Range(Hex)

Input Period
Period of output in # of sampling
period

Q0 00000000-7FFFFFFF

Output Out Impulse output Q0 0 or 00007FFF

Internal Counter Impulse generator counter Q0 00000000-7FFFFFFF
 *

GLOBAL_Q valued between 1 and 30 is defined in the IQmathLib.h header file.

Special Constants and Data types

 IMPULSE

The module definition is created as a data type. This makes it convenient to instance an interface
to the impulse generator. To create multiple instances of the module simply declare variables of
type IMPULSE.

 IMPULSE_DEFAULTS

Structure symbolic constant to initialize IMPULSE module. This provides the initial values to the
terminal variables as well as method pointers.

Module Usage

Instantiation

 The following example instances two IMPULSE objects
 IMPULSE ig1, ig2;

Initialization
To Instance pre-initialized objects
IMPULSE ig1 = IMPULSE_DEFAULTS;
IMPULSE ig2 = IMPULSE_DEFAULTS;

C2000 Systems and Applications 56

IMPULSE C Interface

Invoking the computation macro
IMPULSE_MACRO (ig1);
IMPULSE_MACRO (ig2);

Example
The following pseudo code provides the information about the module usage.

main()
{

}

void interrupt periodic_interrupt_isr()
{

ig1.Period = input1; // Pass inputs to ig1
ig2.Period = input2; // Pass inputs to ig2

IMPULSE_MACRO (ig1); // Call compute macro for ig1
IMPULSE_MACRO (ig2); // Call compute macro for ig2

 out1 = ig1.Out; // Access the outputs of ig1
 out2 = ig2.Out; // Access the outputs of ig2

}

C2000 Systems and Applications 57

IMPULSE Technical Background

Technical Background

Implements the following equation:

Out = 0x00007FFF, for t = n . Tout, n = 1, 2, 3, …….
 = 0, otherwise
where,
Tout = Time period of output pulses = Period x Ts
Ts = Sampling time period

Ts

Tout

t

Out

C2000 Systems and Applications 58

MOD6_CNT Modulo 6 Counter Module

Description This module implements a modulo 6 counter. It counts from state 0 through 5,

then resets to 0 and repeats the process. The state of the output variable
Counter changes to the next state every time it receives a trigger input through
the input variable TrigInput.

.

MOD6CNT

MACRO
TrigInput Counter

Availability C interface version

Module Properties Type: Target Independent

 Target Devices: 28x Fixed or Floating Point

C Version File Names: mod6_cnt.h

 IQmath library files for C: IQmathLib.h, IQmath.lib

C2000 Systems and Applications 59

MOD6_CNT C Interface

C Interface

Object Definition

The structure of MOD6CNT object is defined by following structure definition

typedef struct { Uint32 TrigInput; // Input: Modulo 6 counter trigger 0x0000 or 0x7FFF)
 Uint32 Counter; // Output: Modulo 6 counter output (0,1,2,3,4,5)
 } MOD6CNT;

Item Name Description Format
*

Range(Hex)

Input TrigInput Modulo 6 counter trigger Q0 0 or 7FFF

Outputs Counter Modulo 6 counter output Q0 0,1,2,3,4,5
 *

GLOBAL_Q valued between 1 and 30 is defined in the IQmathLib.h header file.

Special Constants and Data types

 MOD6CNT

The module definition is created as a data type. This makes it convenient to instance an interface
to the modulo 6 counter. To create multiple instances of the module simply declare variables of
type MOD6CNT.

 MOD6CNT_DEFAULTS

Structure symbolic constant to initialize MOD6CNT module. This provides the initial values to the
terminal variables as well as method pointers.

Module Usage

Instantiation

 The following example instances two MOD6CNT objects
 MOD6CNT mod1, mod2;

Initialization
To Instance pre-initialized objects
MOD6CNT mod1 = MOD6CNT_DEFAULTS;
MOD6CNT mod2 = MOD6CNT_DEFAULTS;

Invoking the computation macro
MOD6CNT_MACRO (mod1);
MOD6CNT_MACRO (mod2);

C2000 Systems and Applications 60

MOD6_CNT C Interface

Example
The following pseudo code provides the information about the module usage.

main()
{

}

void interrupt periodic_interrupt_isr()
{

mod1.TrigInput = input1; // Pass inputs to mod1
mod2.TrigInput = input2; // Pass inputs to mod2

MOD6CNT_MACRO (mod1); // Call compute macro for mod1
MOD6CNT_MACRO (mod2); // Call compute macro for mod2

 out1 = mod1.Counter; // Access the outputs of mod1
 out2 = mod2.Counter; // Access the outputs of mod2

}

C2000 Systems and Applications 61

MOD6_CNT Technical Background

Technical Background

Counter = 0, when 1

st
 trigger pulse occur (TrigInput is set to 0x7FFF for the 1

st
 time)

 = 1, when 2
nd

 trigger pulse occur(TrigInput is set to 0x7FFF for the 2
nd

 time)
 = 2, when 3

rd
 trigger pulse occur (TrigInput is set to 0x7FFF for the 3

rd
 time)

 = 3, when 4
th
 trigger pulse occur (TrigInput is set to 0x7FFF for the 4

th
 time)

 = 4, when 5
th
 trigger pulse occur (TrigInput is set to 0x7FFF for the 5

th
 time)

 = 5, when 6
th
 trigger pulse occur (TrigInput is set to 0x7FFF for the 6

th
 time)

and repeats the output states for the subsequent pulses.

Counter

MOD6_CNT
TrigInput

0, 1, 2, 3, 4, 5, 0, 1, …

1st 2nd 3rd 4th 5th 6th …...7th

……

……………….
………..

.

.

.

C2000 Systems and Applications 62

PARK Park Transformation

Description This transformation converts vectors in balanced 2-phase orthogonal stationary

system into orthogonal rotating reference frame.

Availability C interface version

Module Properties Type: Target Independent

 Target Devices: 28x Fixed or Floating Point

C Version File Names: park.h

 IQmath library files for C: IQmathLib.h, IQmath.lib

Alpha

Sine/Cosine

Beta

PARK
MACRO

Ds

Qs

C2000 Systems and Applications 63

PARK C Interface

C Interface

Object Definition

The structure of PARK object is defined by following structure definition

typedef struct { _iq Alpha; // Input: stationary d-axis stator variable
 _iq Beta; // Input: stationary q-axis stator variable
 _iq Ds; // Output: rotating d-axis stator variable
 _iq Qs; // Output: rotating q-axis stator variable
 _iq Sine; // Input: sine term
 _iq Cosine; // Input: cosine term

 } PARK;

Item Name Description Format
*

Range(Hex)

Inputs Alpha
Direct axis(d) component of the

transformed signal
GLOBAL_Q 80000000-7FFFFFFF

Beta
Quadrature axis(q) component of

the transformed signal
GLOBAL_Q 80000000-7FFFFFFF

Sine
Sine of the phase angle between

stationary and rotating frame
GLOBAL_Q 80000000-7FFFFFFF

Cosine
Cosine of the phase angle between

stationary and rotating frame
GLOBAL_Q 80000000-7FFFFFFF

Outputs
Ds

Direct axis(D) component of
transformed signal in rotating

reference frame
GLOBAL_Q 80000000-7FFFFFFF

Qs
Quadrature axis(Q) component of

transformed signal in rotating
reference frame

GLOBAL_Q 80000000-7FFFFFFF

 *
GLOBAL_Q valued between 1 and 30 is defined in the IQmathLib.h header file.

Special Constants and Data types

 PARK

The module definition is created as a data type. This makes it convenient to instance an interface
to the Park variable transformation. To create multiple instances of the module simply declare
variables of type PARK.

 PARK_DEFAULTS

Structure symbolic constant to initialize PARK module. This provides the initial values to the
terminal variables as well as method pointers.

C2000 Systems and Applications 64

PARK C Interface

Module Usage

Instantiation

 The following example instances two PARK objects
 PARK park1, park2;

Initialization
To Instance pre-initialized objects
PARK park1 = PARK_DEFAULTS;
PARK park2 = PARK_DEFAULTS;

Invoking the computation macro
PARK_MACRO(park1);
PARK_MACRO(park2);

Example
The following pseudo code provides the information about the module usage.

main()
{

}

void interrupt periodic_interrupt_isr()
{

park1.Alpha = ds1; // Pass inputs to park1
 park1.Beta = qs1; // Pass inputs to park1
 park1.Angle = ang1; // Pass inputs to park1

park2.Alpha = ds2; // Pass inputs to park2
 park2.Beta = qs2; // Pass inputs to park2
 park2.Angle = ang2; // Pass inputs to park2

PARK_MACRO(park1); // Call compute macro for park1
PARK_MACRO(park2); // Call compute macro for park2

 de1 = park1.Ds; // Access the outputs of park1
 qe1 = park1.Qs; // Access the outputs of park1

 de2 = park2.Ds; // Access the outputs of park2
 qe2 = park2.Qs; // Access the outputs of park2

}

C2000 Systems and Applications 65

)sin(
)cos(

tII
tII

PARK Technical Background

Technical Background

Implements the following equations:

This transformation converts vectors in 2-phase orthogonal stationary system into the rotating
reference frame as shown in figure below:

The instantaneous input quantities are defined by the following equations:

Next, Table 1 shows the correspondence of notations between variables used here and variables
used in the program (i.e. park.h). The software module requires that both input and output
variables are in per unit values.

 Equation Variables Program Variables

Inputs
Iα Alpha

Iβ Beta

sin Sine

cos Cosine

Outputs
ID Ds

IQ Qs

Table 1: Correspondence of notations

cossin

sincos

IIIQ

IIID

 ID
IQ

Iα

Iβ

Iα•cos
Iβ•sin

Iα•sin

Iβ•cos

α

D

β
Q

C2000 Systems and Applications 66

PHASE_VOLT Phase Voltage Reconstruction

Description This software module calculates three phase voltages impressing to the 3-ph

electric motor (i.e., induction or synchronous motor) by using the conventional
voltage-source inverter. Three phase voltages can be reconstructed from the DC-
bus voltage and three switching functions of the upper power switching devices
in the inverter. In addition, this software module also includes the clarke
transformation changing from three phase voltages into two stationary dq-axis
phase voltages.

VOLT

MACRO

1MfuncV

2MfuncV

3MfuncV

DcBusVolt

VphaseA

VphaseB

VphaseC

Valpha

Vbeta

Availability C interface version

Module Properties Type: Target Independent

 Target Devices: 28x Fixed or Floating Point

C Version File Names: volt_calc.h

 IQmath library files for C: IQmathLib.h, IQmath.lib

C2000 Systems and Applications 67

PHASE_VOLT C Interface

C Interface

Object Definition

The structure of PHASEVOLTAGE object is defined by following structure definition

typedef struct { _iq DcBusVolt; // Input: DC-bus voltage
 _iq MfuncV1; // Input: Modulation voltage phase A
 _iq MfuncV2; // Input: Modulation voltage phase B
 _iq MfuncV3; // Input: Modulation voltage phase C
 Uint32 OutOfPhase; // Parameter: Out of Phase adjustment (0 or 1)
 _iq VphaseA; // Output: Phase voltage phase A
 _iq VphaseB; // Output: Phase voltage phase B
 _iq VphaseC; // Output: Phase voltage phase C
 _iq Valpha; // Output: Stationary d-axis phase voltage
 _iq Vbeta; // Output: Stationary q-axis phase voltage
 } PHASEVOLTAGE;

Item Name Description Format
*

Range(Hex)

Inputs DcBusVolt DC-bus voltage GLOBAL_Q 80000000-7FFFFFFF

MfuncV1
Switching function of upper
switching device 1

GLOBAL_Q 80000000-7FFFFFFF

MfuncV2
Switching function of upper
switching device 2

GLOBAL_Q 80000000-7FFFFFFF

MfuncV3
Switching function of upper
switching device 3

GLOBAL_Q 80000000-7FFFFFFF

Outputs VphaseA Line-neutral phase voltage A GLOBAL_Q 80000000-7FFFFFFF

VphaseA Line-neutral phase voltage A GLOBAL_Q 80000000-7FFFFFFF

VphaseA Line-neutral phase voltage A GLOBAL_Q 80000000-7FFFFFFF

Valpha Stationary d-axis phase voltage GLOBAL_Q 80000000-7FFFFFFF

Vbeta Stationary q-axis phase voltage GLOBAL_Q 80000000-7FFFFFFF
 *

GLOBAL_Q valued between 1 and 30 is defined in the IQmathLib.h header file.

Special Constants and Data types

 PHASEVOLTAGE

The module definition is created as a data type. This makes it convenient to instance an interface
to phase voltage reconstruction. To create multiple instances of the module simply declare
variables of type PHASEVOLTAGE.

 PHASEVOLTAGE_DEFAULTS

Structure symbolic constant to initialize PHASEVOLTAGE module. This provides the initial values
to the terminal variables as well as method pointers.

C2000 Systems and Applications 68

PHASE_VOLT C Interface

Module Usage

Instantiation

 The following example instances two PHASEVOLTAGE objects
 PHASEVOLTAGE volt1, volt2;

Initialization
To Instance pre-initialized objects
PHASEVOLTAGE volt1 = PHASEVOLTAGE_DEFAULTS;
PHASEVOLTAGE volt2 = PHASEVOLTAGE_DEFAULTS;

Invoking the computation macro
VOLT_MACRO(volt1);
VOLT_MACRO(volt2);

Example
The following pseudo code provides the information about the module usage.

main()
{

}

void interrupt periodic_interrupt_isr()
{

volt1.DcBusVolt = dc_volt1; // Pass inputs to volt1
 volt1.MfuncV1 = M1_1; // Pass inputs to volt1
 volt1.MfuncV2 = M2_1; // Pass inputs to volt1
 volt1.MfuncV3 = M3_1; // Pass inputs to volt1

volt2.DcBusVolt = dc_volt2; // Pass inputs to volt2

 volt2.MfuncV1 = M1_2; // Pass inputs to volt2
 volt2.MfuncV2 = M2_2; // Pass inputs to volt2
 volt2.MfuncV3 = M3_2; // Pass inputs to volt2

VOLT_MACRO(volt1); // Call compute macro for volt1
VOLT_MACRO(volt2); // Call compute macro for volt2

 Vd1 = volt1.Valpha; // Access the outputs of volt1
 Vq1 = volt1.Vbeta; // Access the outputs of volt1

 Vd2 = volt2.Valpha; // Access the outputs of volt2
 Vq2 = volt2.Vbeta; // Access the outputs of volt2
}

C2000 Systems and Applications 69

PHASE_VOLT Technical Background

Technical Background

The phase voltage of a general 3-ph motor (Van, Vbn, and Vcn) can be calculated from the DC-bus
voltage (Vdc) and three upper switching functions of inverter (S1, S2, and S3). The 3-ph windings of

motor are connected as the connection without a neutral return path (or 3-ph, 3-wire system).
The overall system can be shown in Figure 1.

Vdc

+

-

S1 S2 S3

S4 S5 S6

ia

ib

ic

3-ph motor

Va

Vb

Vc

Vn

r, L

voltage-source inverter

Figure 1: Voltage-source inverter with a 3-ph electric motor

Each phase of the motor is simply modeled as a series impedance of resistance and inductance
(r, L) and back emf (ea, eb, ec). Thus, three phase voltages can be computed as

a

a

anaan e
dt

di
LriVVV (1)

b

b

bnbbn e
dt

di
LriVVV (2)

c

c

cnccn e
dt

di
LriVVV (3)

Summing these three phase voltages, yields

cba

cba

cbancba eee
dt

iiid
LriiiV3VVV

 (4)

Without a neutral return path, according to KCL, i.e., 0iii cba , and the back emfs are

balanced and symmetrical due to the 3-ph winding structures, i.e., 0eee cba , so (4)

becomes

 0VVV cnbnan (5)

C2000 Systems and Applications 70

PHASE_VOLT Technical Background

Furthermore, the neutral voltage can be simply derived from (4)-(5) as

 cban VVV
3

1
V (6)

Now three phase voltages can be calculated as

 cbacbaaan V
3

1
V

3

1
V

3

2
VVV

3

1
VV (7)

 cabcbabbn V
3

1
V

3

1
V

3

2
VVV

3

1
VV (8)

 baccbaccn V
3

1
V

3

1
V

3

2
VVV

3

1
VV (9)

Three voltages Va, Vb, Vc are related to the DC-bus voltage (Vdc) and three upper switching
functions (S1, S2, S3) as the following relation.

 dc1a VSV (10)

 dc2b VSV (11)

 dc3c VSV (12)

where S1, S2, S3 = either 0 or 1, and S4 = 1-S1, S5 = 1-S2, and S6 = 1-S3. (13)

As a result, three phase voltages in (7)-(9) can also be expressed in terms of DC-bus voltage and
three upper switching functions as follows:

 321dcan S

3

1
S

3

1
S

3

2
VV (14)

 312dcbn S

3

1
S

3

1
S

3

2
VV (15)

 213dccn S

3

1
S

3

1
S

3

2
VV (16)

It is emphasized that the S1, S2, and S3 are defined as the upper switching functions. If the lower
switching functions are available instead, then the out-of-phase correction of switching functions
is required in order to get the upper switching functions as easily computed from equation (13).

