I3 TEXAS
INSTRUMENTS

C2000™ Microcontroller Workshop

Workshop Guide and Lab Manual

F28xMcuMdw O
Revision 5.0

May 2014] o
Technical Training
Organization

Important Notice

Important Notice

Texas Instruments and its subsidiaries (T1) reserve the right to make changes to their products or to
discontinue any product or service without notice, and advise customers to obtain the latest version of
relevant information to verify, before placing orders, that information being relied on is current and
complete. All products are sold subject to the terms and conditions of sale supplied at the time of order
acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the
extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not
necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. T1 does not warrant or
represent that any license, either express or implied, is granted under any patent right, copyright, mask
work right, or other intellectual property right of T1 covering or relating to any combination, machine, or
process in which such semiconductor products or services might be or are used. TI’s publication of
information regarding any third party’s products or services does not constitute T1’s approval, warranty or
endorsement thereof.

Copyright © 2009 — 2014 Texas Instruments Incorporated

Revision History
September 2009 — Revision 1.0
May 2010 — Revision 2.0
December 2010 — Revision 2.1
July 2011 — Revision 3.0
September 2011 — Revision 3.1
October 2012 — Revision 4.0
May 2014 - Revision 5.0

Mailing Address

Texas Instruments

Training Technical Organization
6500 Chase Oaks Blvd Building 2
M/S 8437

Plano, Texas 75023

C2000 Microcontroller Workshop - Introduction

C2000™ Microcontroller Workshop

C2000™ Microcontroller Workshop

C2000™ Microcontroller Workshop

Texas Instruments
Technical Training

13 TEXAS
INSTRUMENTS C2000 is trademarks of Texas Instruments. Copyright © 2014 Texas Instruments. All rights reserved.

The objective of this workshop is to gain a fully understand and a complete working knowledge
of the C2000 microcontroller. This will be accomplished through detailed presentations and
hands-on lab exercises.

The workshop will start with the basic topics and progress to more advanced topics in a logical
flow such that each topic and lab exercise builds on the previous one presented. At the end of the
workshop, you should be confident in applying the skills learned in your product design.

C2000 Microcontroller Workshop - Introduction iii

C2000™ Microcontroller Workshop

C2000™ Microcontroller Workshop Outline
C2000™ Microcontroller Workshop Outline

. Architecture Overview

. Programming Development Environment Lab: Linker command file
. Peripheral Register Header Files

. Reset and Interrupts

. System Initialization Lab: Watchdog and interrupts

. Analog-to-Digital Converter Lab: Build a data acquisition system

. Control Peripherals Lab: Generate and graph a PWM waveform

. Numerical Concepts Lab: Low-pass filter the PWM waveform

© 00 N oo 00~ W N PP

. Direct Memory Access (DMA) Lab: Use DMA to buffer ADC results

10. Control Law Accelerator (CLA) Lab: Use CLA to filter PWM waveform
11. Viterbi, Complex Math, CRC Unit (VCU)

12. System Design Lab: Run the code from flash memory

13. Communications

14. Support Resources

Required Workshop Materials

Required Workshop Materials

@ http://processors.wiki.ti.com/index.php/
C2000_Piccolo_Multi-Day Workshop

¢ F28069 Experimenter’s Kit (tmbxpock2s069)
¢ Install Code Composer Studio v6.0.0

¢ Run the workshop installer
C2000 Microcontroller Workshop-5.0-Setup.exe
¢Lab Files / Solution Files

¢ Student Guide and Documentation

The materials required for this workshop are available using the links shown at the top of this
slide. An F28069 Experimenter’s Kit and a jumper wire will be needed for the lab exercises. The

C2000 Microcontroller Workshop - Introduction

C2000™ Microcontroller Workshop

lab directions are written based on the version of Code Composer Studio as shown on this slide.
The workshop installer will automatically install the lab files, solution files, workshop manual,
and documentation.

C2000™ Experimenter Kit
C2000™ Experimenter Kit

Telwn§-\
)
Instrements -
"

T-T
000000000000
]

0000000000 0D00000000
©000,0000000000000000
L3

USB Docking Station

The development tool for this workshop will be the TMS320F28069 Experimenter’s Kit. The kit
consists of a control CARD and USB Docking Station. It is a self-contained system that plugs
into a free USB port on your computer. The USB port provides power, as well as communicates
to the onboard JTAG emulation controller. LED LD1 on the Docking Station and LED LD1 on
the controlCARD illuminates when the board is powered. LED LD2 on the control CARD is
connected to GPIO34. We will be using this LED as a visual indicator during the lab exercises.
The GPI10O and ADC lines from the F28069 device are pinned out to the Docking Station headers.
We will be using a jumper wire to connect various GP1O and ADC lines on these headers.

C2000 Microcontroller Workshop - Introduction %

C2000™ Microcontroller Workshop

C2000 Delfino / Piccolo Comparison

C2000 Delfino / Piccolo Comparison
F2833x F2803x F2806x

Clock 150 MHz 60 MHz 90 MHz
Flash / RAM 128Kw / 34Kw 64Kw / 10Kw 128Kw / 50Kw
On-chip Oscillators - 2 2
VREG / POR / BOR - v v
Watchdog Timer v v v
12-bit ADC SEQ - based SOC - based SOC - based
Analog COMP w/ DAC - v v
FPU v v
6-Channel DMA v v
CLA - 4 v
VCU v
ePWM / HR ePWM viv viIiv VIV
eCAP / HR eCAP V- V- 4
eQEP v v v
SCI/SPI/12C v v v
LIN - 4
McBSP v o v
UsB o = v
External Interface v

When comparing the Delfino and Piccolo product lines, you will notice that the Piccolo F2806x
devices share many features with the Delfino product line. The Delfino product line is shown in
the table by the F2833x column; therefore, the F28069, being the most feature-rich Piccolo
device, was chosen as the platform for this workshop. The knowledge learned from this device
will be applicable to all C2000 product lines.

vi C2000 Microcontroller Workshop - Introduction

Architecture Overview

Introduction

This architectural overview introduces the basic architecture of the C2000™ Piccolo™ series of
microcontrollers from Texas Instruments. The Piccolo™ series adds a new level of general
purpose processing ability unseen in any previous DSP/MCU chips. The C2000™ is ideal for
applications combining digital signal processing, microcontroller processing, efficient C code
execution, and operating system tasks.

Unless otherwise noted, the terms C28x, F28x and F2806x refer to TMS320F2806x devices
throughout the remainder of these notes. For specific details and differences please refer to the
device data sheet and user’s guide.

Module Objectives

When this module is complete, you should have a basic understanding of the F28x architecture
and how all of its components work together to create a high-end, uniprocessor control system.

Module Objectives

¢ Review the F28x block diagram and
device features

¢ Describe the F28x bus structure and
memory map

¢ ldentify the various memory blocks on
the F28x

¢ |ldentify the peripherals available on
the F28x

C2000 Microcontroller Workshop - Architecture Overview 1-1

Module Topics

Module Topics

ATCNITECTUIE OVEIVIEW. ..ottt ettt b bbb bbb bbbt bbbt s e bt bbb n et nnenen 1-1
T T LU T o] (oSSR 1-2
What is the TMS320C2000T™?......c.eeuiiieieterieieete ettt sttt st se et sr et sb bbb sttt esesbe e ere st ene 1-3

TMS320C2000™ INEErNAI BUSSING «1.vvevvereerieieriesieseesteseeseeseesse e ssessesseeseaseessessessessessessessesssessessessessens 1-4
F28X CPU + FPU + VCU @Nd CLA ...ttt st sb et sbe et sne e 1-5
SPECIAI INSTIUCTIONS. ...ttt et e e e e e et e tesrentesneer e e e eneeseeneenrenns 1-6
PIPEINE AGVANTAGE ..o ittt bbbt b e e s e b e b e b e e bt et e et e st e e nbe st e 1-7
F28X CPU + FPU + VCU PIPEIINE ...ttt st 1-8
IVIBIMIONY .ttt ettt h e bt e bt e h e eh b e e b e ke e E e oAbt e R e e e Re e eRe e bt e nb e en b e e R e e nb e e nbeeneenneennas 1-9
IMIEIMOTY VA -ttt btttk bbb ekt e ke ekt e et e he e ehe e e bt e bt e a bt e b b e ebeenb e e nbeebeennesneas 1-9
Code Security MOAUIE (CSMY) ..ottt e bbb bbb e b e 1-10
PEIIPNEIAIS ...ttt bt bbbttt e bbbt ettt et e nhe e 1-10
FaSt INTEITUDPE RESPONSEeiiiieiiie ittt bbb e e nbe et e e be e e breenbee et 1-11
31U 1= 2SS 1-12

C2000 Microcontroller Workshop - Architecture Overview

What is the TMS320C2000™?

What is the TMS320C2000™7?

The TMS320C2000™ is a 32-bit fixed point microcontroller that specializes in high performance
control applications such as, robotics, industrial automation, mass storage devices, lighting,
optical networking, power supplies, and other control applications needing a single processor to
solve a high performance application.

TMS320F2806x Block Diagram

Program Bus

1 1 1 a ePWM

el Sectored Dl e eCAP
ROM R 6 Ch
Flash :
eQEP
DMA Bus -
CLABus 12-bit ADC

s

1 McBSP
l PIE
R-M-W Interrupt
32x32 bit FPU
1 |atomic CLA Manager scl
Multiplier ALY VCU =
!] 1 :
32-bit CAN 2.0B
Register Bus Watchdog Timers
CPU USB 2.0
Data Bus GPIO

This block diagram represents an overview of all device features and is not specific to any one
device. The F28069 device is designed around a multibus architecture, also known as a modified
Harvard architecture. This can be seen in the block diagram by the separate program bus and data
bus, along with the link between the two buses. This type of architecture greatly enhances the
performance of the device.

In the upper left area of the block diagram, you will find the memory section, which consists of
the boot ROM, sectored flash, and RAM. Also, you will notice that the six-channel DMA has its
own set of buses.

In the lower left area of the block diagram, you will find the execution section, which consists of
a 32-bit by 32-bit hardware multiplier, a read-modify-write atomic ALU, a floating-point unit,
and a Viterbi complex math CRC unit. The control law accelerator coprocessor is an independent
and separate unit that has its own set of buses.

The peripherals are grouped on the right side of the block diagram. The upper set is the control
peripherals, which consists of the ePWM, eCAP, eQEP, and ADC. The lower set is the
communication peripherals and consists of the multichannel buffered serial port, 12C, SCI, SPI,
CAN, and USB.

The PIE block, or Peripheral Interrupt Expansion block, manages the interrupts from the
peripherals. In the bottom right corner is the general-purpose 1/0. Also, the CPU has a watchdog
module and three 32-bit general-purpose timers available.

C2000 Microcontroller Workshop - Architecture Overview 1-3

Dell
Highlight

Dell
Highlight

What is the TMS320C2000™?

TMS320C2000™ Internal Bussing

As with many DSP-type devices, multiple busses are used to move data between the memories
and peripherals and the CPU. The F28x memory bus architecture contains:

e A program read bus (22-bit address line and 32-bit data line)
e A data read bus (32-bit address line and 32-bit data line)

e A data write bus (32-bit address line and 32-bit data line)

F28x CPU Internal Bus Structure
Program Program Address Bus (22) i
Program-read Data Bus (32)
| |
| Data-read Address Bus (32) Program
1 T Memory
| Data-read Data Bus (32)
Registers | [Execution FPU Debug
ARAU || |[MPY32x32 ROH-R7H i D
SP R-M-W Real-Time ata
DP |@X ALU__11 Atomic || VCU JTAG Memory
XT ALU || VROVREI| |1 E 1 lation
XARO
o P CLA
| Register Bus / Result Bus | Peripherals
]]
[; Data/Program-write Data Bus (32)
| Data-write Address Bus (32)

The 32-bit-wide data busses provide single cycle 32-bit operations. This multiple bus
architecture, known as a Harvard Bus Architecture, enables the F28x to fetch an instruction, read
a data value and write a data value in a single cycle. All peripherals and memories are attached to
the memory bus and will prioritize memory accesses.

1-4 C2000 Microcontroller Workshop - Architecture Overview

Dell
Highlight

F28x CPU + FPU + VCU and CLA

F28x CPU + FPU + VCU and CLA

The F28x is a highly integrated, high performance solution for demanding control applications.
The F28x is a cross between a general purpose microcontroller and a digital signal processor,
balancing the code density of a RISC processor and the execution speed of a DSP with the
architecture, firmware, and development tools of a microcontroller.

The DSP features include a modified Harvard architecture and circular addressing. The RISC
features are single-cycle instruction execution, register-to-register operations, and a modified
Harvard architecture. The microcontroller features include ease of use through an intuitive
instruction set, byte packing and unpacking, and bit manipulation.

F28x CPU + FPU + VCU and CLA

¢ MCU/DSP balancing code density &
execution time
16-bit instructions for improved code density
32-bit instructions for improved execution time

Program Bus

CLABuUS ¢ 32-bit fixed-point CPU + FPU
! & 32x32 fixed-point MAC, doubles as dual
16x16 MAC
I I J ¢ |EEE Single-precision floating point
soxazbitl [FYW] [rpu hardware and MAC
multiplier| 40 CLA + Floating-point simplifies software
i : development and boosts performance
[FE]«+| @ Viterbi, Complex Math, CRC Unit (VCU)
Regié;‘ij BLS 3 adds support for Viterbi decode, complex
[32-bit | math and CRC operations
patchiong Timers| | ¢ Parallel processing Control Law Accelerator
¢ H (CLA) adds IEEE Single-precision 32-bit
_T Data Bus floating point math operations
¢ CLA algorithm execution is independent of
the main CPU

¢ Fast interrupt service time
Single cycle read-modify-write instructions
¢ Unique real-time debugging capabilities

The F28x design supports an efficient C engine with hardware that allows the C compiler to
generate compact code. Multiple busses and an internal register bus allow an efficient and
flexible way to operate on the data. The architecture is also supported by powerful addressing
modes, which allow the compiler as well as the assembly programmer to generate compact code
that is almost one to one corresponded to the C code.

The F28x is as efficient in DSP math tasks as it is in system control tasks. This efficiency
removes the need for a second processor in many systems. The 32 x 32-bit MAC capabilities of
the F28x and its 64-bit processing capabilities, enable the F28x to efficiently handle higher
numerical resolution problems that would otherwise demand a more expensive solution. Along
with this is the capability to perform two 16 x 16-bit multiply accumulate instructions
simultaneously or Dual MACs (DMAC). Also, some devices feature a floating-point unit.

The, F28x is source code compatible with the 24x/240x devices and previously written code can
be reassembled to run on a F28x device, allowing for migration of existing code onto the F28x.

C2000 Microcontroller Workshop - Architecture Overview 1-5

Dell
Highlight

Dell
Highlight

Dell
Highlight

Dell
Highlight

F28x CPU + FPU + VCU and CLA

Special Instructions

F28x Atomic Read/Modify/Write

Atomic Instructions Benefits

LOAD ¢ Simpler programming
READ

| Registers ALU /MPY || Mem

WRITE

¢ Smaller, faster code

¢ Uninterruptible (Atomic)

STORE ¢ More efficient compiler
Standard Load/Store Atomic Read/Modify/Write
pINT AND *XAR2,#1234h
MOV AL,*XAR2 ’

AND AL,#1234h
MOV *XAR2,AL
EINT

6 words / 6 cycles

2 words / 1 cycles

Atomics are small common instructions that are non-interuptable. The atomic ALU capability
supports instructions and code that manages tasks and processes. These instructions usually
execute several cycles faster than traditional coding.

1-6 C2000 Microcontroller Workshop - Architecture Overview

Dell
Highlight

F28x CPU + FPU + VCU and CLA

Pipeline Advantage

F28x CPU Pipeline

A |FiiF [DiiDy|RiiRy| E|W 8-stage pipeline
B FiiF; |D1iD;| Ry Ry | E
c FiiF DDyl Ry Ry E
""""" F,iF, D, D,| R R,| E[W
D il e Il b __E &G Access
E FiiFo |Dy| Do Rii Ryl B W -—""2" same address
F Fl E FZ Dl D2 Rli RZ E WI
G Fi|F,|Dyi Dy Ry| “{R,| E|W
Ho F[F, Dy D, [RyiR,| E[W
F1: Instruction Address
F2: Instruction Content Protected Pipeline
D1: Decode Instruction . .
D2: Resolve Operand Addr ¢ Order of results are as written in
R1: Operand Address source code
E_Z:Ccsatdooﬁﬁ?r?ial" work ¢ Programmer need not worry about
W: store content to memory the pipeline

The F28x uses a special 8-stage protected pipeline to maximize the throughput. This protected
pipeline prevents a write to and a read from the same location from occurring out of order.

This pipelining also enables the F28x to execute at high speeds without resorting to expensive
high-speed memories. Special branch-look-ahead hardware minimizes the latency for conditional
discontinuities. Special store conditional operations further improve performance.

C2000 Microcontroller Workshop - Architecture Overview 1-7

Dell
Highlight

F28x CPU + FPU + VCU and CLA

F28x CPU + FPU + VCU Pipeline
F28x CPU + FPU + VCU Pipeline

Fetch Decode Read Exe Write

F28x Pipeline |F; iF, [D; i D,| R;i Ry| E|W
FPU Instruction DIR El E2/\N
U I
VCU Instruction D| R| E;|EJ/W
Load |«
Store |«
0 delay slot instruction |«
1 delay slot instruction |«

Floating-point math operations, conversions between integer and floating-
point formats, and complex MPY/MAC require 1 delay slot — everything else
does not require a delay slot (load, store, max, min, absolute, negative, etc.)

¢ Floating Point Unit and VCU has an unprotected pipeline

¢ i.e. FPU/VCU can issue an instruction before previous instruction has
written results

¢ Compiler prevents pipeline conflicts
¢ Assembler detects pipeline conflicts

¢ Performance improvement by placing non-conflicting
instructions in floating-point pipeline delay slots

Floating-point and VVCU operations are not pipeline protected. Some instructions require delay
slots for the operation to complete. This can be accomplished by insert NOPs or other non-
conflicting instructions between operations.

In the user’s guide, instructions requiring delay slots have a ‘p” after their cycle count. The 2p
stands for 2 pipelined cycles. A new instruction can be started on each cycle. The result is valid
only 2 instructions later.

Three general guideslines for the FPU/VVCU pipeline are:

Math MPYF32, ADDF32, 2p cycles
SUBF32, MACF32, One delay slot
VCMPY

Conversion 116TOF32, F32TOI16, 2p cycles
F32TOI16R, etc... One delay slot

Everything else* Load, Store, Compare, Single cycle
Min, Max, Absolute and No delay slot
Negative value

* Note: MOV 32 between FPU and CPU registers is a special case.

1-8 C2000 Microcontroller Workshop - Architecture Overview

Dell
Highlight

Memory

Memory

The memory space on the F28x is divided into program memory and data memory. There are
several different types of memory available that can be used as both program memory and data
memory. They include the flash memory, single access RAM (SARAM), OTP, and Boot ROM
which is factory programmed with boot software routines and standard tables used in math related
algorithms.

Memory Map

The F28x CPU contains no memory, but can access memory on chip. The F28x uses 32-bit data
addresses and 22-bit program addresses. This allows for a total address reach of 4G words (1
word = 16-bits) in data memory and 4M words in program memory. Memory blocks on all F28x
designs are uniformly mapped to both program and data space.

This memory map shows the different blocks of memory available to the program and data space.

OXOOOOOO Data | Program .
OX000400 MO SARAM (1Kw) :

M1 SARAM (1Kw) 0x014000 reserved |
0x000D00 5 Vecrors! 0x3D7C00 Lo D3OI (kW)

(256 w) ! reserved
OXOOOEOO”EE 0 (6Kwy| "eeved Ox3D7C80 F i e e cal d
0x002000 (BKw 0x3D7CCO C‘Z' ia
gxggzggg PE 3 (dkw) 0x3D8000 e
X PF 1 (4Kw) ELASH:(128Kw)
Ox007000 157) OX3F7FF8
X e e o e S e e i e e

OX008000 15 5w rant (2kw) Ox3F8000 - -FASSWORDS (Bw)
0x008800
OX008C00 L LLOPSARAN (1K) Boot ROM (32Kw)
0x009000 LoE22ESARANZING OXBFFFCO - mseomeemoemreeem oo
OX00A000 L3-DPSARANM: (4K W) Ox3FFEEE. BROM Vectors (64w)

L4 SARAM: (8KW) Data | Program
OX00C000 = " o ArAM (8Kw)

w
accessible by CPU & CLA ¢ L L2 L8 14
OX012000 |7 DPSARAM (8Kw) pheribenybonite
L8 DPSARAM (8Kw) DPSARAM L5, L6, L7 & L8 ADC-CAL:

0x014000 . accessible by DMA Flash Regs-in PEO

The F28069 utilizes a contiguous memory map, also known as a von-Neumann architecture. This
type of memory map lends itself well to higher-level languages. This can be seen by the labels
located at the top of the memory map where the memory blocks extend between both the data
space and program space.

At the top of the map, we have two blocks of RAM called MO and M1. Then we see PFO through
PF3, which are the peripheral frames. This is the area where you will find the peripheral
registers. Also in this space, you will find the PIE block. Memory blocks L0 through L8 are
grouped together. LO through L3 are accessible by the CPU and CLA. L5 through L8 are
accessible by the DMA.

C2000 Microcontroller Workshop - Architecture Overview 1-9

Dell
Highlight

Dell
Highlight

Dell
Highlight

Dell
Highlight

Dell
Highlight

Memory

The user OTP is a one-time, programmable, memory block. TI reserves a small space in the map
for the ADC and oscillator calibration data. The flash block contains a section for passwords,
which are used by the code security module. The boot ROM and boot ROM vectors are located
at the bottom of the memory map.

Code Security Module (CSM)

Code Security Module

¢ Prevents reverse engineering and protects
valuable intellectual property

0x008000
0x008800
0x008C00
0x009000
0x00A000
0x00C000
0x3D7800
0x3D7C00
0x3D7C80

EO"DPSARAM. (2Kw)

L1 DRPSARAM, (1K w)

1:2'DPSARAM.(IKW)

E3DRPSARAM. (4K w)

L4 DRSARAM . (BK W)
reserved

User, OTP. (LKw)

reserved

ADC FOSCrcal:. data

0x3D7CCO reterve

e T FUASH (128K W)
Ox3F8000 PASSWORDS (8W)

¢ 128-bit user defined password is stored in Flash
¢ 128-bits = 21?8 = 3.4 x 10°® possible passwords

¢ To try 1 password every 8 cycles at 80 MHz, it would
take at least 1.1 x 10?4 years to try all possible
combinations!

Peripherals

The F28x comes with many built in peripherals optimized to support control applications. These
peripherals vary depending on which F28x device you choose.

e ePWM e SPI

o eCAP e SCI

e eQEP e 12C

e Analog-to-Digital Converter e McBSP
e Watchdog Timer e eCAN
e CLA e USB

e DMA e GPIO

1-10 C2000 Microcontroller Workshop - Architecture Overview

Dell
Highlight

Fast Interrupt Response

Fast Interrupt Response

The fast interrupt response, with automatic context save of critical registers, resulting in a device
that is capable of servicing many asynchronous events with minimal latency. F28x implements a
zero cycle penalty to do 14 registers context saved and restored during an interrupt. This feature
helps reduces the interrupt service routine overheads.

F28x Fast Interrupt Response Manager

¢ 96 dedicated PIE

vectors
+ No software decision |g PIE module _
making required A'o interrupts 28x CPU Interrupt logic
. & INTL to
¢ Direct access to RAM |~ TS
[23
o - 28;
Xecto;‘ls d % 96 e 12 interrupts IFR [l 1IER || INTM | CP)EJ
¢ Auto flags update Ej et :\/,\
¢ Concurrent auto g Map
=
context save =
a

Auto Context Save

T STO —
AH AL

PH PL

AR1 (L) | ARO (L)

DP ST1

DBSTAT | IER

PC(msw)| PC(lsw)

The C2000 devices feature a very fast interrupt response manager using the PIE block. This
allows up to 96 possible interrupt vectors to be processed by the CPU. More details about this
will be covered in the reset, interrupts, and system initialization modules.

