=) — o

Zero-Latency Interrupts and TI-RTOS on C2000 Devices

Todd Mullanix
TI-RTOS Apps Manager
Feb, 11, 2018

w3 TexAs INSTRUMENTS

Agenda
Here's the high-level view of what we will cover in this presentation:
1. Typical kernel interrupt
2. What s a zero-latency interrupt?

3. When to use a zero-latency interrupt
4. Steps to add a zero-latency interrupt into a TI-RTOS based F28379D example.

wi3 TEXAS INSTRUMENTS

Managed Interrupts in TI-RTOS Kernel

When the TI-RTOS kernel (aka SYS/BIOS or sometimes just BIOS) manages an interrupt, it is
executed via the Hwi Dispatcher as opposed to using the interrupt keyword.

Using the BIOS Hwi Dispatcher Using the interrupt Keyword

' currentiy_executing_code currently_execuling_code
{ {
interrupt ocours -—-f—---+ Viector Table |- Hwi Dispatcher: interrupt occurs -4+ Viector Table -————
|
next_line_of_code Context Save -l next_line_of_code
} Context Restore }
J “Smart” Return i ‘-‘-f
L - - ' interrupt myHwi (void)
BIOS Hwi Dispatcher volid myHwi (arqg) Interrupt Keyword {
Eazy to use, simple, RECOMMENDED { + Compiler kandles context save/restore _))
context sawve; S/nest?
Tumed ON for every BIOS Hwi READ HW_PORT; + Call a function? Then full context is saved READ HW DORT;
Slight increase in latency due to full context Swi_post(); + MNedting interrupts s MANUAL Proces 5? Fre?
Save/ restone 1 & Lsers canNOT call amy BIOS Scheduler Syl pastT) ;
+ Allows BIOS Scheduler function calls functions (e.g. Swi_post) conTent restore;
Saves code space (all INTs share common # Lse ONLY if absolute minimum |atency is 1
save/restore routine) rl:"quire_ll:l in your system (and then, just
raye

Performs “smart return” = retums to
highest priority pending thread

wi3 TEXAS INSTRUMENTS

What is a Zero-Latency Interrupt?

You can have an interrupt not be managed by the kernel. The interrupt will run independently of
the kernel. We call this a “zero-latency interrupt™.

There are four key points about zero-latency interrupts.

1.
2.
3.

The kernel adds no overhead when the interrupt runs (thus the name zero-latency).
The kernel will never disable a zero-latency interrupt.

The zero-latency interrupt cannot make any calls into the kernel that would impact the
scheduler (.e.g. Semaphore post () IS not allowed in a zero-latency interrupt).

There Is a slightly negative performance impact on the kernel with C28 devices when there
IS a zero-latency interrupt in the system. This is because the kernel has to use the mask when
disabling/enabling the interrupts it manages.

* Some people prefer the name “unmanaged interrupt”

wi3 TEXAS INSTRUMENTS

When to use a Zero-Latency Interrupt?

When the TI-RTOS kernel manages an interrupt, an overhead is incurred. The
overhead is detailed in the SYS/BIOS Release Notes->Sizing and
Timing Benchmarks->Target. For example, to the right shows some of the
timing benchmarks for a TMS320F280049M device (with hard FP). Note: the
SYS/BIOS User Guide discusses these benchmarks in more details.

There are two key areas to consider about interrupt timing

1. Maximum duration the kernel ever disables interrupts: This value is
denoted by the “Interrupt Latency” benchmark. During this interval, an
asserted interrupt will not run. If this value might have a negative effect on
one of your interrupts, you should consider making it a zero-latency interrupt.

2. Overhead incurred by having the kernel manage the interrupt: The
kernel adds some overhead to the running of an ISR. This value is denoted

C28x with hard FP Timing Benchmarks
Target Platform: ti.platforms.tms320x28:TMS320F280049M:1
Tool Chain Version: 16.9.1

BIOS Version: bios_6_52 _00_11_eng

XDCTools Version: xdctools_3 50 03 33 core

by the “Hwi dispatcher” value. It is mostly comprised on the “Hwi dispatcher
prolog” and “Hwi dispatcher epilog”. If this value might have a negative effect
on one of your interrupts, you should consider making it a zero-latency
interrupt.

Please note: you timing numbers may vary based on compiler settings, flash
wait-states, etc.

Benchmark Cycles
Interrupt Latency 153
Hwi_restore() 19
Hwi_disable() 13
Hwi dispatcher prolog 210
Hwi dispatcher epilog 155
Hwi dispatcher 366
Hardware Interrupt to Blocked Task 588
Hardware Inferriint to Saffware Interriint 420

wi3 TEXAS INSTRUMENTS

Lab

For this presentation we are going to first play with two different examples on

the F28379D controlCARD (or LaunchPad).