Next the clarke transformation changing from three phase voltages (Van, Vbn, and Vcn) to the

stationary dq-axis phase voltages (
s

dsV , and
s

qsV) are applied by using the following

relationship. Because of the balanced system (5), Vcn is not used in clarke transformation.

 an

s

ds VV (17)

 bnan

s

qs V2V
3

1
V (18)

Figure 2 depicts the abc-axis and stationary dq-axis components for the stator voltages of motor.

Notice that the notation of the stationary dq-axis is sometimes used as the stationary -axis,
accordingly.

C2000 Systems and Applications 71

PHASE_VOLT Technical Background

Van

Vbn

Vcn

s

qsV

s

dsV
120

o

120
o

0

Figure 2: The abc-axis and stationary dq-axis components of the stator phase voltages

Next, Table 1 shows the correspondence of notations between variables used here and variables
used in the program (i.e., volt_calc.h). The software module requires that both input and output
variables are in per unit values.

 Equation Variables Program Variables

Inputs
S1 MfuncV1

S2 MfuncV2

S3 MfuncV3

Vdc DcBusVolt

Outputs
Van VphaseA

Vbn VphaseB

Vcn VphaseC
s

dsV
Valpha

s

qsV
Vbeta

Table 1: Correspondence of notations

C2000 Systems and Applications 72

PI PI Controller

Description This module implements a simple 32-bit digital PI controller with anti-windup

correction.

Availability C interface version

Module Properties Type: Target Independent

 Target Devices: 28x Fixed or Floating Point

C Version File Names: pi.h

 IQmath library files for C: IQmathLib.h, IQmath.lib

PI

MACRO

Ref

Fdb

Out

C2000 Systems and Applications 73

PI C Interface

C Interface

Object Definition

The structure of PI object is defined by following structure definition

typedef struct {

Ref // Input: reference set-point
Fbk // Input: feedback
Out // Output: controller output
Kp // Parameter: proportional loop gain
Ki // Parameter: integral gain
Umax // Parameter: upper saturation limit
Umin // Parameter: lower saturation limit
up // Data: proportional term
ui // Data: integral term
v1 // Data: pre-saturated controller output
i1 // Data: integrator storage: ui(k-1)
w1 // Data: saturation record: [u (k-1) - v(k-1)]

 } PI;

Module Terminal Variables/Macros

Item Name Description Format* Range(Hex)

Input Ref Reference input GLOBAL_Q 80000000-7FFFFFFF

Fbk Feedback input GLOBAL_Q 80000000-7FFFFFFF

UMax Maximum PI32 module output GLOBAL_Q 80000000-7FFFFFFF

UMin Minimum PI32 module output GLOBAL_Q 80000000-7FFFFFFF

Output Out PI Output (Saturated) GLOBAL_Q 80000000-7FFFFFFF

PI
parameter

Kp Proportional gain GLOBAL_Q 80000000-7FFFFFFF

Ki Integral gain GLOBAL_Q 80000000-7FFFFFFF

Internal up Proportional term GLOBAL_Q 80000000-7FFFFFFF

ui Integral term GLOBAL_Q 80000000-7FFFFFFF

v1 Pre-saturated controller output GLOBAL_Q 80000000-7FFFFFFF

i1 Integrator storage GLOBAL_Q 80000000-7FFFFFFF

w1 Saturation record GLOBAL_Q 80000000-7FFFFFFF
*
GLOBAL_Q valued between 1 and 30 is defined in the IQmathLib.h header file.

C2000 Systems and Applications 74

PI C Interface

Special Constants and Data types

PI
The module definition is created as a data type. This makes it convenient to instance an interface
to the PI module. To create multiple instances of the module simply declare variables of type PI.

 PI_DEFAULTS

Structure symbolic constant to initialize PI module. This provides the initial values to the terminal
variables as well as method pointers.

Module Usage

Instantiation

 The following example instances two PI objects
 PI pi1, pi2;

 Initialization

To Instance pre-initialized objects
PI pi1 = PI_DEFAULTS;
PI pi2 = PI_DEFAULTS;

Invoking the computation macro
PI_MACRO(pi1);
PI_MACRO(pi2);

C2000 Systems and Applications 75

PI C Interface

Example

The following pseudo code provides the information about the module usage.

 /* Instance the PI module */
 PI pi1=PI_DEFAULTS;

PI pi2=PI_DEFAULTS;

main()
{

pi1.Kp = _IQ(0.5); // Pass _iq parameters to pi1
pi1.Ki = _IQ(0.001); // Pass _iq parameters to pi1
pi1.Umax =_IQ(0.9); // Pass _iq parameters to pi1

 pi1.Umin =_IQ(-0.9); // Pass _iq parameters to pi1

pi2.Kp = _IQ(0.8); // Pass _iq parameters to pi2
pi2.Ki = _IQ(0.0001); // Pass _iq parameters to pi2
pi1.Umax =_IQ(0.9); // Pass _iq parameters to pi2
pi1.Umin =_IQ(-0.9); // Pass _iq parameters to pi2

}

void interrupt periodic_interrupt_isr()
{

pi1.Ref = input1_1; // Pass _iq inputs to pi1
pi1.Fdb = input1_2; // Pass _iq inputs to pi1
pi2.Ref = input2_1; // Pass _iq inputs to pi2
pi2.Fdb = input2_2; // Pass _iq inputs to pi2

PI_MACRO(pi1); // Call compute macro for pi1

 PI_MACRO(pi2); // Call compute macro for pi2

 output1 = pi1.Out; // Access the output of pi1
 output2 = pi2.Out; // Access the output of pi2
}

C2000 Systems and Applications 76

PI Technical Background

Technical Background

The PI_cntl module implements a basic summing junction and P+I control law with the following features:

 Programmable output saturation

 Independent reference weighting on proportional path

 Anti-windup integrator reset

The PI controller is a sub-set of the PID controller. All input, output and internal data is in I8Q24 fixed-
point format. A block diagram of the internal controller structure is shown below.

z-1

KiKp

++

+

+

=?

-

+
r(k)

Feedback

(Fbk)

w1

ui

up

v1
i1

Umax

Umin

y(k)

Reference

(Ref)

Output

(Out)

u(k)

a) Proportional path

The proportional path is a direct connection between the error term and a summing junction with the
integral path. The error term is:

)()()()(kykrKkeku pp .. (1)

b) Integral path

The integral path consists of a discrete integrator which is pre-multiplied by a term derived from the output
module. The term w1 is either zero or one, and provides a means to disable the integrator path when
output saturation occurs. This prevents the integral term from “winding up” and improves the response
time on recovery from saturation. The integrator law used is based on a backwards approximation.

)()1()(keKkuku iii ... (2)

C2000 Systems and Applications 77

PI Technical Background

c) Output path

The output path contains a summing block to sum the proportional and integral controller terms. The
result is then saturated according to user programmable upper and lower limits to give the controller
output.

The pre-and post-saturated terms are compared to determine whether saturation has occurred, and if so,
a zero or one result is produced which is used to disable the integral path (see above). The output path
law is defined as follows.

)()()(1 kukukv ip ... (3)

max1min1

min1min

max1max

)(:)(

)(:

)(:

)(

UkvUkv

UkvU

UkvU

ku ... (4)

)()(:1

)()(:0
)(

1

1

1
kukv

kukv
kw .. (5)

Tuning the P+I controller

Default values for the controller coefficients are defined in the macro header file which apply unity gain
through the proportional path, and disable both integral and derivative paths. A suggested general
technique for tuning the controller is now described.

Step 1. Ensure integral is set to zero and proportional gain set to one.

Step 2. Gradually adjust proportional gain variable (Kp) while observing the step response to achieve
optimum rise time and overshoot compromise.

Step 3. If necessary, gradually increase integral gain (Ki) to optimize the return of the steady state output
to nominal. The controller will be very sensitive to this term and may become unstable so be sure to start
with a very small number. Integral gain will result in an increase in overshoot and oscillation, so it may be

necessary to slightly decrease the Kp term again to find the best balance. Note that if the integral gain is

used then set to zero, a small residual term may persist in ui.

C2000 Systems and Applications 78

PI_REG4 PI Controller

Description This module implements a simple 32-bit digital PI controller with anti-windup

correction. Functionally, it is similar to PI module described above and uses the
same object described above, the difference change in the path of P control such
that Kp can be set to zero unlike the previous module. Refer to the previous
section for object definitions and technical reference below for implementation
details

Availability C interface version

Module Properties Type: Target Independent

 Target Devices: 28x Fixed or Floating Point

C Version File Names: pi_reg4.h

 IQmath library files for C: IQmathLib.h, IQmath.lib

PI_REG4

MACRO

Ref

Fdb

Out

C2000 Systems and Applications 79

PI_REG4 Technical Background

Technical Background

The PI_cntl module implementation resembles the previous one except that Kp is taken away from the
forward path and is positioned in parallel to integral path as shown below.

z-1

Ki

Kp

++

+

+

=?

-

+
r(k)

Feedback

(Fbk)

w1

ui

up

v1
i1

Umax

Umin

y(k)

Reference

(Ref)

Output

(Out)

u(k)

a) Proportional path

The proportional path is a direct connection between the error term and a summing junction with the
integral path. The error term is:

)()()(kykrke .. (2)

)()(keKku pp .. (2)

b) Integral path

The integral path consists of a discrete integrator which is pre-multiplied by a term derived from the output
module. The term w1 is either zero or one, and provides a means to disable the integrator path when
output saturation occurs. This prevents the integral term from “winding up” and improves the response
time on recovery from saturation. The integrator law used is based on a backwards approximation.

)()()1()(kykrKkuku iii .. (3)

C2000 Systems and Applications 80

PI_REG4 Technical Background

c) Output path

The output path contains a summing block to sum the proportional and integral controller terms. The
result is then saturated according to user programmable upper and lower limits to give the controller
output.

The pre-and post-saturated terms are compared to determine whether saturation has occurred, and if so,
a zero or one result is produced which is used to disable the integral path (see above). The output path
law is defined as follows.

)()()(1 kukukv ip ... (4)

max1min1

min1min

max1max

)(:)(

)(:

)(:

)(

UkvUkv

UkvU

UkvU

ku ... (5)

)()(:1

)()(:0
)(

1

1

1
kukv

kukv
kw .. (6)

Tuning the P+I controller

Default values for the controller coefficients are defined in the macro header file which apply unity gain
through the proportional path, and disable both integral and derivative paths. A suggested general
technique for tuning the controller is now described.

Step 1. Ensure integral is set to zero and proportional gain set to one.

Step 2. Gradually adjust proportional gain variable (Kp) while observing the step response to achieve
optimum rise time and overshoot compromise.

Step 3. If necessary, gradually increase integral gain (Ki) to optimize the return of the steady state output

to nominal. The controller will be very sensitive to this term and may become unstable so be sure to start
with a very small number. Integral gain will result in an increase in overshoot and oscillation, so it may be

necessary to slightly decrease the Kp term again to find the best balance. Note that if the integral gain is

used then set to zero, a small residual term may persist in ui.

C2000 Systems and Applications 81

PI_POS Position PI Controller

Description This module implements a generic, simple 32-bit digital PI controller with anti-

windup correction, exactly same as in the previous section on PI controller,
except for the difference in error handling. Refer to the previous section for
implementation details of PI controller, and technical literature below for error
handling.

Availability C interface version

Module Properties Type: Target Independent

 Target Devices: 28x Fixed or Floating Point

C Version File Names: pi.h

 IQmath library files for C: IQmathLib.h, IQmath.lib

PI_POS

MACRO

Ref

Fdb

Out

C2000 Systems and Applications 82

PI_POS Technical Background

Technical Background

The PI_POS_cntl module implements a basic summing junction and P+I control law with the following
features:

 Programmable output saturation

 Independent reference weighting on proportional path

 Anti-windup integrator reset

 Position error wrap around to fit within –π and +π

The PI controller is a sub-set of the PID controller. All input, output and internal data is in I8Q24 fixed-
point format. A block diagram of the internal controller structure is shown below.

z-1

Ki

Kp

++

+

+

=?

-

+
r(k)

Feedback

(Fbk)

w1

ui

up

v1i1

Umax

Umin

y(k)

Reference

(Ref)

Output

(Out)

u(k)

Wrapper

d) Position Error Wrapper

This block is the only difference between the original PI macro and the PI_POS macro. Since the
reference and feedback for PI_POS macro are angles, it should be wrapped within - π and +π, otherwise,
it will result in erratic behavior of the loop. Consider an error value of, say, 3π/2. This will pull the
controller output in positive polarity. Actually this error should be treated as –π/2 which would have pulled
it in negative polarity.

C2000 Systems and Applications 83

PI_POS_REG4 Position PI Controller

Description This module implements a generic, simple 32-bit digital PI controller with anti-

windup correction, exactly same as in the previous section on PI_POS controller
but treated as in PI_REG4. Refer to the previous section for implementation
details of PI_POS controller, and technical literature below for block diagram.

Availability C interface version

Module Properties Type: Target Independent

 Target Devices: 28x Fixed or Floating Point

C Version File Names: pi_reg4.h

 IQmath library files for C: IQmathLib.h, IQmath.lib

PI_POS_REG4

MACRO

Ref

Fdb

Out

C2000 Systems and Applications 84

PI_POS_REG4 Technical Background

Technical Background

The block diagram of the internal controller structure is shown below. It is similar to the PI_POS module
but for the Kp path which gives freedom to set Kp to zero.

z-1

Ki

Kp

++

+

+

=?

-

+
r(k)

Feedback

(Fbk)

w1

ui

up

v1i1

Umax

Umin

y(k)

Reference

(Ref)

Output

(Out)

u(k)

Wrapper

C2000 Systems and Applications 85

PID PID Controller

Description This module implements a 32-bit digital PID controller with anti-windup

correction.

Availability C interface version

Module Properties Type: Target Independent

 Target Devices: 28x Fixed or Floating Point

C Version File Names: pid_grando.h

 IQmath library files for C: IQmathLib.h, IQmath.lib

PID

MACRO

Ref

Fdb

Out

C2000 Systems and Applications 86

PID C Interface

C Interface

Object Definition

The structure of PI object is defined by following structure definitions

typedef struct {

_iq Ref // Input: reference set-point
_iq Fbk // Input: feedback
_iq Out // Output: controller output
_iq c1 // Internal: derivative filter coefficient
_iq c2 // Internal: derivative filter coefficient
_iq Iae // Output: performance index
_iq Err // Internal: servo error

 } PID_TERMINALS;

typedef struct {
 _iq Kr; // Parameter: reference set-point weighting

 _iq Kp; // Parameter: proportional loop gain
 _iq Ki; // Parameter: integral gain
 _iq Kd; // Parameter: derivative gain
 _iq Km; // Parameter: derivative weighting
 _iq Umax; // Parameter: upper saturation limit
 _iq Umin; // Parameter: lower saturation limit
 _iq Kiae // Parameter: IAE scaling
 } PID_PARAMETERS;

typedef struct {

 _iq up; // Data: proportional term
 _iq ui; // Data: integral term
 _iq ud; // Data: derivative term
 _iq v1; // Data: pre-saturated controller output
 _iq i1; // Data: integrator storage: ui(k-1)
 _iq d1; // Data: differentiator storage: ud(k-1)
 _iq d2; // Data: differentiator storage: d2(k-1)
 _iq w1; // Data: saturation record: [u(k-1) - v(k-1)]
 } PID_DATA;

typedef struct {

PID_TERMINALS term;
 PID_PARAMETERS param;
 PID_DATA data;
 } PID_CONTROLLER;

C2000 Systems and Applications 87

PID C Interface

Special Constants and Data types

PID
The module definition is created as a data type. This makes it convenient to instance an interface
to the PID module. To create multiple instances of the module simply declare variables of type
PID.

 PID_DEFAULTS

Structure symbolic constant to initialize PID module. This provides the initial values to the
terminal variables as well as method pointers.

Module Usage

Instantiation

 The following example instances PID object
 PID pid1;

 Initialization

To Instance pre-initialized objects
PID pid1 = { PID_TERM_DEFAULTS, PID_PARAM_DEFAULTS, PID_DATA_DEFAULTS };

Invoking the computation macro
PID_MACRO(pid1);

C2000 Systems and Applications 88

PID C Interface

Example

The following pseudo code provides the information about the module usage.

