Separate Boot and Application Projects on C2000 Devices

Todd Mullanix
TI-RTOS Apps Manager
Oct. 9, 2017

W3 TEXAS INSTRUMENTS

Goal

This presentation will show how to have a small boot image and a SYS/BIOS based
application both in flash for a C28 device. The boot image runs first and does a few things

and then jumps to the SYS/BIOS based application.

Many customers like to have a separate boot image to manage different things (e.g.

firmware updates, user interactions and diagnostics).

The basic idea is to have both the application and boot image in separate
locations. When the device is turned on (or reset), the boot image
runs first and then it jumps into the application (at ¢ int00).

Flash

SYS/BIOS
based
application

Boot image

Wip TEXAS INSTRUMENTS

Examples

Along with this presentation are two projects that show this functionality. While for the
F28377D Control Card, the concepts are applicable for other C28 devices.

 typical: Simple SYS/BIOS example that runs a task and outputs to the CCS console.
 myC28Boot: Simple project with one assembly file. It contains the reset vector that jumps
to the typical application’s ¢ int00 function.

Required Hardware to run examples
— F28377D Control Card.

Required Software to build examples
— SYS/BIOS: 6.50.01.12
— CCS: 7.x
— XDCtools: 3.50.3.33_core

Wip TEXAS INSTRUMENTS

Boot Project. Overview

Here is the boot project called myC28Boot. It has the linker file and a small boot.asm file.

v % myC28Boot
Binaries
! Includes
= Debug
2837x_FLASH_ Ink_cpul.cmd
I8 boot.asm

This boot image does not use SYS/BIOS. It’s purpose is to run first and do “stuff’ and then jump
into the application’s ¢ int00 function to start the application.

The “stuff’ is usually limited because you don’t generally replace a boot image on a device. The
“stuff” could be to manage which image to run based on some setting. Our boot simply turns an
LED on and then starts the application. The LED is to prove that the boot image is running first!

Wip TEXAS INSTRUMENTS

Boot Project: boot.asm

WD_DISABLE .set © ;set to 1 to disable WD, else set to ©

The boot.asm is basically the same as ref _c_intoo

.global code_start

F2837xD_CodeStartBranch.asm from ControlSuite.

We'll make code start be the entry point for the boot
image.

.sect "codestart”

code_start:
.if WD_DISABLE == 1

LB wd_disable ;Branch to watchdog disable code
.else
[EALLOW
MOW DP, #0x01F@ ; Set datapage to GPIO Ctrl Reg base
ZAPA
MOV AH, #0x3000
MOVL @@xA, ACC ; Set GPIO31 to direction - output
EDIS

LD2 is on by default on the ControlCard. Let’'s turn it off here — . e orr =0

MOVW DP, #0x@1FC ; Set datapage to GPIO Data Reg base

to make sure this is working properly. 2APA

MOV AH, #0x3000 ;

MOVL @ex2, ACC T ED)
MOVW DP, #0x0
LB _c_int00 ;Branch to start of boot._asm in RTS library

.endif

Wip TEXAS INSTRUMENTS

Boot Project: Linker File

This boot image does not do much. The standard linker file was changed to have all the code go
into FLASHN. For the other application project, we’ll not use FLASHN!

o & _c_intee = 9x@BCeD;
SECTIONS SECTIONS
{
/* Allocate program areas: */ /* Allocate program areas: */
= .cinit : > FLASHB PAGE = @, ALIGN(4) @ .cinit : > FLASHN PAGE = @, ALIGN(4)
.pinit : > FLASHB, PAGE = @, ALIGN(4) .pinit : > FLASHN, PAGE = 8, ALIGN(4)
.text : >> FLASHB | FLASHC | FLASHD | FLASHE PA(.text : >> FLASHN PAGE = @, ALIGN(4)
codestart : > BEGIN PAGE = @, ALIGN(4) codestart : > FLASHN PAGE = @, ALIGN(4)
#ifdef _ TI_COMPILER_VERSION__ #ifdef _ TI_COMPILER_VERSION__
#if TT COMPTIER VFRRTAN >= 154900 #if TT COMPTIFR VFRRTON >= 1549000

Additionally the linker file definesthe ¢ int00 symbol that is used in the boot.asm file. We’'ll
make sure the application project puts ¢ int00 at this address.