1. ControlSuite’s cpu_timer Example: Non-RTOS based application that
configures and runs 3 timers.

2. SYS/BIOS’ Task Mutex Example: Simple application where the kernel has a
couple tasks accessing a shared resource. Each task sleeps for a bit and then
tries to get the resource via a semaphore.

The goal is to add another timer into the Task Mutex Example. The timer will
run at 30us, so we are going to make it a zero-latency interrupt. We’'ll freely
steal some of the code from the cpu_timer example to accomplish this.

wi3 TEXAS INSTRUMENTS

Import and Build cpu_timers example

In CCS, import the cpu_timer project in controlSUITE.
controlSUITE\device support\F2837xD\v210\F2837xD_examples Cpul\cpu_timers

If you are using the F28379D LaunchPad (instead of the controlCard),
please add the following compiler predefined symbol

- LAUNCHXL F28379D
The LaunchPad has a slower external oscillator than the control CARD.

Build the project.

This project configures 3 timers to run every second and increment a
unique counter.

@ Import CCS Eclipse Projects

Select CCS Projects to Import ‘ij

Select a directory to search for existing CCS Eclipse projects.

(®) Select search-directory: C:\ti\controISU\TE37477\deviceﬁsupport\F2837xD\v21O\F‘ | Browse... |

() Select archive file: Browse...

Discovered projects:
~]@ cpu_timers_cpu01 [C:\ti\controlSUITE3_4_7\device_support\F2837xD\w210\ Select All
Deselect All

Refresh

< >

] Automatically import referenced projects found in same search-directory
Copy projects into workspace

Open Resource Explorer to browse a wide selection of example projects...

) i
G Finish Cancel

v 2 cpu_timers_cpu01
Binaries
w! Includes
&= CPU1_RAM
& targetConfigs
L& cpu_timers_cpu01.c
1% F2837xD_CodeStartBranch.asm
s F2837xD_CpuTimers.c
I F2837xD DefaultlSR.c
& F2837xD GlobalVariableDefs.c
i F2837xD_Gpio.c
i F2837xD_Ipc.c
l& F2837xD_PieCtrl.c
l#t F2837xD_PieVect.c
lsy F2837xD_SysCtrl.c
% F2837xD_usDelay.asm !

wi3 TEXAS INSTRUMENTS

Run cpu_timers example

Load and run the cpu_timers .out file on CPUL. After N number of seconds, pause the core and
look at the CpuTimer0, CpuTimer1, and CpuTimer2 variables. You'll see that their InterruptCount
corresponds to the number of seconds you have ran the application (in this case 5 seconds).

#-=Variables ¢ Expressions & i Registers

Expression
v (2 CpuTimer0
» RegsAddr

Type
struct CPUTIMER_VARS

struct CPUTIMER_REGS *

Value
{RegsAddr=0x00
0x00000C00 {TIN

o= [InterruptCount

unsigned long

5

0= CPUFreginMHz float 200.0
¢ PeriodInUSec float 1000000.0

v (2 CpuTimer1 struct CPUTIMER_VARS {RegsAddr=0x00
» RegsAddr struct CPUTIMER_REGS * 0x00000C08 {TIN
¢ InterruptCount unsigned long 5
¢ CPUFreqinMHz float 200.0
¢ PeriodInUSec float 1000000.0

v (2 CpuTimer2 struct CPUTIMER_VARS {RegsAddr=0x00
» RegsAddr struct CPUTIMER_REGS * 0x00000C10 {TIN
&= InterruptCount unsigned long 5
0= CPUFreginMHz float 200.0
¢ PeriodInUSec float 1000000.0

wi3 TEXAS INSTRUMENTS

Build and Run SYS/BIOS Mutex Example
In CCS, import Task Mutex example via Tl Resource Explorer

Classic.

Build and load the project onto CPU1.