 /* Instance the PID module */

 PID pid1={ PID_TERM_DEFAULTS, PID_PARAM_DEFAULTS, PID_DATA_DEFAULTS };

main()
{

 pid1.param.Kp = _IQ(0.5);
 pid1.param.Ki = _IQ(0.005);
 pid1.param.Kd = _IQ(0);
 pid1.param.Kr = _IQ(1.0);
 pid1.param.Km =_IQ(1.0);
 pid1.param.Umax= _IQ(1.0);
 pid1.param.Umin= _IQ(-1.0);

}

void interrupt periodic_interrupt_isr()
{

pid1.Ref = input1_1; // Pass _iq inputs to pid1
pid1.Fbk = input1_2; // Pass _iq inputs to pid1

PID_MACRO(pid1); // Call compute macro for pid1

 output1 = pid1.Out; // Access the output of pid1

}

C2000 Systems and Applications 89

PID Technical Background

Technical Background

The PID Grando module implements a basic summing junction and PID control law with the following
features:

 Programmable output saturation

 Independent reference weighting on proportional path

 Independent reference weighting on derivative path

 Anti-windup integrator reset

 Programmable derivative filter

 Transient performance measurement

PID Grando is an example of a PID structure often called "standard" form, in which proportional gain is
applied after the three controller paths have been summed. This contrasts with the "parallel" PID form, in
which P, I, and D gains are applied in separate paths. All input, output and internal data is in I8Q24 fixed-
point format. A block diagram of the internal controller structure is shown below.

Kr

z-1

Ki Kp

++

+

+

+

=?

-

-

+
r(k)

z-1

Kd

+

-
+

-

Km

z-1

+

Feedback

(Fbk)

c2

+

d1

w1

ud

ui

up

v1
i1

d2

Umax

Umin

c1

y(k)

Reference

(Ref)

Output

(Out)

u(k)

+

z-1

Kiae

+

+
|x| IAE(k)

Err

Block diagram of the internal controller structure

C2000 Systems and Applications 90

PID Technical Background

a) Proportional path

The servo error is the difference between the reference input and the feedback input. Proportional gain is
usually applied directly to servo error, however a feature of the Grando controller is that sensitivity of the
proportional path to the reference input can be weighted differently to that of the feedback input. This
provides an additional degree of freedom when tuning the controller. The proportional control law is:

)()()(kykrKku rp .. (3)

Note that “proportional” gain is applied to the sum of all three terms and will be described in section d).

b) Integral path

The integral path consists of a discrete integrator which is pre-multiplied by a scalar gain (Ki) and a term

derived from the output saturation module. The term w1 is either zero or one, and provides a means to

disable the integrator path when output saturation occurs. This prevents the integrator from “winding up”
and improves the recovery time following saturation in the control loop. The integrator law used in Grando
is based on a backwards approximation.

)()()()1()(1 kykrKkwkuku iii ... (2)

c) Derivative path

The derivative term is a backwards approximation of the difference between the current and previous
servo error. The input is the difference between the reference and feedback terms, and like the
proportional term, the reference path can be weighted independently to provide an additional variable for
tuning.

A first order digital filter is applied to the derivative term to reduce nose amplification at high frequencies.

Filter cutoff frequency is determined by two coefficients (c1 & c2). The derivative law is shown below.

)()()(kykrKke m .. (3)

)1()()1()(112 keckeckucKku idd .. (4)

Filter coefficients are based on the cut-off frequency (a) in Hz and sample period (T) in seconds as
follows:

ac 1 ... (5)

Tcc 12 1 .. (6)

C2000 Systems and Applications 91

PID Technical Background

d) Output path

The output path contains a multiplying term (Kp) which acts on the sum of the three controller parts. The

result is then saturated according to user programmable upper and lower limits to give the output term.

The pre-and post-saturated terms are compared to determine whether saturation has occurred, and if so,

a zero value is assigned to the variable w1(k) which is used to disable the integral path (see above). The
output path law is defined as follows.

)()()()(1 kukukuKkv dipp ... (7)

max1min1

min1min

max1max

)(:)(

)(:

)(:

)(

UkvUkv

UkvU

UkvU

ku ... (8)

)()(:1

)()(:0
)(

1

1

1
kukv

kukv
kw .. (9)

e) Performance measurement

The Grando controller contains a single line of code which implements an IAE algorithm (Integral of
Absolute Error). This integrates the absolute difference between the input reference and feedback (i.e.
servo error), and can be used to tune transient performance by subjecting the loop to a step change of
input reference and allowing the IAE term to integrate over a fixed time.

t0

y(t)

1

Transient error

e(t0) = 1 - y(t0)

t0

A small value of IAE indicates small absolute difference between the input reference and the measured
output. Controller parameters may be adjusted iteratively to minimise measured IAE.

C2000 Systems and Applications 92

PID Technical Background

The IAE measurement is implemented as follows.

)()()1()(kykrKkIAEkIAE iae ... (10)

It is the task of the user code to reset and enable the IAE measurement (see below). The feature may be

enabled and disabled by setting the Kiae term to one or zero respectively. The IAE output may be reset by

setting the Iae term to zero. The Kiae term may be set to a value smaller than one if integrator overflow is

an issue. The user may comment out the last line of the PID Grando macro to reduce cycle count if IAE
is not required.

Tuning the controller

Default values for the controller coefficients are defined in the macro header file which apply unity gain
through the proportional path, and disable IAE, integral and derivative paths. A suggested general
technique for tuning the controller is now described.

Steps 1-4 are based on tuning a transient produced either by a step change in either load or reference
set-point.

Step 1. Ensure integral and derivative gains are set to zero. Ensure also the reference weighting
coefficients (Kr & Km) are set to one.

Step 2. Gradually adjust proportional gain variable (Kp) while observing the step response to achieve
optimum rise time and overshoot compromise.

Step 3. If necessary, gradually increase integral gain (Ki) to optimize the return of the steady state output

to nominal. The controller will be very sensitive to this term and may become unstable so be sure to start
with a very small number. Integral gain will result in an increase in overshoot and oscillation, so it may be

necessary to slightly decrease the Kp term again to find the best balance. Note that if the integral gain is

used then set to zero, a small residual term may persist in ui.

Step 4. If the transient response exhibits excessive oscillation, this can sometimes be reduced by

applying a small amount of derivative gain. To do this, first ensure the coefficients c1 & c2 are set to one

and zero respectively. Next, slowly add a small amount of derivative gain (Kd).

Steps 5 & 6 only apply in the case of tuning a transient set-point. In the regulator case, or where the set-
point is fixed and tuning is conducted against changing load conditions, they are not useful.

Step 5. Overshoot and oscillation following a set-point transient can sometimes be improved by lowering
the reference weighting in the proportional path. To do this, gradually reduce the Kr term from its nominal
unity value to optimize the transient. Note that this will change the loop sensitivity to the input reference,
so the steady state condition will change unless integral gain is used.

Step 6. If derivative gain has been applied, transient response can often be improved by changing the
reference weighting, in the same way as step 6 except that in the derivative case steady state should not
be affected. Slowly reduce the Km variable from it’s nominal unity value to optimize overshoot and
oscillation. Note that in many cases optimal performance is achieved with a reference weight of zero in
the derivative path, meaning that the differential term acts on purely the feedback, with no contribution
from the input reference. This can help to avoid derivative "kick" which occurs following a sudden change
in input reference.

C2000 Systems and Applications 93

PID Technical Background

The derivative path introduces a term which has a frequency dependent gain. At higher frequencies, this
can cause noise amplification in the loop which may degrade servo performance. If this is the case, it is
possible to filter the derivative term using a first order digital filter in the derivative path. Steps 7 & 8
describe the derivative filter.

Step 7. Select a filter roll-off frequency in radians/second. Use this in conjunction with the system sample
period (T) to calculate the filter coefficients c1 & c2 (see equations 5 & 6).

Step 8. Note that the c1 coefficient will change the derivative path gain, so adjust the value of Kd to
compensate for the filter gain. Repeat steps 5 & 6 to optimize derivative path gain.

Tuning with IAE

The IAE measurement feature may be useful in determining optimal controller settings based on transient
response. The user code should reset and enable IAE just before applying a transient change as follows:

 // reset and enable IAE
 pid1.term.Iae = _IQ(0.0);
 pid1.Param.Kiae = _IQ(1.0);

After a fixed time, the IAE integrator should be disabled and the measurement read as follows:

// disable IAE integrator

 pid1.param.Kiae = _IQ(0.0);
 IAE = pid1.term.Iae;

The user should ensure that the integration period is sufficiently long to allow transient effects to dissipate
and should remain fixed between iterative tests for comparisons to be valid. Controller settings may be
adjusted using steps 1 to 8 above to minimise measured IAE.

Saturation & Integrator Wind-up

The Grando controller includes a saturation block to limit the range of the control effort, u(k). If the output

saturates, the integrator is disabled to prevent a phenomenon known as "wind-up". In cases where
saturation may occur in other parts of the control loop, user code should disable integral action by
temporarily setting the integrator gain (Ki) to zero when saturation occurs, and restoring it once saturation

has been cleared.

C2000 Systems and Applications 94

RAMP_GEN Ramp Generator

Description This module generates ramp output of adjustable gain, frequency and dc offset.

Availability C interface version

Module Properties Type: Target Independent

 Target Devices: 28x Fixed or Floating Point

C Version File Names: rampgen.h

 IQmath library files for C: IQmathLib.h, IQmath.lib

RG
MACRO

Gain

Freq

Out Offset

C2000 Systems and Applications 95

RAMP_GEN C Interface

C Interface

Object Definition

The structure of RAMPGEN object is defined by following structure definition

typedef struct { _iq Freq; // Input: Ramp frequency
 _iq StepAngleMax; // Parameter: Maximum step angle

_iq Angle; // Variable: Step angle
_iq Gain; // Input: Ramp gain

 _iq Out; // Output: Ramp signal
 _iq Offset; // Input: Ramp offset
 } RAMPGEN;

Item Name Description Format
*

Range(Hex)

Inputs

Freq Ramp frequency GLOBAL_Q 80000000-7FFFFFFF

Gain Ramp gain GLOBAL_Q 80000000-7FFFFFFF

Offset Ramp offset GLOBAL_Q 80000000-7FFFFFFF

Outputs Out Ramp signal GLOBAL_Q 80000000-7FFFFFFF

RAMPGEN
parameter

StepAngleMax sv_freq_max = fb*T GLOBAL_Q 80000000-7FFFFFFF

Internal Angle Step angle GLOBAL_Q 80000000-7FFFFFFF
 *

GLOBAL_Q valued between 1 and 30 is defined in the IQmathLib.h header file.

Special Constants and Data types

 RAMPGEN

The module definition is created as a data type. This makes it convenient to instance an interface
to ramp generator. To create multiple instances of the module simply declare variables of type
RAMPGEN.

 RAMPGEN_DEFAULTS

Structure symbolic constant to initialize RAMPGEN module. This provides the initial values to the
terminal variables as well as method pointers.

C2000 Systems and Applications 96

RAMP_GEN C Interface

Module Usage

Instantiation

 The following example instances two RAMPGEN objects
 RAMPGEN rg1, rg2;

Initialization
To Instance pre-initialized objects
RAMPGEN rg1 = RAMPGEN_DEFAULTS;
RAMPGEN rg2 = RAMPGEN_DEFAULTS;

Invoking the computation macro
RG_MACRO(rg1);
RG_MACRO(rg2);

Example
The following pseudo code provides the information about the module usage.

main()
{

}

void interrupt periodic_interrupt_isr()
{

rg1.Freq = freq1; // Pass inputs to rg1
rg1.Gain = gain1; // Pass inputs to rg1
rg1.Offset = offset1; // Pass inputs to rg1

rg2.Freq = freq2 // Pass inputs to rg2
rg2.Gain = gain2; // Pass inputs to rg2
rg2.Offset = offset2; // Pass inputs to rg2

RC_MACRO(rg1); // Call compute macro for rg1
RC_MACRO(rg2); // Call compute macro for rg1

 out1 = rg1.Out; // Access the outputs of rg1
 out2 = rg2.Out; // Access the outputs of rg1
}

C2000 Systems and Applications 97

RAMP_GEN Technical Background

Technical Background

In this implementation the frequency of the ramp output is controlled by a precision frequency
generation algorithm which relies on the modulo nature (i.e. wrap-around) of finite length
variables in 28xx. One such variable, called StepAngleMax (a data memory location in 28xx) in
this implementation, is used as a variable to determine the minimum period (1/frequency) of the
ramp signal. Adding a fixed step value to the Angle variable causes the value in Angle to cycle at
a constant rate.

 Angle = Angle + StepAngleMax Freq

At the end limit the value in Angle simply wraps around and continues at the next modulo value
given by the step size.

For a given step size, the frequency of the ramp output (in Hz) is given by:

m2

fsStepAngle
f

where fs = sampling loop frequency in Hz and m = # bits in the auto wrapper variable Angle.

From the above equation it is clear that a StepAngle value of 1 gives a frequency of 0.3052Hz
when m=16 and fS=20kHz. This defines the frequency setting resolution of the

For IQmath implementation, the maximum step size in per-unit, StepAngleMax, for a given base
frequency, fb and a defined GLOBAL_Q number is therefore computed as follows:

QGLOBAL _

sb 2T faxStepAngleM

Equivalently, by using _IQ() function for converting from a floating-point number to a _iq number,
the StepAngleMax can also be computed as

)T f(_axStepAngleM sb IQ

 where Ts is the sampling period (sec).

C2000 Systems and Applications 98

RMP_CNTL Ramp Control

Description This module implements a ramp up and ramp down macro. The output flag

variable EqualFlag is set to 7FFFFFFFh when the output variable SetpointValue
equals the input variable TargetValue.

Availability C interface version

Module Properties Type: Target Independent

 Target Devices: 28x Fixed or Floating Point

C Version File Names: rmp_cntl.h

 IQmath library files for C: IQmathLib.h, IQmath.lib

RC
MACRO

TargetValue

EqualFlag

SetpointValue

C2000 Systems and Applications 99

RMP_CNTL C Interface

C Interface

Object Definition

The structure of RMPCNTL object is defined by following structure definition

typedef struct { _iq TargetValue; // Input: Target input
 Uint32 RampDelayMax; // Parameter: Maximum delay rate (Q0)

_iq RampLowLimit; // Parameter: Minimum limit
_iq RampHighLimit; // Parameter: Maximum limit

 Uint32 RampDelayCount; // Variable: Incremental delay (Q0)
 _iq SetpointValue; // Output: Target output
 Uint32 EqualFlag; // Output: Flag output (Q0)
 } RMPCNTL;

Item Name Description Format
*

Range(Hex)

Inputs TargetValue Target input GLOBAL_Q 80000000-7FFFFFFF

Outputs SetpointValue Target output GLOBAL_Q 80000000-7FFFFFFF

EqualFlag Flag output Q0 80000000-7FFFFFFF

RMP_CNTL
parameter

RampDelayMax Maximum delay rate Q0 80000000-7FFFFFFF

RampLowLimit Minimum limit GLOBAL_Q 80000000-7FFFFFFF

RampHighLimit Maximum limit GLOBAL_Q 80000000-7FFFFFFF

Internal RampDelayCount Incremental delay Q0 80000000-7FFFFFFF
 *

GLOBAL_Q valued between 1 and 30 is defined in the IQmathLib.h header file.

Special Constants and Data types

 RMPCNTL

The module definition is created as a data type. This makes it convenient to instance an interface
to ramp control. To create multiple instances of the module simply declare variables of type
RAMPGEN.

 RMPCNTL_DEFAULTS

Structure symbolic constant to initialize RMPCNTL module. This provides the initial values to the
terminal variables as well as method pointers.

C2000 Systems and Applications 100

RMP_CNTL C Interface

Module Usage

Instantiation

 The following example instances two RMPCNTL objects
 RMPCNTL rc1, rc2;

Initialization
To Instance pre-initialized objects
RMPCNTL rc1 = RMPCNTL_DEFAULTS;
RMPCNTL rc2 = RMPCNTL_DEFAULTS;

Invoking the computation macro
RC_MACRO(rc1);
RC_MACRO(rc2);

Example
The following pseudo code provides the information about the module usage.

main()
{

}

void interrupt periodic_interrupt_isr()
{

rc1.TargetValue = target1; // Pass inputs to rc1
rc2.TargetValue = target2; // Pass inputs to rc2

RC_MACRO(rc1); // Call compute macro for rc1
RC_MACRO(rc2); // Call compute macro for rc2

 out1 = rc1.SetpointValue; // Access the outputs of rc1
 out2 = rc2.SetpointValue; // Access the outputs of rc2
}

C2000 Systems and Applications 101

RMP_CNTL Technical Background

Technical Background

This software module implements the following equations:

Case 1: When TargetValue > SetpointValue

SetpointValue = SetpointValue+ _IQ(0.0000305), for t = n . Td, n = 1, 2, 3…
 and (SetpointValue + _IQ(0.0000305))< RampHighLimit
 = RampHighLimit , for (SetpointValue + _IQ(0.0000305))> RampHighLimit

where, Td = RampDelayMax . Ts
 Ts = Sampling time period

Case 2: When TargetValue < SetpointValue

SetpointValue = SetpointValue - _IQ(0.0000305), for t = n . Td, n = 1, 2, 3…..
 and (SetpointValue - _IQ(0.0000305))> RampLowLimit
 = RampLowLimit , for (SetpointValue - _IQ(0.0000305))<RampLowLimit

where, Td = RampDelayMax . Ts
 Ts = Sampling time period

Note that TargetValue and SetpointValue variables are in _iq format.