C2000 Microcontroller Workshop - Architecture Overview 1-11

Dell
Highlight

Dell
Highlight

Summary

Summary

Summary

¢ High performance 32-bit CPU

¢ 32x32 bit or dual 16x16 bit MAC

¢ |IEEE single-precision floating point unit (FPU)
¢ Hardware Control Law Accelerator (CLA)
¢ Viterbi, complex math, CRC unit (VCU)

¢ Atomic read-modify-write instructions

¢ Fast interrupt response manager

¢ 128Kw on-chip flash memory

¢ Code security module (CSM)

¢ Control peripherals

¢ 12-bit ADC module

¢ Comparators

¢ Direct memory access (DMA)

¢ Up to 54 shared GPIO pins

¢ Communications peripherals

1-12 C2000 Microcontroller Workshop - Architecture Overview

Programming Development Environment

Introduction

This module will explain how to use Code Composer Studio (CCS) integrated development
environment (IDE) tools to develop a program. Creating projects and setting building options
will be covered. Use and the purpose of the linker command file will be described.

Module Objectives

Module Objectives

¢ Use Code Composer Studio to:
¢ Create a Project
¢ Set Build Options

¢ Create a user linker command file which:

¢ Describes a system’s available memory

¢Indicates where sections will be placed
In memory

C2000 Microcontroller Workshop - Programming Development Environment 2-1

Dell
Highlight

Module Topics

Module Topics

Programming Development ENVIFONMENTcoiiiiiiieiice st e 2-1
T T LU T o] (oSSR 2-2
(@00 o [@] 1a] T 1Sl g (1 o[o S 2-3

Software Development and COFF CONCEPLS.....ccviviieieieieiesese e e sie et na e sae e sre s 2-3
L0000 I @a] 4o ToLT=T] (1o oSS 2-4
Edit and Debug Perspective (CCSVB).......ccvuviiirieieriiiiesiaeeeeie e sie e e seeeesee et snessasaeneesaeseesnenns 2-5
Target CONFIQUIALIONeiiiiiieeicee et bbbt b et b e bt e bt e et e st e seenbenbe b 2-6
OOV o (o =Tt RSOOSR PR 2-7
Creating 8 NEW CCSVE PrOJECLciiiieiiiiieiie sttt bbbt e e e 2-8
CCSv6 Build Options — COMPIIEr / LINKEEcooiiviiiiiciic e 2-9
CCSV6 DEDUY ENVIFONMENTceiiiiiiiiiiie ettt e bbbttt sae b e 2-10
Creating a Linker Command File ..ot 2-12
RS LCTo! 100 T OSSOSO PR TSRO 2-12
Linker Command Files (- CMA)ccooviieiiiiic et nre s 2-15
MEMOIY-MaP DESCIIPLION ...ttt ettt ettt b e bbb se s e e nbe b nae s 2-15
SECHION PIACEMENT.......eeieie et bbbt e e b e bt bt b e bt e s e e e et e e b e 2-16
Summary: Linker Command FilE ..ot e 2-17
Lah File DIreCLOrY SEIUCLUIE.......cuiitiiieiti ettt bttt e e bbbttt e e e b e e 2-18
Lab 2: Linker COMMANd Fil.........ccoiiiiiiieiee e e 2-19

C2000 Microcontroller Workshop - Programming Development Environment

Dell
Highlight

Dell
Highlight

Dell
Highlight

Code Composer Studio

Code Composer Studio

Software Development and COFF Concepts

In an effort to standardize the software development process, Tl uses the Common Object File
Format (COFF). COFF has several features which make it a powerful software development
system. It is most useful when the development task is split between several programmers.

Each file of code, called a module, may be written independently, including the specification of
all resources necessary for the proper operation of the module. Modules can be written using
Code Composer Studio (CCS) or any text editor capable of providing a simple ASCII file output.
The expected extension of a source file is . ASM for assembly and . C for C programs.

Code Composer Studio

Build | Code
Compile Ink.cmd Simulator
: || Development
Asm | Link Debug Tool
E
| l N External
Editor Libraries | | Graphs, Emulator
Profiling]
MCU
Board

¢ Code Composer Studio includes:
¢ Integrated Edit/Debug GUI
¢ Code Generation Tools
¢ TI-RTOS

Code Composer Studio includes a built-in editor, compiler, assembler, linker, and an automatic
build process. Additionally, tools to connect file input and output, as well as built-in graph
displays for output are available. Other features can be added using the plug-ins capability

Numerous modules are joined to form a complete program by using the linker. The linker
efficiently allocates the resources available on the device to each module in the system. The
linker uses a command (- CMD) file to identify the memory resources and placement of where the
various sections within each module are to go. Outputs of the linking process includes the linked
object file (- OUT), which runs on the device, and can include a - MAP file which identifies where
each linked section is located.

The high level of modularity and portability resulting from this system simplifies the processes of
verification, debug and maintenance. The process of COFF development is presented in greater
detail in the following paragraphs.

C2000 Microcontroller Workshop - Programming Development Environment 2-3

Dell
Highlight

Dell
Highlight

Dell
Highlight

Dell
Highlight

Dell
Highlight

Code Composer Studio

The concept of COFF tools is to allow modular development of software independent of
hardware concerns. An individual assembly language file is written to perform a single task and
may be linked with several other tasks to achieve a more complex total system.

Writing code in modular form permits code to be developed by several people working in parallel
so the development cycle is shortened. Debugging and upgrading code is faster, since
components of the system, rather than the entire system, is being operated upon. Also, new
systems may be developed more rapidly if previously developed modules can be used in them.

Code developed independently of hardware concerns increases the benefits of modularity by
allowing the programmer to focus on the code and not waste time managing memory and moving
code as other code components grow or shrink. A linker is invoked to allocate systems hardware
to the modules desired to build a system. Changes in any or all modules, when re-linked, create a
new hardware allocation, avoiding the possibility of memory resource conflicts.

Code Composer Studio

Code Composer Studio: IDE

ol x|
File Edit View MNavigate Project Scripts Run Window Help
il R it iEID G JQuick Access | 2 |[E cesEat % cosDebug
L7 Project Explorer 33 5% Y= 0
=S TR + Integrates: edit, code generation,

L s and debug

H-- €| Adc.c . . .

PR Codestrtrendm ¢ Single-click access using buttons

- [§] DEIayLIs.alsrn

P ¢ Powerful graphing/profiling tools

£

E

£

[

£

[

£

i

B[] F2806x_DefaultsR.h

[H-|.€] F2806x_GlobalVariableDefs.c i .

212 memoe et oneics e ¢ Automated tasks using Scripts
.C| Gpio.c

[2 Lab.cmd

- [H] Lab.h

E

£

E

£

[

5[0 Mon.c ¢ Built-in access to BIOS functions
B v .
o I oo ¢ Based on the Eclipse open source

software framework

Code Composer Studio™ (CCS) is an integrated development environment (IDE) for Texas
Instruments (T1) embedded processor families. CCS comprises a suite of tools used to develop
and debug embedded applications. It includes compilers for each of TI's device families, source
code editor, project build environment, debugger, profiler, simulators, real-time operating system
and many other features. The intuitive IDE provides a single user interface taking you through
each step of the application development flow. Familiar tools and interfaces allow users to get
started faster than ever before and add functionality to their application thanks to sophisticated
productivity tools.

CCS is based on the Eclipse open source software framework. The Eclipse software framework
was originally developed as an open framework for creating development tools. Eclipse offers an
excellent software framework for building software development environments and it is

C2000 Microcontroller Workshop - Programming Development Environment

Dell
Highlight

Dell
Highlight

Code Composer Studio

becoming a standard framework used by many embedded software vendors. CCS combines the
advantages of the Eclipse software framework with advanced embedded debug capabilities from

TI resulting in a compelling feature-rich development environment for embedded developers.

CCS supports running on both Windows and Linux PCs. Note that not all features or devices are
supported on Linux.

Edit and Debug Perspective (CCSv6)

A perspective defines the initial layout views of the workbench windows, toolbars, and menus
that are appropriate for a specific type of task, such as code development or debugging. This
minimizes clutter to the user interface.

Edit and Debug Perspective (CCSv6)

¢ Each perspective provides a set of functionality aimed
at accomplishing a specific task

ey N e Rt e by B e

¢ Edit Perspective ¢ Debug Perspective

alnisi ams

+ Displays views used » Displays views used for
during code development debugging
+ C/C++ project, editor, etc. + Menus and toolbars

associated with debugging,
watch and memory
windows, graphs, etc.

Code Composer Studio has “Edit” and “Debug” perspectives. Each perspective provides a set of
functionality aimed at accomplishing a specific task. In the edit perspective, views used during
code development are displayed. In the debug perspective, views used during debug are

displayed.

C2000 Microcontroller Workshop - Programming Development Environment

Code Composer Studio

Target Configuration

A Target Configuration tells CCS how to connect to the device. It describes the device using

GEL files and device configuration files. The configuration files are XML files and have a
*.ccxIm file extension.

Creating a Target Configuration

S=TE
Target Configuration

Create a new Target Configuration file.

File name: | F28069_Expiat.coml ’ FI |e 9 NeW 9 Target

¥ e shoredlocation Configuration File
Location: |C:,Users.’:Name={nlCCSTargeﬁ:unﬁguranuns File System,.. || Warkspace..,

@

2 *F28069_ExpKit.coml 2
Basic

General Setup

Advanced Setup
This section describes the general configuration about the target.

¢ Select connection type
Connection Texas Instruments XDS100v 1 USB Emulator E Target Configuration :

Board or Device [F2065

& secoimmen @ Select device

Experimenter's Kit - Piccolo F23069

DI e -peiorzs ¢ Save configuration

Test Connection

To test a connection, a
configuration file conta

Test Connection

C2000 Microcontroller Workshop - Programming Development Environment

Code Composer Studio

CCSv6 Project

Code Composer works with a project paradigm. Essentially, within CCS you create a project for
each executable program you wish to create. Projects store all the information required to build
the executable. For example, it lists things like: the source files, the header files, the target
system’s memory-map, and program build options.

CCSv6 Project

&) CCS Edit - Code Composer Studio

Fle Edit View MNavigate Project Scripts Run

.o &.-%.9. :« Projectfiles contain:

L

[P ProjectExplorer 32| = % T = O . .
= T ¢ List of files:

(-4, Binaries
-5 Indudes ¢ Source (C, assembly)
-2 Debug
i zgz:stariﬁranch.asm * lerarles

]@ Defaultlsr.c a . a
7 [S) DelayUs.asm ¢ DSP/BIOS configuration file
]@ ECap.c
0 [g] EPum.c ¢ Linker command files
- [h| F2808x_DefaultsR.h

- [€] F2806x_GlobalVariableDefs.c . . .
- g F2806%_Headers_nonBIOS.cmd ‘ PrOJ eCt S ettl n g S.
- [€ Gpio.c
;--La:-:nd ¢ Build options (compiler,
|| Lab.l .
i-Lg] main.c assembler, linker, and TI-RTOS)

H- [€] PieCtrl.c . . .
o [g] Pievect.c + Build configurations
]@ SysCtrl.c

- [€] Watchdog.c

[I P = R i B e W B W - R W = I W = I =

A project contains files, such as C and assembly source files, libraries, BIOS configuration files,
and linker command files. It also contains project settings, such as build options, which include
the compiler, assembler, linker, and BIOS, as well as build configurations.

To create a new project, you need to select the following menu items:
File > New -> CCS Project

Along with the main Project menu, you can also manage open projects using the right-click
popup menu. Either of these menus allows you to modify a project, such as add files to a project,
or open the properties of a project to set the build options.

C2000 Microcontroller Workshop - Programming Development Environment 2-7

Code Composer Studio

Creating a New CCSv6 Project

A graphical user interface (GUI) is used to assist in creating a new project. The GUI is shown in
the slide below.

Creating a New CCSv6 Project

1. Project Name, Location, and Device

CINEDT =gz) X
ces Preject —5 ¢ File 2 New =2 CCS Project
Create a new CC5 Project. : r
Twget: [06wrecs =] [omrmenter's kit - oo 28065 =]
2. Advanced Settings
L camen 20 | R R
name: [Cuamcie [
:Wn.:mm x:"ﬂ l[r'""‘** i
\neaton: [C:\-38u\ aba Funmcie Bromze... - ~
e - Devieendarrass: | E|
v =l Sy Uiy commared ;| IR =] o
L Runtme support lerary: | <autmas =] erowse...
¥ Project tempates and exayies '
3. Project Templates and Examples

\ Project templates and examples
[

@) - 3 (] e =[] Empty Prajects

&

& Empsy Projeet (with main.c)
& Empty Assembly-onfy Project
' Enphy RTSC Proect

Creates an engity grepect fuly mtisioed for the =]

After a project is created, the build options are configured.

C2000 Microcontroller Workshop - Programming Development Environment

Code Composer Studio

CCSv6 Build Options — Compiler / Linker

Project options direct the code generation tools (i.e. compiler, assembler, linker) to create code
according to your system’s needs. When you create a new project, CCS creates two sets of build
options — called Configurations: one called Debug, the other Release (you might think of as
Optimize).

To make it easier to choose build options, CCS provides a graphical user interface (GUI) for the
various compiler and linker options. Here’s a sample of the configuration options.

CCSv6 Build Options — Compiler / Linker

-1

-1

e o T PR

cordpme [on Tacrs =l v eromrs.|

?) smsesean i ?) smsesean i
¢ Compiler ¢ Linker
20 categories for code ¢ 11 categories for linking
generation tools # Specify various link
Controls many aspects of options
the builld. prgcess, such as: + ${PROJECT_ROOT}
¢ Optimization level specifies the current

¢ Target device

¢ Compiler / assembly / link
options

project directory

There is a one-to-one relationship between the items in the text box on the main page and the GUI
check and drop-down box selections. Once you have mastered the various options, you can
probably find yourself just typing in the options.

There are many linker options but these four handle all of the basic needs.

o -0 <Filename> specifies the output (executable) filename.

o -m <Filename> creates a map file. This file reports the linker’s results.

e —c tellsthe compiler to autoinitialize your global and static variables.

o —x tells the compiler to exhaustively read the libraries. Without this option libraries are
searched only once, and therefore backwards references may not be resolved.

To help make sense of the many compiler options, TI provides two default sets of options
(configurations) in each new project you create. The Release (optimized) configuration invokes
the optimizer with —03 and disables source-level, symbolic debugging by omitting —g (which
disables some optimizations to enable debug).

C2000 Microcontroller Workshop - Programming Development Environment 2-9

Code Composer Studio

CCSv6 Debug Environment
The basic buttons that control the debug environment are located in the top of CCS:
B @8- ®OE- giE-%-i 9
Db 2R @-g ¥ =0
The common debugging and program execution descriptions are shown below:

Start debugging

Image Name Description Availability
id] New Target Creates a new target configartion file. File New Menu

Configuration Target Menu
ﬁ‘g; Debug Opens a dialog to modify existing debug configura-

Debug Toolbar

tions. Its drop down can be used to access other
Target Menu

launching options.

51__ Connect Connect to hardware targets. T1 Debug Toolbar
Target Target Menu
Debug View Context Menu
Terminate All | Terminates all active debug sessions. Target Menu

Debug View Toolbar

2-10 C2000 Microcontroller Workshop - Programming Development Environment

Code Composer Studio

Program execution

Image Name Description Availability
oo Halt Halts the selected target. The rest of the debug
- - . . Target Menu
views will update automatically with most recent -
Debug View Toolbar
target data.
[Run Resumes the execution of the currently loaded
. . Target Menu
program from the current PC location. Execution -
. - R Debug View Toolbar
continues until a breakpoint is encountered.
={>I Run to Line Resumes the execution of the currently loaded
. - Target Menu
program from the current PC location. Execution Disassembly Context Menu
continues until the specific source/assembly line is e
Source Editor Context Menu
reached.
q. Go to Main Rups _the programs until the beginning of function Debug View Toolbar
main in reached.
i Step Into Steps into the highlighted statement. Target Menu
Debug View Toolbar
i Step Over Steps over the highlighted statement. Execution
will continue at the next line either in the same
method or (if you are at the end of a method) it Target Menu
will continue in the method from which the current Debug View Toolbar
method was called. The cursor jumps to the decla-
ration of the method and selects this line.
L Step Return | Steps out of the current method. Target Menu

Debug View Toolbar

q& Reset Resets the selected target. The drop-down menu
- . . Target Menu
has various advanced reset options, depending on -
. Debug View Toolbar
the selected device.
,;,1,}'3?4 Restart Restores the PC to the entry point for the currently
loaded program. If the debugger option "Run to
. o . Target Menu
main on target load or restart" is set the target will Debua View Toolbar
run to the specified symbol, otherwise the execu- 9
tion state of the target is not changed.
T Assembly The debugger executes the next assembly instruc- | Tl Explicit Stepping Toolbar
Step Into tion, whether source is available or not. Target Advanced Menu
L) Assembly The debugger steps over a single assembly instruc-
Step Over tion. If the instruction is an assembly subroutine, Tl Explicit Stepping Toolbar

the debugger executes the assembly subroutine
and then halts after the assembly function returns.

Target Advanced Menu

C2000 Microcontroller Workshop - Programming Development Environment

Creating a Linker Command File

Creating a Linker Command File

Sections

Looking at a C program, you'll notice it contains both code and different kinds of data (global,
local, etc.). All code consists of different parts called sections. All default section names begin
with a dot and are typically lower case. The compiler has default section names for initialized
and uninitialized sections. For example, x and y are global variables, and they are placed in the
section .ebss. Whereas 2 and 7 are initialized values, and they are placed in the section called
.cinit. The local variables are in a section .stack, and the code is placed in a section called .txt.

Sections

Global vars (.ebss) Init values (.cinit)

¢ All code consists of
different parts called
sections

¢ All default section

names begin with “.

¢ The compiler has

{ default section names
.long z; for_lr_wl_tla_llzed and_

uninitialized sections

void main(void)

zZ=X+Yy;.

Local vars (.stack) Code (.text)

In the T1 code-generation tools (as with any toolset based on the COFF — Common Object File
Format), these various parts of a program are called Sections. Breaking the program code and
data into various sections provides flexibility since it allows you to place code sections in ROM
and variables in RAM. The preceding diagram illustrated four sections:

e Global Variables

o Initial VValues for global variables
o Local Variables (i.e. the stack)

e Code (the actual instructions)

2-12 C2000 Microcontroller Workshop - Programming Development Environment

Creating a Linker Command File

Following is a list of the sections that are created by the compiler. Along with their description,
we provide the Section Name defined by the compiler. This is a small list of compiler default
section names. The top group is initialized sections, and they are linked to flash. In our previous
code example, we saw .txt was used for code, and .cinit for initialized values. The bottom group
is uninitialized sections, and they are linked to RAM. Once again, in our previous example, we
saw .ebss used for global variables and .stack for local variables.

Compiler Section Names

Initialized Sections

Name Description Link Location

.text code FLASH

.Ccinit initialization values for FLASH
global and static variables

.econst constants (e.g. const int k = 3;) FLASH

.switch tables for switch statements FLASH

pinit tables for global constructors (C++) | FLASH

Uninitialized Sections

Name Description Link Location

.ebss global and static variables RAM

.stack stack space low 64Kw RAM

.esysmem | memory for far malloc functions RAM

Note: During development initialized sections could be linked to RAM since
the emulator can be used to load the RAM

Sections of a C program must be located in different memories in your target system. This is the
big advantage of creating the separate sections for code, constants, and variables. In this way,
they can all be linked (located) into their proper memory locations in your target embedded
system. Generally, they’re located as follows:

Program Code (.text)

Program code consists of the sequence of instructions used to manipulate data, initialize system
settings, etc. Program code must be defined upon system reset (power turn-on). Due to this basic
system constraint it is usually necessary to place program code into non-volatile memory, such as
FLASH or EPROM.

Constants (.cinit —initialized data)

Initialized data are those data memory locations defined at reset.It contains constants or initial
values for variables. Similar to program code, constant data is expected to be valid upon reset of
the system. It is often found in FLASH or EPROM (non-volatile memory).

Variables (.ebss — uninitialized data)

Uninitialized data memory locations can be changed and manipulated by the program code during
runtime execution. Unlike program code or constants, uninitialized data or variables must reside

C2000 Microcontroller Workshop - Programming Development Environment 2-13

Creating a Linker Command File

in volatile memory, such as RAM. These memories can be modified and updated, supporting the
way variables are used in math formulas, high-level languages, etc. Each variable must be
declared with a directive to reserve memory to contain its value. By their nature, no value is
assigned, instead they are loaded at runtime by the program.

Next, we need to place the sections that were created by the compiler into the appropriate
memory spaces. The uninitialized sections, .ebss and .stack, need to be placed into RAM; while
the initialized sections, .cinit, and .txt, need to be placed into flash.

Placing Sections in Memory

Memory Secti
ections
0x00 0000 MOSARAM
(0x400) | TT ===l e
(0x400) | TTe=~l__
" .stack
OX3E 8000 FLASH PR .cinit
(0x10000) -
- text

Linking code is a three step process:
1. Defining the various regions of memory (on-chip SARAM vs. FLASH vs. External Memory).
2. Describing what sections go into which memory regions

3. Running the linker with “build” or “rebuild”

C2000 Microcontroller Workshop - Programming Development Environment

Creating a Linker Command File

Linker Command Files (.cmd)

The linker concatenates each section from all input files, allocating memory to each section based
on its length and location as specified by the MEMORY and SECTIONS commands in the linker
command file. The linker command file describes the physical hardware memory and specifies
where the sections are placed in the memory. The file created during the link process is a .out
file. This is the file that will be loaded into the microcontroller. As an option, we can generate a
map file. This map file will provide a summary of the link process, such as the absolute address
and size of each section.

Linking

e Memory description
e How to place s/w into h/w

Link.cmd

.0bj ——| Linker —— .out

.map

Memory-Map Description

The MEMORY section describes the memory configuration of the target system to the linker.
The format is: Name: origin = 0x????, length = 0x????

For example, if you placed a 64Kw FLASH starting at memory location 0x3E8000, it would read:

MEMORY

FLASH: origin = Ox3E8000 , length = 0x010000
}

Each memory segment is defined using the above format. If you added MOSARAM and
M1SARAM, it would look like:

C2000 Microcontroller Workshop - Programming Development Environment 2-15

Creating a Linker Command File

MEMORY
MOSARAM: origin = 0x000000 , length = 0x0400
M1SARAM: origin = 0x000400 , length = 0x0400
}

Remember that the MCU has two memory maps: Program, and Data. Therefore, the MEMORY
description must describe each of these separately. The loader uses the following syntax to
delineate each of these:

Linker Page TI Definition

Page 0 Program

Page 1 Data

Linker Command File

MEMORY
PAGE O: /* Program Memory */
FLASH: origin = Ox3E8000, length = 0x10000
PAGE 1: /* Data Memory */
MOSARAM: origin = 0x000000, length = 0x400
M1SARAM: origin = 0x000400, length = 0x400
by
SECTIONS
{
-text:> FLASH PAGE = O
.ebss:> MOSARAM PAGE = 1
.cinit:> FLASH PAGE = O
.stack:> M1SARAM PAGE = 1
by

A linker command file consists of two sections, a memory section and a sections section. In the
memory section, page 0 defines the program memory space, and page 1 defines the data memory
space. Each memory block is given a unique name, along with its origin and length. In the
sections section, the section is directed to the appropriate memory block.

Section Placement

The SECTIONS section will specify how you want the sections to be distributed through
memory. The following code is used to link the sections into the memory specified in the
previous example:

C2000 Microcontroller Workshop - Programming Development Environment

Creating a Linker Command File

SECTIONS

{
.text:> FLASH PAGE O
.ebss:> MOSARAM PAGE 1
.cinit:> FLASH PAGE O
.stack:> M1SARAM PAGE 1

}

The linker will gather all the code sections from all the files being linked together. Similarly, it
will combine all “like” sections.

Beginning with the first section listed, the linker will place it into the specified memory segment.