Wip TEXAS INSTRUMENTS

Boot Project. Project Settings

We need to make code start be the entry point in the CCS project. This helps us when we load
everything from CCS. In the boot project properties, add the new entry point.

9 Properties for myC288cot

type filter text Symbol Management
Resource .
General

~ Build Configuration: Debug [Active] ¥ Manage Configurations.

v £2000 Compiler
Processor Options
Optimization Specify program entry point for the output module (-—-entry_point, -¢)
Include Options Do not localize symbols matching pattern (--globalize) G
Performance Advisor
Predefined Symbols
Advanced Options Hide symbols matching pattern (--hide)

~ C2000 Linker
Basic Options
File Search Path

~ Advanced Options
Command File Preprocessing
Diagnostics
Linker Output
Symbol Management
Runtime Environment

Make the symbols matching pattern local (~localize) “
Don't make global symbol static if -h is specified (--make_global, -g)

[IMake all global symbols static (--make_static, -h)
[[INo type merging in symbolic debugging information (--no_sym_merge, -b)
Miscellaneous
[strip symbol table and line number entries (--no_symtable, -s)
Post-link optimization
€200 Hex Utility [Disabled]

Debug

?) Show advanced settings Cancel

Specify symbols/sections to be retained by linker (--retain)

<Linking>

___——>warning #18@63-D: entry-point symbol other than "_c_intee" specified:

If you bUIId nOW, you,” get a bu”d Warnlng 'Finished building target: myC28Boot.out®
YOU Can get rid Of thiS If deSired by VCZ;):S(?CLg::LnS Treat diagnostic <id> as error (--diag_error)
choosing to suppress it.

File Search Path
v Advanced Options
Command File Preprocessing

Treat diagnostic <id> as remark (--diag_remark)

iagnostics
Linker Outp

Suppress diagnostic <id> (—diag_suppress)
Symbol Management

10063
Runtime Environment

L2

&)

"code_start”

U3 TExAs INSTRUMENTS

Boot Project: Watchdog

Watchdog: If the code start function was doing any real work, you might want to disable the
watchdog or tickle it as needed.

iEiIe Edit View Project Tools Run Scripts Window Help

CLA Clock Enable

o Realtime Emulation Control Y ivBRERy S e v
When loading with CCS, the Watchdog might be disabled by CCS. ‘OT‘;'D e @ maine 5 boot ca:
Please refer to the gel file for your specific device. For the = T 5[oeews]
C28377, the f28377d_cpul.gel file generates a hotmenu item |B | Addressing Modes

called Disable_ WD that can be used.

>

>
Device Calibration > Save(exeee7eeeo,1,
EMU Boot Mode Select > Save(exees7esee, 1,
SETUP EMIF > lsave(oxe0078000,1,
Device Configuration > Save(©xpP0078800,1,

TOoT

SYS/BIOS can enable/disable the watchdog also. For example for the F2837x devices, the
following can be used to disable the watchdog.

var Boot = xdc.useModule('ti.catalog.c2800.initF2837x.Boot"');
Boot.disableWatchdog = true;

If enabled, it is up to the application to manage the tickling of the watchdog.

W3 TEXAS INSTRUMENTS

Application Project: Overview

The SYS/BIOS based application is one of the standard kernel examples. “Typical” has one task that
calls:

System_printf: Since SysMin is used in the .cfg file, the ASCII string is saved in an internal buffer*.

Sleeps for 10 ticks: since we are using the default 1ms for a Clock tick, this means it sleeps for 10ms.

System_ printf: Again the ASCII string goes into an internal buffer.

System_flush: Now the internal buffer is flushed to the CCS CIO buffer and shows up in the CCS Console

After the System_flush, the app sleeps for a second and turns on the LED to denote the end of the app.

& Console # # RTOS Object View (ROV) 2
C28377D.caxml:CIO @ LoggerBuf ~ | Module OutputBuffer Raw
enter main() @ Queue entry
enter taskFxn() ® Registry enter main{
exit taskFxn() © Semaphore enter taskFxn()
® Startup exit taskFxn()
® Swi
® SysMin
*The SysMin buffer can be viewed from Tools->ROV->SysMin. @ System
Shown here before calling System flush ()in taskFxn. @ Task

W3 TEXAS INSTRUMENTS

Application Project: Kernel Configuration Changes

The first section of code in the app.cfg file plugs in the new reset vector. “smyBoot” comes from the
linker file (next slide). The next section of code places ¢ int00 at OxOBCOO (FLASHN)*.
Remember we used this address back in the boot image’s linker file.