Example:
SetpointValue=0(initial value), TargetValue=1000(user specified),
RampDelayMax=500(user specified), sampling loop time period Ts=0.000025 Sec.
This means that the time delay for each ramp step is Td=500x0.000025=0.0125 Sec. Therefore,
the total ramp time will be Tramp=1000x0.0125 Sec=12.5 Sec

Td

_IQ(0.0000305)

TargetValue > SetpointValue

TargetValue < SetpointValue

TargetValue > SetpointValue

RampLowLimit

RampHighLimit

t

SetpointValue

C2000 Systems and Applications 102

RMP2CNTL Ramp 2 Control Module

Description This module implements a ramp up and ramp down macro. The output variable

Out follows the desired ramp value DesiredInput.
.

RC2_MACRO
DesiredInput Out

Availability C interface version

Module Properties Type: Target Independent

 Target Devices: 28x Fixed or Floating Point

C Version File Names: rmp2cntl.h

 IQmath library files for C: IQmathLib.h, IQmath.lib

C2000 Systems and Applications 103

RMP2CNTL C Interface

C Interface

Object Definition

The structure of RMP2 object is defined by following structure definition

typedef struct { _iq15 DesiredInput; // Input: Desired ramp input (Q15)
 _iq15 Ramp2Max; // Parameter: Maximum limit (Q15)
 _iq15 Ramp2Min; // Parameter: Minimum limit (Q15)
 Uint32 Ramp2DelayCount; // Variable: Incremental delay (Q0)
 Uint32 Ramp2Delay; // Parameter: Delay in # of sampling period (Q0)
 _iq15 Out; // Output: Ramp2 output (Q15)
 } RMP2;

Item Name Description Format
*

Range(Hex)

Input DesiredInput Desired ramp input Q15 80000000-7FFFFFFF

Output Out Ramp 2 output Q15 80000000-7FFFFFFF

RMP2
parameter

Ramp2Max Maximum limit Q15 80000000-7FFFFFFF

Ramp2Min Minimum limit Q15 80000000-7FFFFFFF

Ramp2Delay Delay in no. of sampling period Q0 00000000-7FFFFFFF

Internal
Ramp2DelayCo
unt

Incremental delay Q0 00000000-7FFFFFFF

 *
GLOBAL_Q valued between 1 and 30 is defined in the IQmathLib.h header file.

Special Constants and Data types

 RMP2

The module definition is created as a data type. This makes it convenient to instance an interface
to the ramp2 control. To create multiple instances of the module simply declare variables of type
RMP2.

 RMP2_DEFAULTS

Structure symbolic constant to initialize RMP2 module. This provides the initial values to the
terminal variables as well as method pointers.

Module Usage

Instantiation

 The following example instances two RMP2 objects
 RMP2 rmp1, rmp2;

C2000 Systems and Applications 104

RMP2CNTL C Interface

Initialization
To Instance pre-initialized objects
RMP2 rmp1 = RMP2_DEFAULTS;
RMP2 rmp2 = RMP2_DEFAULTS;

Invoking the computation macro
RC2_MACRO(rmp1);
RC2_MACRO(rmp2);

Example
The following pseudo code provides the information about the module usage.

main()
{

}

void interrupt periodic_interrupt_isr()
{

rmp1.DesiredInput = input1; // Pass inputs to rmp1
rmp2.DesiredInput = input2; // Pass inputs to rmp2

RC2_MACRO (rmp1); // Call compute macro for rmp1
RC2_MACRO (rmp2); // Call compute macro for rmp2

 out1 = rmp1.Out; // Access the outputs of rmp1
 out2 = rmp2.Out; // Access the outputs of rmp2

}

C2000 Systems and Applications 105

RMP2CNTL Technical Background

Technical Background

Implements the following equations:

Case 1: When DesiredInput > Out.

Out= Out+ 1, for t = n . Td, n = 1, 2, 3, ….. and (Out+ 1) < Ramp2Max
 = Ramp2Max, for (Out+ 1) > Ramp2Max

where, Td = Ramp2Delay . Ts
 Ts = Sampling time period

Case 2: When DesiredInput < Out.

Out= Out- 1, for t = n . Td, n = 1, 2, 3, ….. and (Out- 1) > Ramp2Min
 = Ramp2Min, for (Out- 1) < Ramp2Min

where, Td = Ramp2Delay . Ts
 Ts = Sampling time period

Example:
Out=0(initial value), DesiredInput=1000(user specified),
Ramp2Delay=500(user specified), sampling loop time period Ts=0.000025 Sec.
This means that the time delay for each ramp step is Td=500x0.000025=0.0125 Sec. Therefore,
the total ramp time will be Tramp=1000x0.0125 Sec=12.5 Sec

T
d 1

rmp2_desired > rmp2_out
rmp2_desired < rmp2_out

rmp2_desired > rmp2_out

rmp2_min

rmp2_max

t

rmp2_out

C2000 Systems and Applications 106

RMP3CNTL Ramp 3 Control Module

Description This module implements a ramp down macro. The output flag variable

Ramp3DoneFlag is set to 0x7FFFFFFF when the output variable Out equals the
input variable DesiredInput.

.

RC3_MACRO
utDesiredInp

Out

lagRamp3DoneF

Availability C interface version

Module Properties Type: Target Independent

 Target Devices: 28x Fixed or Floating Point

C Version File Names: rmp3cntl.h

 IQmath library files for C: IQmathLib.h, IQmath.lib

C2000 Systems and Applications 107

RMP3CNTL C Interface

C Interface

Object Definition

The structure of RMP3 object is defined by following structure definition

typedef struct { Uint32 DesiredInput; // Input: Desired ramp input (Q0)
 Uint32 Ramp3Delay; // Parameter: Delay in # of sampling period (Q0)
 Uint32 Ramp3DelayCount; // Variable: Counter for rmp3 delay (Q0)
 int32 Out; // Output: Ramp3 output (Q0)
 int32 Ramp3Min; // Parameter: Minimum ramp output (Q0)
 Uint32 Ramp3DoneFlag; // Output: Flag output (Q0) ction
 } RMP3;

Item Name Description Format
*

Range(Hex)

Input DesiredInput Desired ramp input Q0 80000000-7FFFFFFF

Outputs
Out Ramp 3 output Q0 80000000-7FFFFFFF

Ramp3DoneFlag Flag output Q0 0 or 7FFFFFFF

RMP3
parameter

Ramp3Min Minimum limit Q0 80000000-7FFFFFFF

Ramp3Delay Delay in no. of sampling period Q0 00000000-7FFFFFFF

Internal Ramp3DelayCount Counter for rmp3 delay Q0 00000000-7FFFFFFF
 *

GLOBAL_Q valued between 1 and 30 is defined in the IQmathLib.h header file.

Special Constants and Data types

 RMP3

The module definition is created as a data type. This makes it convenient to instance an interface
to the ramp3 control. To create multiple instances of the module simply declare variables of type
RMP3.

 RMP3_DEFAULTS

Structure symbolic constant to initialize RMP3 module. This provides the initial values to the
terminal variables as well as method pointers.

Module Usage

Instantiation

 The following example instances two RMP3 objects
 RMP3 rmp1, rmp2;

C2000 Systems and Applications 108

RMP3CNTL C Interface

Initialization
To Instance pre-initialized objects
RMP3 rmp1 = RMP3_DEFAULTS;
RMP3 rmp2 = RMP3_DEFAULTS;

Invoking the computation macro
RC3_MACRO(rmp1);
RC3_MACRO(rmp2);

Example
The following pseudo code provides the information about the module usage.

main()
{

}

void interrupt periodic_interrupt_isr()
{

rmp1.DesiredInput = input1; // Pass inputs to rmp1
rmp2.DesiredInput = input2; // Pass inputs to rmp2

RC3_MACRO (rmp1); // Call compute macro for rmp1
RC3_MACRO (rmp2); // Call compute macro for rmp2

 out1 = rmp1.Out; // Access the outputs of rmp1
 out2 = rmp2.Out; // Access the outputs of rmp2

}

C2000 Systems and Applications 109

RMP3CNTL Technical Background

Technical Background

Implements the following equations:

Out = Out - 1, for t = n . Td, n = 1, 2, 3, ….. and (Out - 1) > Ramp3Min
 = Ramp3Min, for (Out - 1) < Ramp3Min

Ramp3DoneFlag = 7FFFh, when Out = DesiredInput or Ramp3Min

where, Td = Ramp3Delay . Ts
 Ts = Sampling time period

Example:
Out=500(initial value), DesiredInput=20(user specified),
Ramp3Delay=100(user specified), sampling loop time period Ts=0.000025 Sec.
This means that the time delay for each ramp step is Td=100x0.000025=0.0025 Sec. Therefore,
the total ramp down time will be Tramp=(500-20)x0.0025 Sec=1.2 Sec

Td

1

rmp3_min
t

rmp3_out

rmp3_desired

C2000 Systems and Applications 110

RESOLVER
Mechanical and Electrical Angle Calculation Based on
Shaft Angle from Resolver

Description This module calculates the mechanical and electrical angle of the motor based

on raw rotor position measurement from a resolver position sensor.

Availability C interface version

Module Properties Type: Target Independent

 Target Devices: 28x Fixed or Floating Point

C Version File Names: resolver.h

 IQmath library files for C: IQmathLib.h, IQmath.lib

RESOLVER
MACRO

RawTheta

MechTheta

ElecTheta

C2000 Systems and Applications 111

RESOLVER C Interface

C Interface

Object Definition

The structure of RESOLVER object is defined by following structure definition

typedef struct {
 _iq ElecTheta; // Output: Motor Electrical angle (Q24)
 _iq MechTheta; // Output: Motor Mechanical Angle (Q24)
 int32 RawTheta; // Input: Raw position data from resolver (Q0)
 int32 Speed; // Input: Speed data from resolver (Q4)
 Uint16 StepsPerTurn; // Parameter: Number of discrete positions (Q0)
 Uint32 MechScaler; // Parameter: 0.9999/total count (Q30)
 Uint16 PolePairs; // Parameter: Number of pole pairs (Q0)
 int32 InitTheta; // Parameter: Raw angular offset between resolver and phase A (Q0)
 } RESOLVER; // Data type created

Item Name Description Format
*

Range(Hex)

Inputs RawTheta Raw resolver angle Q0 00000000-0000FFFF

(0 – 360 degree)

Speed Resolver Speed Q4 80000000-7FFFFFFF

Outputs MechTheta Mechanical angle in per-unit GLOBAL_Q 80000000-7FFFFFFF

ElecTheta Speed in rpm GLOBAL_Q 80000000-7FFFFFFF

RESOLVER
parameter

StepsPerTurn Number of resolver steps per turn Q0 80000000-7FFFFFFF

MechScaler Mech angle per resolver step Q30 80000000-7FFFFFFF

PolePairs Number of pole pairs of motor Q0 80000000-7FFFFFFF

InitTheta Resolver output angle at end of
initial alignment

Q0 00000000-7FFFFFFF

(0 – 360 degree)
 *

GLOBAL_Q valued between 1 and 30 is defined in the IQmathLib.h header file.

Special Constants and Data types

 RESOLVER

The module definition is created as a data type. This makes it convenient to instance an interface
to resolver for angle estimation. To create multiple instances of the module simply declare
variables of type RESOLVER.

 RESOLVER_DEFAULTS

Structure symbolic constant to initialize RESOLVER module. This provides the initial values to the
terminal variables as well as method pointers.

C2000 Systems and Applications 112

RESOLVER C Interface

Module Usage

Instantiation

 The following example instances two RESOLVER objects
 RESOLVER resolver1, resolver2;

Initialization
To Instance pre-initialized objects
RESOLVER resolver1 = RESOLVER _DEFAULTS;
RESOLVER resolver2 = RESOLVER _DEFAULTS;

Invoking the computation macro
RESOLVER_MACRO (resolver1);
RESOLVER_MACRO (resolver2);

Example
The following pseudo code provides the information about the module usage.

main()
{

}

void interrupt periodic_interrupt_isr()
{
 resolver1.RawTheta = theta1; // Pass inputs to resolver1
 resolver2.RawTheta = theta2; // Pass inputs to resolver2

RESOLVER_MACRO (resolver1); // Call compute macro for resolver1
RESOLVER_MACRO (resolver2); // Call compute macro for resolver2

 mechPos1 = resolver1.MechTheta; // Access the outputs of resolver1
 elecPos2 = resolver2.ElecTheta; // Access the outputs of resolver2
}

C2000 Systems and Applications 113

RESOLVER Technical Background

Technical Background

Typical waveforms of the resolver position angle, e, and stator phase A angle are given in Figure
1 for a single pole pair motor. Before starting the motor, it is important to know the offset between
these two angles. So a rotor alignment is performed such that phase A angle is zero. The
resolver output at this position is the mechanical (electrical) angular offset between these two
angles. This offset is termed ‘InitTheta’ which must have already been figured out before calling
this routine. Stator A position can then be derived by subtracting the offset from the resolver
output. In multi pole pair motors, electrical angle can be computed by multiplying the mechanical
angle with pole pairs. {In multi pole pair motors, alignment with stator phase A may position the
rotor at different mechanical positions based on the nearest pair of poles}

 pue

 pue

time
0

1.0

Motor

phase A
Resolver

Output

InitTheta

Figure 1: The waveforms of resolver position and phase A position

C2000 Systems and Applications 114

SMO Sliding Mode Observer

Description This software module implements a rotor position estimation algorithm for

Permanent-Magnet Synchronous Motor (PMSM) based on Sliding-Mode
Observer (SMO).

SMO

MACRO

Valpha

Vbeta

Ialpha

Ibeta

Theta

Zalpha

Zbeta

Availability C interface version

Module Properties Type: Target Independent

 Target Devices: 28x Fixed or Floating Point

C Version File Names: smopos.h

 IQmath library files for C: IQmathLib.h, IQmath.lib

C2000 Systems and Applications 115

SMO C Interface

C Interface

Object Definition

The structure of SMOPOS object is defined by following structure definition

typedef struct { _iq Valpha; // Input: Stationary alpha-axis stator voltage
 _iq Ealpha; // Variable: Stationary alpha-axis back EMF
 _iq Zalpha; // Output: Stationary alpha-axis sliding control
 _iq Gsmopos; // Parameter: Motor dependent control gain
 _iq EstIalpha; // Variable: Estimated stationary alpha-axis stator current
 _iq Fsmopos; // Parameter: Motor dependent plant matrix
 _iq Vbeta; // Input: Stationary beta-axis stator voltage
 _iq Ebeta; // Variable: Stationary beta-axis back EMF
 _iq Zbeta; // Output: Stationary beta-axis sliding control
 _iq EstIbeta; // Variable: Estimated stationary beta-axis stator current
 _iq Ialpha; // Input: Stationary alpha-axis stator current
 _iq lalphaError; // Variable: Stationary alpha-axis current error
 _iq Kslide; // Parameter: Sliding control gain
 _iq Ibeta; // Input: Stationary beta-axis stator current
 _iq IbetaError; // Variable: Stationary beta-axis current error
 _iq Kslf; // Parameter: Sliding control filter gain
 _iq Theta; // Output: Compensated rotor angle
 } SMOPOS;

Module Terminal Variables

Item Name Description Format
*

Range(Hex)

Inputs Valpha stationary d-axis stator voltage GLOBAL_Q 80000000-7FFFFFFF

Vbeta stationary q-axis stator voltage GLOBAL_Q 80000000-7FFFFFFF

Ialpha stationary d-axis stator current GLOBAL_Q 80000000-7FFFFFFF

Ibeta stationary q-axis stator current GLOBAL_Q 80000000-7FFFFFFF

Outputs Theta rotor position angle GLOBAL_Q 00000000-7FFFFFFF

(0 – 360 degree)

Zalfa stationary d-axis sliding control GLOBAL_Q 80000000-7FFFFFFF

Zbeta stationary q-axis sliding control GLOBAL_Q 80000000-7FFFFFFF

SMOPOS
parameter

Fsmopos Fsmopos = exp(-Rs*T/Ls) GLOBAL_Q 80000000-7FFFFFFF

Gsmopos Gsmopos =
(Vb/Ib)*(1- exp(-Rs*T/Ls))/Rs

GLOBAL_Q 80000000-7FFFFFFF

Kslide sliding mode control gain GLOBAL_Q 80000000-7FFFFFFF

Kslf sliding control filter gain GLOBAL_Q 80000000-7FFFFFFF

Internal Ealpha stationary d-axis back EMF GLOBAL_Q 80000000-7FFFFFFF

Ebeta stationary q-axis back EMF GLOBAL_Q 80000000-7FFFFFFF

EstIalpha stationary d-axis estimated current GLOBAL_Q 80000000-7FFFFFFF

EstIbeta stationary q-axis estimated current GLOBAL_Q 80000000-7FFFFFFF

IalphaError stationary d-axis current error GLOBAL_Q 80000000-7FFFFFFF

IbetaError stationary q-axis current error GLOBAL_Q 80000000-7FFFFFFF
 *

GLOBAL_Q valued between 1 and 30 is defined in the IQmathLib.h header file.