Summary: Linker Command File

The linker command file (.cmd) contains the inputs — commands — for the linker. This
information is summarized below:

Linker Command File Summary

¢ Memory Map Description
¢ Name
¢Location
¢ Size

¢ Sections Description

¢ Directs software sections into named
memory regions

¢ Allows per-file discrimination
¢ Allows separate load/run locations

C2000 Microcontroller Workshop - Programming Development Environment 2-17

Lab File Directory Structure

Lab File Directory Structure

Lab File Directory Structure

= I c28x
B 2 Labs Supporting Files and Libraries

=) F2306x_headers ¢ Easier to make projects portable
I emd ¢ ${PROJECT_ROOT} provides
I3 indude an anchor point for paths to files
) source that travel with the project

=) IQmath ¢ Easier tp mgintain an_d up_date
B3 induds supporting files and libraries

B b Original Source Files
= (3 Labx / Source Files are “Added” to
£ Files the Project Folder
) Project ¢ All modified files are in the
oL Project Folder
¢ Original source files are

always available for reuse, if
a file becomes corrupted

Note: CCSv6 will automatically add ALL files contained in the folder where the project is created

C2000 Microcontroller Workshop - Programming Development Environment

Lab 2: Linker Command File

Lab 2: Linker Command File

» Objective

Use a linker command file to link the C program file (Lab2.c) into the system described below.

Lab 2: Linker Command File

0x00 0000 MOSARAM 0x00 AOOO[L4SARAM
Memory (0x400) (0x2000)

: 0x00 0400[M1SARAM | 0x00 CO00[L5DPSARAM
on-chip (0x400) (0x2000)
memory 0x00 8000[LODPSARAM]| 0x00 EO00[L6DPSARAM

(0x800) (0x2000)
0x00 8800[L1DPSARAM]| 0x01 0000 [L7DPSARAM
F28069 (0x400) (0x2000)
0x00 8CO0[L2DPSARAM]| 0x01 2000 [L8DPSARAM
Svst D intion: (0x400) (0x2000)
ystem Description: 0x00 9000 [[3DPSARAM
* TMS320F28069 (0x1000)

« All internal RAM
blocks allocated
Placement of Sections:
« text into RAM Block LASARAM on PAGE 0 (program memory)
e .cinit into RAM Block LASARAM on PAGE 0 (program memory)
 .ebss into RAM Block MOSARAM on PAGE 1 (data memory)
« .stack into RAM Block M1SARAM on PAGE 1 (data memory)

» Initial Hardware Set Up

Insert the F28069 control CARD into the Docking Station connector slot. Using the supplied
USB cable - plug the USB Standard Type A connector into the computer USB port and the USB
Standard Type B connector into the Docking Station. On the Docking Station move switch SW1
to the “USB” position. This will power the Docking Station and control CARD using the power
supplied by the computer USB port. Additionally, this USB port will provide the JTAG
communication link between the device and Code Composer Studio.

Initial Software Set Up

Code Composer Studio must be installed in addition to the workshop files. A local copy of the
required controlSUITE files is included with the lab files. This provides portability, making the
workshop files self-contained and independent of other support files or resources. The lab
directions for this workshop are based on all software installed in their default locations.

Procedure

Start Code Composer Studio and Open a Workspace

1. Start Code Composer Studio (CCS) by double clicking the icon on the desktop or
selecting it from the Windows Start menu. When CCS loads, a dialog box will prompt
you for the location of a workspace folder. Use the default location for the workspace
and click OK.

C2000 Microcontroller Workshop - Programming Development Environment

Lab 2: Linker Command File

This folder contains all CCS custom settings, which includes project settings and views
when CCS is closed so that the same projects and settings will be available when CCS is
opened again. The workspace is saved automatically when CCS is closed.

The first time CCS opens an introduction page appears. Close the page by clicking the X
on the “Getting Started” tab. You should now have an empty workbench. The term
workbench refers to the desktop development environment. Maximize CCS to fill your
screen.

The workbench will open in the “CCS Edit Perspective” view. Notice the CCS Edit
icon in the upper right-hand corner. A perspective defines the initial layout views of the
workbench windows, toolbars, and menus which are appropriate for a specific type of
task (i.e. code development or debugging). This minimizes clutter to the user interface.
The “CCS Edit Perspective” is used to create or build projects. A “CCS Debug
Perspective” view will automatically be enabled when the debug session is started. This
perspective is used for debugging projects.

Setup Target Configuration

3. Open the emulator target configuration dialog box. On the menu bar click:

File > New - Target Configuration File

In the file name field type F28069_ExpKit.ccxml. This is just a descriptive name
since multiple target configuration files can be created. Leave the “Use shared location”
box checked and select Finish.

In the next window that appears, select the emulator using the “Connection” pull-down
list and choose “Texas Instruments XDS100vl USB Emulator”. Inthe
“Board or Device” box type F28069 to filter the options. In the box below, check the
box to select “Experimenter’s Kit — Piccolo F28069”. Click Save to save
the configuration, then close the “F28069 ExpKit.ccxml™ setup window by clicking the
X on the tabs.

To view the target configurations, click:
View > Target Configurations

and click the plus sign (+) to the left of User Defined. Notice that the
F28069_ExpKiut.ccxml file is listed and set as the default. If it is not set as the
default, right-click on the .ccxml file and select “Set as Default”. Close the Target
Configurations window by clicking the X on the tab.

Create a New Project

6. A project contains all the files you will need to develop an executable output file (.out)

which can be run on the MCU hardware. To create a new project click:
File > New »> CCS Project

A CCS Project window will open. At the top of this window, filter the “Target” options
by using the pull-down list on the left and choose “2806x Piccolo”. Inthe pull-

C2000 Microcontroller Workshop - Programming Development Environment

Lab 2: Linker Command File

down list immediately to the right, choose the “Experimenter’s Kit — F28069
Piccolo”.

Leave the “Connection” box blank. We have already set up the target configuration.

7. The next section section selects the project settings. In the Project name field type Lab2.
Uncheck the “Use default location” box. Click the Browse... button and navigate to:

C:\C28x\Labs\Lab2\Project
Click OK.

8. Next, open the “Advanced setting” section and set the “Linker command file” to
“<none>". We will be using our own linker command file rather than the one supplied
by CCS. Leave the “Runtime Support Library” set to “<automatic>". This will
automatically select the “rts2800_fpu32.lib” runtime support library for floating-point
devices.

9. Then, open the “Project templates and examples” section and select the “Empty
Project” template. Click Finish.

10. A new project has now been created. Notice the Project Explorer window
contains Lab2. The project is set Active and the output files will be located in the
Debug folder. At this point, the project does not include any source files. The next step
is to add the source files to the project.

11. To add the source files to the project, right-click on Lab2 in the Project Explorer
window and select:

Add Files..
orclick: Project > Add Files..

and make sure you’re looking in C:\C28x\Labs\Lab2\Files. With the “files of
type” set to view all files (*.*) select Lab2.c and Lab2 . cmd then click OPEN. A “File
Operation” window will open, choose “Copy Files” and click OK. This will add the
files to the project.

12. Inthe Project Explorer window, click the plus sign (+) to the left of Lab2 and
notice that the files are listed.

Project Build Options

13. There are numerous build options in the project. Most default option settings are
sufficient for getting started. We will inspect a couple of the default options at this time.
Right-click on Lab2 in the Project Explorer window and select Properties or
click:

Project - Properties

14. A “Properties” window will open and in the section on the left under “Build” be sure that
the “C2000 Compiler” and “C2000 Linker” options are visible. Next, under “C2000
Linker” select the “Basic Options”. Notice that .out and .map files are being
specified. The .out file is the executable code that will be loaded into the MCU. The
.map file will contain a linker report showing memory usage and section addresses in
memory. Also notice the stack size is set to 0x300.

C2000 Microcontroller Workshop - Programming Development Environment 2-21

Lab 2: Linker Command File

15.

Under “C2000 Compiler” select the “Processor Options”. Notice the “Use large
memory model” and “Unified memory” boxes are checked. Next, notice the “Specify
CLA support” is set to cla0, the “Specify floating point support” is set to fpu32, and
the “Specify VCU support” is set to vcuO. Select OK to close the Properties window.

Linker Command File — Lab2.cmd

16.

17.

Open and inspect Lab2 . cmd by double clicking on the filename in the Project
Explorer window. Notice that the Memory{} declaration describes the system
memory shown on the “Lab2: Linker Command File” slide in the objective section of
this lab exercise. Memory blocks L3DPSARAM and L4SARAM have been placed in
program memory on page 0, and the other memory blocks have been placed in data
memory on page 1.

In the Sections{} area notice that the sections defined on the slide have been “linked”
into the appropriate memories. Also, notice that a section called .reset has been allocated.
The .reset section is part of the rts2800_fpu32.lib and is not needed. By putting the
TYPE = DSECT modifier after its allocation the linker will ignore this section and not
allocate it. Close the inspected file.

Build and Load the Project

18.

19.

20.

21.
22.

Two buttons on the horizontal toolbar control code generation. Hover your mouse over
each button as you read the following descriptions:

R B
Button Name Description
1 Build Full build and link of all source files
2 Debug Automatically build, link, load and launch debug-session

Click the “Bui 1d” button and watch the tools run in the Console window. Check for
errors in the Prob lems window (we have deliberately put an error in Lab2.c). When
you get an error, you will see the error message in the Problems window. Expand the
error by clicking on the plus sign (+) to the left of the “Errors”. Then simply double-click
the error message. The editor will automatically open to the source file containing the
error, with the code line highlighted with a question mark (?).

Fix the error by adding a semicolon at the end of the “z = x + y” statement. For
future knowledge, realize that a single code error can sometimes generate multiple error
messages at build time. This was not the case here.

Build the project again. There should be no errors this time.

CCS can automatically save modified source files, build the program, open the debug
perspective view, connect and download it to the target, and then run the program to the
beginning of the main function.

Click on the “Debug” button (green bug) or click RUN - Debug
Notice the CCS Debug icon in the upper right-hand corner indicating that we are now in

the “CCS Debug Perspective” view. The program ran through the C-environment
initialization routine in the rts2800_fpu32.lib and stopped at main() in Lab2.c.

C2000 Microcontroller Workshop - Programming Development Environment

Lab 2: Linker Command File

Debug Environment Windows

It is standard debug practice to watch local and global variables while debugging code. There
are various methods for doing this in Code Composer Studio. We will examine two of them
here: memory browser, and expressions.

23. Open a “Memory Browser” to view the global variable “z”.
Click: View > Memory Browser on the menu bar.

Type &z into the address field, select “Data” memory page, and then select Go. Note
that you must use the ampersand (meaning “address of””) when using a symbol in a
memory browser address box. Also note that CCS is case sensitive.

Set the properties format to “Hex 16 Bit — T Style Hex” in the browser. This will give
you more viewable data in the browser. You can change the contents of any address in
the memory browser by double-clicking on its value. This is useful during debug.

24. Notice the “Variables” window automatically opened and the local variables x and y are
present. The variables window will always contain the local variables for the code
function currently being executed.

(Note that local variables actually live on the stack. You can also view local variables in
a memory browser by setting the address to “SP” after the code function has been
entered).

25. We can also add global variables to the “Expressions” window if desired. Let's add the
global variable “z”.

Click the “Expressions” tab at the top of the window. In the empty box in the
“Expression” column (Add new expression), type z and then enter. An ampersand is not
used here. The expressions window knows you are specifying a symbol. (Note that the
expressions window can be manually opened by clicking: View - Expressions on
the menu bar).

Check that the expressions window and memory browser both report the same value for
“z”. Try changing the value in one window, and notice that the value also changes in the
other window.

Single-stepping the Code

26. Click the “Variables” tab at the top of the window to watch the local variables. Single-
step through main() by using the <F5> key (or you can use the Step Into button on
the horizontal toolbar). Check to see if the program is working as expected. What is the
value for “z” when you get to the end of the program?

Terminate Debug Session and Close Project

27. The Terminate button will terminate the active debug session, close the debugger and
return CCS to the “CCS Edit Perspective” view.

Click: Run > Terminate or use the Terminate icon: L

C2000 Microcontroller Workshop - Programming Development Environment 2-23

Lab 2: Linker Command File

28. Next, close the project by right-clicking on Lab2 in the Project Explorer window
and select Close Project.

End of Exercise

2-24 C2000 Microcontroller Workshop - Programming Development Environment

Peripherial Registers Header Files

Introduction

The purpose of the F2806x C-code header files is to simplify the programming of the many
peripherals on the F28x device. Typically, to program a peripheral the programmer needs to
write the appropriate values to the different fields within a control register. In its simplest form,
the process consists of writing a hex value (or masking a bit field) to the correct address in
memory. But, since this can be a burdensome and repetitive task, the C-code header files were
created to make this a less complicated task.

The F2806x C-code header files are part of a library consisting of C functions, macros, peripheral
structures, and variable definitions. Together, this set of files is known as the ‘header files.’

Registers and the bit-fields are represented by structures. C functions and macros are used to
initialize or modify the structures (registers).

In this module, you will learn how to use the header files and C programs to facilitate
programming the peripherals.

Module Objectives

Module Objectives

¢ Understand the usage of the F2806x
C-Code Header Files

¢ Be able to program peripheral
registers

¢ Understand how the structures are
mapped with the linker command file

C2000 Microcontroller Workshop - Peripheral Registers Header Files 3-1

Module Topics

Module Topics

Peripherial Registers HEAder FilESc.cvcieiiiiii it e 3-1
T T LU T o] (oSSR 3-2
Traditional and Structure Approach to C COdiNGcccvvviveieriere s 3-3
NAMING CONVENTIONS ... ettt e e te et te e es e e et e aesresbesseeseeseenseseesseseesaeereaneenseeesenennnens 3-7
F2806X C-C0Ue HEAUET FIlESo eiviieiieiiiieieeieite ettt et sb e et sre e 3-9

Peripheral StruCtUre .n FilEvoece et 3-9
Global Variable Definitions Fil ..o e 3-11
MappPing STrUCLUIES T0 IMEBMOIYcuiiuiiieiieieie ettt ettt sttt be b e e sbe st e 3-12
Linker CoOmMMANG FilB.. ...t bbb e 3-12
Peripheral SPeCific ROULINES. ..ot bbb 3-13
SUMMMAITY ettt ettt ettt a ek e et e ekt e ke e ke ekt 4H et e R e e £he e b e £ b £ 2mb £ ea b e eE b e eE £ e ek e e ke e ebe e e e emneeheesbeeabeenbeanns 3-14

C2000 Microcontroller Workshop - Peripheral Registers Header Files

Traditional and Structure Approach to C Coding

Traditional and Structure Approach to C Coding

Traditional Approach to C Coding

#define ADCCTL1 (volatile unsigned iInt *)0x00007100

void main(void)

{
*ADCCTL1 = 0x1234; //write entire register
*ADCCTL1 |= 0x4000; //enable ADC module
}
Advantages - Simple, fast and easy to type

- Variable names exactly match register names (easy
to remember)

Disadvantages - Requires individual masks to be generated to
manipulate individual bits

- Cannot easily display bit fields in debugger window
- Will generate less efficient code in many cases

In the traditional approach to C coding, we used a #define to assign the address of the register and
referenced it with a pointer. The first line of code on this slide we are writing to the entire
register with a 16-bit value. The second line, we are ORing a bit field.

Advantages? Simple, fast, and easy to type. The variable names can exactly match the register
names, so it's easy to remember. Disadvantages? Requires individual masks to be generated to
manipulate individual bits, it cannot easily display bit fields in the debugger window, and it will
generate less efficient code in many cases.

C2000 Microcontroller Workshop - Peripheral Registers Header Files 3-3

Traditional and Structure Approach to C Coding

Structure Approach to C Coding

void main(void)

{
AdcRegs.ADCCTL1.all = 0x1234; //write entire register
AdcRegs.ADCCTL1.bit.ADCENABLE = 1; //enable ADC module

}

Advantages - Easy to manipulate individual bits

- Watch window is amazing! (next slide)
- Generates most efficient code (on C28x)
Disadvantages - Can be difficult to remember the structure names
(Editor Auto Complete feature to the rescue!)

- More to type (again, Editor Auto Complete feature
to the rescue)

The structure approach to C coding uses the peripheral register header files. First, a peripheral is
specified, followed by a control register. Then you can modify the complete register or selected
bits. This is almost self-commented code.

The first line of code on this slide we are writing to the entire register. The second line of code
we are modifying a bit field. Advantages? Easy to manipulate individual bits, it works great with
our tools, and will generate the most efficient code. Disadvantages? Can be difficult to
remember the structure names and more to type; however, the edit auto complete feature of Code
Composer Studio will eliminate these disadvantages.

3-4 C2000 Microcontroller Workshop - Peripheral Registers Header Files

Traditional and Structure Approach to C Coding

i Registers 1 “hE B Cit 6T el L e
Mame Value ~ Mame Value A
2% Core Registers % Core Registers

& aDc = &% anc
&3 ApcresuLT ot} ADCCTLL Ox40E4
Maa it ADCCTL2 0x0001
i covp1 i AapcivTFLG 0x0001
i covp2 414 ADCINTFLGCLR 0x0000
o covp3 it aDCINTOVE 0x0001
&8 cPUTIMER i ADCINTOVFCLR 0x0000
dhosm o} INTSEL 12 0x0060
&% pEvEMU 08 meTsEL3Ng. 0x0000
it DMA 88 mTsELSNG 0x0000
& ecana oli} INTSEL7MG 0x0000
8 cCANA_LAM 980 INTSELSM10 %0000 4
3 ecana_morts 8 socPRICTL 0%0000
&4 ecana_moTo 4% ADCSAMPLEMODE 0x0000
&3 eCANA_MBX_CONTENT 8 ADCINTSOCSELL 0x0000
i ecart oh} ADCINTSOCSEL2 0x0000
& ecar2 i ADCSOCFLG1 0x0000
it ecar3 i apcsocFRCL 0x0000
8% apcsocovFL 0x0000
ol ADCSOCOVFCLRL %0000
aii} ADCSOCOCTL 0x3306
5 8 apcsocicTL 0x0000
8% apcsocacTL 0x0000
it apcsocacTL 0x0000
i ADCSOCACTL 0x0000
W epvma i ADCSOCSCTL 0x0000
i eQEPL 8% apcsocscTL 0x0000
it eqEP2 8% apcsoczcTL 0x0000
o aih} ADCSOCACTL 0x0000
S FLasH i} ADCSOCECTL 0x0000
W Feu 111 apcsococTL 0x0000
i GPI0 8% apcsoc1icTL 0x0000
o HrcapL w 18 aDcsocicTL 0x0000 e
< 3 < | 2

With the traditional approach to coding using #define, we can only view the complete register
values. As an example, notice the control register ADCCTLL1 has a value of 0x40E4. We would
need to refer to the reference guide to know the settings of the individual bit fields.

& Expressions % HE |k RFH T T
Expression Type Value Address A
= (= AdcRegs struct ADC_REGS X 0x00007100@Data

= (= ApcCTLl union ADCCTL1_REG £} 0x00007100@Data
&= all unsigned int 0x40E4 (Hex) 0x00007100 @Data
= (@@ bit struct ADCCTL1_BITS T 0x00007100@Dats
(9= TEMPCONY {unsigned int: 15:1) o 0x00007100@Data
(d= YREFLOCONV {unsigned int: 14: 1) a 0x00007100 &Data
(9= INTPULSEPOS {unsigned int: ¥ 1 0x00007100 €Data
(9= ADCREFSEL (unsigned int: L] 0x00007100&Data
9= rsyd1 {unsigned int: o 0x00007100 EData
(9= ADCREFPWD {unsigned int: 1 0x00007 100 @Data
(9= ADCEGPWD {unsigned i 1 0x00007100EData
(9= ADCPWDN {unsigned int: 1 0x00007100 @Data
(9= ADCESYCHN {unsigned i] 0x00007100EData
(9= ADCBSY {unsigned i] 0x00007100 @Data
(9= ADCENABLE {unsigned int: 1:1) 1 0x00007100 EData U
)= RESET {unsigned int:0:1) a 0x00007100@Data
(= ApccTL2 union ADCCTL2_REG Loy 0x00007101@Dats
- rsvd1 unsigned int 0 0x00007102€Data
09= rsvd2 unsigned int L] 0x00007103&Data
(= ADCINTFLG union ADCINT_REG £} 0x00007104@0ata
bﬂ ADCINTFLGCLR unior ADCINT_REG . 0x00007105@Data
(2 ADCINTOVF union ADCINT_REG £.3 0x00007 106 @Data
bﬁ ADCINTOVFCLR unior ADCINT_REG {.} 0x00007107@Data
@ INTSEL IN2 union INTSELIN2_REG {.} 0x00007108 @Data
bﬂ INTSEL3N4 unior INTSEL3N4_REG O § 0x00007109@Data
bﬁ INTSELSNS union INTSELSN6_REG £} 0x0000710A@Data
bﬁ INTSEL7NG union INTSEL7NS_REG {.} 0x0000710B@Data
bﬁ INTSEL9N10 union INTSELSN10_REG o} 0x0000710C@Data
- rsvd3 unsigned int 0 0x0000710D@Data
09= rsvd4 unsigned int 0 0x0000710EE&Data
- rsuds unsigned int o 0x0000710F @Data
(= SOCPRICTL union SOCPRICTL_REG [} 0x00007110@Data
(9= revde unsigned int 0 0x00007111€Data b

With the structure approach, we can add the peripheral to an expressions window, allowing us to

C2000 Microcontroller Workshop - Peripheral Registers Header Files

Traditional and Structure Approach to C Coding

view, as well as modify individual bit fields in a register. No need for a reference guide to
identify the bit fields.

Is the Structure Approach Efficient?

The structure approach enables efficient compiler use of
DP addressing mode and C28x atomic operations

C Source Code Generated Assembly Code*
// Stop CPU TimerO MOVW DP, #0030
CpuTimerORegs.TCR.bit.TSS = 1; OR @4, #0x0010
// Load new 32-bit period value MOVL XAR4 , #0x010000
CpuTimerORegs.PRD.all = 0x00010000; MOVL @2, XAR4
// Start CPU TimerO AND @4, #OXFFEF
CpuTimerORegs.TCR.bit.TSS = 0;

- Easy to read the code w/o comments
- Bit mask built-in to structure

5 words, 5 cycles

You could not have coded this example any more efficiently with hand assembly!

* C28x Compiler v5.0.1 with -g and either -01, -02, or -03 optimization level

Compare with the #define Approach

The #define approach relies heavily on less-efficient pointers for
random memory access, and often does not take advantage of
C28x atomic operations

C Source Code Generated Assembly Code*
// Stop CPU Timer0 gg\é /@\ﬁL,;SOigxocm)
*TIMEROTCR |= 10; ., #OX
UIER [J= GLLHes MoV *(0:0x0C04), @AL
// Load new 32-bit period value MOVL XAR5, #0x010000
*TIMEROTPRD32 = 0x00010000; MOVL XAR4, #0x000COA
MOVL *+XAR4[0], XAR5
// Start CPU TimerO
e - ; MOV @AL, *(0:0x0C04
TIMEROTCR &= OXFFEF; el AL’ #OXEFEF)
MOV *(0:0x0C04), @AL
- Hard to read the code w/o comments 9 words, 9 cycles

- User had to determine the bit mask

* C28x Compiler v5.0.1 with -g and either -01, -02, or -03 optimization level

3-6 C2000 Microcontroller Workshop - Peripheral Registers Header Files

Naming Conventions

Naming Conventions

The header files use a familiar set of naming conventions. They are consistent with the Code
Composer Studio configuration tool, and generated file naming conventions.

Structure Naming Conventions

¢ The F2806x header files define:
¢ All of the peripheral structures
All of the register names
+ All of the bit field names
All of the register addresses

PeripheralName.RegisterName.all

/I Access full 16 or 32-bit register

PeripheralName.RegisterName.half.LSW /I Access low 16-bits of 32-bit register

PeripheralName.RegisterName.half. MSW /I Access high 16-bits of 32-bit register

PeripheralName.RegisterName.bit.FieldName // Access specified bit fields of register

Notes:

[1] “PeripheralName” are assigned by Tl and found in the F2806x header files.
They are a combination of capital and small letters (i.e. CpuTimerORegs).