App.cfg

Hwi.nonDispatchedInterrupts[0] = new Hwi.NonDispatchedInterrupt ();
Hwi.nonDispatchedInterrupts[0].fxn = "&myBoot";
Hwi.nonDispatchedInterrupts[0] .enableInt = false;
Hwi.nonDispatchedInterrupts[0].intNum = 0;

Program.sectMap[".c _int00 { boot.a28FP<boot cg.o028FP> (.text) }"] = new Program.SectionSpec();
Program.sectMap[".c _int00 { boot.a28FP<boot cg.o028FP> (.text) }"].loadAddress = 0x0BCO00O0;

*You can do this in the linker file instead if you prefer.

W3 TEXAS INSTRUMENTS
10

Application Project: Linker File Changes

Here’s the before and after picture of the TMS320F28377D.cmd linker file in the application project.

* Remove FLASHN from all placements (not all removals are shown in the pic). We need to make sure
that the application does not use it!

» Added symbol “_ myBoot” symbol and set the value to the beginning of FLASHN (remember the boot
image placed code start here).

(= {3 _myBoot=0x8BEGGS;
SECTIONS SECTIONS
{ {
/* Allocate program areas: */ /* Allocate program areas: */
.cinit : > FLASHA | FLASHB | FLASHC | FLASHD | FLASHE | .cinit : > FLASHA | FLASHB | FLASHC | FLASHD | FLASHE |
FLASHF | FLASHG | FLASHH | FLASHI | FLASHIJ | FLASHF | FLASHG | FLASHH | FLASHI | FLASHJ |
= FLASHK | FLASHL | FLASHM | FLASHN PAGE = @ @ FLASHK | FLASHL | FLASHM PAGE = @
.binit t > FLASHA | FLASHB | FLASHC | FLASHD | FLASHE | .binit t > FLASHA | FLASHB | FLASHC | FLASHD | FLASHE |
FLASHF | FLASHG | FLASHH | FLASHI | FLASHI | FLASHF | FLASHG | FLASHH | FLASHI | FLASHI |
= FLASHK | FLASHL | FLASHM | FLASHN PAGE = @ @ FLASHK | FLASHL | FLASHM PAGE = ©
.pinit : > FLASHA | FLASHB | FLASHC | FLASHD | FLASHE | .pinit : > FLASHA | FLASHB | FLASHC | FLASHD | FLASHE |
FLASHF | FLASHG | FLASHH | FLASHI | FLASH] | FLASHF | FLASHG | FLASHH | FLASHI | FLASH] |
o FLASHK | FLASHL | FLASHM | FLASHN PAGE = @ @ FLASHK | FLASHL | FLASHM PAGE = @
.text : > FLASHA | FLASHB | FLASHC | FLASHD | FLASHE | [.text : > FLASHA | FLASHB | FLASHC | FLASHD | FLASHE |
FLASHF | FLASHG | FLASHH | FLASHI | FLASHJ | FLASHF | FLASHG | FLASHH | FLASHI | FLASHJ |
(= FLASHK | FLASHL | FLASHM | FLASHN PAGE = @ & FLASHK | FLASHL | FLASHM
codestart : > BEGIN PAGE = @ codestart : > BEGIN PAGE = @
ramfuncs : LOAD = FLASHA | FLASHB | FLASHC | FLASHD | FLASHE | ramfuncs : LOAD = FLASHA | FLASHB | FLASHC | FLASHD | FLASHE |
FLASHF | FLASHG | FLASHH | FLASHI | FLASH] | FLASHF | FLASHG | FLASHH | FLASHI | FLASH] |
o FLASHK | FLASHL | FLASHM | FLASHN PAGE = @ & FLASHK | FLASHL | FLASHM PAGE = @
RUN = LS@5SARAM PAGE = 1 RUN = LS@5SARAM PAGE = 1
LOAD_START(_ RamfuncsLoadStart), LOAD_START(_RamfuncsLoadStart),

Wip TEXAS INSTRUMENTS

Application Project: Project Settings

<This page internationally left blank since there are no changes for this©>

W3 TEXAS INSTRUMENTS
12

CCS: Loading

When using CCS you need to make a couple
Open Tools->Debugger Options->Auto run

1. Uncheck run to main: This just makes it
a hardware breakpoint©

type filter text
Memory Map
GEL Files
On-Chip Flash

changes before you load the images.
and Launch Options.