C2000 Systems and Applications 116

SMO C Interface

Special Constants and Data types

 SMOPOS

The module definition is created as a data type. This makes it convenient to instance an interface
to the sliding-mode rotor position observer of Permanent-Magnet Synchronous Motor module. To
create multiple instances of the module simply declare variables of type SMOPOS.

 SMOPOS_DEFAULTS

Structure symbolic constant to initialize SMOPOS module. This provides the initial values to the
terminal variables as well as method pointers.

Module Usage

Instantiation

 The following example instances two SMOPOS objects
 SMOPOS smo1, smo2;

 Initialization

To Instance pre-initialized objects
SMOPOS fe1 = SMOPOS_DEFAULTS;
SMOPOS fe2 = SMOPOS_DEFAULTS;

Invoking the computation macro
SMO_MACRO (smo1);
SMO_MACRO (smo2);

Example

The following pseudo code provides the information about the module usage.

main()
{

smo1.Fsmopos = parem1_1; // Pass parameters to smo1
smo1.Gsmopos = parem1_2; // Pass parameters to smo1
smo1.Kslide = parem1_3; // Pass parameters to smo1
smo1.Kslf = parem1_4; // Pass parameters to smo1
smo2.Fsmopos = parem2_1; // Pass parameters to smo2
smo2.Gsmopos = parem2_2; // Pass parameters to smo2
smo2.Kslide = parem2_3; // Pass parameters to smo2
smo2.Kslf = parem2_4; // Pass parameters to smo2

}

C2000 Systems and Applications 117

SMO C Interface

void interrupt periodic_interrupt_isr()
{

smo1.Valpha = voltage_dq1.d; // Pass inputs to smo1
 smo1.Vbeta = voltage_dq1.q; // Pass inputs to smo1
 smo1.Ialpha =current_dq1.d; // Pass inputs to smo1
 smo1.Ibeta =current_dq1.q; // Pass inputs to smo1

smo2.Valpha = voltage_dq2.d; // Pass inputs to smo2

 smo2.Vbeta = voltage_dq2.q; // Pass inputs to smo2
 smo2.Ialpha =current_dq2.d; // Pass inputs to smo2
 smo2.Ibeta =current_dq2.q; // Pass inputs to smo2

SMO_MACRO(smopos1) // Call compute macro for smopos1
 SMO_MACRO(smopos2); // Call compute macro for smopos2

 angle1 = smopos1.Theta; // Access the outputs of smopos1
 angle2 = smopos2.Theta; // Access the outputs of smopos2

}

C2000 Systems and Applications 118

SMO_CONST C Interface

Constant Computation Macro

Since the sliding-mode rotor position observer of Permanent-Magnet Synchronous Motor module
requires two constants (Fsmopos and Gsmopos) to be input basing on the machine parameters,
base quantities, mechanical parameters, and sampling period. These two constants can be
internally computed by the macro (smopos_const.h). The followings show how to use the C
constant computation macro.

Object Definition

The structure of SMOPOS_CONST object is defined by following structure definition

typedef struct { float32 Rs; // Input: Stator resistance (ohm)
 float32 Ls; // Input: Stator inductance (H)
 float32 Ib; // Input: Base phase current (amp)
 float32 Vb; // Input: Base phase voltage (volt)
 float32 Ts; // Input: Sampling period in sec
 float32 Fsmopos; // Output: constant using in observed current cal.
 float32 Gsmopos; // Output: constant using in observed current cal.
 } SMOPOS_CONST;

Module Terminal Variables

Item Name Description Format Range(Hex)

Inputs Rs Stator resistance (ohm) Floating N/A

Ls Stator inductance (H) Floating N/A

Ib Base phase current (amp) Floating N/A

Vb Base phase voltage (volt) Floating N/A

Ts Sampling period (sec) Floating N/A

Outputs Fsmopos constant using in observed current calculation Floating N/A

Gsmopos constant using in observed current calculation Floating N/A

Special Constants and Data types

 SMOPOS_CONST

The module definition is created as a data type. This makes it convenient to instance an interface
to the sliding-mode rotor position observer of Permanent-Magnet Synchronous Motor constant
computation module. To create multiple instances of the module simply declare variables of type
SMOPOS_CONST.

 SMOPOS_CONST_DEFAULTS

Structure symbolic constant to initialize SMOPOS_CONST module. This provides the initial
values to the terminal variables as well as method pointers.

C2000 Systems and Applications 119

SMO_CONST C Interface

Module Usage

Instantiation

 The following example instances two SMOPOS_CONST objects
 SMOPOS_CONST smopos1_const, smopos2_const;

 Initialization

To Instance pre-initialized objects
SMOPOS_CONST smopos1_const = SMOPOS_CONST_DEFAULTS;
SMOPOS_CONST smopos2_const = SMOPOS_CONST_DEFAULTS;

Invoking the computation macro
SMO_CONST_MACRO (smopos1_const);
SMO_CONST_MACRO (smopos2_const);

Example

The following pseudo code provides the information about the module usage.

main()
{

smopos1_const.Rs = Rs1; // Pass floating-point inputs to smopos1_const
smopos1_const.Ls = Ls1; // Pass floating-point inputs to smopos1_const
smopos1_const.Ib = Ib1; // Pass floating-point inputs to smopos1_const
smopos1_const.Vb = Vb1; // Pass floating-point inputs to smopos1_const
smopos1_const.Ts = Ts1; // Pass floating-point inputs to smopos1_const

smopos2_const.Rs = Rs2; // Pass floating-point inputs to smopos2_const
smopos2_const.Ls = Ls2; // Pass floating-point inputs to smopos2_const
smopos2_const.Ib = Ib2; // Pass floating-point inputs to smopos2_const
smopos2_const.Vb = Vb2; // Pass floating-point inputs to smopos2_const
smopos2_const.Ts = Ts2; // Pass floating-point inputs to smopos2_const

SMO_CONST_MACRO (smopos1_const); // Call compute macro for smopos1_const
SMO_CONST_MACRO (smopos2_const); // Call compute macro for smopos2_const

// Access the outputs of smopos1_const
smopos1.Fsmopos = _IQ(smopos1_const.Fsmopos);
smopos1.Gsmopos = _IQ(smopos1_const.Gsmopos);
// Access the outputs of smopos2_const
smopos2.Fsmopos = _IQ(smopos2_const.Fsmopos);
smopos2.Gsmopos = _IQ(smopos2_const.Gsmopos);

}

C2000 Systems and Applications 120

SMO Technical Background

Technical Background

Figure 1 is an illustration of a permanent-magnet synchronous motor control system based on
field orientation principle. The basic concept of field orientation is based on knowing the position
of rotor flux and positioning the stator current vector at orthogonal angle to the rotor flux for
optimal torque output. The implementation shown in Figure 1 derives the position of rotor flux
from encoder feedback. However, the encoder increases system cost and complexity.

Inverter

Motor

Load

Space-

vector

PWM

PWM

Driver

PWM

H/W

dq

PID

PID

ADC

Driver

ADC

H/W
abc

dq

E/C IF

H/W

E/C IF

Driver

Speed

Calculator

PID

iq*

id*=0

vq*

vd*
v*

v*

vc
vb

va

Vdc

da

db

dc

ia

ib

ic

ta

tb

tc

i

i

id

iq

ia

ib

--

-

F28x

Figure 1 Field Oriented Control of PMSM

Therefore for cost sensitive applications, it is ideal if the rotor flux position information can be
derived from measurement of voltages and currents. Figure 2 shows the block diagram of a
sensorless PMSM control system where rotor flux position is derived from measurement of motor
currents and knowledge of motor voltage commands.

C2000 Systems and Applications 121

SMO Technical Background

Inverter

Motor

Load

Space-

vector

PWM

PWM

Driver

PWM

H/W

dq

PID

PID

ADC

Driver

ADC

H/W
abc

dq

Rotor

flux

position

estimator

Rotor

speed

estimator

PID

iq*

id*=0

vq*

vd* v*

v*

vc
vb

va

Vdc

da

db

dc

ia

ib

ta

tb

tc

i

i

id

iq

ia

ib

--

-

x28xx MCU

- +

Phase

voltage

estimator

v

v

i

i

Vdc

Figure 2 Sensorless Field Oriented Control of PMSM

This software module implements a rotor flux position estimator based on a sliding mode current
observer. As shown in Figure 3, the inputs to the estimator are motor phase currents and

voltages expressed in - coordinate frame.

Motor model

based

sliding mode

current

observer

Bang-

Bang

control

Low-pass

filter

Flux angle

calculator

Flux angle

correction

eu
~

e
~

se~
si
~

si*
sv

z

*

Figure 3 Sliding Mode Observer Based Rotor Flux Position Estimator

C2000 Systems and Applications 122

SMO Technical Background

Figure 4 is an illustration of the coordinate frames and voltage and current vectors of PMSM, with

a, b and c being the phase axes, and being a fixed Cartesian coordinate frame aligned with
phase a, and d and q being a rotating Cartesian coordinate frame aligned with rotor flux. vs, is and
es are the motor phase voltage, current and back emf vectors (each with two coordinate entries).

All vectors are expressed in - coordinate frame for the purpose of this discussion. The -
frame expressions are obtained by applying Clarke transformation to their corresponding three
phase representations.

b

c

a

dq
m

es=m

es

es t

is

is

is

vs

vs

vs

Figure 4 PMSM Coordinate Frames and Vectors

Equation 1 is the mathematical model of PMSM in - coordinate frame.

)(ssss evBAii
dt

d
 (1)

The matrices A and B are defined as 2I
L

R
A and 2

1
I

L
B with mLL

2

3
 , where Lm and R

are the magnetizing inductance and resistance of stator phase winding and I2 is a 2 by 2 identity
matrix. Next the mathematical equations for the blocks in Figure 3 are discussed.

1. Sliding Mode Current Observer

The sliding mode current observer consists of a model based current observer and a bang-bang
control generator driven by error between estimated motor currents and actual motor currents.
The mathematical equations for the observer and control generator are given by Equations 2 and
3.

)~(
~~ *

zevBiAi
dt

d
ssss (2)

)
~

(ss iisignkz (3)

C2000 Systems and Applications 123

SMO Technical Background

The goal of the bang-bang control z is to drive current estimation error to zero. It is achieved by
proper selection of k and correct formation of estimated back emf, es. Note that the symbol ~
indicates that a variable is estimated. The symbol * indicates that a variable is a command.

The discrete form of Equations 2 and 3 are given by Equations 4 and 5.

))()(~)(()(
~

)(
~ *

nznenvGniF1ni ssss (4)

))()(
~

()(ninisignknz ss (5)

The matrices F and G are given by 2IeF
sT

L

R

 and 2)1(
1

Ie
R

G
sT

L

R

 where Ts is the

sampling period.

2. Estimated Back EMF

Estimated back emf is obtained by filtering the bang-bang control, z, with a first order low-pass
filter described by Equation 6.

zee
dt

d
ss 00

~~ (6)

The parameter 0 is defined as 0=2f0, where f0 represents the cutoff frequency of the filter. The
discrete form of Equation 6 is given by Equation 7.

))(~)((2)(~)1(~
0 nenzfnene sss (7)

3. Rotor Flux Position Calculation

Estimated rotor flux angle is obtained based on Equation 8 for back emf.

cos

sin

2

3
es ke (8)

Therefore given the estimated back emf, estimated rotor position can be calculated based on
Equation 9.

)~,~arctan(
~

 sseu ee

 (9)

C2000 Systems and Applications 124

Next, Table 1 shows the correspondence of notations between variables used here and variables
used in the program (i.e. smopos.h). The software module requires that both input and output
variables are in per unit values.

 Equation Variables Program Variables

Inputs

vs* Valpha

vs* Vbeta

si Ialpha

si Ibeta

Outputs

e
~ Theta

z Zalpha

z Zbeta

Others

si
~ EstIalpha

si
~

EstIbeta

se~ Ealpha

se~ Ebeta

sT
L

R

e

Fsmopos

)1(
1 sT

L

R

e
R

Gsmopos

k Kslide

02 f
 Kslf

Table 1: Correspondence of notations

SMO Technical Background

C2000 Systems and Applications 125

SPEED_EST Speed Calculator Based on Rotor Angle Without Direction Information

Description This module calculates the motor speed based on the estimated rotor position

when the rotational direction information is not available.

Availability C interface version

Module Properties Type: Target Independent

 Target Devices: 28x Fixed or Floating Point

C Version File Names: speed_est.h

 IQmath library files for C: IQmathLib.h, IQmath.lib

SE
MACRO

EstimatedTheta

EstimatedSpeed

EstimatedSpeedRpm

C2000 Systems and Applications 126

SPEED_EST C Interface

C Interface

Object Definition

The structure of SPEED_ESTIMATION object is defined by following structure definition

typedef struct {_iq EstimatedTheta; // Input: Electrical angle
 _iq OldEstimatedTheta; // History: Electrical angle at previous step
 _iq EstimatedSpeed; // Output: Estimated speed in per-unit
 Uint32 BaseRpm; // Parameter: Base speed in rpm (Q0)
 _iq21 K1; // Parameter: Constant for differentiator (Q21)
 _iq K2; // Parameter: Constant for low-pass filter
 _iq K3; // Parameter: Constant for low-pass filter
 int32 EstimatedSpeedRpm; // Output : Estimated speed in rpm (Q0)
 } SPEED_ESTIMATION; // Data type created
;

Item Name Description Format
*

Range(Hex)

Inputs EstimatedTheta Electrical angle GLOBAL_Q 00000000-7FFFFFFF

(0 – 360 degree)

Outputs EstimatedSpeed Computed speed in per-unit GLOBAL_Q 80000000-7FFFFFFF

EstimatedSpeedRpm Speed in rpm Q0 80000000-7FFFFFFF

ESTIMATED
SPEED
parameter

K1 K1 = 1/(fb*T) Q21 80000000-7FFFFFFF

K2 K2 = 1/(1+T*2*pi*fc) GLOBAL_Q 80000000-7FFFFFFF

K3 K3 = T*2*pi*fc/(1+T*2*pi*fc) GLOBAL_Q 80000000-7FFFFFFF

BaseRpm BaseRpm = 120fb/p Q0 80000000-7FFFFFFF

Internal OldEstimatedTheta Electrical angle in previous
step

GLOBAL_Q 00000000-7FFFFFFF

(0 – 360 degree)
 *

GLOBAL_Q valued between 1 and 30 is defined in the IQmathLib.h header file.

Special Constants and Data types

 SPEED_ESTIMATION

The module definition is created as a data type. This makes it convenient to instance an interface
to speed calculation based on measured rotor angle. To create multiple instances of the module
simply declare variables of type SPEED_ESTIMATION.

 SPEED_ESTIMATION_DEFAULTS

Structure symbolic constant to initialize SPEED_ESTIMATION module. This provides the initial
values to the terminal variables as well as method pointers.

C2000 Systems and Applications 127

SPEED_EST C Interface

Module Usage

Instantiation

 The following example instances two SPEED_ESTIMATION objects
 SPEED_ESTIMATION speed1, speed2;

Initialization
To Instance pre-initialized objects
SPEED_ESTIMATION speed1 = SPEED_ESTIMATION_DEFAULTS;
SPEED_ESTIMATION speed2 = SPEED_ESTIMATION_DEFAULTS;

Invoking the computation macro
SE_MACRO(speed1);
SE_MACRO(speed2);

Example
The following pseudo code provides the information about the module usage.

main()
{

}

void interrupt periodic_interrupt_isr()
{
 speed1.EstimatedTheta = theta1; // Pass inputs to speed1
 speed2.EstimatedTheta = theta2; // Pass inputs to speed2

SE_MACRO (speed1); // Call compute macro for speed1
SE_MACRO (speed2); // Call compute macro for speed2

 measured_spd1 = speed1.EstimatedSpeed; // Access the outputs of speed1
 measured_spd2 = speed2.EstimatedSpeed; // Access the outputs of speed2
}

C2000 Systems and Applications 128

SPEED_EST Technical Background

Technical Background

The typical waveforms of the electrical rotor position angle, e , in both directions can be seen in

Figure 1. Assuming the direction of rotation is not available. To take care the discontinuity of
angle from 360

o
 to 0

o
 (CCW) or from 0

o
 to 360

o
 (CW), the differentiator is simply operated only

within the differentiable range as seen in this Figure. This differentiable range does not
significantly lose the information to compute the estimated speed.