[2] “RegisterName” are the same names as used in the data sheet.
They are always in capital letters (i.e. TCR, TIM, TPR,..).

[3] “FieldName” are the same names as used in the data sheet.
They are always in capital letters (i.e. POL, TOG, TSS,..).

The header files define all of the peripheral structures, all of the register names, all of the bit field

names, and all of the register addresses. The most common naming conventions used are

PeripheralName.RegisterName.all, which will access the full 16 or 32-bit register; and

PeripheralName.RegisterName.bit.FieldName, which will access the specified bit fields of a

register.

C2000 Microcontroller Workshop - Peripheral Registers Header Files

Naming Conventions

& CCS Edit - Example/Ade. - Code Compaser Studio
e Lot wew Newgete Project Hun Sopots Window e

Editor Auto Complete to the Rescue!

B- it -l e T % 005 Debug |) cosedt

The editor auto complete feature works as follows. First, you type AdcRegs. Then, when you

type a “.

a window opens up, allowing you to select a control register. In this example

ADCCTLL1 is selected. Then, when you type the *“.” a window opens up, allowing you to select

“all” or “bit”. In this example “bit” is selected. Then, when you type the

a window opens up,

allowing you to select a bit field. In this example RESET is selected. And now, the structure is

completed.

C2000 Microcontroller Workshop - Peripheral Registers Header Files

F2806x C-Code Header Files

F2806x C-Code Header Files

The F2806x header file package contains everything needed to use the structure approach. It
defines all the peripheral register bits and register addresses. The header file package includes the
header files, linker command files, code examples, and documentation. The header file package
is available from controlSUITE.

F2806x Header File Package

(http://www.ti.com, controlSUITE)

¢ Contains everything needed to use the
structure approach

¢ Defines all peripheral register bits and
register addresses

¢ Header file package includes:

¢\F2806x_headers\include -2 .h files

¢\F2806x_headers\cmd - linker .cmd files
¢\F2806x_examples - CCS examples
¢\doc - documentation

controlSUITE Header File Package located at C:\TI\controlSUITE\device_support\

A peripheral is programmed by writing values to a set of registers. Sometimes, individual fields
are written to as bits, or as bytes, or as entire words. Unions are used to overlap memory
(register) so the contents can be accessed in different ways. The header files group all the
registers belonging to a specific peripheral.

Peripheral data structures can be added to the watch window by right-clicking on the structure
and selecting the option to add to watch window. This will allow viewing of the individual
register fields.

Peripheral Structure .h File

The F2806x_Device.h header file is the main include file. By including this file in the .c source
code, all of the peripheral specific .h header files are automatically included. Of course, each
specific .h header file can be included individually in an application that does not use all the
header files, or you can comment out the ones you do not need. (Also includes typedef
statements).

C2000 Microcontroller Workshop - Peripheral Registers Header Files 3-9

F2806x C-Code Header Files

Peripheral Structure .h files @or2

¢ Contain bits field structure definitions for each peripheral register

F2806x_Adc.h

/I ADC Individual Register Bit Definitions:

struct ADCCTL1_BITS{ /I bits description
Uintl6 TEMPCONV:1; /I 0 Temperature sensor connection
Uintl6 VREFLOCONV:1; // 1 VSSA connection

Your C-source file (e.g” AdC.C) Uintl6 INTPULSEPOS:1; // 2 INT pulse generation control
- - Uintl6 ADCREFSEL:1; // 3 Internal/external reference select
#include “F2806x_Device.h")
- Uintl6 rsvdil:1; 1l 4 reserved

Uintl6 ADCREFPWD:1; //5 Reference buffers powerdown
Uintl6 ADCBGPWD:1; /1 6 ADC bandgap powerdown

{ Uintl6 ADCPWDN:1; /I'7 ADC powerdown
/* Reset the ADC module */)
. Uintl6 ADCBSYCHN:5; //12:8 ADC busy on a channel
AdcRegs.ADCCTL1.bit.RESET = 1;

Void InitAdc(void)

Uintl6 ADCBSY:1; 113 ADC busy signal
)) Uint16 ADCENABLE:1; /1 14 ADC enable
I* configure the ADC register */ .
Uintl6 RESET:1; /1 15 ADC master reset

AdcRegs.ADCCTL1.all = 0x00E4;

} it

/I Allow access to the bit fields or entire register:
union ADCCTL1_REG {

uUint16 all;

struct ADCCTL1_BITS bit;
I8
/I ADC External References & Function Declarations:
extern volatile struct ADC_REGS AdcRegs;

Next, we will discuss the steps needed to use the header files with your project. The .h files
contain the bit field structure definitions for each peripheral register.

Peripheral Structure .h files @or2

¢ The header file package contains a .h file for
each peripheral in the device

F2806x_Adc.h F2806x_BootVars.h F2806x_Cla.h
F2806x_Comp.h F2806x_CpuTimers.h F2806x_DevEmu.h
F2806x_Device.h F2806x_Dma.h F2806x_ECan.h
F2806x_ECap.h F2806x_EPwm.h F2806x_EQep.h
F2806x_Gpio.h F2806x_12c.h F2806x_Mcbsp.h
F2806x_Nmilntrupt.h F2806x_PieCtrl.h F2806x_PieVect.h
F2806x_Sci.h F2806x_Spi.h F2806x_SysCtrl.h
F2806x_Usb.h F2806x_XIntrupt.h

¢ F2806x_Device.h
¢ Main include file
¢ Will include all other .h files

& Include this file (directly or indirectly)
in each source file:

#include “F2806x_Device.h”

The header file package contains a .h file for each peripheral in the device. The
F2806x_Device.h file is the main include file. It will include all of the other .h files. There are

3-10 C2000 Microcontroller Workshop - Peripheral Registers Header Files

F2806x C-Code Header Files

three steps needed to use the header files. The first step is to include this file directly or indirectly
in each source files.

Global Variable Definitions File

With F2806x_GlobalVariableDefs.c included in the project all the needed variable definitions are
globally defined.

Global Variable Definitions File
F2806x_GlobalVariableDefs.c

¢ Declares a global instantiation of the structure
for each peripheral

¢ Each structure is placed in its own section using
a DATA_SECTION pragmato allow linking to the
correct memory (see next slide)

F2806x_GlobalVariableDefs.c
#include "F2806x_Device.h"

#pragma DATA_SECTION(AdcRegs,"AdcRegsFile");
volatile struct ADC_REGS AdcRegs;

¢ Add this file to your CCS project:
F2806x_GlobalVariableDefs.c

The global variable definition file declares a global instantiation of the structure for each
peripheral. Each structure is placed in its own section using a DATA_SECTION pragma to allow
linking to the correct memory. The second step for using the header files is to add
F2806x_GlobalVariableDefs.c file to your project.

C2000 Microcontroller Workshop - Peripheral Registers Header Files 3-11

F2806x C-Code Header Files

Mapping Structures to Memory

The data structures describe the register set in detail. And, each instance of the data type (i.e.,
register set) is unique. Each structure is associated with an address in memory. This is done by
(1) creating a new section name via a DATA_SECTION pragma, and (2) linking the new section
name to a specific memory in the linker command file.

F2806x_GlobalVariableDefs.c

Linker Command Files for the Structures
F2806x_nonBIlOS.cmd and F2806x_BIOS.cmd

#include "F2806x_Device.h"

— #pragma DATA_SECTION(AdcRegs,"AdcRegsFile");
volatile struct ADC_REGS AdcRegs;

F2806x_Headers_nonBIOS.cmd

MEMORY
PAGE1:
ADC:
-
SECTIONS

}

origin=0x007100,

Aa(-:RegsFi le: > ADC

1ength=0x000080

PAGE = 1

¢ Links each structure to
the address of the
peripheral using the
structures named
section

¢ non-BIOS and BIOS
versions of the .cmd file

¢ Add one of these files to
your CCS project:

F2806x_nonBIOS.cmd
or
F2806x_BIOS.cmd

The header file package has two linker command file versions; one for non-BIOS projects and
one for BIOS projects. This linker command file is used to link each structure to the address of
the peripheral using the structures named section. The third and final step for using the header
files is to add the appropriate linker command file to your project.

Linker Command File

When using the header files, the user adds the MEMORY regions that correspond to the
CODE_SECTION and DATA_SECTION pragmas found in the .h and global-definitons.c file.

The user can modify their own linker command file, or use a pre-configured linker command file
such as F28069.cmd. This file has the peripheral memory regions defined and tied to the

individual peripheral.

C2000 Microcontroller Workshop - Peripheral Registers Header Files

F2806x C-Code Header Files

Peripheral Specific Routines

Peripheral Specific C functions are used to initialize the peripherals. They are used by adding the

appropriate .c file to the project.

CYade_soc
[C)ade_temp_sensar
[Chade_temp_sensor_cony
Sida_adc

Cda_adc_fir
Cdcla_adc_fir_flash
@cpu_ﬁmer
[C)dma_ram_to_ram
[C)ecan_backzback
[Checap_spwm
[Checap_capture_pwm
(Cepwm_blanking_window
@ep';-.lm_dce‘-.-'ent_trip
@ep';-!m_du:e‘-.-'ent_h'ip_comp
[C)epwm_deadband
uﬂep';-.'m_real -time_interrupts
uﬂep';-.'m_timer_interrupts
lﬂep';-.'m_trip_zone
Cepwm_up_aq
(Cepwm_updown_ag
Chegep_fregeal

[C)eqep_pos_speed

uﬁext

ernal_interrupt

[fiash_f23089

Dfou
Dfou

_hardware
_software

@gpio_set‘up
Chapio_togale
ICihreap_capture_hrpam
[Chhreap_capture_pwm

Sihrp

Shrp
Dhp
Shp
Dhrp
Dhrp

m
wm_duty_sfo_vé
wm_mult_ch_prdupdown_sfo_ve
wm_prdup_sfo_ve
wm_prdupdown_sfo_ve
wm_slider

[C)i2c_eeprom

Silpm
Sipm
Slpm

_haltwake
_idlewake
_standbywake

[Cmebsp_loophack
[Cymebsp_loopback_dma

Peripheral Specific Examples

¢ Example projects for each peripheral
¢ Helpful to get you started

[Cmebep_loapback_interrupts
) mebsp_spi_loopback
[Chosc_comp

) sdi_echoback

|5 scia_loopback

[scia_loophack_interrupts
(S spi_loaphack

|C5) spi_loopbadk_interrupts
@s‘;-.'J:rioritized_interrupts
|5 timed _led_blink
[S)usb_dev_bulk
[CHush_dev_chidede
CHush_dev_keyboard
[CHush_dev_mause
[E)usb_dev_serial

[usb_host_keyboard

[usb_host_mouse
[Chush_host_msc
Cwatchdog

The peripheral register header file package includes example projects for each peripheral. This
can be very helpful to getting you started.
C2000 Microcontroller Workshop - Peripheral Registers Header Files 3-13

Summary

Summary

Peripheral Register Header Files
Summary

¢ Easier code development

¢ Easy to use

¢ Generates most efficient code

¢ Increases effectiveness of CCS watch window

¢ Tl has already done all the work!
¢ Use the correct header file package for your device:

» F2806x * F280x and F2801x
» F2803x * F2804x
* F2802x * F281x

» F2833x and F2823x

Go to http://www.ti.com and enter “controlSUITE” in the keyword search box

In summary, the peripheral register header files allow for easier code development, they are easy
to use, generates the most efficient code, works great with Code Composer Studio, and T1 has
already done the work for you. Just make sure to use the correct header file package for your
device.

3-14 C2000 Microcontroller Workshop - Peripheral Registers Header Files

Reset and Interrupts

Introduction

This module describes the interrupt process and explains how the Peripheral Interrupt Expansion
(PIE) works.

Module Objectives

Module Objectives

¢ Describe the F28x reset process

¢ List the event sequence during an
interrupt

¢ Describe the F28x interrupt structure

C2000 Microcontroller Workshop - Reset and Interrupts 4-1

Module Topics

Module Topics

e c AT To I 1 (=T g 0T o] S 4-1
T T LU T o] (oSSR 4-2
R ST TSP PR PRTPRUPUSRPPPRON 4-3

RESEE - BOOTIOAUETe.viiiieiieicieee bbbttt bbbt 4-4
EMUIALION BOOt IMOGE ...t bbbttt et 4-5
Stand-AloNe BOOE IMIOUEo ittt ettt sttt sb e et b et b e ebe b e 4-6
ReSet COde FIOW — SUMMATYouiiiiiiiitieiiiieie ettt sttt bbb bbb bbbt s e e e b e nbesbe e 4-6
Emulation Boot Mode using Code Composer Studio GEL ... 4-7
Le1C il TR (o =Vl T RSOOSR 4-8
La1E=T U] o] KT TP TP UPTURRUROPRUPRORN 4-9
INEEITUPE PrOCESSING .. et eteeteeiie ettt ettt ettt bbbt b e e e b sb e b e bttt e neeneeneesbe b 4-10
Interrupt Flag ReGISLEr (IFR)oiuiiiii ittt 4-11
Interrupt Enable RegIStEr (IER)civcieice sttt st nee s 4-11
Interrupt Global Mask Bit (INTIM)ccoviiiieiiiiie et see e e 4-12
Peripheral Interrupt EXPansion (PIE)ccccvciveiiireieiise e ste sttt ae e sne s 4-12
PIE BIOCK INFHAIZATION ...ttt 4-14
Interrupt Signal FIOW — SUMMAIY ...ocuvoiiicie ettt neesrenne e 4-16
Interrupt RESPONSE ANA LALENCYveivveieeieie e ettt na et e st e re e eneeseenre e e 4-17

C2000 Microcontroller Workshop - Reset and Interrupts

Reset

Reset

Reset Sources

Missing Clock Detect F28x core

Watchdog Timer

Power-on Reset XRS

Brown-out Reset

XRS pin active

To XRS pin

Logic shown is functional representation, not actual implementation

* POR — Power-on Reset generates a device reset during
power-up conditions

. BOR — Brown-out Reset generates a device reset if the
power supply drops below specification for the device

Note: Devices support an on-chip voltage regulator (VREG) to
generate the core voltage

There are various reset sources available for this device: an external reset pin, watchdog timer
reset, power-on reset which generates a device reset during power-up conditions, brownout reset
which generates a device reset if the power supply drops below specifications for the device, as
well as a missing clock detect reset. Additionally, the device incorporates an on-chip voltage
regulator to generate the core voltage.

C2000 Microcontroller Workshop - Reset and Interrupts 4-3

Reset

Reset - Bootloader

Reset — Bootloader

Reset vector
Reset fetched from
ENPIE =0 boot ROM
INTM =1 0x3F FFCO
YES Emulator NO

TRsT=1 | Connected ? | TRsT=0

Emulation Boot Stand-alone Boot
Boot determined by Boot determined by
2 RAM locations: 2 GPIO pins and

EMU_KEY and EMU_BMODE 2 OTP locations:
OTP_KEY and OTP_BMODE

- EMU_KEY & EMU_BMODE located in PIE at 0xOD0O0 & 0x0DO01, respectively
TRST = JTAG TestResel ATpKEy & OTP BMODE located in OTP at 0x3D7BFB & Ox3D7BFE, respectively

After reset, the PIE block is disabled and the global interrupt line is disabled. The reset vector is
fetched from the boot ROM and the bootloader process begins.

Then the bootloader determines if the emulator is connected by checking the JTAG test reset line.
If the emulator is connected, we are in emulation boot mode. The boot is then determined by two
RAM locations named EMU_Key and EMU_BMODE, which are located in the PIE block. If the
emulator is not connected, we are in stand-alone boot mode. The boot is then determined by two
GPIO pins and two OTP locations named OTP_KEY and OTP_BMODE, which are located in
the OTP.

4-4 C2000 Microcontroller Workshop - Reset and Interrupts

Reset

Emulation Boot Mode

Emulator Connected
Emulation Boot
Boot determined by

2 RAM locations:
EMU_KEY and EMU_BMODE

Emulation Boot Mode (TRsT=1)

If either EMU_KEY or EMU_BMODE
are invalid, the “wait” boot mode is
used. These values can then be
modified using the debugger and a
reset issued to restart the boot process

1 NO | Boot Mode

EMU_KEY = 0x55AA ? |

Wait

YES
EMU_BMODE = | Boot Mode
0x0000 Parallel /0 — [OTP_KEY = 0x005A ? i NO BOFOLtA'\g?_lde
0x0001 scl
0x0003 GetMode l YES
0x0004 SPI OTP_BMODE = | Boot Mode
0x0005 12C 0X0001 sCl
0x0006 oTP 0x0004 SPI
0x0007 CAN 0x0005 12C
0X000A MO SARAM 0x0006 oTP
0Xx000B FLASH 0x0007 CAN
other Wait other FLASH

In emulation boot mode, first the EMU_KEY register is checked to see if it has a value of

Ox55AA. If either EMU_KEY or EMU_BMODE are invalid, the wait boot mode is used. These
values can then be modified using the debugger and a reset issued to restart the boot process.
This can be considered the default on power-up. At this point, you would like the device to wait

until given a boot mode.

If EMU_KEY register has a value of 0OX55AA, then the hex value in the EMU_BMODE register

determines the boot mode. The boot modes are parallel 1/0O, SCI, SPI, 12C, OTP, CAN,

MOSARAM, FLASH, and Wait. In addition, there is a GetMode, which emulates the stand-alone

boot mode.

C2000 Microcontroller Workshop - Reset and Interrupts

Reset

Stand-Alone Boot Mode

Stand-Alone Boot Mode (trsT=0)

Emulator Not Connected Note that the boot behavior for
Stand-alone Boot unprogrammed OTP is the

Boot determined by “FLASH" boot mode
2 GPIO pins and

2 OTP locations:
OTP_KEY and OTP_BMODE

———| OTP_KEY = 0x005A 2 | NO Bcl’:cl’_tA'\g?*de
GPIO GPIO lYES

37 34 |Boot Mode OTP_BMODE = | Boot Mode
0 0 Parallel I/O 0x0001 SCI
0 1 |sc 0x0004 SPI
1 0 Wait 0x0005 12C
1 1| GetMode 0x0006 oTP

0x0007 CAN

other FLASH

In stand-alone boot mode, GPIO pins 37 and 34 determine if the boot mode is parallel 1/0, SCI,
or wait. The default unconnected pins would set the boot mode to GetMode. In GetMode, first
the OTP_KEY register is checked to see if it has a value of 0X005A. An unprogrammed OTP is
set to the FLASH boot mode, as expected.

If the OTP_KEY register has a value of 0x005A, then the hex value in the OTP_BMODE register
determines the boot mode. The boot modes are SCI, SPI, I12C, OTP, CAN, and FLASH.

Reset Code Flow — Summary

In summary, the reset code flow is as follows: The reset vector is fetched from the boot ROM.
Then, the execution entry is determined by emulation boot mode or stand-alone boot mode. The
boot mode options are MOSARAM, OTP, FLASH, and boot loading routines.

4-6 C2000 Microcontroller Workshop - Reset and Interrupts

Reset

Reset Code Flow - Summary

0x000000 0x000000
MO SARAM (1Kw)

0x3D7800 0x3D7800
OTP (1Kw)

0x3D8000

. FLASH (128Kw)
Ox3F7FF6

0x3F8000(5ot ROM (32Kw) Execution Entry
£ Ideteméinedwtl)yd L_—
B mulation Boot Mode or 1
s C%c)j(gpwsc Stand-Alone Boot Mode i
: f '
1
BROM vector (64w) !
v
RESET BEE) OX3FFFCO| Ox3FF75C Bootloading
________________________ Routines
(SClI, SPI, 12C,

"""""""""""" CAN, Parallel 1/0)

Emulation Boot Mode using Code Composer Studio GEL

The CCS GEL file can be used to setup the boot mode for the device during debug. The
“OnReset()” GEL function is called each time the device is reset. This function can be modified
to include a call to set the device to “Boot to SARAM” emulation mode automatically, if desired.
OnReset(int nErrorCode)

{
C28x_Mode();
Unlock_CSMQ);
Device_Cal(Q);
CLA _Clock_Enable(); /* Enable CLA clock */
// EMU_BOOT_SARAMQ); /* Set EMU Boot Variables - Boot to SARAM */
// EMU_BOOT_FLASHQ); /* Set EMU Boot Variables - Boot to flash */
b
The GEL file also provides a function to set the device to “Boot to Flash”:
/ /
/* EMU Boot Mode - Set Boot Mode During Debug */
/ /

menuitem "EMU Boot Mode Select™
hotmenu EMU_BOOT_SARAMQ)

*0xD00
*0xD01

Ox55AA; /* EMU_KEY = Ox 55AA */
Ox000A; /* Boot to SARAM */

H
hotmenu EMU_BOOT_FLASHQO

*0xD00
*0xD01

Ox55AA; /* EMU_KEY = Ox 55AA */
0x000B; /* Boot to FLASH */

}
To access the GEL file use: Tools > Debugger Options = Generic Debugger Options

C2000 Microcontroller Workshop - Reset and Interrupts 4-7

Reset

Getting to main()

After reset how do we get to main() ?

¢ At the code entry point, branch to _c_int00()
Part of compiler runtime support library
¢ Sets up compiler environment
+ Calls main()

CodeStartBranch.asm ~ -S€ct “codestart”

LB _c_int00
MEMORY
PAGE O: o
Linker .cmd) BEGIN_MO : origin = 0x000000, length = 0x000002
SECTIONS
codestart : > BEGIN_MO, PAGE = 0

Note: the above example is for boot mode set to MO SARAM,; to run out of Flash, the
“codestart” section would be linked to the entry point of the Flash memory block

After reset how do we get to main? When the bootloader process is completed, a branch to the
compiler runtime support library is located at the code entry point. This branch to _c_int00 is
executed, then the compiler environment is set up, and finally main is called.

4-8 C2000 Microcontroller Workshop - Reset and Interrupts

Interrupts

Interrupts

Interrupt Sources

Internal Sources

TINT2
TINT1 F28x CORE
TINTO ———— XRS
ePWM, eCAP, eQEP, bIE NMI
ADC, SCI, SPI, 12C, berinheral INT1
eCAN, McBSP, (Perip N

Interrupt
Dbl G, WD Expansion) a INT3

External Sources ’
77777777777 INT12
XINT1 XINTB—E— INT13
B 1 INT14
TZx —
—_ |
RS 3

The internal interrupt sources include the general purpose timers 0, 1, and 2, and all of the
peripherals on the device. External interrupt sources include the three external interrupt lines, the
trip zones, and the external reset pin. The core has 14 interrupt lines. As you can see, the number
of interrupt sources exceeds the number of interrupt lines on the core. The PIE, or Peripheral
Interrupt Expansion block, is connected to the core interrupt lines 1 through 12. This block
manages and expands the 12 core interrupt lines, allowing up to 96 possible interrupt sources.

C2000 Microcontroller Workshop - Reset and Interrupts 4-9

Interrupts

Interrupt Processing

Maskable Interrupt Processing

Conceptual Core Overview

Core (IFR) (IER) (INTM)
Interrupt “Latch” “Switch” “Global Switch”

INTi I

N2 ——fo]——" F28x

. . . . Core
INT14 [1] e

¢ Avalid signal on a specific interrupt line causes the latch
to display a “1” in the appropriate bit

¢ If the individual and global switches are turned “on” the
interrupt reaches the core

It is easier to explain the interrupt processing flow from the core back out to the interrupt sources.
The INTM is the master interrupt switch. This switch must be closed for any interrupts to
propagate into the core. The next layer out is the interrupt enable register. The appropriate
interrupt line switch must be closed to allow an interrupt through. The interrupt flag register gets
set when an interrupt occurs. Once the core starts processing an interrupt, the INTM switch
opens to avoid nested interrupts and the flag is cleared.

The core interrupt registers consists of the interrupt flag register, interrupt enable register, and
interrupt global mask bit. Notice that the interrupt global mask bit is zero when enabled and one
when disabled. The interrupt enable register is managed by ORing and ANDing mask values.
The interrupt global mask bit is managed using inline assembly.