When you run the example, you'll see tasks ping-pong
then terminate.

v = task TMS320F28379D
Binaries
&l Includes
= Debug
g mutex.c

TMS320F28379D.cmd

2 src
& makefile.defs
mutex.cfg

B Console

F283779D.coxml:CIO
Running task2 function
Running taskl function
Running task2 function
Running taskl function
Running task2 function
Running taskl function
Running task2 function
Running taskl function
Running task2 function
Sem blocked in task2

back and forth and

Calling BIOS_exit from task2

v # SYS/BIOS

@ Users Guide

¥ Generic Devices
¥ 28004x Piccolo
i 2801x Fixed Point
¥ 2802x Piccolo

¥ 2803x Piccolo

i 2805x Piccolo

¥ 2806x Piccolo

¥ 2807x Piccolo

i 280x Fixed Point
¥ 281x Fixed Point
II¥ 2823x Fixed Point
i 2833x Delfino

¥ 2834x Delfino

v ¥ 2837xD Delfino

¥ TMS320F28374D
¥ TMS320F28375D
¥ TMS320F28376D
¥ TMS320F28377D
¥ TMS320F28378D
v F TMS320F28379D
v ® 7] Target Examples
& Minimal
= Typical
&4 28x Specific Examples
v © Generic Examples
= Benchmark Example
& C++ Example (bigtime)
= Clock Example
& Error Example
& Event Example
= Hello Example
= Log Example
& Memory Example
= Small Example
& Static Example
& Swi Example

= Task Mutex Example I

wi3 TEXAS INSTRUMENTS

SYS/BIOS Mutex Example Overview

Here's a look at the pseudo-code for the two tasks

Taskl // (lower priority) Task2 // (higher priority)
{ {
while (1) { while (1) {
Semaphore pend(sem, BIOS WAIT FOREVER) Semaphore pend(sem, BIOS WAIT FOREVER)
//simulate doing real work.. //simulate doing real work..
resourcet+; resourcet+;
Semaphore post (sem) Semaphore post (sem)
Task sleep (10) Task sleep(10)
} finishCount++
i1f (finishCount == 5) {

BIOS exit (0);

The semaphore makes sure the higher priority task does not preempt the lower priority task
when it is updating resource. Let's look a little more how the Task sleep () works...

10

wi3 TEXAS INSTRUMENTS

Timing in SYS/BIOS

The Clock module by default grabs a timer to use for the Clock instances and for driving timing
mechanism like Task sleepand Semaphore pend (with a timeout).

Here’s the default configuration (from mutex.cfg in the Task Mutex example)

~* Timer Control

Tick period (us) | 1000

Timer Id ANY ~

Tick mode Timer will interrupt every period
As you can see, ANY is specified. This means the kernel will grab a timer that is not already used
In the .cfg file. For this lab, will fix this to a specific timer since we want to avoid collisions.

Also note the default period is 1000us (1ms). The kernel will do book-keeping during this interrupt
(e.g. wake-up tasks whose Task_sleep has expired, call Clock functions that are due to run, etc.)

Task_sleep’s argument is in ticks. So Task _sleep(10) means to sleep for 10 ticks, or when the
Clock’s period is 1ms, sleep for 10ms.

11

wi3 TEXAS INSTRUMENTS

CPU Speed in SYS/BIOS

The .cfg file can be used to configure the CPU speed on the C28
devices. Here is the graphical view of the Boot module (after

var Boot =

xdc.useModule ('ti.catalog.c2800.1n1tF2837x.Boot"') ;

was added into the .cfg).

By default, the kernel sets the CPU speed to 2.5MHz.

This can be changed by setting the clock source,
multiplers, etc., but for this lab we’ll leave it

at 2.5MHz. We'll need this when configuring the new

zero-latency timer.

& mutex.cfg 2

SYS/BIOS - Boot/Startup Options

Advanced

Add F2837x Boot management to my configuration

~ System Configuration

[] Disable the watchdog timer

Enable boot from FLASH

D Initiate boot of the CPU2 processor
Configure Shared RAM regions

Shared RAM owner mask ‘ 0x0

Load Segment For Flash Functions‘ FLASHA PAGE =0

Run Segment For Flash Functions ‘ DO1SARAM PAGE =0

~ Clock Configuration

EConfigure PLL and CPU clock dividers§

Oscillator dock source select bit for OSCCLK |internal oscillator 2 (default on reset) ~

Input clock (OSCCLK) frequency (MHz) ‘ 10

PLL Integer Multiplier - SPLLIMULT ‘ 1

PLL Fractional Multiplier - SPLLFMULT Fractional multiplier is O b
System Clock Divider - SYSCLKDIVSEL | 2

Computed CPU clock frequency (Hz) | 2500000 I

Limp mode abort function ‘ ti_catalog_c2800_initF2837x_Boot_defaultlimpAbortFunction

~ Flash Controller Configuration
Configure Flash controller
Configure Flash controller wait states
Computed wait states 0
Enable program cache
Enable data cache

12

wi3 TEXAS INSTRUMENTS

Task Mutex Example Enhancment: Overview

Let's say we want to add something that needs to be checked every 30us. Here are three options:

1. Make the SYS/BIOS Clock module’s timer run at 30us.

2. Use a different timer, via the SYS/BIOS APl Timer create (), that runs every 30us.
3. Use a different timer that is not managed by the kernel (aka zero-latency interrupt).