Counterclockwise Direction

Clockwise Direction

 pue

 pue

time

time

0

1.0

1.0

0

reedeg360pu0.1thatNote
r

DIFF_MAX_LIMIT

DIFF_MIN_LIMIT

DIFF_MAX_LIMIT

DIFF_MIN_LIMIT

Differentiable

Range

Figure 1: The waveforms of rotor position in both directions

The differentiator equation of rotor position can be expressed as follows.

)1k()k(K)k(ee1e (1)

where
Tf

1
K

b

1 , fb is base frequency (Hz) and T is sampling period (sec).

C2000 Systems and Applications 129

SPEED_EST Technical Background

In addition, the rotor speed is necessary to be filtered out by the low-pass filter in order to reduce
the amplifying noise generated by the pure differentiator. The simple 1

st
-order low-pass filter is

used, then the actual rotor speed to be used is the output of the low-pass filter, ê , seen in

following equation. The continuous-time equation of 1
st
-order low-pass filter is as

 ee

c

e ˆ
1

dt

ˆd

 (2)

where

c

c
f2

1

 is the low-pass filter time constant (sec), and fc is the cut-off frequency (Hz).

Using backward approximation, then (2) finally becomes

)k(K)1k(ˆK)k(ˆ
e3e2e (3)

where
T

K
c

c

2

 , and

T

T
K

c

3

 .

Next, Table 1 shows the correspondence of notations between variables used here and variables
used in the program (i.e. speed_est.h). The software module requires that both input and output
variables are in per unit values.

 Equation Variables Program Variables

Input e EstimatedTheta

Output ê EstimatedSpeed

Others
K1 K1

K2 K2

K3 K3

Table 1: Correspondence of notations

C2000 Systems and Applications 130

SPEED_FR Speed Calculator Based on Rotor Angle from QEP sensor

Description This module calculates the motor speed based on a rotor position measurement

from QEP sensor.

Availability C interface version

Module Properties Type: Target Independent

 Target Devices: 28x Fixed or Floating Point

C Version File Names: speed_fr.h

 IQmath library files for C: IQmathLib.h, IQmath.lib

SPEED FR
MACRO

ElecTheta

Speed

SpeedRpm

C2000 Systems and Applications 131

SPEED_FR C Interface

C Interface

Object Definition

The structure of SPEED_MEAS_QEP object is defined by following structure definition

typedef struct { _iq ElecTheta; // Input: Electrical angle
 Uint32 DirectionQep; // Variable: Direction of rotation (Q0)
 _iq OldElecTheta; // History: Electrical angle at previous step
 _iq Speed; // Output: Speed in per-unit
 Uint32 BaseRpm; // Parameter: Base speed in rpm (Q0)
 _iq21 K1; // Parameter: Constant for differentiator (Q21)
 _iq K2; // Parameter: Constant for low-pass filter
 _iq K3; // Parameter: Constant for low-pass filter
 int32 SpeedRpm; // Output : Speed in rpm (Q0)
 } SPEED_MEAS_QEP; // Data type created

Item Name Description Format
*

Range(Hex)

Inputs ElecTheta Electrical angle GLOBAL_Q 00000000-7FFFFFFF

(0 – 360 degree)

Outputs Speed Computed speed in per-unit GLOBAL_Q 80000000-7FFFFFFF

SpeedRpm Speed in rpm Q0 80000000-7FFFFFFF

SPEED_QEP
parameter

K1 K1 = 1/(fb*T) Q21 80000000-7FFFFFFF

K2 K2 = 1/(1+T*2*pi*fc) GLOBAL_Q 80000000-7FFFFFFF

K3 K3 = T*2*pi*fc/(1+T*2*pi*fc) GLOBAL_Q 80000000-7FFFFFFF

BaseRpm BaseRpm = 120fb/p Q0 80000000-7FFFFFFF

Internal OldElecTheta Electrical angle in previous step GLOBAL_Q 00000000-7FFFFFFF

(0 – 360 degree)
 *

GLOBAL_Q valued between 1 and 30 is defined in the IQmathLib.h header file.

Special Constants and Data types

 SPEED_MEAS_QEP

The module definition is created as a data type. This makes it convenient to instance an interface
to speed calculation based on measured rotor angle. To create multiple instances of the module
simply declare variables of type SPEED_MEAS_QEP.

 SPEED_MEAS_QEP_DEFAULTS

Structure symbolic constant to initialize SPEED_MEAS_QEP module. This provides the initial
values to the terminal variables as well as method pointers.

C2000 Systems and Applications 132

SPEED_FR C Interface

Module Usage

Instantiation

 The following example instances two SPEED_MEAS_QEP objects
 SPEED_MEAS_QEP speed1, speed2;

Initialization
To Instance pre-initialized objects
SPEED_MEAS_QEP speed1 = SPEED_MEAS_QEP_DEFAULTS;
SPEED_MEAS_QEP speed2 = SPEED_MEAS_QEP_DEFAULTS;

Invoking the computation macro
SPEED_FR_MACRO (speed1);
SPEED_FR_MACRO (speed2);

Example
The following pseudo code provides the information about the module usage.

main()
{

}

void interrupt periodic_interrupt_isr()
{
 speed1.ElecTheta = theta1; // Pass inputs to speed1
 speed2.ElecTheta = theta2; // Pass inputs to speed2

SPEED_FR_MACRO (speed1); // Call compute macro for speed1
SPEED_FR_MACRO (speed2); // Call compute macro for speed2

 measured_spd1 = speed1.Speed; // Access the outputs of speed1
 measured_spd2 = speed2.Speed; // Access the outputs of speed2
}

C2000 Systems and Applications 133

SPEED_FR Technical Background

Technical Background

The typical waveforms of the electrical rotor position angle, e , in both directions can be seen in

Figure 1. Assuming the direction of rotation is not available. Speed is estimated based on
differentiation of angular values between successive iterations. To take care of the discontinuity
of angle from 360

o
 to 0

o
 (CCW) or from 0

o
 to 360

o
 (CW), an error roll over to fit the difference

numerically within -180
o
 and +180

o
 is performed.

Counterclockwise Direction

Clockwise Direction

 pue

 pue

time

time

0

1.0

1.0

0

reedeg360pu0.1thatNote
r

Figure 1: The waveforms of rotor position in both directions

The differentiator equation of rotor position can be expressed as follows.

)1k()k(K)k(ee1e (1)

where
Tf

1
K

b

1 , fb is base frequency (Hz) and T is sampling period (sec).

C2000 Systems and Applications 134

SPEED_FR Technical Background

In addition, the rotor speed is necessary to be filtered out by the low-pass filter in order to reduce
the amplifying noise generated by the pure differentiator. The simple 1

st
-order low-pass filter is

used, then the actual rotor speed to be used is the output of the low-pass filter, ê , seen in

following equation. The continuous-time equation of 1
st
-order low-pass filter is as

 ee

c

e ˆ
1

dt

ˆd

 (2)

where

c

c
f2

1

 is the low-pass filter time constant (sec), and fc is the cut-off frequency (Hz).

Using backward approximation, then (2) finally becomes

)k(K)1k(ˆK)k(ˆ
e3e2e (3)

where
T

K
c

c

2

 , and

T

T
K

c

3

 .

Next, Table 1 shows the correspondence of notations between variables used here and variables
used in the program (i.e. speed_fr.h). The software module requires that both input and output
variables are in per unit values.

 Equation Variables Program Variables

Input e ElecTheta

Output ê Speed

Others
K1 K1

K2 K2

K3 K3

Table 1: Correspondence of notations

C2000 Systems and Applications 135

SPEED_PR Speed Calculator Based on Period Measurement

Description This module calculates the motor speed based on a signal’s period

measurement. Such a signal, for which the period is measured, can be the
periodic output pulses from a motor speed sensor.

Availability C interface version

Module Properties Type: Target Independent

 Target Devices: 28x Fixed or Floating Point

C Version File Names: speed_pr.h

 IQmath library files for C: IQmathLib.h, IQmath.lib

SPEED
MACRO

TimeStamp
Speed

SpeedRpm

EventPeriod

InputSelect

C2000 Systems and Applications 136

SPEED_PR C Interface

C Interface

Object Definition

The structure of SPEED_MEAS_CAP object is defined by following structure definition

typedef struct { Uint32 NewTimeStamp; // Variable: New 'Timestamp' for a capture event (Q0)
 Uint32 OldTimeStamp; // Variable : Old 'Timestamp' for a capture event (Q0)
 Uint32 TimeStamp; // Input: Current 'Timestamp' for a capture event (Q0)
 Uint32 SpeedScaler; // Parameter: Scaler converting 1/N cycles (Q0)
 int32 EventPeriod; // Input/Variable : Event Period (Q0)
 int16 InputSelect; // Input : Input selection (1 or 0)
 _iq Speed; // Output: speed in per-unit
 Uint32 BaseRpm; // Parameter : Scaler converting to rpm (Q0)
 int32 SpeedRpm; // Output : speed in r.p.m. (Q0)
 } SPEED_MEAS_CAP; // Data type created
;

Item Name Description Format
*

Range(Hex)

Inputs TimeStamp Current 'Timestamp' for a capture
event

Q0 80000000-7FFFFFFF

InputSelect TimeStamp (InputSelect=0) and
EventPeriod (InputSelect=1)

Q0 0 or 1

EventPeriod Event period between time stamp Q0 80000000-7FFFFFFF

Outputs Speed Computed speed in per-unit GLOBAL_Q 80000000-7FFFFFFF

SpeedRpm Speed in rpm Q0 80000000-7FFFFFFF

SPEED_CAP
parameter

SpeedScaler SpeedScaler =
60*CLK_freq/(128*N*rmp_max),
N = number of sprocket teeth

Q0 80000000-7FFFFFFF

BaseRpm rmp_max = 120fb/p Q0 80000000-7FFFFFFF

Internal NewTimeStamp New 'Timestamp' for a capture
event

Q0 80000000-7FFFFFFF

OldTimeStamp Old 'Timestamp' for a capture
event

Q0 80000000-7FFFFFFF

 *
GLOBAL_Q valued between 1 and 30 is defined in the IQmathLib.h header file.

Special Constants and Data types

 SPEED_MEAS_CAP

The module definition is created as a data type. This makes it convenient to instance an interface
to speed calculation based on period. To create multiple instances of the module simply declare
variables of type SPEED_MEAS_CAP.

 SPEED_MEAS_CAP_DEFAULTS

Structure symbolic constant to initialize SPEED_MEAS_CAP module. This provides the initial
values to the terminal variables as well as method pointers.

C2000 Systems and Applications 137

SPEED_PR C Interface

Module Usage

Instantiation

 The following example instances two SPEED_MEAS_CAP objects
 SPEED_MEAS_CAP speed1, speed2;

Initialization
To Instance pre-initialized objects
SPEED_MEAS_CAP speed1 = SPEED_MEAS_CAP_DEFAULTS;
SPEED_MEAS_CAP speed2 = SPEED_MEAS_CAP_DEFAULTS;

Invoking the computation macro
SPEED_PR_MACRO(speed1);
SPEED_PR_MACRO(speed2);

Example
The following pseudo code provides the information about the module usage.

main()
{

}

void interrupt periodic_interrupt_isr()
{
 speed1.TimeStamp = TimeStamp1; // Pass inputs to speed1
 speed2.TimeStamp = TimeStamp2; // Pass inputs to speed2

SPEED_PR_MACRO(speed2); // Call compute macro for speed1
SPEED_PR_MACRO(speed2); // Call compute macro for speed2

 measured_spd1 = speed1.Speed; // Access the outputs of speed1
 measured_spd2 = speed2.Speed; // Access the outputs of speed2
}

C2000 Systems and Applications 138

SPEED_PR Technical Background

Technical Background

A low cost shaft sprocket with n teeth and a Hall effect gear tooth sensor is used to measure the
motor speed. Fig. 1 shows the physical details associated with the sprocket. The Hall effect
sensor outputs a square wave pulse every time a tooth rotates within its proximity. The resultant
pulse rate is n pulses per revolution. The Hall effect sensor output is fed directly to the 281x
Capture input pin. The capture unit will capture (the value of it’s base timer counter) on either the
rising or the falling edges (whichever is specified) of the Hall effect sensor output. The captured
value is passed to this s/w module through the variable called TimeStamp.

In this module, every time a new input TimeStamp becomes available it is compared with the
previous TimeStamp. Thus, the tooth-to-tooth period (t2-t1) value is calculated. In order to reduce
jitter or period fluctuation, an average of the most recent n period measurements can be
performed each time a new pulse is detected.

t1

t2

t

25 teeth

360

25
14 40.

t t t
2 1

sec

rad/sec

25

1

2

n

nt

Fig. 1 Speed measurement with a sprocket

From the two consecutive TimeStamp values the difference between the captured values are
calculated as,

 = TimeStamp(new) – TimeStamp(old)

Then the time period in sec is given by,

where,

 KP = Prescaler value for the Capture unit time base

TCLK = CPU clock period in sec

 CLKttt 12

C2000 Systems and Applications 139

SPEED_PR Technical Background

From Fig. 1, the angle in radian is given by,

where, n = number of teeth in the sprocket, i.e., the number of pulses per revolution.

Then the speed in radian/sec and the normalized speed N are calculated as,

Where, max is the maximum value of which occurs when =1. Therefore,

For, n=25, KP=32 and TCLK=50x10
-9

 sec (20MHz CPU clock), the normalized speed N is given
by,

The system parameters chosen above allows maximum speed measurement of 1500,000 rpm.
Now, in any practical implementation the maximum motor speed will be significantly lower than
this maximum measurable speed. So, for example, if the motor used has a maximum operating
speed of 23000 rpm, then the calculated speed can be expressed as a normalized value with a
base value of normalization of at least 23000 RPM. If we choose this base value of normalization
as 23438 rpm, then the corresponding base value of normalization, in rad/sec, is,

n

2

1

1
2

22

max

CLKP

N

CLKP

n

ntnt

1

)25000(2

N

CLKPTnK

2
max

 3902
60

223438
1max

C2000 Systems and Applications 140

SPEED_PR Technical Background

Therefore, the scaled normalized speed in per-unit is calculated as,

This shows that in this case the scaling factor is 64. The speed, in rpm, is calculated as,

The capture unit allows accurate time measurement (in multiples of clock cycles and defined by a
prescaler selection) between events. In this case the events are selected to be the rising edge of
the incoming pulse train. What we are interested in is the delta time between events and hence
for this implementation Timer 1 is allowed to free run with a prescale of 32 (1.6uS resolution for

20MHz CPU clock) and the delta time , in scaled clock counts, is calculated as shown in Fig. 2.

t

f(t)

0

t1 t2 t1 t2

1

2

Case 1

Case 2

f t f t() ()
2 1

f t f t() ()
2 1

 f t f t() ()
2 1

 1
2 1

f t f t() ()

Note: only true if t t T
2 1

T

7FFFh

Fig. 2 Calculation of speed

In Fig. 2, the vertical axis f(t) represents the value of the Timer counter which is running in
continuous up count mode and resetting when the period register = 7FFFh. Note that two cases
need to be accounted for: the simple case where the Timer has not wrapped around and where it
has wrapped around. By keeping the current and previous capture values it is easy to test for
each of these cases.

Once a “robust” period measurement is extracted from the averaging algorithm, the speed is
calculated using the appropriate equations explained before

NN1N rSpeedScale64
64

)390(2

1N1N1 BaseRpm
64

2343823438N

C2000 Systems and Applications 141

SPEED_PR Technical Background

Finally, for a base speed in rpm (BaseRpm), the SpeedScaler is basically 1/N (with = max1)
for the number of teeth in the sprocket, prescaler value for the capture unit time base, and CPU
clock period (sec) is therefore computed as follows:

BaseRpmnKT

60
rSpeedScale

pCLK

C2000 Systems and Applications 142

SVGEN Space Vector Generator

Description This module calculates the appropriate duty ratios needed to generate a given

stator reference voltage using space vector PWM technique. The stator

reference voltage is described by it’s (,) components, Ualpha and Ubeta.

Availability C interface version

Module Properties Type: Target Independent

 Target Devices: 28x Fixed or Floating Point

C Version File Names: aci_se.h

 IQmath library files for C: IQmathLib.h, IQmath.lib

SVGEN
MACRO

Ualpha

Ubeta

Ta

Tb

Tc

C2000 Systems and Applications 143

SVGEN C Interface

C Interface

Object Definition

The structure of SVGENDQ object is defined by following structure definition

typedef struct

{ _iq Ualpha; // Input: reference alpha-axis phase voltage

 _iq Ubeta; // Input: reference beta-axis phase voltage
 _iq Ta; // Output: reference phase-a switching function
 _iq Tb; // Output: reference phase-b switching function
 _iq Tc; // Output: reference phase-c switching function
 } SVGENDQ;

Module Terminal Variables/Macros

Item Name Description Format
*

Range(Hex)

Inputs
Ualpha

Component of reference stator
voltage vector on direct axis
stationary reference frame.

GLOBAL_Q 80000000-7FFFFFFF

Ubeta
Component of reference stator

voltage vector on quadrature axis
stationary reference frame.