4-10 C2000 Microcontroller Workshop - Reset and Interrupts

Interrupts

Interrupt Flag Register (IFR)

Interrupt Flag Register (IFR)

15 14 13 12 1 10 9 8
|RTOSINT|DLOGINT| INT14 | INTL3 | INT12 | INT11 | INT10 | INT9 |
7 6 5 4 3 2 1 0
| INT8 | INT7 | INT6 | INT5 | INT4 | INT3 | INT2 | INTL |

Pending: [IFRg;=1
Absent : IFRg;=0

[*** Manual setting/clearing IFR ***/

extern cregister volatile unsigned int IFR;
IFR |=0x0008; llset INT4 in IFR
IFR &= OxFFF7; llclear INT4 in IFR

¢ Compiler generates atomic instructions (non-interruptible) for setting/clearing IFR
< If interrupt occurs when writing IFR, interrupt has priority

¢ IFR(bit) cleared when interrupt is acknowledged by CPU

¢ Register cleared on reset

Interrupt Enable Register (IER)

Interrupt Enable Register (IER)

15 14 13 12 1 10 9 8
|RTOSINT|DLOGINT| INT14 | INT13 | INT12 | INT11 | INT10 | INT9 |
7 6 5 4 3 2 1 0
| INT8 | INT7 | INT6 | INT5 | INT4 | INT3 | INT2 | INT1 |

Enable: Set IER ;=1
Disable: Clear IERg;=0

[*** Interrupt Enable Register ***/

extern cregister volatile unsigned int IER;
IER |=0x0008; /lenable INT4 in IER
IER &= OXFFF7; /l[disable INT4 in IER

¢ Compiler generates atomic instructions (non-interruptible)
for setting/clearing IER

¢ Register cleared on reset

C2000 Microcontroller Workshop - Reset and Interrupts 4-11

Interrupts

Interrupt Global Mask Bit (INTM)

Interrupt Global Mask Bit

Bit 0
ST1 INTM

¢ INTM used to globally enable/disable interrupts:
¢ Enable: INTM =0
¢ Disable: INTM =1 (reset value)

¢ INTM modified from assembly code only:

[*** Global Interrupts ***/
asm(* CLRC INTM”); /lenable global interrupts
asm(* SETC INTM”); //disable global interrupts

Peripheral Interrupt Expansion (PIE)

Peripheral Interrupt Expansion - PIE

Interrupt Group 1
PIEIFR1 PIEIER1
INT1.y interrupt group |NT1.1/-

INT2.y interrupt grou
/ : SEe INTL2—[0}——— -
INT3.y interrupt group . TNTT

INT4.y interrupt group : .
INT5.y interrupt group :)y
INT6.y interrupt group
INT7.y interrupt group

PIE module for 96 Interrupts

=96

INT1.8 7

nterrupts 12x 8
Jsl
o

Core Interrupt logic

INT8.y interrupt group

INT9.y interrupt group INT1 - INTI12
E % E 28x
=||=| |&| |Core

INT12.y interrupt group

| | Peripheral |

INT13 (TINT1)
INT14 (TINT2)
|

INT10.y interrupt group 12 Interrupts
INT11.y interrupt group

P
<

We have already discussed the interrupt process in the core. Now we need to look at the

4-12 C2000 Microcontroller Workshop - Reset and Interrupts

Interrupts

peripheral interrupt expansion block. This block is connected to the core interrupt lines 1 through
12. The PIE block consists of 12 groups. Within each group, there are eight interrupt sources.
Each group has a PIE interrupt enable register and a PIE interrupt flag register.

As you can see, the interrupts are numbered from 1.1 through 12.8, giving us a maximum of 96

interrupt sources. Interrupt lines 13, 14, and NMI bypass the PIE block.

INTX.8 INTX.7 INTX.6 INTX.5 INTx.4 INTX.3 INTx.2 INTx.1
INTL |WAKEINT| TINTO | ADCINTO| XINT2 | XINT1 ADCINT2 | ADCINTL
INT2 | EPWMS | EPWM7 | EPWM6 | EPWM5 | EPWM4 | EPWM3 | EPWM2 | EPWML
"TZINT | _TzINT | _TzINT | _TZINT | _TZINT | _TzINT | _TZINT | _TzINT
INT3 | EPWM8 | EPWM7 | EPWM6 | EPWM5 | EPWM4 | EPWM3 | EPWM2 | EPWML
CINT CINT CINT CINT CINT CINT CINT CINT
INT4 | HRCAP2 | HRCAP1 ECAP3 | ECAP2 | ECAPL
CINT CINT CINT CINT CINT
INTE HRCAP4 | HRCAP3 EQEP2 | EQEPL
CINT INT CINT CINT
SPITX | SPIRX | SPITX | SPIRX
INT6 WP || IR || s INTB INTA INTA
INT7 DINTCHS6 | DINTCH5 | DINTCH4 | DINTCH3 | DINTCH2 | DINTCH1
INTS I2CINT2A | 12CINT1A
INTY ECANL | ECANO | SCITX | SCIRX | SCIX | SCIRX
_INTA INTA INTB INTB INTA INTA
INT10 | ADCINT8 | ADCINT7 | ADCINT6 | ADCINTS | ADCINT4 | ADCINT3 | ADCINT2 | ADCINT1
INTi| CcLAt CLAL CLAL CLAL CLAL CLAL CLAL CLAL
CINTS CINT7 JNTe | _INTS CINT4 CINT3 JINT2 CINTL
INT12 LUF LVF XINT3

The interrupt assignment table tells us the location for each interrupt source within the PIE block.
Notice the table is numbered from 1.1 through 12.8, perfectly matching the PIE block.

The PIE registers consist of 12 PIE interrupt flag registers, 12 PIE interrupt enable registers, a
PIE interrupt acknowledge register, and a PIE control register. The enable PIE bit in the PIE

control register must be set during initialization for the PIE block to be enabled.

C2000 Microcontroller Workshop - Reset and Interrupts

Dell
Rectangle

Dell
Rectangle

Interrupts

PIE Registers

PIEIFRX register (x =1to 12)
15-8 7 6 5 4 3 2 1 0
reserved INTX.8| INTX.7[INTX.6| INTX.5[INTX.4| INTX.3|INTX.2| INTX.1
PIEIERX register (x =1to 12)
15-8 7 6 5 4 3 2 1 0
reserved INTX.8| INTX.7[INTX.6 | INTX.5| INTX.4| INTX.3|INTX.2| INTX.1

PIE Interrupt Acknowledge Register (PIEACK)
6 5

15-12 1 10 9 8 7 4 3 2 1 0
reserved PIEACKX
PIECTRL register 15-1 0
PIEVECT ENPIE

#include “F2806x_Device.h”
PieCtrIRegs.PIEIFR1.bit.INTx4 = 1;
PieCtrIRegs.PIEIER3.bit.INTx2 = 1;
PieCtrIRegs.PIEACK.all = 0x0004;

PieCtrIRegs.PIECTRL.bit.ENPIE = 1; //enable the PIE

/Imanually set IFR for XINT1 in PIE group 1
/lenable EPWM2_INT in PIE group 3
/lacknowledge the PIE group 3

PIE Block Initialization

PIE Block Initialization

Main.c

// CPU Initialization

InitPieCtri();

PieVect.c

Memory Map
PIE RAM
R Vectors
g 256w
PieCtrl.c (ENPIE = 1)

PIE_VECT_TABLE

// Base Vectors

@ :

// Initialize PIE_RAM @

» memcpy(eee);

// Core INT1 re-map

-

// Core INT12 re-map

-

bs Boot ROM

// Enable PIE Block Reset Vector
PieCtrlRegs.
PIECTRL.bIt. ----

The interrupt vector table, as mapped in the PIE interrupt assignment table, is located in the
PieVect.c file. During initialization in main, we have a function call to PieCtrl.c. In this file, a

C2000 Microcontroller Workshop - Reset and Interrupts

Interrupts

memory copy function copies the interrupt vector table to the PIE RAM and then sets ENPIE to
1, enabling the PIE block. This process is done to set up the vectors for interrupts.

Main.c

RESET
<0x3F FFCO>

Reset Vector

<0x3F F75C> = Boot Code

Boot
code

PIE Initialization Code Flow - Summary

option determines
execution entry point

CodeStartBranch.asm

!

l .sect ‘“‘codestart”

MOSARAM Entry Point OR Flash Entry Point
<0x00 0000> = LB _c_int00 <Ox3F 7FF6> = LB _c_int00
_C_int00:

A 4

main()

}

{ initialization();

CALL main(Q)

ts2800_fpu32lb

v

Initialization()

{
Load PIE Vectors
Enable the PIE
Enable PIEIER
Enable Core IER
Enable INTM

\ 4

PIE Vector Table
256 Word RAM
0x00 0D0OO — ODFF

vy Defaultlsr.c

{
}

interrupt void name(void)

In summary, the PIE initialization code flow is as follows. After the device is reset and executes
the boot code, the selected boot option determines the code entry point. This figure shows two
different entry points. The one on the left is for memory block MO0, and the one on the right is for

flash.

In either case, CodeStartBranch.asm has a “Long Branch” to the entry point of the runtime
support library. After the runtime support library completes execution, it calls main. In main, we
have a function call to initialize the interrupt process and enable the PIE block. When an
interrupt occurs, the PIE block contains a vector to the interrupt service routine located in

Defaultlsr.c.

C2000 Microcontroller Workshop - Reset and Interrupts

Dell
Highlight

Interrupts

Interrupt Signal Flow — Summary

Interrupt Signal Flow — Summary

Peripheral Interrupt Expansion (PIE) — Interrupt Group x
PIEIFRx PIEIERX

Peripheral INTx.y 1)\
Interrupt =1 . O .
PieCtrIRegs.PIEIERX.bit.INTxy = 1;

Core Interrupt Logic

Core IFR IER INTM
INTX 'T‘)\
(= v
IER |= 0x0001; asm(“ CLRC INTM™);
- OxOFFF;

PIE Vector Table Defaultlsr.c
interrupt void name(void)

{
b5

INTx.y = name (For peripheral interrupts where x = 1to 12, and y = 1 to 8)

In summary, the following steps occur during an interrupt process. First, a peripheral interrupt is
generated and the PIE interrupt flag register is set. If the PIE interrupt enable register is enabled,
then the core interrupt flag register will be set. Next, if the core interrupt enable register and
global interrupt mask is enabled, the PIE vector table will redirect the code to the interrupt service

routine.

C2000 Microcontroller Workshop - Reset and Interrupts

Interrupts

Interrupt Response and Latency

Interrupt Response - Hardware Sequence

CPU Action Description

Registers — stack 14 Register words auto saved

0 > IFR (bit) Clear corresponding IFR bit

0 - IER (bit) Clear corresponding IER bit

1 - INTM/DBGM Disable global ints/debug events
Vector » PC Loads PC with int vector address
Clear other status bits | Clear LOOP, EALLOW, IDLESTAT

Note: some actions occur simultaneously, none are interruptible

T STO

AH AL

PH PL

AR1 ARO

DP ST1
DBSTAT | IER
PC(msw)| PC(Isw)

Interrupt Latency

eennmmeennee Latency

ext. Internal
interrupt : interrupt Assumes ISR in
occurs occurs internal RAM

here here

| S
| Ll

I cycles

L /
®©@ ® & 6 O 06

Sync ext. Recognition Getvector F1/F2/D1of Save D2/R1/R2 of ISR

signal delay (3), SP and place ISR return ISR g‘fégﬂﬁggn
alignment (1), inPC instruction address instruction on next
_ (ext. interrupt (3 reg. (3 reg. pairs |
interrupt placed in pairs saved) e
only) pipeline saved)

¢ Minimum latency (to when real work occurs in the ISR):
> Internal interrupts: 14 cycles

» External interrupts: 16 cycles

¢ Maximum latency: Depends on wait states, INTM, etc.

C2000 Microcontroller Workshop - Reset and Interrupts 4-17

Interrupts

C2000 Microcontroller Workshop - Reset and Interrupts

System Initialization

Introduction

This module discusses the operation of the OSC/PLL-based clock module and watchdog timer.
Also, the general-purpose digital 1/0 ports, external interrups, various low power modes and the
EALLOW protected registers will be covered.

Module Objectives

Module Objectives

¢ OSC/PLL Clock Module

¢ Watchdog Timer

¢ General Purpose Digital I1/O
¢ External Interrupts

¢ Low Power Modes

¢ Register Protection

C2000 Microcontroller Workshop - System Initialization 5-1

Module Topics

Module Topics

SYSTEM INITIAIZATION.......viii e e ee st e tesreere e e eneesnenseneenreas 5-1
T T LU T o] (oSSR 5-2
OsCillator/PLL ClOCK MOQUIEcoviiiiicieisice e 5-3
LA 2L (ed o oo T 1T SR 5-7
General-Purpose DIgital 1Occooiiiiieiecicce sttt e e re e nne s 5-12
A T o LN 1) T U0 S 5-16
LOW POWEE IMOUES. ...ttt etttk b et bbb b et b bbbt nb bt nb e 5-17
o R C=T gl = o] (=To! (o] RS URUR PR 5-19
Lab 5: System INITIATIZALIONcooiiiiiiee bbb e 5-21

5-2 C2000 Microcontroller Workshop - System Initialization

Oscillator/PLL Clock Module

Oscillator/PLL Clock Module
F2806x Oscillator / PLL Clock Module

(lab file: SysCtrl.c)

WDCLKSRCSEL
'

Internal | OSC1CLK
0SC 1 0*] WDCLK | Watchdog

(10 MHz) 1 Module
OSCCLKSRCSEL
OSCCLKSRC2 '
Internal | 0SC2CLK '}_ﬁ —»Bﬁ OSCCLK DIVSEL
OSC 2 ! H
PLL bypass H
(10 MHz) o* ; (ypass) x CLKIN
g —11/n C28x
VCOCLK Core
PLL /
XCLKINOFF . ‘ SYSCLKOUT
] T >
XCLKIN DIV
EXTCLK | TMR2CLKSRCSEL LOSPCP
—{10 LSPCLK
o 11 | CPUTMR2CLK SClI, SPI
E 01 All othe’r peripherals
%
syscLKkouT —{00 CPU clocked by SYSCLKOUT
X2 Timer 2

* = default

The oscillator/PLL clock module has two internal, 10 MHz oscillators, and the availability of an
external oscillator or crystal. This provides redundancy in case an oscillator fails, as well as the
ability to use multiple oscillators. The asterisks in the multiplexers show the default settings.
This module has the capability to clock the watchdog, core, and CPU timer 2 from independent
clock sources, if needed.

The on-chip oscillator and phase-locked loop (PLL) block provide all the necessary clocking
signals for the F2806x devices. The two internal oscillators (INTOSC1 and INTOSC2) need no
external components.

C2000 Microcontroller Workshop - System Initialization 5-3

Dell
Highlight

Dell
Rectangle

Oscillator/PLL Clock Module

F2806x PLL and LOSPCP

(lab file: SysCtrl.c)
,SysCtrlRegs.PLLSTS.bit.DIVSEL

OSCCLK
(PLL bypass) X cLKIN | C28x SYSCLKOUT
VCOCLK g Ui Core v LSPCLKA
—>| PLL I .
------------- 'SysCtrIRegs.PLLCR.bit.DIV LOPE
DIV CLKIN SysCtrIRegs.LOSPCP.bit.LSPCLK
00000 [OSCCLK /n *(PLL bypass)
8 g 8 2 é 8§ggt§ X ; ; " DIVSEL [n LSPCLK | Peripheral Clk Freg
0x i 000 | SYSCLKOUT/1
00011 | OSCCLK x3/n e =t el
00100 | OSCCLK x4/n 10 12 010 SYSOLKOUT / 4 *
00101 | OSCCLK x5/n 11 /1 R
00110 | OSCCLK x6/n * default

100 SYSCLKOUT /8

VOLLL | OSCEL 71T 101 | SYScLKOUT/10

01000 OSCCLK x8/n
01001 OSCCLK x 9/n 110 SYSCLKOUT /12

01010 [OSCCLK x10/n 111 SYSCLKOUT /14

01011 OSCCLK x 11/n LSBs in reg. — others reserved
01100 [OSCCLK x12/n
01101 | OSCCLK x13/n

01110 | OSCCLK x 14 /n Input Clock Fail Detect Circuitry

01111 OSCCLK x15/n PLL will issue a “limp mode” clock (1-4 MHz) if input
10000 | OSCCLK x 16/n clock is removed after PLL has locked.

10001 | OSCCLK x17/n An internal device reset will also be issued (XRSn
10010 | OSCCLK x18/n pin not driven).

Ixx11 reserved

A clock source can be fed directly into the core or multiplied using the PLL. The PLL gives us
the capability to use the internal 10 MHz oscillator multiplied by 18/2, and run the device at the
full 90 MHz clock frequency. If the input clock is removed after the PLL is locked, the input
clock failed detect circuitry will issue a limp mode clock of 1 to 4 MHz. Additionally, an internal
device reset will be issued. The low-speed peripheral clock prescaler is used to clock some of the
communication peripherals.

The PLL has a 4-bit ratio control to select different CPU clock rates. In addition to the on-chip
oscillators, two external modes of operation are supported — crystal operation, and external clock
source operation. Crystal operation allows the use of an external crystal/resonator to provide the
time base to the device. External clock source operation allows the internal (crystal) oscillator to
be bypassed, and the device clocks are generated from an external clock source input on the
XCLKIN pin. The C28x core provides a SYSCLKOUT clock signal. This signal is prescaled to
provide a clock source for some of the on-chip communication peripherals through the low-speed
peripheral clock prescaler. Other peripherals are clocked by SYSCLKOUT and use their own
clock prescalers for operation.

C2000 Microcontroller Workshop - System Initialization

Dell
Highlight

Oscillator/PLL Clock Module

internal OSC2

I

7-5 4-3 2 1

Clock Control Register
SysCtrIRegs.CLKCTL (lab file: SysCtrl.c)
Upper Register:
Watchdog Internal Oscillator 1 Internal
HALT Mode Ignore HALT Mode Ignore Oscillator 1 Off
0 = automatic turn on/off 0 =automatic turn on/off 0=on
1 =ignores HALT Mode 1 =ignores HALT Mode 1 = off
15 14 13 12 1 10 9 8
NMIRESET| XTAL XCLKIN [\wDHALTI INTOSC2 | INTOSC2 | INTOSC1 | INTOSC1
SEL OSCOFF OFF HALTI OFF HALTI OFF
NMI Crystal XCLKIN Internal Oscillator 2 Internal
Reset Oscillator Off HALT Mode Ignore Oscillator 2 Off
0=no delay Off 0=on 0=automatic turn on/off 0=on
1 =delay 0=on 1=off 1=ignores HALT Mode 1 = off
1 = off
0 = default
Clock Control Register
SysCtrIRegs.CLKCTL (lab file: SysCtrl.c)
Lower Register:
Watchdog Oscillator
Clock Source Clock Source
0 = internal OSC1 0 = internal OSC1
1 = external or 1 = external or

internal OSC2

/

0

WDCLK | OSCCLK | OSCCLK
TMR2CLKPRESCALE TMR2CLKSRCSEL | oL | SRC2SEL | SROSEL
CPU Timer 2 CPU Timer 2 Oscillator 2
Clock Prescale Clock Source Clock Source
000=/1 00 = SYSCLKOUT 0 = external
001=/2 01 = external 1 =internal OSC2
010=/4 10 = internal OSC1
011 =/8 11 = internal OSC2
100 =/16
1xx =reserved 0 = default

C2000 Microcontroller Workshop - System Initialization

Oscillator/PLL Clock Module

Peripheral Clock Control Registers

(lab file: SysCtrl.c
15 14 13 12

ECANA MCBSPA SCIB SCIA SPIB SPIA

reserved| | oy jreserved | ENcik | ENCLK | ENCLK | ENCLK | ENCLK
SysCtrIRegs. : 2 3 > n 5

PERECRO - = 12CA ADC TBCLK
reserved | reserved | reserved ENCLK ENCLK SYNC reserved i-é;FEIPCVIi/&/I

11 10 9 8

15 14 13 12 11 10 9 8

EQEP2 | EQEPL ECAP3 | ECAP2 | ECAPL
sysCiriregs. |_ENCLK_| ENCLK reserved | reserved | reserved | Encik | ENCLK | ENCLK

PCLKCR1 7 6 5 4 3 2 1 0
EPWM8 | EPWM7 | EPWM6 | EPWM5 | EPWM4 | EPWM3 | EPWM2 | EPWM1
ENCLK ENCLK ENCLK | ENCLK ENCLK | ENCLK | ENCLK | ENCLK

15 14 13 12 11 10 9 8

HRCAP4 | HRCAP3 | HRCAP2 | HRCAP1
reserved | reserved | reserved | reserved ENCLK ENCLK ENCLK | ENCLK

SysCtrIRegs.
PCLKCR2 ’
reserved | reserved | reserved | reserved | reserved | reserved | reserved | reserved

6 5 4 3 2 1 0

15 14 13 12 11 10 9 8
USBO | CLAL DMA _ [CPUTIMERZ|CPUTIMERL|CPUTIMERQ)
ENCLK | ENCLK | Teserved | reserved | pneiy [ENCIK | ENCLK | ENCLK
7 6 5 4 3 2 1 0

COMP3 COMP2 | COMP1
reserved | reserved | reserved | reserved | reserved ENCLK ENCLK | ENCLK

SysCtrIRegs.
PCLKCR3

Module Enable Clock Bit 0 = disable (default) 1 =-enable

The peripheral clock control register allows individual peripheral clock signals to be enabled or
disabled. If a peripheral is not being used, its clock signal could be disabled, thus reducing power
consumption.

5-6 C2000 Microcontroller Workshop - System Initialization

Dell
Oval

Dell
Highlight

Dell
Highlight

Watchdog Timer

Watchdog Timer

The watchdog timer is a safety feature, which resets the device if the program runs away or gets
trapped in an unintended infinite loop. The watchdog counter runs independent of the CPU. If
the counter overflows, a reset or interrupt is triggered. The CPU must write the correct data key
sequence to reset the counter before it overflows.

Watchdog Timer

¢ Resets the C28x if the CPU crashes
¢ Watchdog counter runs independent of CPU

¢ If counter overflows, a reset or interrupt is
triggered (user selectable)

¢ CPU must write correct data key sequence
to reset the counter before overflow

¢ Watchdog must be serviced or disabled
within 131,072 WDCLK cycles after reset

¢ This translates to 13.11 ms with a 10 MHz
WDCLK

The watchdog timer provides a safeguard against CPU crashes by automatically initiating a reset
if it is not serviced by the CPU at regular intervals. In motor control applications, this helps
protect the motor and drive electronics when control is lost due to a CPU lockup. Any CPU reset
will revert the PWM outputs to a high-impedance state, which should turn off the power
converters in a properly designed system.

The watchdog timer is running immediately after system power-up/reset, and must be dealt with
by software soon after. Specifically, you have 13.11 ms (with a 10 MHz watchdog clock) after
any reset before a watchdog initiated reset will occur. This translates into 131,072 WDCLK
cycles, which is a seemingly tremendous amount! Indeed, this is plenty of time to get the
watchdog configured as desired and serviced. A failure of your software to properly handle the
watchdog after reset could cause an endless cycle of watchdog initiated resets to occur.

C2000 Microcontroller Workshop - System Initialization 5-7

Watchdog Timer

Watchdog Timer Module

(lab file: Watchdog.c)

WDPS WDOVERRIDE
Watchdog 7
WDCLK /512
- Prescaler WDDIS
8-bit Watchdog
Counter
CLR
WDRST
System Qutput [—*

Reset

Pulse |,
WDINT

55 + AA
Detector| good key

T

Watchdog
Reset Key
Register

Bad WDCHK Key

The watchdog clock is divided by 512 and prescaled, if desired. The watchdog disable switch
allows the watchdog to be enabled and disabled. The watchdog override switch is a safety
mechanism, and once closed, it can only be open by resetting the device.