easier to see that everything is working. It also saves

Auto Run and Launch Options (TMS320C28XX)]

[Halt the target before any debugger access (will impact servi
["] Enable realtime mode (critical interrupts serviced when haltec

Program/Memory Load Options

Auto Run and Launch Options
Misc/Other Options

C28xx Disassembly Style Options

Enable polite mode (respect HPI, DBGM and FRAMEID)

Auto Run Options

Run to symbol | main

I:‘ On a program load or restartl
[/On areset

2. Erase only necessary sectors: When you load an image, only erase the sectors that are
needed by the image. Otherwise the second load will wipe out the first one®

& On-Chip Flash &
type filter text

Memory Map
GEL Files
On-Chip Flash
Program/Memory Load Options
Auto Run and Launch Options
Misc/Other Options
C28xx Disassembly Style Options

Note: any unwritten memory locations between sections will be filled with
and ECC will be programmed if AutoEccGeneration is enabled.

[] Combine Sections during Program Load to increase performance

Erase Settings

) Entire Flash
| (® Necessary Sectors Only (for Program Load) |

(O Selected Sectors Only % TEXAS INSTRUMENTS

13

CCS: Loading [cont.]

3.

Load the typical application image: CCS knows the entry pointis ¢ int00 for the
application. You can run/debug the application as desired. The output should go to the CCS
console (or you can look at it in ROV).

Load the boot image: CCS now thinks the entry pointis code start. If you start single
stepping, you jump into c int00. It's hard to tell that though, so go to step 5.

Add Symbols (optional): If you want to step into typical from the boot image and get source
level debugging do “Run->Load->Add Symbols...” and select the typical image. Note: if you
run, you’ll get the CCS console output, but you cannot use ROV.

& Add Symbols X

Program file | MRESITe 8ol IMIVISEPI 2R BN ~ | Browse.. |Browse project...

Code offset I:l
Data offset I:l

Power Cycle/Reset: The boot image will run (and turn the LED on) and then the typical
application.

Wip TEXAS INSTRUMENTS
14

Application Project: Adding a Reset Function

Reset Functions in SYS/BIOS are called early in the booting of the application. Users can plug in their
own function and perform actions. Note: the stack is not set up, so no local variables, calls to other
functions, etc. The Typical example includes a reset function.

Boot Flow Control Points

aQ Q .C f g e Device

initialization

var Startup = xdc.useModule ('xdc.runtime.Startup');

Startup.resetFxn = "&myResetFunction"; 0 i ol @
main.c

void myResetFunction () ° -rﬁur:nr:;r::n

{

} ° . EIXZEO
The reset functions can be used instead of having a separate Q
boot image in some cases. Diagram is from the first link in Q
the “Additional Resources” Slide O v

initialization
/Legend:
main() { /' [[__]= normal boot

I - xdc.runtime hooks
[= control points

Wip TEXAS INSTRUMENTS

éiOS_stad():

15

Additional Resources

o http://processors.wiki.ti.com/index.php/SYS/BIOS for the 28x
o http://processors.wiki.ti.com/index.php/Interrupt FAQ for C2000

e https://e2e.ti.com/

W3 TEXAS INSTRUMENTS
16

http://processors.wiki.ti.com/index.php/SYS/BIOS_for_the_28x
http://processors.wiki.ti.com/index.php/SYS/BIOS_for_the_28x
http://processors.wiki.ti.com/index.php/SYS/BIOS_for_the_28x
http://processors.wiki.ti.com/index.php/Interrupt_FAQ_for_C2000
http://processors.wiki.ti.com/index.php/Interrupt_FAQ_for_C2000
https://e2e.ti.com/
https://e2e.ti.com/

Appendix: Bugs/Enhancements

SYSBIOS-560: C28 Hwi module's plugMeta does not allow intNum 0O

The Hwi.plugMeta function cannot be used in the .cfg since it is checking for zero. This
would have simplified the .cfg code.

Jira tickets will be addressed in a future release.

Wip TEXAS INSTRUMENTS
17

I3 TEXAS
INSTRUMENTS

©Copyright 2017 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly “as-is,” for informational purposes only, and without any warranty.
Use of this material is subject to TI's Terms of Use, viewable at Tl.com