GLOBAL_Q 80000000-7FFFFFFF

Outputs

Ta

Duty ratio of PWM1 (CMPR1
register value as a fraction of

associated period register, TxPR,
value).

GLOBAL_Q 80000000-7FFFFFFF

Tb

Duty ratio of PWM3 (CMPR2
register value as a fraction of

associated period register, TxPR,
value).

GLOBAL_Q 80000000-7FFFFFFF

Tc

Duty ratio of PWM5 (CMPR3
register value as a fraction of

associated period register, TxPR,
value).

GLOBAL_Q 80000000-7FFFFFFF

Variable tmp1,2,3 Internal variable GLOBAL_Q 80000000-7FFFFFFF

*
GLOBAL_Q valued between 1 and 30 is defined in the IQmathLib.h header file.

C2000 Systems and Applications 144

SVGEN C Interface

Special Constants and Data types

 SVGENDQ

The module definition is created as a data type. This makes it convenient to instance an interface
to space vector generator. To create multiple instances of the module simply declare variables of
type SVGENDQ.

 SVGENDQ_DEFAULTS

Structure symbolic constant to initialize SVGENDQ module. This provides the initial values to the
terminal variables as well as method pointers.

Module Usage

Instantiation

The following example instances two SVGENDQ objects
SVGENDQ svgen1, svgen2;

Initialization
To Instance pre-initialized objects
SVGENDQ svgen1 = SVGENDQ_DEFAULTS;
SVGENDQ svgen2 = SVGENDQ_DEFAULTS;

Invoking the computation macro
SVGEN_MACRO (svgen1);
SVGEN_MACRO (svgen2);

Example
The following pseudo code provides the information about the module usage.

main()
{

}

void interrupt periodic_interrupt_isr()
{

svgen1.Ualpha = Ualpha1; // Pass inputs to svgen1
svgen1.Ubeta = Ubeta1; // Pass inputs to svgen1

svgen2.Ualpha = Ualpha2; // Pass inputs to svgen2
svgen2.Ubeta = Ubeta2; // Pass inputs to svgen2

SVGEN_MACRO (svgen1); // Call compute macro for svgen_dq1
SVGEN_MACRO (svgen2); // Call compute macro for svgen2

 Ta1 = svgen_dq1.Ta; // Access the outputs of svgen_dq1
 Tb1 = svgen_dq1.Tb; // Access the outputs of svgen_dq1
 Tc1 = svgen_dq1.Tc; // Access the outputs of svgen_dq1

 Ta2 = svgen2.Ta; // Access the outputs of svgen2
 Tb2 = svgen2.Tb; // Access the outputs of svgen2
 Tc2 = svgen2.Tc; // Access the outputs of svgen2
}

C2000 Systems and Applications 145

SVGEN_COMM Space Vector Generator using Common Mode

Description This module calculates the appropriate duty ratios needed to generate a given

stator reference voltage using common mode voltage. The stator reference

voltage is described by it’s (,) components, Ualpha and Ubeta. Note that the
input range for this particular macro is ± 2/sqrt(3).

Availability This IQ module is available in one interface format:

 The C interface version

Module Properties Type: Target Independent, Application Independent

 Target Devices: 28x Fixed and Floating Point devices

C Version File Names: svgen_comm.h

 IQmath library files for C: IQmathLib.h, IQmath.lib

SVGEN
COMM

MACRO

Ualpha

Ubeta

Ta

Tb

Tc

C2000 Systems and Applications 146

SVGEN COMM C Interface

C Interface

Object Definition

The structure of SVGENCOMM object is defined by following structure definition

typedef struct { _iq Ualpha; // Input: reference alpha-axis phase voltage
 _iq Ubeta; // Input: reference beta-axis phase voltage

_iq Ta; // Output: reference phase-a switching function
_iq Tb; // Output: reference phase-b switching function

 _iq Tc; // Output: reference phase-c switching function
 _iq Va; // Variable: reference phase-a voltage
 _iq Vb; // Variable: reference phase-a voltage
 _iq Vc; // Variable: reference phase-a voltage
 _iq Vmax; //Variable: max phase
 _iq Vmin; //Variable: min phase
 _iq Vcomm; //Variable: common mode voltage
} SVGENCOMM;

Item Name Description Format
*

Range(Hex)

Inputs
Ualpha

Component of reference stator
voltage vector on direct axis
stationary reference frame.

GLOBAL_Q 80000000-7FFFFFFF

Ubeta
Component of reference stator

voltage vector on quadrature axis
stationary reference frame.

GLOBAL_Q 80000000-7FFFFFFF

Outputs

Ta

Duty ratio of PWM1 (CMPR1
register value as a fraction of

associated period register, TxPR,
value).

GLOBAL_Q 80000000-7FFFFFFF

Tb

Duty ratio of PWM3 (CMPR2
register value as a fraction of

associated period register, TxPR,
value).

GLOBAL_Q 80000000-7FFFFFFF

Tc

Duty ratio of PWM5 (CMPR3
register value as a fraction of

associated period register, TxPR,
value).

GLOBAL_Q 80000000-7FFFFFFF

Internal Va Reference phase-a voltage GLOBAL_Q 80000000-7FFFFFFF

Vb Reference phase-b voltage GLOBAL_Q 80000000-7FFFFFFF

Vc Reference phase-c voltage GLOBAL_Q 80000000-7FFFFFFF

Vmax Maximum of phase voltages GLOBAL_Q 80000000-7FFFFFFF

Vmin Minimum of phase voltages GLOBAL_Q 80000000-7FFFFFFF

Vcomm Common mode voltage GLOBAL_Q 80000000-7FFFFFFF

 *

GLOBAL_Q valued between 1 and 30 is defined in the IQmathLib.h header file.

C2000 Systems and Applications 147

SVGEN_COMM C Interface

Special Constants and Data types

 SVGEN_COMM

The module definition is created as a data type. This makes it convenient to instance an interface
to the SVGEN_COMM variable transformation. To create multiple instances of the module simply
declare variables of type SVGEN_COMM.

 SVGEN_COMM_DEFAULTS

Structure symbolic constant to initialize SVGEN_COMM module. This provides the initial values
to the terminal variables as well as method pointers.

Module Usage

Instantiation

 The following example instances two SVGEN_COMM objects
 SVGEN_COMM svgen_comm1, svgen_comm2;

Initialization

To Instance pre-initialized objects
SVGEN_COMM svgen_comm1 = SVGEN_COMM_DEFAULTS;
SVGEN_COMM svgen_comm2 = SVGEN_COMM_DEFAULTS;

Invoking the computation macro

SVGEN_COMM_MACRO (svgen_comm1);
SVGEN_COMM_MACRO (svgen_comm2);

Example

The following pseudo code provides the information about the module usage.

main()
{

}
void interrupt periodic_interrupt_isr()
{

svgen_comm.Ualpha = Ualpha1; // Pass inputs to svgen_comm
svgen_comm.Ubeta = Ubeta1; // Pass inputs to svgen_comm

svgen_comm2.Ualpha = Ualpha2; // Pass inputs to svgen_comm2
svgen_comm2.Ubeta = Ubeta2; // Pass inputs to svgen_comm2

SVGEN_MACRO (svgen_comm1); // Call compute macro for svgen_comm1
SVGEN_MACRO (svgen_comm2); // Call compute macro for svgen_comm2

 Ta1 = svgen_comm1.Ta; // Access the outputs of svgen_comm1
 Tb1 = svgen_comm1.Tb; // Access the outputs of svgen_comm1
 Tc1 = svgen_comm1.Tc; // Access the outputs of svgen_comm1

 Ta2 = svgen_comm2.Ta; // Access the outputs of svgen_comm2
 Tb2 = svgen_comm2.Tb; // Access the outputs of svgen_comm2
 Tc2 = svgen_comm2.Tc; // Access the outputs of svgen_comm2
}

C2000 Systems and Applications 148

SVGEN_DPWM Discontinuous Space Vector Generator

Description This module calculates the appropriate duty ratios needed to generate a given

stator reference voltage using space vector PWM technique. The stator

reference voltage is described by it’s (,) components, Ualpha and Ubeta.
Different than the regular SVGEN, this modulation technique keeps one of the
three switches off during the entire 120

0
 to minimize switching losses. This

technique is also known as DPWMmin in the literature.

Availability C interface version

Module Properties Type: Target Independent

 Target Devices: 28x Fixed or Floating Point

C Version File Names: aci_se.h

 IQmath library files for C: IQmathLib.h, IQmath.lib

SVGEN
MACRO

Ualpha

Ubeta

Ta

Tb

Tc

C2000 Systems and Applications 149

SVGEN_DPWM C Interface

Object Definition

The structure of SVGENDPWM object is defined by following structure definition

typedef struct

{ _iq Ualpha; // Input: reference alpha-axis phase voltage

 _iq Ubeta; // Input: reference beta-axis phase voltage
 _iq Ta; // Output: reference phase-a switching function
 _iq Tb; // Output: reference phase-b switching function
 _iq Tc; // Output: reference phase-c switching function
 } SVGENDPWM;

Module Terminal Variables/Macros

Item Name Description Format
*

Range(Hex)

Inputs
Ualpha

Component of reference stator
voltage vector on direct axis
stationary reference frame.

GLOBAL_Q 80000000-7FFFFFFF

Ubeta
Component of reference stator

voltage vector on quadrature axis
stationary reference frame.

GLOBAL_Q 80000000-7FFFFFFF

Outputs

Ta

Duty ratio of PWM1 (CMPR1
register value as a fraction of

associated period register, TxPR,
value).

GLOBAL_Q 80000000-7FFFFFFF

Tb

Duty ratio of PWM3 (CMPR2
register value as a fraction of

associated period register, TxPR,
value).

GLOBAL_Q 80000000-7FFFFFFF

Tc

Duty ratio of PWM5 (CMPR3
register value as a fraction of

associated period register, TxPR,
value).

GLOBAL_Q 80000000-7FFFFFFF

Variable tmp1,2,3 Internal variable GLOBAL_Q 80000000-7FFFFFFF

*
GLOBAL_Q valued between 1 and 30 is defined in the IQmathLib.h header file.

C2000 Systems and Applications 150

SVGEN_DPWM C Interface

Special Constants and Data types

 SVGENDPWM

The module definition is created as a data type. This makes it convenient to instance an interface
to space vector generator. To create multiple instances of the module simply declare variables of
type SVGENDPWM.

 SVGENDPWM_DEFAULTS

Structure symbolic constant to initialize SVGENDPWM module. This provides the initial values to
the terminal variables as well as method pointers.

Module Usage

Instantiation

 The following example instances two SVGENDPWM objects
 SVGENDPWM svgendpwm1, svgendpwm2;

Initialization
To Instance pre-initialized objects
SVGENDPWM svgendpwm1 = SVGENDPWM_DEFAULTS;
SVGENDPWM svgendpwm2 = SVGENDPWM_DEFAULTS;

Invoking the computation macro
SVGENDPWM_MACRO (svgendpwm1);
SVGENDPWM_MACRO (svgendpwm2);

Example
The following pseudo code provides the information about the module usage.

main()
{

}

void interrupt periodic_interrupt_isr()
{

svgendpwm1.Ualpha = Ualpha1; // Pass inputs to svgendpwm1
svgendpwm1.Ubeta = Ubeta1; // Pass inputs to svgendpwm1

svgendpwm2.Ualpha = Ualpha2; // Pass inputs to svgendpwm2
svgendpwm2.Ubeta = Ubeta2; // Pass inputs to svgendpwm2

SVGENDPWM_MACRO (svgendpwm1); // Call compute macro for svgendpwm1
SVGENDPWM_MACRO (svgendpwm2); // Call compute macro for svgendpwm2

 Ta1 = svgendpwm1.Ta; // Access the outputs of svgen_dpwm1
 Tb1 = svgendpwm1.Tb; // Access the outputs of svgen_dpwm1
 Tc1 = svgendpwm1.Tc; // Access the outputs of svgen_dpwm1

 Ta2 = svgendpwm2.Ta; // Access the outputs of svgendpwm2
 Tb2 = svgendpwm2.Tb; // Access the outputs of svgendpwm2
 Tc2 = svgendpwm2.Tc; // Access the outputs of svgendpwm2
}

C2000 Systems and Applications 151

SVGEN_MF Space Vector Generator (magnitude/frequency)

Description This module calculates the appropriate duty ratios needed to generate a given

stator reference voltage using space vector PWM technique. The stator
reference voltage is described by its magnitude and frequency.

Availability C interface version

Module Properties Type: Target Independent

 Target Devices: 28x Fixed or Floating Point

C Version File Names: svgen_mf.h

 IQmath library files for C: IQmathLib.h, IQmath.lib

SVGEN_
MF

Freq

Gain

Ta

Tb

Tc

Offset

C2000 Systems and Applications 152

SVGEN_MF C Interface

C Interface

Object Definition

The structure of SVGENMF object is defined by following structure definition

typedef struct { _iq Gain; // Input: reference gain voltage
 _iq Offset; // Input: reference offset voltage
 _iq Freq; // Input: reference frequency
 _iq FreqMax; // Parameter: Maximum step angle
 _iq Alpha; // History: Sector angle
 _iq NewEntry; // History: Sine (angular) look-up pointer
 Uint32 SectorPointer; // History: Sector number (Q0)
 _iq Ta; // Output: reference phase-a switching function
 _iq Tb; // Output: reference phase-b switching function
 _iq Tc; // Output: reference phase-c switching function
 } SVGENMF;

Item Name Description Format
*

Range(Hex)

Inputs Gain reference gain voltage GLOBAL_Q 80000000-7FFFFFFF

Offset reference offset voltage GLOBAL_Q 80000000-7FFFFFFF

Freq reference frequency GLOBAL_Q 80000000-7FFFFFFF

Outputs Ta Duty ratio of PWM1 (CMPR1
register value as a fraction of
associated period register, TxPR,
value).

GLOBAL_Q 80000000-7FFFFFFF

Tb Duty ratio of PWM3 (CMPR2
register value as a fraction of
associated period register, TxPR,
value).

GLOBAL_Q 80000000-7FFFFFFF

Tc Duty ratio of PWM5 (CMPR3
register value as a fraction of
associated period register, TxPR,
value).

GLOBAL_Q 80000000-7FFFFFFF

SVGENMF
parameters

FreqMax FreqMax = 6*fb*T GLOBAL_Q 00000000-7FFFFFFF

Internal Alpha Sector angle GLOBAL_Q 80000000-7FFFFFFF

NewEntry Sine (angular) look-up pointer GLOBAL_Q 80000000-7FFFFFFF

SectorPointer Sector number Q0 0-5
 *

GLOBAL_Q valued between 1 and 30 is defined in the IQmathLib.h header file.

Special Constants and Data types

 SVGENMF

The module definition is created as a data type. This makes it convenient to instance an interface
to space vector generator using magnitude and frequency. To create multiple instances of the
module simply declare variables of type SVGENMF.

 SVGENMF_DEFAULTS

Structure symbolic constant to initialize SVGENMF module. This provides the initial values to the
terminal variables as well as method pointers.

C2000 Systems and Applications 153

SVGEN_MF C Interface

Module Usage

Instantiation

 The following example instances two SVGENMF objects
 SVGENMF svgen_mf1, svgen_mf2;

Initialization
To Instance pre-initialized objects
SVGENMF svgen_mf1 = SVGENMF_DEFAULTS;
SVGENMF svgen_mf2 = SVGENMF_DEFAULTS;

Invoking the computation function
SVGENMF_MACRO(svgen_mf1);
SVGENMF_MACRO(svgen_mf2);

Example

The following pseudo code provides the information about the module usage.

main()
{

}
void interrupt periodic_interrupt_isr()
{

svgen_mf1.Gain = gain1; // Pass inputs to svgen_mf1
svgen_mf1.Freq = offset1; // Pass inputs to svgen_mf1

svgen_mf2.Gain = gain2; // Pass inputs to svgen_mf2
svgen_mf2.Freq = offset2; // Pass inputs to svgen_mf2

SVGENMF_MACRO(svgen_mf1); // Call compute macro for svgen_mf1
SVGENMF_MACRO(svgen_mf2); // Call compute macro for svgen_mf2

 Ta1 = svgen_mf1.Ta; // Access the outputs of svgen_mf1
 Tb1 = svgen_mf1.Tb; // Access the outputs of svgen_mf1
 Tc1 = svgen_mf1.Tc; // Access the outputs of svgen_mf1

 Ta2 = svgen_mf2.Ta; // Access the outputs of svgen_mf2
 Tb2 = svgen_mf2.Tb; // Access the outputs of svgen_mf2
 Tc2 = svgen_mf2.Tc; // Access the outputs of svgen_mf2
}

C2000 Systems and Applications 154

SVGEN_MF Technical Background

Technical Background

The Space Vector Pulse Width Modulation (SVPWM) refers to a special switching sequence of
the upper three power devices of a three-phase voltage source inverters (VSI) used in application
such as AC induction and permanent magnet synchronous motor drives. This special switching
scheme for the power devices results in 3 pseudo-sinusoidal currents in the stator phases.

motor phases

VDC +

a

a'

cb

c'b'

VCVBVA

Q6Q4Q2

Q5Q3Q1

Figure 3: Power circuit topology for a three-phase VSI

It has been shown that SVPWM generates less harmonic distortion in the output voltages or
currents in the windings of the motor load and provides more efficient use of DC supply voltage,
in comparison to direct sinusoidal modulation technique.