During initialization, “101” is written into the watchdog check bit fields. Any other values will
cause a reset or interrupt. During run time, the correct keys must be written into the watchdog
key register before the watchdog counter overflows and issues a reset or interrupt. Issuing a reset
or interrupt is user-selectable.

5-8 C2000 Microcontroller Workshop - System Initialization

Watchdog Timer

Watchdog Period Selection

WDPS FRC WD timeout period
Bits rollover @ 10 MHz WDCLK
00x: 1 13.11 ms *
010: 2 26.22 ms
011: 4 52.44 ms
100: 8 104.88 ms
101: 16 209.76 ms
110: 32 419.52 ms
111: 64 839.04 ms

* reset default

¢ Remember: Watchdog starts counting immediately after
reset is released!

¢ Reset default with WDCLK =10 MHz computed as
(1/10 MHz) * 512 * 256 = 13.11 ms

WD Flag Bit

Gets set when the WD causes a reset
* Writing a 1 clears this bit

* Writing a 0 has no effect

Watchdog Timer Control Register

SysCtrIRegs.WDCR (lab file: Watchdog.c)

15-8 7 6 5-3 2-0
reserved | WDFLAG | WDDIS WDCHK WDPS
Logic Check Bits WD Prescale
Write as 101 or reset Selection Bits
Watchdog Disable Bit ~ immediately triggered | wpPs | wDCLK =
Write 1 to disable 00x | OSCCLK/512/1
(Functions only if WD OVERRIDE 81(1’ 82%&&;235‘2‘
bit in SCSR is equal to 1) 100 | OSCCLK /512 /8
101 | OSCCLK /512/16
110 | OSCCLK /512/32
111 | OSCCLK /512 /64

C2000 Microcontroller Workshop - System Initialization

Watchdog Timer

Resetting the Watchdog

SysCtrIRegs.WDKEY (lab file: Watchdog.c)

15-8 7-0
reserved WDKEY

¢ WDKEY write values:
55h - counter enabled for reset on next AAh write
AAh - counter set to zero if reset enabled
¢ Writing any other value has no effect
¢ Watchdog should not be serviced solely in an ISR

< If main code crashes, but interrupt continues to
execute, the watchdog will not catch the crash

¢ Could put the 55h WDKEY in the main code, and the
AAh WDKEY in an ISR; this catches main code crashes
and also ISR crashes

WDKEY Write Results

Sequential | Value Written
Step to WDKEY | Result

1 AAh No action
2 AAh No action
3 55h WD counter enabled for reset on next AAh write
4 55h WD counter enabled for reset on next AAh write
5 55h WD counter enabled for reset on next AAh write
6 AAh WD counter is reset
7 AAh No action
8 55h WD counter enabled for reset on next AAh write
9 AAh WD counter is reset
10 55h WD counter enabled for reset on next AAh write
11 23h No effect; WD counter not reset on next AAh write
12 AAh No action due to previous invalid value
13 55h WD counter enabled for reset on next AAh write
14 AAh WD counter is reset

5-10 C2000 Microcontroller Workshop - System Initialization

Watchdog Timer

System Control and Status Register

SysCtrIRegs.SCSR (lab file: Watchdog.c)

WD Override (protect bit)

Protects WD from being disabled

0 = WDDIS bit in WDCR has no effect (WD cannot be disabled)
1 =WDDIS bit in WDCR can disable the watchdog

* This bit is a clear-only bit (write 1 to clear)

* The reset default of this bitisa 1l \

15-3 2 1 0
reserved WDINTS [WDENINT [WDOVERRIDE

WD Interrupt Status WD Enable Interrupt
(read only)

0 = WD generates a MCU reset
0 = active 1 =WD generates a WDINT interrupt
1 =not active

C2000 Microcontroller Workshop - System Initialization 5-11

General-Purpose Digital I/O

General-Purpose Digital 1/0

F2806x GPIO Grouping Overview
(lab file: Gpio.c)
GPIO P(%rtA Muxl) Input o
<«—> Register (GPAMUX1) (—»
[GPIO 0 to 15] . GPIOPortA i« +—— T
Direction Register Qual o
(GPADIR o
GPIO Port A Mux2 [GPIO 0 to 31] |2
<«—>»| Register (GPAMUX2) |e—» s
[GPIO 16 to 31]
GPIO Port B Mux1 | t
S |«—>»| Register (GPBMUX1) |«—» ~ nput | o)
g GPIO 32 to 47] L GPIOPOrtB [o\]2
= Direction Register (@]
o GPBDIR o>
w GPIO Port B Mux2 [GPIO 32 to 63] > g
S |«—»| Register (GPBMUX2) «—» ®
[GPIO 48 to 63]
:Z>
ANALOG IO MuxL | | pidiion Register || z
<«—»| Register (AIOMUX1) |«—> (AIODIR O le—>
[AIO 0 to 15] [AIO 0 to 15] R 2
1o

Each general-purpose 1/0O pin has a maximum of four options, either general-purpose 1/0 or up to
three possible peripheral pin assignments. This is selected using the GPIO port multiplexer. If
the pin is set to GPIO, the direction register sets it as an input or an output. The input
qualification will be explained shortly.

F2806x GPIO Pin Block Diagram

(lab file: Gpio.c)
eral Peripheral Peripheral
2 3
TR V%
(GPxoAT] out N o 12/ | GPxMUXL
/O DAT | OO\T 11 Clpdibne

/O DIR Bit Periph
GPXSET 0 = Input
GPXCLEAR 1 = Output
GPxTOGGLE
GPxDIR
MUX Control Bits *

Bit (R/W)
In 00 = GPIO
01 = Peripheral 1
10 = Peripheral 2
11 = Peripheral 3

Input
Qualification |
GPxPUD (EIROE=) GPxQSEL1
! GPXQSEL2
Internal Pull-Up GPXCTRL
0 = enable (default GPIO 12-58)
1 = disable (default GPIO 0-11)
Pin

* See device datasheet for pin function selection matrices

5-12 C2000 Microcontroller Workshop - System Initialization

Dell
Highlight

Dell
Highlight

General-Purpose Digital I/O

The GPIO pin block diagram shows a single GPIO pin. If the pin is set as a GPIO by the GPIO
multiplexer, the direction will be set by the GPIO direction register. The GPIO data register will
have the value of the pin if set as an input or write the value of the data register to the pin if set as
an output.

The data register can be quickly and easily modified using set, clear, or toggle registers. As you
can see, the GPIO multiplexer can be set to select up to three other possible peripheral pin
assignments. Also, the pin has an option for an internal pull-up.

F2806x GPIO Input Qualification
—LI—_'_ Input _ to GPIO and

eripheral
Qualification pmogules

1
SYSCLKOUT

¢ Qualification available on ports A & B only

¢ Individually selectable per pin g
¢ no qualification (peripherals only)
 sync to SYSCLKOUT only A
¢ qualify 3 samples
+ qualify 6 samples < —f\/\/\
¢ AlO pins are fixed as
‘sync to SYSCLKOUT’ T T T

T = qual period

pin O

The GPIO input qualification feature allows filtering out noise on a pin. The user would select
the number of samples and qualification period. Qualification is available on ports A and B only
and is individually selectable per pin.

C2000 Microcontroller Workshop - System Initialization 5-13

Dell
Highlight

Dell
Highlight

Dell
Highlight

General-Purpose Digital I/O

GPAQSEL1/GPAQSEL2 / GPBQSEL1
31

F2806x GPIO Input Qual Registers

GpioCtrIRegs.register (lab file: Gpio.c)

| | | | | 16 pins configured per register | | | | | |

GPACTRL / GPBCTRL

00 = sync to SYSCLKOUT only *

01 = qual to 3 samples

10 = qual to 6 samples

11 = no sync or qual (for peripheral only; GPIO same as 00)

31 24 16 8 0
[QUALPRD3 | QUALPRD2 | QUALPRD1 | QUALPRDO |
B: GP1056-63 GP1048-55 GP1047-40 GP1039-32
A: GPIO31-24 GP1023-16 GPIO15-8 GPIO7-0

00h no qualification (SYNC to SYSCLKOUT) *
0lh QUALPRD = SYSCLKOUT/2
02h QUALPRD = SYSCLKOUT/4

FFh QUALPRD = SYSCLKOUT/510 * reset default

F2806x GPIO Control Registers

GpioCtrIRegs.register (lab file: Gpio.c)

Register Description

GPACTRL GPIO A Control Register [GPIO 0 — 31]
GPAQSEL1 GPIO A Qualifier Select 1 Register [GPIO 0 — 15]
GPAQSEL2 GPIO A Qualifier Select 2 Register [GPIO 16 — 31]
GPAMUX1 GPIO A Mux1 Register [GPIO 0 — 15]

GPAMUX2 GPIO A Mux2 Register [GPIO 16 — 31]

GPADIR GPIO A Direction Register [GPIO 0 — 31]
GPAPUD GPIO A Pull-Up Disable Register [GPIO 0 — 31]
GPBCTRL GPIO B Control Register [GPIO 32 — 63]
GPBQSEL1 GPIO B Qualifier Select 1 Register [GPIO 32 — 47]
GPBQSEL2 GPIO B Qualifier Select 2 Register [GPIO 48 — 63]
GPBMUX1 GPIO B Mux1 Register [GPIO 32 — 47]

GPBMUX2 GPIO B Mux2 Register [GPIO 48 — 63]

GPBDIR GPIO B Direction Register [GPIO 32 — 63]
GPBPUD GPIO B Pull-Up Disable Register [GPIO 32 — 63]
AIOMUX1 ANALOG /0O Mux1 Register [AlIO 0 — 15]

AIODIR ANALOG I/O Direction Register [AIO 0 — 15]

C2000 Microcontroller Workshop - System Initialization

General-Purpose Digital I/O

F2806x GPIO Data Registers

GpioDataRegs.register (lab file: Gpio.c)

Register

Description

GPADAT
GPASET
GPACLEAR
GPATOGGLE

GPIO A Data Register [GPIO 0 — 31]
GPIO A Data Set Register [GPIO 0 — 31]
GPIO A Data Clear Register [GPIO 0 — 31]
GPIO A Data Toggle [GPIO 0 — 31]

GPBDAT
GPBSET
GPBCLEAR
GPBTOGGLE

GPIO B Data Register [GPIO 32 — 63]
GPIO B Data Set Register [GPIO 32 — 63]
GPIO B Data Clear Register [GPIO 32 — 63]
GPIO B Data Toggle [GPIO 32 — 63]

AIODAT
AIOSET
AIOCLEAR
AIOTOGGLE

ANALOG /O Data Register [AIO 0 — 15]
ANALOG /O Data Set Register [AIO 0 — 15]
ANALOG /O Data Clear Register [AIO 0 — 15]
ANALOG /O Data Toggle [AIO 0 — 15]

C2000 Microcontroller Workshop - System Initialization

Dell
Highlight

Dell
Highlight

Dell
Highlight

Dell
Highlight

External Interrupts

External Interrupts

External Interrupts

¢ 3 external interrupt signals: XINT1, XINT2
and XINT3

¢ XINT1, XINT2 and XINT3 can be mapped to
any of GPIO0-31

¢ XINT1, XINT2 and XINT3 also each have a
free-running 16-bit counter that measures
the elapsed time between interrupts

¢ The counter resets to zero each time the
interrupt occurs

External Interrupt Registers

Interrupt Pin Selection Register | Configuration Register | Counter Register
(GpiolntRegs.register) | (XIntruptRegs.register) | (XIntruptRegs.register)

XINT1 GPIOXINT1SEL XINT1CR XINT1CTR

XINT2 GPIOXINT2SEL XINT2CR XINT2CTR

XINT3 GPIOXINT3SEL XINT3CR XINT3CTR

¢ Pin Selection Register chooses which pin the signal comes out on
¢ Only one pin can be assigned to each interrupt signal
¢ Configuration Register controls the enable/disable and polarity

¢ Counter Register holds the interrupt counter

C2000 Microcontroller Workshop - System Initialization

Low Power Modes

Low Power Modes

Low Power Modes

Low Power |CPU Logic | Peripheral | Watchdog | PLL/
Mode Clock Logic Clock Clock OoSsC
Normal Run on on on on
IDLE off on on on
STANDBY off off on on
HALT off off off off

See device datasheet for power consumption in each mode

Low Power Mode Control Register O

SysCtrIRegs.LPMCRO (lab file: SysCtrl.c)

Watchdog nterrup
STANDBY Wake from STANDBY 000001 = 3 OSCCLKs

0 = disable (default) GPIO signal qualification *

1= enable \111111 = 65 OSCCLKS (default)

15 14 -8 7-2 1-0
WDINTE reserved QUALSTDBY | LPMO

: Low Power Mode Selection
Low Power Mode Entering 00 = Idle (default)

1. Set LPM bits 01 = Standby

2. Enable desired exit interrupt(s) 1x = Halt

3. Execute IDLE instruction

4. The power down sequence of the hardware
depends on LP mode

* QUALSTDBY will qualify the GPIO wakeup signal in series with the GPI0O port qualification.
This is useful when GPIO port qualification is not available or insufficient for wake-up purposes.

C2000 Microcontroller Workshop - System Initialization

Low Power Modes

Low Power Mode Exit

Exit
Interrupt GPIO Any
RESET | PortA Vl\i]att:rrrljo? Enabled
Low Power Signal P Interrupt
Mode
IDLE yes yes yes yes
STANDBY yes yes yes no
HALT yes yes no no

GPIO Low Power Wakeup Select

SysCtrIRegs.GPIOLPMSEL

31 30 29 28 27 26 25 24
GPIO31|GPIO30|GPI029|GPI028|GPI027|GPIO26 | GPIO25 | GPI024

23 22 21 20 19 18 17 16
GPI0O23|GPI1022|GPI1021|GPI020|GPIO19|GPIO18|GPIO17 |GPIO16

15 14 13 12 11 10 9 8
GPIO15|GPI014|GPIO13|GPIO012|GPIO11|GPIO10| GPIO9 | GPIO8

7 6 5 4 3 2 1 0
GPIO7 | GPIO6 | GPIOS | GPIO4 | GPIO3 | GPIO2 | GPIO1 | GPIOO

Wake device from
HALT and STANDBY mode
(GPIO Port A)

0 = disable (default)
1 =enable

5-18 C2000 Microcontroller Workshop - System Initialization

Register Protection

Register Protection

Write-Read Protection

DevEmuRegs.DEVICECNF.bit. ENPROT

Suppose you need to write to a peripheral register and
then read a different register for the same peripheral
(e.g., write to control, read from status register)?

¢ CPU pipeline protects W-R order for the same address

¢ Write-Read protection mechanism protects W-R order for
different addresses

¢ Peripheral Frame 0 and Peripheral Frame 1 zones protected

¢ Write-read protection mode bit ENPROT located in the DEVICECNF
register is enabled by default

Peripheral Frame Registers
PFO PF1
eCAN System Control
COMP SPI
ePWM SCI
eCAP Watchdog
eQEP XINT
Protected address: LIN ADC

EALLOW Protection @of2

EALLOW stands for Emulation Allow

Code access to protected registers allowed
only when EALLOW =1 in the ST1 register

¢ The emulator can always access protected
registers

¢ EALLOW bit controlled by assembly level
instructions
¢ ‘EALLOW’ sets the bit (register access enabled)
¢ ‘EDIS’ clears the bit (register access disabled)

¢ EALLOW bhit cleared upon ISR entry, restored
upon exit

¢ o

C2000 Microcontroller Workshop - System Initialization 5-19

Register Protection

EALLOW Protection @of2

The following registers are protected:

Device Emulation

Flash

Code Security Module

PIE Vector Table

LIN (some registers)

eCANA/B (control registers only; mailbox RAM not protected)
ePWM1-7 and COMP1-3 (some registers)

GPIO (control registers only)

System Control

See device datasheet and peripheral users guides for detailed listings

EALLOW register access C-code example:

asm(*" EALLOW™); // enable protected register access
SysCtrlRegs.WDKEY=0x55; // write to the register
asm(*" EDIS™); // disable protected register access

C2000 Microcontroller Workshop - System Initialization

Lab 5: System Initialization

Lab 5: System Initialization
» Objective

The objective of this lab is to perform the processor system initialization. Additionally, the
peripheral interrupt expansion (PIE) vectors will be initialized and tested using the information
discussed in the previous module. This initialization process will be used again in all of the lab
exercises throughout this workshop. The system initialization for this lab will consist of the
following:

e Setup the clock module — PLL, LOSPCP = /4, low-power modes to default values, enable all
module clocks

o Disable the watchdog — clear WD flag, disable watchdog, WD prescale = 1

e Setup the watchdog and system control registers — DO NOT clear WD OVERRIDE bit,
configure WD to generate a CPU reset

e Setup the shared 1/0 pins — set all GPIO pins to GPIO function (e.g. a "00" setting for GPIO
function, and a “01”, “10”, or “11” setting for a peripheral function)

The first part of the lab exercise will setup the system initialization and test the watchdog
operation by having the watchdog cause a reset. In the second part of the lab exercise the PIE
vectors will be added and tested by using the watchdog to generate an interrupt. This lab will
make use of the F2806x C-code header files to simplify the programming of the device, as well as
take care of the register definitions and addresses. Please review these files, and make use of
them in the future, as needed.

> Procedure

Create a New Project

1. Create a new project (File - New -> CCS Project) for this lab exercise. The
top section should default to the options previously selected (setting the “Target” to
“Experimenter’s Kit — Piccolo F28069”, and leaving the “Connection” box blank). Name
the project Lab5. Uncheck the “Use default location” box. Using the Browse... button
navigate to: C:\C28x\Labs\Lab5\Project then click OK. Set the “Linker
Command File” to <none>, and be sure to set the “Project templetes and examples” to
“Empty Project”. Then click Finish.

2. Right-click on Lab5 in the Project Explorer window and add (copy) the
following files to the project (Add Files..) from C:\C28x\Labs\Lab5\Files:

CodeStartBranch.asm Lab.h
DelayUs.asm Lab 5 6 7.cmd
F2806x_Defaultlsr.h Main_5.c
F2806x_GlobalVvariableDefs.c SysCtrl.c
F2806x_Headers_nonB10S.cmd Watchdog.c
Gpio.c

C2000 Microcontroller Workshop - System Initialization 5-21

Lab 5: System Initialization

Do not add Defaultlsr _5.c,PieCtrl.c,and PieVect.c. These files will be
added and used with the interrupts in the second part of this lab exercise.

Project Build Options

3. Setup the build options by right-clicking on Lab5 in the Project Explorer window
and select Properties. We need to setup the include search path to include the
peripheral register header files. Under “C2000 Compiler” select “Include
Options”. Inthe lower box that opens (“Add dir to #include search
path”) click the Add icon (first icon with green plus sign). Then in the “Add directory
path” window type:

${PROJECT_ROOT}/../../F2806x_headers/include

Click OK to include the search path. Finally, click OK to save and close the Properties
window.

Modify Memory Configuration

4. Open and inspect the linker command file Lab_5 6_7.cmd. Notice that the user
defined section “codestart” is being linked to a memory block named BEGIN_MO.
The codestart section contains code that branches to the code entry point of the project.
The bootloader must branch to the codestart section at the end of the boot process. Recall
that the emulation boot mode "M0 SARAM" branches to address 0x000000 upon
bootloader completion.

Modify the linker command file Lab_5 6_7_cmd to create a new memory block
named BEG IN_MO: origin = 0x000000, length = 0x0002, in program memory. You will
also need to modify the existing memory block MOSARAM in data memory to avoid any
overlaps with this new memory block.

5. In the linker command file, notice that RESET in the MEMORY section has been defined
using the “(R)” qualifier. This qualifier indicates read-only memory, and is optional. It
will cause the linker to flag a warning if any uninitialized sections are linked to this
memory. The (R) qualifier can be used with all non-volatile memories (e.g., flash, ROM,
OTP), as you will see in later lab exercises.

Setup System Initialization

6. Modify SysCtrl ._c and Watchdog . c to implement the system initialization as
described in the objective for this lab.

7. Open and inspect Gpio.c. Notice that the shared 1/0 pins have been set to the GPIO
function. Save your work and close the modified files.

Build and Load

8. Click the “Bui 1d” button and watch the tools run in the Console window. Check for
errors in the Problems window.

5-22 C2000 Microcontroller Workshop - System Initialization

Lab 5: System Initialization

9.

10.

Click the “Debug” button (green bug). The “CCS Debug Perspective” view should
open, the program will load automatically, and you should now be at the start of
main().

After CCS loaded the program in the previous step, it set the program counter (PC) to
pointto _c_Int0O0. It then ran through the C-environment initialization routine in the
rts2800_fpu32. 1ib and stopped at the start of main(). CCS did not do a device
reset, and as a result the bootloader was bypassed.

In the remaining parts of this lab exercise, the device will be undergoing a reset due to the
watchdog timer. Therefore, we must configure the device by loading values into
EMU_KEY and EMU BMODE so the bootloader will jJump to “M0 SARAM” at address
0x000000. Set the bootloader mode using the menu bar by clicking:

Scripts > EMU Boot Mode Select - EMU_BOOT_SARAM

If the device is power cycled between lab exercises, or within a lab exercise, be sure to
re-configure the boot mode to EMU_BOOT_SARAM.

Run the Code — Watchdog Reset

11.

12.

13.

14.

15.

16.

17.

Place the cursor in the “main loop” section (on the asm(** NOP’”); instruction line)
and right click the mouse key and select Run To Line. This is the same as setting a
breakpoint on the selected line, running to that breakpoint, and then removing the
breakpoint.

Place the cursor on the first line of code in main() and set a breakpoint by double
clicking in the line number field to the left of the code line. Notice that line is
highlighted with a blue dot indicating that the breakpoint has been set. (Alternately, you
can set a breakpoint on the line by right-clicking the mouse and selecting Breakpoint
(Code Composer Studio) —> Breakpoint). The breakpoint is set to prove
that the watchdog is disabled. If the watchdog causes a reset, code execution will stop at
this breakpoint.

Run your code for a few seconds by using the “Resume’” button on the toolbar, or by
using Run -> Resume on the menu bar (or F8 key). After a few seconds halt your
code by using the “Suspend’” button on the toolbar, or by using Run - Suspend on
the menu bar (or Alt-F8 key). Where did your code stop? Are the results as expected? If
things went as expected, your code should be in the “main loop”.

Switch to the “CCS Edit Perspective” view by clicking the CCS Edit icon in the upper
right-hand corner. Modify the InitWatchdog() function to enable the watchdog
(WDCR). This will enable the watchdog to function and cause a reset. Save the file.

Click the “Bui 1d” button. Select Yes to “Reload the program automatically”. Switch
back to the “CCS Debug Perspective” view by clicking the CCS Debug icon in the
upper right-hand corner.

Like before, place the cursor in the “main loop” section (on the asm(** NOP’*);
instruction line) and right click the mouse key and select Run To Line.

Run your code. Where did your code stop? Are the results as expected? If things went
as expected, your code should have stopped at the breakpoint. What happened is as

C2000 Microcontroller Workshop - System Initialization 5-23

Lab 5: System Initialization

follows. While the code was running, the watchdog timed out and reset the processor.
The reset vector was then fetched and the ROM bootloader began execution. Since the
device is in emulation boot mode (i.e. the emulator is connected) the bootloader read the
EMU_KEY and EMU_BMODE values from the PIE RAM. These values were
previously set for boot to MO SARAM boot mode by CCS. Since these values did not
change and are not affected by reset, the bootloader transferred execution to the
beginning of our code at address 0x000000 in the MOSARAM, and execution continued
until the breakpoint was hit in main().

Setup PIE Vector for Watchdog Interrupt

The first part of this lab exercise used the watchdog to generate a CPU reset. This was tested
using a breakpoint set at the beginning of main(). Next, we are going to use the watchdog
to generate an interrupt. This part will demonstrate the interrupt concepts learned in the
previous module.

18.

19.

20.

21.

22.

23.

In the “CCS Edit Perspective” view add (copy) the following files to the project from
C:\C28x\Labs\Lab5\Files:

Defaultlsr 5.c
PieCtrl.c
PieVect.c

Check your files list to make sure the files are there.