Option 1 is a bad idea because the kernel does lots of book-keeping on a Clock tick. 30us is simply

too fast of a period.

Option 2 might work. It takes a minimum of 366 cycles to run an empty Hwi (refer to the SYS/BIOS
Release Notes for timing benchmarks). Let's say we bump this up to 400 to have it actually do
something. So if you are running faster than 13.3MHz it will work, but you are using lots of cycles.

CPU Speed uS/cycle | # cycles/interrupt uS required for each
30us Interrupt
400 160

2.5MHz 4

13.3MHz 07519 400 30
S50MHz .02 400

200MHz .005 400

That do option 3! Let’s look to see how to add a timer (in this case Timer1) as a zero-latency

interrupt...

wi3 TEXAS INSTRUMENTS

Task Mutex Example Enhancment: Configuration File Changes

First let’'s make two changes to the kernel configuration file (.cfg). We’'ll edit the mutex.cfg
as a text file (instead of graphically).

1. The default is to let the kernel select a non-used timer. Since it does not know about the
zero-latency timer at build time, we will specify Timer2 as the timer to be used by the
kernel. This is to avoid any conflict with the zero-latency timer interrupt we are going to
create. Please add this to the bottom of the .cfg file.

Clock.timerId = 2;

2. Tell the kernel that interrupt 13 (Timerl) will be a zero-latency interrupt. Please add
this to the bottom of the .cfg file.

Hwi.zeroLatencyIERMask = 0x1000; // note: the 13t bit is set

14

wi3 TEXAS INSTRUMENTS

Task Mutex Example Enhancment: Plugging Interrupt

3. During runtime, we need to plug in the ISR. Please add the following bolded code to the
mutex.c file. The next slides will add the variables and necessary functions.

#include <ti/sysbios/family/c28/Hwi.h>

__interrupt void cpu timerl isr(void)
{
CpuTimerl.InterruptCount++;

Int main ()

{

tsk2 = Task create (task2, é&taskParams, NULL);

/* Plug in the zero-latency interrupt */
Hwi plug (13, cpu timerl isr);

BIOS start(); /* does not return */

wi3 TEXAS INSTRUMENTS

15

Task Mutex Example Enhancment: Plugging Interrupt

4. Now we need to configure the timer and enable the interrupt. Please add the
following bolded code.

Int main ()

{

tsk2 = Task create (task2, &taskParams, NULL);

/* Plug in the zero-latency interrupt */

Hwi plug (13, cpu timerl 1isr);

myInitCpuTimers() ;

ConfigCpuTimer (&CpuTimerl, 2.5, 30); // CPU is 2.5MHz, timer is 30us
CpuTimerlRegs.TCR.all = 0x4000;

Hwi enableIER(0x1000);

BIOS start(); /* does not return */

wi3 TEXAS INSTRUMENTS

16

Task Mutex Example Enhancment: Initialize Timerl
5.

Please add the following timer initialization code into clock.c (somewhere above
main ()). This is modified version of the function in the cpu_timers project. We only

need to initialize Timerl.

#include "F28x Project.h"

void myInitCpuTimers (void)

{
CpuTimerl.RegsAddr = &CpuTimerlRegs;
CpuTimerlRegs.PRD.all = OxXFFFFFFFF;
CpuTimerlRegs.TPR.all = 0;
CpuTimerlRegs.TPRH.all = 0O;
CpuTimerlRegs.TCR.bit.TSS = 1;
CpuTimerlRegs.TCR.bit.TRB = 1;
CpuTimerl.InterruptCount = 0;

wi3 TEXAS INSTRUMENTS

17

Task Mutex Example Enhancment: Steal code from cpu_timers

6. Copy and paste these two files from the cpu_timers project and add them into the Task
Mutex project

— F2837xD_CpuTimers.c
— F2837xD_GlobalVariableDefs.c

We'll use global variables and functions from these files instead of redoing them.