Figure 2: Power bridge for a three-phase VSI

For the three phase power inverter configurations shown in Figure 1 and Figure 2, there are eight
possible combinations of on and off states of the upper power transistors.

A

B

C
N

VDC

a b c

a’ b’ c’

Z Z

Z

ACI or PMSM

C2000 Systems and Applications 155

SVGEN_MF Technical Background

These combinations and the resulting instantaneous output line-to-line and phase voltages, for a
dc bus voltage of VDC, are shown in Table 1.

c b a VAN VBN VCN VAB VBC VCA

0 0 0 0 0 0 0 0 0

0 0 1 2VDC/3 -VDC/3 -VDC/3 VDC 0 - VDC

0 1 0 -VDC/3 2VDC/3 -VDC/3 - VDC VDC 0

0 1 1 VDC/3 VDC/3 -2VDC/3 0 VDC - VDC

1 0 0 -VDC/3 -VDC/3 2VDC/3 0 - VDC VDC

1 0 1 VDC/3 -2VDC/3 VDC/3 VDC - VDC 0

1 1 0 -2VDC/3 VDC/3 VDC/3 - VDC 0 VDC

1 1 1 0 0 0 0 0 0

Table 1: Device on/off patterns and resulting instantaneous voltages of a 3-phase power inverter

The quadrature quantities (in d-q frame) corresponding to these 3 phase voltages are given by
the general Clarke transform equation:

3

2 ANBN

qs

ANds

VV
V

VV

In matrix from the above equation is also expressed as,

CN

BN

AN

qs

ds

V

V

V

V

V

2

3

2

3
0

2

1

2

1
1

3

2

Due to the fact that only 8 combinations are possible for the power switches, Vds and Vqs can also
take only a finite number of values in the (d-q) frame according to the status of the transistor
command signals (c,b,a). These values of Vds and Vqs for the corresponding instantaneous values
of the phase voltages (VAN, VBN, VCN) are listed in Table 2.

C2000 Systems and Applications 156

SVGEN_MF Technical Background

c b a Vds Vqs Vector

0 0 0 0 0 O0

0 0 1 2 VDC/3 0 U0

0 1 0 -VDC/3 VDC/3 U120

0 1 1 VDC/3 VDC/3 U60

1 0 0 -VDC/3 -VDC/3 U240

1 0 1 VDC/3 -VDC/3 U300

1 1 0 -2 VDC/3 0 U180

1 1 1 0 0 O111

Table 2: Switching patterns, corresponding space vectors and their (d-q) components

These values of Vds and Vqs, listed in Table 2, are called the (d-q) components of the basic space
vectors corresponding to the appropriate transistor command signal (c,b,a). The space vectors
corresponding to the signal (c,b,a) are listed in the last column in Table 2. For example,
(c,b,a)=001 indicates that the space vector is U0.The eight basic space vectors defined by the
combination of the switches are also shown in Figure 3.

Figure 3: Basic space vectors

In Figure 3, vectors corresponding to states 0 (000) and 7 (111) of the switching variables are
called the zero vectors.

U180 (110) d

q
U120 (010) U60 (011)

O0 (000) O111 (111)

U240 (100) U300 (101)

U0 (001)

C2000 Systems and Applications 157

SVGEN_MF Technical Background

Decomposing the reference voltage vector V*

The objective of Space Vector PWM technique is to approximate a given stator reference voltage
vector V* by combination of the switching pattern corresponding to the basic space vectors. The
reference voltage vector V* is obtained by mapping the desired three phase output voltages(line
to neutral) in the (d-q) frame through the Clarke transform defined earlier. When the desired
output phase voltages are balanced three phase sinusoidal voltages, V* becomes a vector
rotating around the origin of the (d-q) plane with a frequency corresponding to that of the desired
three phase voltages.

The magnitude of each basic space vector, as shown in Figure 3, is normalized by the maximum
value of the phase voltages. Therefore, when the maximum bus voltage is VDC, the maximum line

to line voltage is also VDC, and so the maximum phase voltage(line to neutral) is VDC/3. From
Table 2, the magnitude of the basic space vectors is 2VDC/3. When this is normalized by the

maximum phase voltage(VDC/3), the magnitude of the basic space vectors becomes 2/3.
These magnitudes of the basic space vectors are indicated in Figure 3.

U0

(001)

U60

(011)

U120

(010)

U180

(110)

U240

(100)
U300

(101)

S1S3

S4

S5

S6

dyUy

dxUx

Sector

"Uy" "Ux"

60
o

q

d

V*
jeMVV max*

3

2

3

2

Figure 3: Projection of the reference voltage vector

Representing the reference vector V* with the basic space vectors requires precise control of

both the vector magnitude M (also called the modulation index) and the angle . The aim here is

to rotate V* in the d-q plane at a given angular speed (frequency) . The vector magnitude M
controls the resultant peak phase voltage generated by the inverter.

C2000 Systems and Applications 158

SVGEN_MF Technical Background

In order to generate the reference vector V*, a time average of the associated basic space
vectors is required, i.e. the desired voltage vector V* located in a given sector, can be
synthesized as a linear combination of the two adjacent space vectors, Ux and Uy which frame
the sector, and either one of the two zero vectors. Therefore,

V* = dxUx + dyUy + dzUz

where Uz is the zero vector, and dx, dy and dz are the duty ratios of the states X, Y and Z within
the PWM switching interval. The duty ratios must add to 100% of the PWM period, i.e: dx + dy +
dz = 1.

Vector V* in Fig. 4 can also be written as:

V* = MVmaxe
j = dxUx + dyUy + dzUz

where M is the modulation index and Vmax is the maximum value of the desired phase voltage.

By projecting V* along the two adjacent space vectors Ux and Uy, we have,

60sinsin

60coscos

max

max

UydyMV

UydyUxdxMV

Since the voltages are normalized by the maximum phase voltage, Vmax=1. Then by knowing Ux

= Uy = 2/3 (when normalized by maximum phase voltage), the duty ratios can be derived as,

dx M sin()60

dy M sin()

These same equations apply to any sector, since the d-q reference frame, which has here no
specific orientation in the physical space, can be aligned with any space vector.

As shown in Fig. 4, sine of is needed to decompose the reference voltage vector onto the basic
space vectors of the sector the voltage vector is in. Since this decomposition is identical among

the six sectors, only a 60 sine lookup table is needed. In order to complete one revolution (360
o
)

the sine table must be cycled through 6 times.

For a given step size the angular frequency (in cycles/sec) of V* is given by:

STEP fs

m6 2

C2000 Systems and Applications 159

SVGEN_MF Technical Background

Where fs = sampling frequency (i.e. PWM frequency), STEP = angle stepping increment, and m =
bits in the integration register.

For example, if fs = 24KHz, m = 16 bits & STEP ranges from 02048 then the resulting angular
frequencies will be as shown in Table 3.

STEP Freq(Hz) STEP Freq(Hz) STEP Freq(Hz)

1 0.061 600 36.62 1700 103.76

20 1.22 700 42.72 1800 109.86

40 2.44 800 48.83 1900 115.97

60 3.66 900 54.93 2000 122.07

80 4.88 1000 61.04 2100 128.17

100 6.10 1100 67.14 2200 134.28

Table 3: Frequency mapping

From the table it is clear that a STEP value of 1 gives a frequency of 0.061Hz, this defines the
frequency setting resolution, i.e. the actual line voltage frequency delivered to the AC motor can
be controlled to better than 0.1 Hz.

For a given fs the frequency setting resolution is determined by m the number of bits in the
integration register. Table 4 shows the theoretical resolution which results from various sizes of
m.

m (# bits) Freq res(Hz) m (# bits) Freq res(Hz)

8 15.6250 17 0.0305

12 0.9766 18 0.0153

14 0.2441 19 0.0076

16 0.0610 20 0.0038

Table 4: Resolution of frequency mapping

For IQmath implementation, the maximum step size in per-unit, FreqMax, for a given base
frequency, fb and a defined GLOBAL_Q number is therefore computed as follows:

QGLOBAL _

sb 2T f6FreqMax

Equivalently, by using _IQ() function for converting from a floating-point number to a _iq number,
the FreqMax can also be computed as

)T f6(_FreqMax sb IQ

 where Ts is the sampling period (sec).

C2000 Systems and Applications 160

SVGEN_MF Technical Background

Realization of the PWM Switching Pattern

Once the PWM duty ratios dx, dy and dz are calculated, the appropriate compare values for the
compare registers in 28xx can be determined. The switching pattern in Figure 4 is adopted here
and is implemented with the Full Compare Units of 28xx. A set of 3 new compare values, Ta, Tb
and Tc, need to be calculated every PWM period to generate this switching pattern.

Ta

Tb

Tc

T

d0 dx dy d7 d0 dx

= 1 PWM period

Note:

d0 = d7 = dz

Figure 4: PWM output switching pattern

From Figure 5, it can be seen:

 Ta = (T - dx -dy)/2

 Tb = dx + Ta

 Tc = T -Ta

If we define an intermediate variable T1 using the following equation:

2

1
dydxT

T

Then for different sectors Ta, Tb and Tc can be expressed in terms of T1. Table 5 depicts this
determination.

C2000 Systems and Applications 161

SVGEN_MF Technical Background

Sectors U0, U60 U60, U120 U120, U180 U180, U240 U240, U300 U300, U0

Ta T1 dy+Tb T-Tb T-Tc dx+Tc T1

Tb dx+Ta T1 T1 dy+Tc T-Tc T-Ta

Tc T-Ta T-Tb dx+Tb T1 T1 dy+Ta

Table 5: Calculation of duty cycle for different sectors

The switching pattern shown in Figure 5 is an asymmetric PWM implementation. However, 28xx
devices can also generate symmetric PWM. Little change to the above implementation is needed
to accommodate for this change. The choice between the symmetrical and asymmetrical case
depends on the other care-about in the final implementation.

C2000 Systems and Applications 162

V_Hz_PROFILE Volt/Hertz Profile for AC Induction Motor

Description This module generates an output command voltage for a specific input command

frequency according to the specified volts/hertz profile. This is used for variable
speed implementation of AC induction motor drives.

Availability C interface version

Module Properties Type: Target Independent

 Target Devices: 28x Fixed or Floating Point

C Version File Names: vhzprof.h

 IQmath library files for C: IQmathLib.h, IQmath.lib

 VHZ PROF

 VoltOut Freq

C2000 Systems and Applications 163

V_Hz_PROFILE C Interface

C Interface

Object Definition

The structure of VHZPROF object is defined by following structure definition

typedef struct { _iq Freq; // Input: Input Frequency
 _iq VoltOut; // Output: Output voltage
 _iq LowFreq; // Parameter: Low Frequency
 _iq HighFreq; // Parameter: High Frequency at rated voltage
 _iq FreqMax; // Parameter: Maximum Frequency
 _iq VoltMax; // Parameter: Rated voltage
 _iq VoltMin; // Parameter: Voltage at low Frequency range
 } VHZPROF;

Item Name Description Format
*

Range(Hex)

Inputs Freq Input Frequency GLOBAL_Q 80000000-7FFFFFFF

Outputs VoltOut Output voltage GLOBAL_Q 80000000-7FFFFFFF

VHZPROF
parameter

LowFreq Low Frequency GLOBAL_Q 80000000-7FFFFFFF

HighFreq High Frequency at rated voltage GLOBAL_Q 80000000-7FFFFFFF

FreqMax Maximum Frequency GLOBAL_Q 80000000-7FFFFFFF

VoltMax Rated voltage GLOBAL_Q 80000000-7FFFFFFF

VoltMin Voltage at low Frequency range GLOBAL_Q 80000000-7FFFFFFF
 *

GLOBAL_Q valued between 1 and 30 is defined in the IQmathLib.h header file.

Special Constants and Data types

 VHZPROF

The module definition is created as a data type. This makes it convenient to instance an interface
to volt/hertz profile. To create multiple instances of the module simply declare variables of type
VHZPROF.

 VHZPROF_DEFAULTS

Structure symbolic constant to initialize VHZPROF module. This provides the initial values to the
terminal variables as well as method pointers.

C2000 Systems and Applications 164

V_Hz_PROFILE C Interface

Module Usage

Instantiation

 The following example instances two VHZPROF objects
 VHZPROF vhz1, vhz2;

Initialization
To Instance pre-initialized objects
VHZPROF vhz1 = VHZPROF_DEFAULTS;
VHZPROF vhz2 = VHZPROF_DEFAULTS;

Invoking the computation macro
VHZ_PROF_MACRO(vhz1);
VHZ_PROF_MACRO(vhz2);

Example
The following pseudo code provides the information about the module usage.

main()
{

}

void interrupt periodic_interrupt_isr()
{

vhz1.Freq = Freq1; // Pass inputs to vhz1
vhz2.Freq = Freq2; // Pass inputs to vhz2

VHZ_PROF_MACRO(vhz1); // Call compute macro for vhz1
VHZ_PROF_MACRO(vhz2); // Call compute macro for vhz2

 VoltOut1 = vhz1.VoltOut; // Access the outputs of vhz1
 VoltOut2 = vhz2.VoltOut; // Access the outputs of vhz2
}

C2000 Systems and Applications 165

V_Hz_PROFILE Technical Background

Technical Background

If the voltage applied to a three phase AC Induction motor is sinusoidal, then by neglecting the
small voltage drop across the stator resistor, we have, at steady state,

 V j

i.e.

V

where V and
 are the phasor representations of stator voltage and stator flux, and V and

 are their magnitude, respectively. Thus, we get

V V

f

1

2

From the last equation, it follows that if the ratio V f remains constant for any change in f ,

then flux remains constant and the torque becomes independent of the supply frequency. In
actual implementation, the ratio of the magnitude to frequency is usually based on the rated
values of these parameters, i.e., the motor rated parameters. However, when the frequency, and
hence the voltage, is low, the voltage drop across the stator resistor cannot be neglected and
must be compensated for. At frequencies higher than the rated value, maintaining constant V/Hz
means exceeding rated stator voltage and thereby causing the possibility of insulation break
down. To avoid this, constant V/Hz principle is also violated at such frequencies. This principle is
illustrated in Figure 1.

V
ra

te

frate Frequency

V
o

lt
a

g
e

Figure 1: Voltage versus frequency under the constant V/Hz principle

Since the stator flux is maintained constant (independent of the change in supply frequency), the
torque developed depends only on the slip speed. This is shown in Figure 2. So by regulating the
slip speed, the torque and speed of an AC Induction motor can be controlled with the constant
V/Hz principle.

C2000 Systems and Applications 166

V_Hz_PROFILE Technical Background

Slip speed

T
o

rq
u

e

Figure 2: Torque versus slip speed of an induction motor with constant stator flux

Both open and closed-loop control of the speed of an AC induction motor can be implemented
based on the constant V/Hz principle. Open-loop speed control is used when accuracy in speed
response is not a concern such as in HVAC (heating, ventilation and air conditioning), fan or
blower applications. In this case, the supply frequency is determined based on the desired speed
and the assumption that the motor will roughly follow its synchronous speed. The error in speed
resulted from slip of the motor is considered acceptable.

In this implementation, the profile in Figure 1 is modified by imposing a lower limit on frequency.
This is shown in Figure 3. This approach is acceptable to applications such as fan and blower
drives where the speed response at low end is not critical. Since the rated voltage, which is also
the maximum voltage, is applied to the motor at rated frequency, only the rated minimum and
maximum frequency information is needed to implement the profile.

Frequenc

y

V
o

lt
a

g

e

f rat

e

f
min

V
ra

t

e
V

m
in

Figure 3: Modified V/Hz profile

The command frequency is allowed to go below the minimum frequency, fmin, with the output
voltage saturating at a minimum value, Vmin

. Also, when the command frequency is higher than

the maximum frequency, fmax, the output voltage is saturated at a maximum value, Vmax.

C2000 Systems and Applications 167

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue any
product or service without notice. Customers should obtain the latest relevant information before placing orders and
should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of
sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with
TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to
support this warranty. Except where mandated by government requirements, testing of all parameters of each product is
not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their
products and applications using TI components. To minimize the risks associated with customer products and
applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in
which TI products or services are used. Information published by TI regarding third-party products or services does not
constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such
information may require a license from a third party under the patents or other intellectual property of the third party, or a
license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and
is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with
alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.
Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or
service voids all express and any implied warranties for the associated TI product or service and is an unfair and
deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product
would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an
agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and
regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal,
regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical
applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers
must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-
critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI
products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as
military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has
not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all
legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI
products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if
they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such
requirements.