In Main_5.c, add code to call the InitPieCtrl () function. There are no passed
parameters or return values, so the call code is simply:

InitPieCtri();

Using the “PIE Interrupt Assignment Table” shown in the previous module find the
location for the watchdog interrupt, “WAKEINT”. This will be used in the next step.

PIE group #: # within group:

Modify main() to do the following:
- Enable global interrupts (INTM bit)

Then modify InitWatchdog() to do the following:

- Enable the “WAKEINT” interrupt in the PIE (Hint: use the PieCtrIRegs structure)
- Enable the appropriate core interrupt in the IER register

In Watchdog - ¢ modify the system control and status register (SCSR) to cause the
watchdog to generate a WAKEINT rather than a reset. Save all changes to the files.

Open and inspect Defaultlsr_5._c. This file contains interrupt service routines. The
ISR for WAKEINT has been trapped by an emulation breakpoint contained in an inline
assembly statement using “ESTOPO”. This gives the same results as placing a breakpoint
in the ISR. We will run the lab exercise as before, except this time the watchdog will
generate an interrupt. If the registers have been configured properly, the code will be
trapped in the ISR.

C2000 Microcontroller Workshop - System Initialization

Lab 5: System Initialization

24. Open and inspect PieCtrl _c. This file is used to initialize the PIE RAM and enable
the PIE. The interrupt vector table located in PieVect. c is copied to the PIE RAM to
setup the vectors for the interrupts. Close the modified and inspected files.

Build and Load

25. Click the “Bu1 1d” button and select Yes to “Reload the program automatically”.
Switch to the “CCS Debug Perspective” view by clicking the CCS Debug icon in the
upper right-hand corner.

Run the Code — Watchdog Interrupt

26. Place the cursor in the “main Boop” section, right click the mouse key and select Run
To Line.

27. Run your code. Where did your code stop? Are the results as expected? If things went
as expected, your code should stop at the “ESTOPO” instruction in the WAKEINT ISR.

Terminate Debug Session and Close Project

28. Terminate the active debug session using the Terminate button. This will close the
debugger and return CCS to the “CCS Edit Perspective” view.

29. Next, close the project by right-clicking on Lab5 in the Project Explorer window
and select Close Project.

End of Exercise

Note: By default, the watchdog timer is enabled out of reset. Code in the file
CodeStartBranch.asm has been configured to disable the watchdog. This can be
important for large C code projects (ask your instructor if this has not already been
explained). During this lab exercise, the watchdog was actually re-enabled (or disabled
again) in the file Watchdog.-c.

C2000 Microcontroller Workshop - System Initialization 5-25

Lab 5: System Initialization

5-26 C2000 Microcontroller Workshop - System Initialization

Analog-to-Digital Converter and Comparator

Introduction

This module explains the operation of the analog-to-digital converter and comparator. The ADC
system consists of a 12-bit analog-to-digital converter with up to 16 analog input channels. The
analog input channels have a full range analog input of 0 to 3.3 volts or VREFHI/VREFLO
ratiometric. Two input analog multiplexers are available, each supporting up to 8 analog input
channels. Each multiplexer has its own dedicated sample and hold circuit. Therefore, sequential,
as well as simultaneous sampling is supported. The ADC system is start-of-conversion (SOC)
based where each independent SOCx (where x = 0 to 15) register configures the trigger source
that starts the conversion, the channel to convert, and the acquisition (sample) window size. Up
to 16 results registers are used to store the conversion values. Conversion triggers can be
performed by an external trigger pin, software, an ePWM or CPU timer interrupt event, or a
generated ADCINT1/2 interrupt.

Module Objectives

Module Objectives

¢ Understand the operation of the
Analog-to-Digital converter (ADC)
and Comparator

¢ Use the ADC to perform data acquisition

C2000 Microcontroller Workshop - Analog-to-Digital Converter 6-1

Module Topics

Module Topics

Analog-to-Digital Converter and COMPATALOLccccvviviieieriie e e 6-1
T T LU T o] (oSSR 6-2
ANAIOG-T0-DiIgital CONVEITETocviiiieieieeecie ettt e et b e e resneereereenteneeneenee e 6-3

ADC Block and FUNCLIONAI DIaQramsS.......cc.coueveieiereiieeiereesiesesressesseeseeseessessessessessessessesssessessessessens 6-3
F N L O I oo 1o OSSN 6-4
ADC CONVEISION PIIOMILY 1vvivveiisiise sttt e et st ta s e e e e te st e besnesreeneeneesaenenrennens 6-6
ADC CIOCK aN0 THMINQ ...ttt bbb be sttt e bt e et e b e sbesbesbesbeebeabeeseeneenbenbesaea 6-8
ADC CONVEIET REJISIEIS ...ttt bbbt b e b et e bt e e ene e e e nbenbe e 6-9
SIGNEA INPUL WVOITAGES ...ttt bbbttt b e bbbt se e e b e b e 6-14
ADC Calibration and RETEIENCEocuiiieieiii e 6-15
(000 0] o= L =10 ST T PPV U U UPTUT PR 6-17
Comparator BIOCK DIagram.........cocoiiiiieiiie ettt et bbb e b e 6-17
(@00 110 T L0 gl (=T 1 (=] £ 6-18
Lab 6: Analog-to-Digital CONVEITETcveiiieierese sttt ene e e e e e 6-19

6-2 C2000 Microcontroller Workshop - Analog-to-Digital Converter

Analog-to-Digital Converter

Analog-to-Digital Converter

ADC Block and Functional Diagrams

ADC Module Block Diagram

ADCINAO —

ADCINAL = MmuUX SIH
: A A

ADCINAT = X_| 12-bitAID

ADCINBO —* = Converter

RESULTO
RESULT1
RESULT2

L]

ADCINB7 — e ADC
ADCINT1-9
ADC full-scale T CHSEL Generation | 29X Interrupt >
input range is Logic Logic

0to 3.3V
SOCx Signal ADCINT1
ADCINT2

SOCO |TRIGSEL [CHSEL |ACQPS

SOC1 |TRIGSEL [CHSEL |ACQPS g
SOC2 |TRIGSEL |[CHSEL |ACQPS 8 Software
SOC3 |TRIGSEL [CHSEL |ACQPS |~ CPU Timer (0,1,2)
. . . 6 < EPWMxSOCA (x =1to 8)
. . . O |« EPWMxSOCB (x = 1 to 8)
SOC15 [TRIGSEL [CHSEL [ACQPS | External Pin
SOCx Configuration Registers (GPIO/XINT2_ADCSOC)

The ADC module is based around a 12-bit converter. There are 16 input channels and 16 result
registers. The SOC configuration registers select the trigger source, channel to convert, and the
acquisition prescale window size. The triggers include software by selecting a bit, CPU timers 0,
1 and 2, EPWMA and EPWMB 1 through 8, and an external pin. Additionally, ADCINT 1 and 2
can be fed back for continuous conversions.

The ADC module can operate in sequential sampling mode or simultaneous sampling mode. In
simultaneous sampling mode, the channel selected on the A multiplexer will be the same channel
on the B multiplexer. The ADC interrupt logic can generate up to nine interrupts. The results for
SOC 0 through 15 will appear in result registers 0 through 15.

C2000 Microcontroller Workshop - Analog-to-Digital Converter 6-3

Dell
Highlight

Dell
Highlight

Dell
Highlight

Dell
Highlight

Analog-to-Digital Converter

ADC SOCx Functional Diagram

ADCSOCFRC1
ADCSOCXCTL
TINTO (CPU Timer 0) —{ * > ADCINT1
TINT1 (CPU Timer 1)— T
TINT2 (CPU Timer 2) — r ADCRESULTX :Qgi:ziz
I
XINT2_ADCSOC (GPIO) —»| L » ADCINT4
SOCA (ePWM1)—» g Channel Sample Result
9 S Select Window] Register ? > ADCINTS
SOCB (ePWM1)—(¢ s 2 6 | |>ApcinTe
. s r c c > ADCINT7
SOCA (ePWM8)— X X > ADCINTS
SOCB (ePWM8) —| > ADCINT9
ADCINTSOCSEL1
ADCINTSOCSEL?2
ADCINT1
ADCINT2 INTSELXNy
Re-Trigger

This block diagram is replicated 16 times

ADC Triggering

Example — ADC Triggering (sequential sampling)

| Sample A2 2 B3 2> A7 when ePWM1 SOCB is generated and then generate ADCINT1: |

SOCB (ETPWMI) S0 Ch,aAgnEI ?gg:;ﬁ’ées Result0 no interrupt
SOC1 | Channel Sample _

B3 10 cy(F:)Ies Resultl no interrupt
SOC2 [Channel Sample

A7 8 cycles Result2 ADCINT1

Then after above, sample AO 2 B0 - A5 continuously and generate ADCINT2:

Software Trigger

SOC3 [Channel Sample i
AO 10 cycles Result3 no interrupt
SOC4 .
ADCINT2 Chg%nel 1%"’::”))8"35 Result4 no interrupt
SOCS | Channel Sample
A5 12 cycles Result5 ADCINT2

The top example on this slide shows channels A2, B3, and A7 being converted with a trigger
from EPWM1SOCB. After A7 is converted, ADCINTL is generated.

C2000 Microcontroller Workshop - Analog-to-Digital Converter

Analog-to-Digital Converter

The bottom examples extends this with channels AQ, B0, and A5 being converted initially with a
software trigger. After A5 is converted, ADCINT2 is generated, which is fed back as a trigger to

start the process again.

Exam p | e — ADC TI’I g g eri N g (simultaneous sampling)
| Sample all channels continuously and provide Ping-Pong interrupts to CPU/system: |
e) Or={ e |—{ Fave iz | o e
socz Cki%nfl ;g;é elg Egzﬁ::g no interrupt
SOC4 CAhg.:anzel ?g;nc?éi Ezzz::g no interrupt
leler:] CAhZTanI ?gg‘cﬁ)'ees Eizt:g no interrupt
SOC10 CAhsa:anSEI ?gg}:%i Egzﬁ:gg no interrupt
sociz Channel] .| Samele RESUMZ |+ o interrupt

The example on this slide shows channels A/B 0 through 7 being converted in simultaneous

sampling mode, triggered initially by software. After channel A/B three is converted, ADCINT1
is generated. After channel A/B seven is converted, ADCINT?2 is generated and fed back to start

the process again. ADCINT1 and ADCINT2 are being used as ping-pong interrupts.

C2000 Microcontroller Workshop - Analog-to-Digital Converter

Dell
Highlight

Dell
Highlight

Analog-to-Digital Converter

ADC Conversion Priority

ADC Conversion Priority

¢ When multiple SOC flags are set at the same
time — priority determines the order in which
they are converted

¢ Round Robin Priority (default)

+ No SOC has an inherent higher priority than
another

+ Priority depends on the round robin pointer

¢ High Priority

+ High priority SOC will interrupt the round robin
wheel after current conversion completes and
insert itself as the next conversion

« After its conversion completes, the round robin
wheel will continue where it was interrupted

Conversion Priority Functional Diagram

2 SOCO0 .
o SOC1 SOC Priority
< [socz2 Deterrr_unes _cu@off point
i SOC3 for high priority and
Ffj’ SOC4 round robin mode
SOCPRIORITY
/| socs
SOC6 AdcRegs.SOCPRICTL
SOC7
= SOC8 RRPOINTER
8 SOC9 _ _
<< [S0c10 Round Robin Pointer
S SOC11 Points to the last converted
3 .
0c:> SOC12 round robl_n SOCx and
SOC13 determines _order
SOC14 of conversions
_| SOC15

6-6 C2000 Microcontroller Workshop - Analog-to-Digital Converter

Analog-to-Digital Converter

Round Robin Priority Example

SOCPRIORITY configured as 0;
RRPOINTER configured as 15;
SOCO is highest RR priority

SOCT trigger received

SOCT7 is converted;
RRPOINTER now points to SOC7;
SOC8is now highest RR priority

RRPOINTER

SOC2 & SOC12 triggers received
simultaneously

SOC12 is converted;
RRPOINTER points to SOC12;
SOC13is now highest RR priority

SOC2 is converted;
RRPOINTER points to SOC2;
SOC3 is now highest RR priority

High Priority Example

PONTER .l

SOCPRIORITY configured as 4;
RRPOINTER configured as 15;
SOC4 is highest RR priority

SOCY7 trigger received High Priority

SOCY7 is converted;

RRPOINTER points to SOC7;

SOC8 is now highest RR priority

SOC2 & SOC12 triggers received

simultaneously

SOC2 is converted; %
RRPOINTER stays pointing to SOC7

SOC12 is converted;
RRPOINTER points to SOC12;
SOC13is now highest RR priority

C2000 Microcontroller Workshop - Analog-to-Digital Converter 6-7

Analog-to-Digital Converter

ADC Clock and Timing

ADC Clocking Flow

Internal
OSC1 PLLCR PLLSTS
(10 MHz) DIV DIVSEL To CPU
- » > >
bits bits
10010b (x18) 10b (/2) SYSCLKOUT
(90 MHz)
PCLKCRO.ADCENCLK =1 /\
v
ADCCTL2
To ADC
CLKDIV || ADCCLK (45 MHz) pipeline
| bits g
001b (72) ADCSOCXCTL sampling
ACQ_PS window
- — >
bits
0110b

sampling window = (ACQ_PS + 1)*(1/ADCCLK)

ADC Timing — Sequential Sampling

Latch Sample Convert Write
2 Clocks 7 Clocks 6 Clocks 7 Clocks 2 Clocks

Generate Early Generate Late
Interrupt Interrupt

— Start Sampling Next Channel

Max Continuous Sampling:

45 MHz
13 cycles/ 1 sample

= 3.46 MSPS

Note: Sampling window of 7 cycles is minimum and it can be larger

6-8 C2000 Microcontroller Workshop - Analog-to-Digital Converter

Dell
Rectangle

Analog-to-Digital Converter

ADC Timing — Simultaneous Sampling

Convert “B” Channel | Write
6 Clocks 7 Clocks 2 Clocks

Latch Sample Convert “A” Channel | Write

2 Clocks 7 Clocks 13 Clocks 2 Clocks
T
[TTTTT
[TTTTTTTTTTI [TTTTTTTTI
L]] LL]
Generate Early :
Interrupt “A” Channel Generate Late Generate Late
Interrupt é Channel Interrupt “B” Channel
Generate Early L— Start Sampling Next Channel

Interrupt “B” Channel

Max Continuous Sampling:

45 MHz

26 cycles / 2 sample = 3.46 MSPS

Note: Sampling window of 7 cycles is minimum and it can be larger

ADC Converter Registers

Analog-to-Digital Converter Registers

AdcRegs.register (lab file: Adc.c)

Register Description

ADCCTL1 Control 1 Register

ADCCTL2 Control 2 Register

ADCSOCXCTL SOCO0 to SOC15 Control Registers
ADCINTSOCSELXx Interrupt SOC Selection 1 and 2 Registers
ADCSAMPLEMODE | Sampling Mode Register

ADCSOCFLG1 SOC Flag 1 Register

ADCSOCFRC1 SOC Force 1 Register

ADCSOCOVF1 SOC Overflow 1 Register
ADCSOCOVFCLR1 | SOC Overflow Clear 1 Register
INTSELXNy Interrupt x and y Selection Registers
ADCINTFLG Interrupt Flag Register

ADCINTFLGCLR Interrupt Flag Clear Register

ADCINTOVF Interrupt Overflow Register
ADCINTOVFCLR Interrupt Overflow Clear Register
SOCPRICTL SOC Priority Control Register
ADCREFTRIM Reference Trim Register

ADCOFFTRIM Offset Trim Register

ADCREV Revision Register —reserved
"ADCRESULTX ADC Result 0 to 15 Registers |

Note: ADCRESULTX header file coding is AdcResult. ADCRESULTX (not in AdcRegs)

C2000 Microcontroller Workshop - Analog-to-Digital Converter 6-9

Dell
Rectangle

Dell
Highlight

Analog-to-Digital Converter

ADC Control Register 1

AdcRegs.ADCCTL1

Upper Register:

ADC Module Reset ADC Busy ADC Busy Channel
0 = no effect 0 =ADC available] When ADCBSY =
1 =reset (set backto 0 1 =ADC busy 0: last channel converted
by ADC logic) 1: channel currently processing
15 14 13 12-8
RESET | ADCENABLE | ADCBSY ADCBSYCHN
ADC Enable 00h =ADCINAO 08h = ADCINBO
0= ADC disable 01h = ADCINA1 09h = ADCINB1
1 = ADC enable 02h = ADCINA2 0Ah = ADCINB2
03h = ADCINA3 0Bh = ADCINB3
04h = ADCINA4 0Ch = ADCINB4
05h = ADCINAS 0Dh = ADCINB5
06h = ADCINA6 OEh = ADCINB6
07h = ADCINA7 OFh = ADCINB7

ADC Control Register 1

AdcRegs.ADCCTL1

Lower Register:

ADC Reference ADC Reference | Temperature
ADC Power Down power Down Select Sensor Convert
0 =analog circuitry o = reference circuitry | 0 = internal 0 = not connected
powered down powered down 1 = external 1 = connected (A5)
1 =analog circuitry 1 =reference circuitry (VREFHI/VREFLO)
powered up powered up \
7 6 5 4 3 2 1 0

SEL

ADCPWN | ADCBGPWN | ADCREFPWD |reserved | ADSREF [INTEULSE | VRERLO| TEMP

CONV |CONV

ADC Bandgap
Power Down

INT Pulse
Generation Control

VREFLO Convert
0 = not connected

0 = bandgap circuitry 0 = beginning of 1 = connected (B5)
powered down conversion

1 =bandgap circuitry 1 =one cycle prior
powered up to result

C2000 Microcontroller Workshop - Analog-to-Digital Converter

Dell
Rectangle

Dell
Rectangle

Dell
Rectangle

Not available in

F2803x

Analog-to-Digital Converter

AdcRegs.ADCCTL2

ADC Overlap Bit
0 = overlap of sample and conversion is allowed
1 = overlap of sampleis not allowed

ADC Control Register 2

15-3 2 1 0
reserved CLKDIV4EN | ADCNONOVERLAP | CLKDIVZEN
ADC Clock Divider
CLKDIV4EN | CLKDIV2EN [ADCCLK
X 0 SYSCLK
0 1 SYSCLK /2
1 1 SYSCLK /4

Not available in F2803x

SOCx Trigger

AdcRegs.ADCSOCXCTL
SOCx Channel

ADC SOCO0 - SOC15 Control Registers

SOCx Acquisition

Source Select Select Prescale (s/H window)
15 I 11 10 9-6 5 I 0
TRIGSEL reserved CHSEL ACQPS

T
00h = software
01lh = CPU Timer 0
02h = CPU Timer 1
03h = CPU Timer 2
04h = XINT2SOC
05h = ePWM1SOCA
06h = ePWM1SOCB
07h = ePWM2SOCA
08h = ePWM2SOCB
09h = ePWM3SOCA
0Ah = ePWM3SOCB
0Bh = ePWM4SOCA
0Ch = ePWM4SOCB
0Dh = ePWM5SOCA
OEh = ePWM5SOCB
OFh = ePWM6SOCA
10h = ePWM6SOCB
11h = ePWM7SOCA
12h = ePWM7SOCB
13h = ePWM8SOCA
I 14h = ePWM8SOCB

Sequential S/IM
(SIMULENx=0)
Oh = ADCINAO
1h = ADCINA1
2h = ADCINA2
3h = ADCINA3
4h = ADCINA4
5h = ADCINAS
6h = ADCINAG6
7h = ADCINA7
8h = ADCINBO
9h = ADCINB1
Ah = ADCINB2
Bh = ADCINB3
Ch =ADCINB4
Dh = ADCINB5
Eh = ADCINB6
Fh = ADCINB7

Simultaneous S/M

(SIMULENx=1)

Oh = ADCINAO0/BO
1h = ADCINA1/B1
2h = ADCINA2/B2
3h = ADCINA3/B3
4h = ADCINA4/B4
5h = ADCINA5/B5
6h = ADCINA6/B6
7h = ADCINA7/B7
8h — Fh = invalid

Sampling Window

00h — 05h =invalid

06h =7 cycles long

07h =8 cycles long

08h =9 cycles long

09h =10 cycles long
L]

L]
L]

3Fh =64 cycles long

C2000 Microcontroller Workshop - Analog-to-Digital Converter

Dell
Highlight

Dell
Highlight

Dell
Line

Dell
Arrow

Duongtb
Typewriter
Not available in
F2803x

Dell
Highlight

Duongtb
Typewriter
Not available in F2803x

Dell
Highlight

Analog-to-Digital Converter

ADC Interrupt Trigger SOC Select
Registers 1 & 2

AdcRegs.ADCINTSOCSELXx

ADCINTSOCSEL2
15-14 13-12 11-10 9-8 7-6 5-4 3-2 1-0
SOC15 SOC14 SOC13 SOC12 | SOC11 | SOC10 SOC9 SOC8

ADCINTSOCSEL1
15-14 13-12 11-10 9-8 7-6 5-4 3-2 1-0

SOC7 SOC6 SOC5 SOC4 SOC3 SOC2 SOC1 SOCO0

SOCx ADC Interrupt Select

Selects which, if any, ADCINT triggers SOCx

00 = no ADCINT will trigger SOCx (TRIGSEL field determines SOCx trigger)
01 = ADCINT1 will trigger SOCx (TRIGSEL field ignored)

10 = ADCINT2 will trigger SOCx (TRIGSEL field ignored)

11 =invalid selection

ADC Sample Mode Register

AdcRegs.ADCSAMPLEMODE

15-8
reserved
7 6 5 4 3 2 1 0
SIMULEN214 | SIMULEN12 | SIMULEN10 | SIMULENS | SIMULENG6 | SIMULEN4 | SIMULEN2 | SIMULENO

~—

Simultaneous Sampling Enable

Couples SOCx and SOCx+1 in simultaneous sampling mode
0 = single sample mode for SOCx and SOCx+1

1 = simultaneous sample mode for SOCx and SOCx+1

6-12 C2000 Microcontroller Workshop - Analog-to-Digital Converter

Dell
Highlight

Analog-to-Digital Converter

SOC Priority Control Register

AdcRegs.SOCPRICTL

00h = SOCO last converted, SOC1 highest priority
01h = SOCL1 last converted, SOC2 highest priority
02h = SOC2 last converted, SOC3 highest priority
03h = SOC3 last converted, SOC4 highest priority
04h = SOC4 last converted, SOCS5 highest priority
05h = SOCS last converted, SOC6 highest priority
06h = SOCS6 last converted, SOC7 highest priority
07h = SOCY7 last converted, SOC8 highest priority
08h = SOCS8 last converted, SOC9 highest priority
09h = SOC9 last converted, SOC10 highest priority
0Ah = SOC10 last converted, SOC11 highest priority
0Bh = SOC11 last converted, SOC12 highest priority
0Ch = SOC12 last converted, SOC13 highest priority
0Dh = SOC13 last converted, SOC14 highest priority
OEh = SOC14 last converted, SOC15 highest priority
OFh = SOC15 last converted, SOCO highest priority
1xh =invalid selection

20h =reset value (no SOC has been converted)

Points to the last converted
round robin SOCx and
determines order
of conversions

15-11 10-5 4-0
reserved RRPOINTER SOCPRIORITY
Round Robin Pointer SOC Priority

Determines cutoff point
for high priority and
round robin mode

00h =round robin mode for all channels

01h = SOCO high priority, SOC1-15 round robin

02h = SOCO0-1 high priority, SOC2-15 round robin
03h = SOCO0-2 high priority, SOC3-15 round robin
04h = SOCO0-3 high priority, SOC4-15 round robin
05h = SOCO0-4 high priority, SOC5-15 round robin
06h = SOCO0-5 high priority, SOC6-15 round robin
07h = SOCO0-6 high priority, SOC7-15 round robin
08h = SOCO0-7 high priority, SOC8-15 round robin
09h = SOCO0-8 high priority, SOC9-15 round robin
0Ah = SOCO0-9 high priority, SOC10-15 round robin
0Bh = SOCO0-10 high priority, SOC11-15 round robin
0Ch = SOCO0-11 high priority, SOC12-15 round robin
0Dh = SOCO0-12 high priority, SOC13-15 round robin
OEh = SOCO0-13 high priority, SOC14-15 round robin
OFh = SOCO0-14 high priority, SOC15 round robin
10h = all SOCs high priority (arbitrated by SOC #)
1xh =invalid selection

Interrupt Select x and y Register

AdcRegs.INTSELXNy
Where x/y = 1/2, 3/4, 5/6, 7/8, 9/10 and 10 is reserved

15 14 13 12-8
reserved INTYCONT INTYE INTYSEL
7 6 5 4-0
reserved INTXCONT INTXE INTXSEL
I
ADCINTx/y EOC Source Select
00h = EOCO is trigger for ADCINTx/y
ADCINTXx/y ADCINTX/y 01h = EOCL is trigger for ADCINTx/y
Continuous Interrupt Enable 02h = EOC2 s trigger for ADCINTx/y
Mode Enable 0 =disable 03h = EOC3 is trigger for ADCINTx/y
0 = one-shot pulse 1 =enable 04h = EOC4 is trigger for ADCINTx/y

05h = EOCS5 is trigger for ADCINTx/y
06h = EOCS is trigger for ADCINTx/y
07h = EOCT is trigger for ADCINTx/y
08h = EOC8 is trigger for ADCINTx/y
09h = EOC9 is trigger for ADCINTx/y
0Ah = EOC10 is trigger for ADCINTx/y
0Bh = EOC11 is trigger for ADCINTX/y
0Ch = EOC12 is trigger for ADCINTx/y
0Dh = EOC13is trigger for ADCINTx/y
OEh = EOC14 is trigger for ADCINTx/y
OFh = EOC15 is trigger for ADCINTx/y
1xh =invalid value

generated (until flag
cleared by user)

1 = pulse generated for
each EOC

C2000 Microcontroller Workshop - Analog-to-Digital Converter

Dell
Highlight

Dell
Highlight

Analog-to-Digital Converter

ADC Conversion Result Registers

AdcResult. ADCRESULTx, x=0-15

A T O A B A 3
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Input Digital AdcResult.