7. Let's add a linker file from controlSUITE that supports SYS/BIOS. Please add the

controlSUITE\device_support\F2837xD\v210\F2837xD_headers\cmd\F2837xD_Headers_BIOS cpul.cmd file
v = task TMS320F28379D

Binaries

& Includes

= Debug

i F2837xD_CpuTimers.c

l& F2837xD _GlobalVariableDefs.c

F2837xD Headers BIOS cpul.cmd
g mutex.c

TMS320F28379D.cmd

@ src

makefile.defs

& mutex.cfg [SYS/BIOS] 18

wi3 TEXAS INSTRUMENTS

Task Mutex Example Enhancment: Linker File

8. The controlSUITE files depend on a CPU1 define. So add it
Into the project.

$ Properties for task_TMS320F28379D

type filter text Predefined Symbols v
Resource
Genera |
« Build Configuration: |Debug [Active] ~ | | Manage Configurations...
~ 2000 Compiler
Processor Options
Optimization Pre-define NAME (—-define, -D) LEE=R=1
e ootors | [——
Performance Advisc

Predefined Symbols
Advanced Options
C2000 Linker

C2000 Hex Utility [Dis
XDCtools Undefine NAME (--undefine, -U) &)

Debug

9. Finally, let's add includes paths for controlSUITE. Namely (this is assuming you have a

linked resource for controlSUITE in CCS).
"${INSTALLROOT_F2837XD}/F2837xD_headers/include*

"${INSTALLROOT_F2837XD}/F2837xD_common/include” viuii?iifsézféi?tions

Include Options

Performance Advisc
Predefined Symbols
Advance d Opt

C2000 Linker
C2000 Hex Utility [Dis
XDCtools

Debug

lons "${INSTALLROOT F2837XD}/F2837xD_common/include" =

Include Options I S A

Configuration: Debug [Active]

Add dir to #include search path (--include_path, -I) € &l
${BIOS_INCLUDE_PATH} k=
${PROJECT_ROQOT} &=
g Q01 BOQTincluda =1
"${INSTALLROOT_F2837XD}/F2837xD_headers/include” =

Specify a preinclude file (--preinclude) &

Cancel

wi3 TEXAS INSTRUMENTS

Task Mutex Example Enhancment: Build/Load/RUN!

10.

11.

12.

Let’s build the project. You'll probably get a warning® We have an open bug report on this. It

can be ignored.

"C:/ti/controlSUITE3 4 7/device_support/F2837xD/v218/F2837xD_headers/include/F2837xD_device.h"”, line 246: warning
#303-D: typedef name has already been declared (with same type)
"C:/ti/controlSUITE3 4 7/device_support/F2837xD/v218/F2837xD_headers/include/F2837xD_device.h", line 247: warning
#303-D: typedef name has already been declared (with same type)

Now load the application, set a breakpoint at the BIOS exit () call intask2, and run.

finishCount++;

if (finishCount == 5) {
System_printf("Calling BIOS _exit from task2\n");
BIOS exit(@);

139}
If you look at the tick count (ROV->Clock) and the CpuTimer.InterruptCount, they make sense!
113 ticks * 1000us / 30us = ~3766 for InterruptCount. Since we halted after a Clock tick
boundary, it's expected that InterruptCount is slightly higher than calculated.

& RTOS Object View (ROV) & *=Variables % Expressions ¥ il Registers
ir Favorites »~ | Basic Module Raw Expression Type Value
v &Y task_TMS320F28379D.0ut | address ticks tickSource ¥ (2 CpuTimer1 struct CPUTIMER_VARS {RegsAddi

v & Viewable Modules 0x8100 | 113 |ti.sysbiosk » RegsAddr struct CPUTIMER_REGS * 0x00000C!
© BIOS 6o InterruptCount unsigned long 3799
® Boot
o Clodk ¢ CPUFreginMHz float 2.5

w: PeriodInUSec float 30.0 20

wi3 TEXAS INSTRUMENTS

Advanced

1. You can comment out the BIOS exit and run the application for a longer period.
Or you can even run past the breakpoint. The zero-latency interrupt will
continue even though the kernel has exited.

2. If the zero-latency interrupt needed to tell the kernel about something, it could
call Hwi post () on an interrupt that is managed by the kernel. That interrupt

can call Semaphore post(), etc.

wi3 TEXAS INSTRUMENTS

Additional Resources

* http://processors.wiki.t.com/index.php/SYS/BIOS for _the 28X
« SYS/BIOS User Guide (inside the docs directory on an install SYS/BIOS product).

wi3 TEXAS INSTRUMENTS

22

http://processors.wiki.ti.com/index.php/SYS/BIOS_for_the_28x
http://processors.wiki.ti.com/index.php/SYS/BIOS_for_the_28x

I8 TEXAS
INSTRUMENTS

©Copyright 2017 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly “as-is,” for informational purposes only, and without any warranty.
Use of this material is subject to TI's Terms of Use, viewable at Tl.com