Voltage Result ADCRESULTX
3.3 FFFh 0000|1111]1112|1111
1.65 7FFh 0000[0111]1111|1111
0.00081 1h 0000]0000|0000]0001
0 Oh 0000|0000|0000]0000

¢ Sequential Sampling Mode (SIMULENx = 0)
¢ After ADC completes a conversion of an SOCX, the digital result is
placed in the corresponding ADCRESULTX register
¢ Simultaneous Sampling Mode (SIMULENXx = 1)

¢ After ADC completes a conversion of a channel pair, the digital
results are found in the corresponding ADCRESULTx and
ADCRESULTXx+1 registers

Signed Input Voltages

How Can We Handle Signed Input Voltages?

Example: -1.65V <V, £ +1.65V

C28x

1) Add 1.65 volts to the Vin : $ R $ ADCIN

analog input

ADCLO

GND

2) Subtract “1.65" from the digital result

#include “F2806x_Device.h”
#define offset OxO7FF
void main(void)

{
intl6 value; // signed

value = AdcResult.ADCRESULTO — offset;

}

C2000 Microcontroller Workshop - Analog-to-Digital Converter

Dell
Highlight

Analog-to-Digital Converter

ADC Calibration and Reference

Built-In ADC Calibration

¢ Tlreserved OTP contains device specific calibration data
for the ADC and internal oscillators

¢ The Boot ROM contains a Device_cal() routine that copies
the calibration data to their respective registers

¢ Device_cal() must be run to meet the ADC and oscillator
specs in the datasheet
¢ The Bootloader automatically calls Device_cal() such that no
action is normally required by the user

¢ If the Bootloader is bypassed (e.g., during development)
Device_cal() should be called by the application:

#define Device_cal (void (*)(void))0x3D7C80
void main(void)
{

(*Device cal)(Q); // call Device cal()

}

¢ A GEL function using CCS is also available as part of the
Peripheral Register Header Files to accomplish this

Manual ADC Calibration

¢ If the offset and gain errors in the datasheet* are unacceptable for your
application, or you want to also compensate for board level errors (e.g.,
sensor or amplifier offset), you can manually calibrate

¢ Offset error

¢ Compensated in analog with
the ADCOFFTRIM register

ADCOFFTRIM
¢ No reduction in full-scale range

T

“¥
Configure input B5 to VREFLO, 12-bit
ADCOFFTRIM to maximum ADC

error, and take a reading

TrTTYTIYTITYTY

¢ Re-adjust ADCOFFTRIM to

Tr1TTTIYTY

make result zero B5 C
. oy
¢ Gain error :
« Compensated in software -----VREFLOCONV
VREFLO

¢ Some loss in full-scale range
¢ Requires use of a second ADC input pin and an upper-range reference
voltage on that pin; see “TMS320280x and TMS320F2801x ADC Calibration”
appnote #SPRAADS for more information
¢ Tip: To minimize mux-to-mux variation effects, put your most critical
signals on a single mux and use that mux for calibration inputs

* +/-15 LSB offset, +/-30 LSB gain. See device datasheet for exact specifications

C2000 Microcontroller Workshop - Analog-to-Digital Converter 6 -15

Analog-to-Digital Converter

ADC Reference Selection

AdcRegs.ADCREFSEL

¢ Theinternal reference has temperature stability of ~50 PPM/°C*

¢ Theinternal reference (default) will convert an applied input voltage
to afixed scale of 0 to 3.3 V range

¢ If this is not sufficient for your application, there is the option to use
an external reference*

¢ External reference will scale an input voltage range from VREFLO to
VREFHI (ratiometric)

¢ The reference value changes the 0 - 3.3 V full-scale range of the ADC
¢ The ADCREFSEL in ADCCTL1 controls the reference choice

15-5 4 3 2-0
reserved |[ADCREFSEL
[

ADC Reference Selection

0 = internal (default)

1 = external VREFHI/VREFLO pins
used for reference generation

* See device datasheet for exact specifications and ADC reference hardware connections

6-16 C2000 Microcontroller Workshop - Analog-to-Digital Converter

Comparator

Comparator

Comparator Block Diagram

A0 @

Comparator

_Boe

TAle

_Ble

A2 @

AlO2

AlO10

10-bit
DAC

COMP10UT

LB2e

A3 e
_B3e

TAde

LBle

AlO4

AlO12

10-bit
DAC

COMP20OUT

A5 @
_ B5e

— A6 @

(_B6e®

AlO6

AlO14

10-bit
DAC

COMP30UT

(il

A7 @

_B7e

ADC

This device has three analog comparators that share the input pins with the analog-to-digital
converter module. If neither the ADC or comparator input pins are needed, the input pins can be
used as analog I/0O pins. As you can see, one of the inputs to the comparator comes directly from
the input pin, and the other input can be taken from the input pin or the 10-bit digital-to-analog
converter. The output of the comparator is fed into the ePWM digital compare sub-module.

C2000 Microcontroller Workshop - Analog-to-Digital Converter

Comparator

COMPDACE
Input Pin A + SYNCSEL
COMPx ePWM
Input Pin B Event
- SYSCLKOUT ;
Voo —* 10-bit v I COMPXTRIP Tr|?&ger
Vssa—+| DAC = Sync/ GPIO
COMPSOURCE CMPINV el MUX
1 0 \+——DACSOURCE RAMPSOURCE QUALSEL COMPSTS
00f«—— PWMSYNC1
DACVAL Ramp 01— PWMSYNC2
Generator 10— PWMSYNC3
1[«— PWMSYNC4
DAC Reference Comparator Truth Table
_ DACVAL * (Vo — Vss) Voltages Output
1073 Voltage A < Voltage B 0
Voltage A > Voltage B 1

Comparator Registers

Comparator Registers

AdcRegs.COMPCTL — Compare Control Register

15-9 8 7-3 2 1 0
|reserved| SYNCSEL | QUALSEL | CMPINV |COMPSOURCE | COMPDACE
I
Synchronization Select Qualification Invert Comparator ~ Comparator/
Output before being feed Period O=noinvert Source DAC Enable
to ETPWM/GPIO blocks 0Oh =no qual 1=inverted 0=DAC 0 = disable
0 =Asynchronous 1h =2 clocks 1=pin 1=enable
1 = Synchronous Fh = 16 clocks
AdcRegs.DACCTL — DAC Control Register
15-14 13-5 4-1 0
| FREE:SOFT reserved | RAMPSOURCE | DACSOURCE |

DAC source (DACVAL or RAMP Generator) and RAMP source sync select
AdcRegs.DACVAL — DAC Value Register

15-10

9-0

| reserved

| DACVAL |

AdcRegs.COMPSTS — Compare Output Status Register
1

Scales output of DAC from 0 — 1023
Value =0 - 3FFh

5-1 0

reserved COMPSTS |

Logical latched value of the comparator

C2000 Microcontroller Workshop - Analog-to-Digital Converter

Lab 6: Analog-to-Digital Converter

Lab 6: Analog-to-Digital Converter
» Objective

The objective of this lab is to become familiar with the programming and operation of the on-chip
analog-to-digital converter. The MCU will be setup to sample a single ADC input channel at a
prescribed sampling rate and store the conversion result in a circular memory buffer.

Lab 6: ADC Sampling
+3.3V Toggle
GND (GPIO20) (GPIO18)
[] [] data
ADC _ memory
connector CPU copies result
e .
; to buffer during
wire RESULTO ADC ISR 'g
] 3
ADCINAO .y
. [T}
? - £
i ePWM2 triggering " 9
' ADC on period match
i using SOCA trigger every E
' View ADC
' 20 s (50 kHz) b:ﬁfv;r PWM
* Samples
Code Composer
Studio
ePWM2

Recall that there are three basic ways to initiate an ADC start of conversion (SOC):

1. Using software
a. SOCx bit (where x = 0 to 15) in the ADC SOC Force 1 Register (ADCSOCFRC1) causes a
software initiated conversion
2. Automatically triggered on user selectable conditions
a. CPU Timer 0/1/2 interrupt
b. ePWMxSOCA /ePWMxSOCB (where x =1t07)
- ePWM underflow (CTR = 0)
- ePWM period match (CTR = PRD)
- ePWM underflow or period match (CTR =0 or PRD)
- ePWM compare match (CTRU/D = CMPA/B)
c. ADC interrupt ADCINT1 or ADCINT2
- triggers SOCx (where x = 0 to 15) selected by the ADC Interrupt Trigger SOC Select1/2
Register (ADCINTSOCSEL1/2)
3. Externally triggered using a pin
a. ADCSOC pin (GPIO/XINT2_ADCSOC)

One or more of these methods may be applicable to a particular application. In this lab, we will
be using the ADC for data acquisition. Therefore, one of the ePWMs (ePWM2) will be
configured to automatically trigger the SOCA signal at the desired sampling rate (ePWM period
match CTR = PRD SOC method 2b above). The ADC end-of-conversion interrupt will be used
to prompt the CPU to copy the results of the ADC conversion into a results buffer in memory.

C2000 Microcontroller Workshop - Analog-to-Digital Converter 6-19

Lab 6: Analog-to-Digital Converter

This buffer pointer will be managed in a circular fashion, such that new conversion results will
continuously overwrite older conversion results in the buffer. In order to generate an interesting
input signal, the code also alternately toggles a GPIO pin (GP1018) high and low in the ADC
interrupt service routine. The ADC ISR will also toggle LED LD3 on the controlCARD as a
visual indication that the ISR is running. This pin will be connected to the ADC input pin, and
sampled. After taking some data, Code Composer Studio will be used to plot the results. A flow
chart of the code is shown in the following slide.

Lab 6: Code Flow Diagram

General Initialization ADC interrupt
* PLL and clocks B

» watchdog configure
* GPIO setup

* PIE initialization -
I Main Loop d AhDC,:A:DSCF; I
; e read the result
ADC Initialization g el « write to result buffer
e convert channel AO on { « adjust the buffer pointer
ePWM2 period match } * toggle the GPIO pin
e send interrupt on EOC e return from interrupt
to trigger ADC ISR

e setup aresults buffer
in memory

! return
ePWM2 Initialization
« clear counter
e set period register
e setto trigger ADC on

period match
« set the clock prescaler
e enable the timer

Notes
e Program performs conversion on ADC channel A0 (ADCINAO pin)

o ADC conversion is set at a 50 kHz sampling rate

o ePWM2 is triggering the ADC on period match using SOCA trigger

o Datais continuously stored in a circular buffer

e GPIO18 pin is also toggled in the ADC ISR

e ADC ISR will also toggle the control CARD LED LD3 as a visual indication that it is running

C2000 Microcontroller Workshop - Analog-to-Digital Converter

Lab 6: Analog-to-Digital Converter

> Procedure

Open the Project
1. A project named Lab6 has been created for this lab. Open the project by clicking on

Project - Import CCS Projects. The “Import CCS Eclipse Projects”
window will open then click Browse... next to the “Select search-directory” box.
Navigate to: C:\C28x\Labs\Lab6\Project and click OK. Then click Finish to
import the project. All build options have been configured the same as the previous lab.
The files used in this lab are:

Adc.c Gpio.c
CodeStartBranch.asm Lab.h
Defaultlsr_6.c Lab 5 6 7.cmd
DelayUs.asm Main_6.c

EPwm _6.cC PieCtrl.c
F2806x_Defaultlsr.h PieVect.c
F2806x_GlobalVariableDefs.c SysCtrl.c
F2806x_Headers_nonB10S.cmd Watchdog.-c

Setup ADC Initialization and Enable Core/PIE Interrupts

2.

In Main_6.c add code to call InitAdc() and InitEPwm() functions. The
InitEPwm() function is used to configure ePWM2 to trigger the ADC at a 50 kHz rate.
Details about the ePWM and control peripherals will be discussed in the next module.
Edit Adc. c to configure SOCO in the ADC as follows:

e SOCO converts input ADCINAO in single-sample mode

e SOCO has a 7 cycle acquisition window

e SOCQO is triggered by the ePWM2 SOCA

e SOCO triggers ADCINTL1 on end-of-conversion

e All SOCs run round-robin

Using the “PIE Interrupt Assignment Table” find the location for the ADC interrupt
“ADCINTL” (high-priority) and fill in the following information:

PIE group #: # within group:
This information will be used in the next step.

Modify the end of Adc. c to do the following:

- Enable the “ADCINTL” interrupt in the PIE (Hint: use the PieCtrlIRegs structure)
- Enable the appropriate core interrupt in the IER register

Open and inspect Defaultlsr_6.c. This file contains the ADC interrupt service
routine. Save your work and close the modified files.

Build and Load

7.

Click the “Bui 1d” button and watch the tools run in the Consolle window. Check for
errors in the Problems window.

C2000 Microcontroller Workshop - Analog-to-Digital Converter 6-21

Lab 6: Analog-to-Digital Converter

8. Click the “Debug” button (green bug). The “Debug Perspective” view should open, the
program will load automatically, and you should now be at the start of main(). If the
device has been power cycled since the last lab exercise, be sure to configure the boot
mode to EMU_BOOT_SARAM using the Scripts menu.

Run the Code

9. InMain_6.c place the cursor in the “main loop” section, right click on the mouse
key and select Run To Line.

10. Open a memory browser to view some of the contents of the ADC results buffer. The
address label for the ADC results buffer is AdcBuf (type &AdcBuf) in the “Data”
memory page. Select GO to view the contents of the ADC result buffer.

Note: EXxercise care when connecting any wires, as the power to the USB Docking Station is
on, and we do not want to damage the control CARD!

11. Using a connector wire provided, connect the ADCINAO (pin # ADC-AO0) to “GND” (pin
GND) on the Docking Station. Then run the code again, and halt it after a few seconds.
Verify that the ADC results buffer contains the expected value of ~0x0000. Note that
you may not get exactly 0x0000 if the device you are using has positive offset error.

12. Adjust the connector wire to connect the ADCINAO (pin # ADC-A0) to “+3.3V” (pin #
GPI10-20) on the Docking Station. (Note: pin # GPIO-20 has been set to “1” in Gpio.c).
Then run the code again, and halt it after a few seconds. Verify that the ADC results
buffer contains the expected value of ~OxOFFF. Note that you may not get exactly
OXOFFF if the device you are using has negative offset error.

13. Adjust the connector wire to connect the ADCINAO (pin # ADC-AQ) to GPIO18 (pin #
GPI10-18) on the Docking Station. Then run the code again, and halt it after a few
seconds. Examine the contents of the ADC results buffer (the contents should be
alternating ~0x0000 and ~OxOFFF values). Are the contents what you expected?

14. Open and setup a graph to plot a 50-point window of the ADC results buffer.
Click: Tools > Graph = Single Time and set the following values:

Acquisition Buffer Size 50

DSP Data Type 16-bit unsigned integer
Sampling Rate (Hz) 50000

Start Address AdcBuf

Display Data Size 50

Time Display Unit us

Select OK to save the graph options.

6-22 C2000 Microcontroller Workshop - Analog-to-Digital Converter

Lab 6: Analog-to-Digital Converter

15. Recall that the code toggled the GPIO18 pin alternately high and low. (Also, the ADC
ISR is toggling the LED LD3 on the control CARD as a visual indication that the ISR is
running). If you had an oscilloscope available to display GP1018, you would expect to
see a square-wave. Why does Code Composer Studio plot resemble a triangle wave?
What is the signal processing term for what is happening here?

16. Recall that the program toggled the GP1018 pin at a 50 kHz rate. Therefore, a complete
cycle (toggle high, then toggle low) occurs at half this rate, or 25 kHz. We therefore
expect the period of the waveform to be 40 us. Confirm this by measuring the period of
the triangle wave using the “measurement marker mode” graph feature. In the graph
window toolbar, left-click on the ruler icon with the red arrow. Note when you hover
your mouse over the icon, it will show “Toggle Measurement Marker Mode”.
Move the mouse to the first measurement position and left-click. Again, left-click on the
Toggle Measurement Marker Mode icon. Move the mouse to the second
measurement position and left-click. The graph will automatically calculate the
difference between the two values taken over a complete waveform period. When done,
clear the measurement points by right-clicking on the graph and select Remove All
Measurement Marks (or Ctrl+Alt+M).

Using Real-time Emulation
Real-time emulation is a special emulation feature that offers two valuable capabilities:

A. Windows within Code Composer Studio can be updated at up to a 10 Hz rate while the
MCU is running. This not only allows graphs and watch windows to update, but also
allows the user to change values in watch or memory windows, and have those
changes affect the MCU behavior. This is very useful when tuning control law
parameters on-the-fly, for example.

B. It allows the user to halt the MCU and step through foreground tasks, while specified
interrupts continue to get serviced in the background. This is useful when debugging
portions of a realtime system (e.g., serial port receive code) while keeping critical
parts of your system operating (e.g., commutation and current loops in motor control).

We will only be utilizing capability “A” above during the workshop. Capability “B” is a
particularly advanced feature, and will not be covered in the workshop.

17. The memory and graph windows displaying AdcBuf should still be open. The connector
wire between ADCINADO (pin # ADC-AQ) and GPIO18 (pin # GP10-18) should still be
connected. In real-time mode, we will have our window continuously refresh at the
default rate. To view the refresh rate click:

Window - Preferences..

and in the section on the left select the “Code Composer Studio” category. Click the plus
sign (+) to the left of “Code Composer Studio” and select “Debug”. In the section on the
right notice the default setting:

e “Continuous refresh interval (milliseconds)” = 500

Click OK.

C2000 Microcontroller Workshop - Analog-to-Digital Converter 6-23

Lab 6: Analog-to-Digital Converter

Note: Decreasing the “Continuous refresh interval” causes all enabled continuous refresh
windows to refresh at a faster rate. This can be problematic when a large number of
windows are enabled, as bandwidth over the emulation link is limited. Updating too
many windows can cause the refresh frequency to bog down. In this case you can just
selectively enable continuous refresh for the individual windows of interest.

18. Next we need to enable the graph window for continuous refresh. Select the “Single
Time” graph. In the graph window toolbar, left-click on the yellow icon with the arrows
rotating in a circle over a pause sign. Note when you hover your mouse over the icon, it
will show “Enable Continuous Refresh”. This will allow the graph to
continuously refresh in real-time while the program is running.

19. Enable the Memory Browser for continuous refresh using the same procedure as the
previous step.

20. Code Composer Studio includes Scripts that are functions which automate entering and
exiting real-time mode. Four functions are available:

e Run_Realtime_with_Reset (reset CPU, enter real-time mode, run CPU)

e Run_Realtime_with_Restart (restart CPU, enter real-time mode, run CPU)
o Full_Halt (exit real-time mode, halt CPU)

o Full_Halt _with_Reset (exitreal-time mode, halt CPU, reset CPU)

These Script functions are executed by clicking:

Scripts -> Realtime Emulation Control - Function

In the remaining lab exercises we will be using the first and third above Script functions
to run and halt the code in real-time mode.

21. Run the code and watch the windows update in real-time mode. Click:
Scripts - Realtime Emulation Control - Run_Realtime with_Reset

22. Carefully remove and replace the connector wire from GP1018. Are the values updating
in the Memory Browser and Single Time graph as expected?

23. Fully halt the CPU in real-time mode. Click:
Scripts - Realtime Emulation Control -> Full_Halt

24. So far, we have seen data flowing from the MCU to the debugger in realtime. In this
step, we will flow data from the debugger to the MCU.

e Open and inspect Main_6_c. Notice that the global variable DEBUG_TOGGLE is
used to control the toggling of the GPIO18 pin. This is the pin being read with the
ADC.

o Highlight DEBUG_TOGGLE with the mouse, right click and select “Add Watch
Expression..” and then select OK. The global variable DEBUG_TOGGLE should
now be in the “Expressions” window with a value of “1”.

e Enable the “Expressions” window for continuous refresh

6-24 C2000 Microcontroller Workshop - Analog-to-Digital Converter

Lab 6: Analog-to-Digital Converter

e Run the code in real-time mode and change the value to “0”. Are the results shown
in the memory and graph window as expected? Change the value back to “1”. As
you can see, we are modifying data memory contents while the processor is running
in real-time (i.e., we are not halting the MCU nor interfering with its operation in any
way)! When done, fully halt the CPU.

Terminate Debug Session and Close Project

25. Terminate the active debug session using the Terminate button. This will close the
debugger and return CCS to the “CCS Edit Perspective” view.

26. Next, close the project by right-clicking on Lab6 in the Project Explorer window
and select Close Project.

Optional Exercise

If you finish early, you might want to experiment with the code by observing the effects of
changing the OFFTRIM value. Open a watch window to the AdcRegs. ADCOFFTRIM register
and change the OFFTRIM value. If you did not get 0x0000 in step 11, you can calibrate out the
offset of your device. If you did get 0x0000, you can determine if you actually had zero offset, or
if the offset error of your device was negative. (If you do not have time to work on this optional
exercise, you may want to try this after the class).

End of Exercise

C2000 Microcontroller Workshop - Analog-to-Digital Converter 6 -25

Lab 6: Analog-to-Digital Converter

6 - 26 C2000 Microcontroller Workshop - Analog-to-Digital Converter

Control Peripherals

Introduction

This module explains how to generate PWM waveforms using the ePWM unit. Also, the eCAP
unit, and eQEP unit will be discussed.

Module Objectives

Module Objectives

¢ Pulse Width Modulation (PWM) review

¢ Generate a PWM waveform with the
Pulse Width Modulator Module (ePWM)

¢ Use the Capture Module (eCAP) to
measure the width of a waveform

¢ Explain the function of Quadrature
Encoder Pulse Module (eQEP)

Note: Different numbers of ePWM, eCAP, and eQEP modules are available on F2806x
devices. See the device datasheet for more information.

C2000 Microcontroller Workshop - Control Peripherals 7-1

Module Topics

Module Topics

CONTIOI PEFIPRNEIAIS..... .ottt bbbt bbb e et e e e nbe b e 7-1
[[oTo LU [T o] o] [ox: OSSO UR PRSPPI 7-2
PWWIM REBVIBW ...ttt ettt et bbbt bbb etk bt e b e e bt e b e st e m b e e e eb e e b e sbeeb e e bt en e e nebenbenbeas 7-3
BPWM Lttt bbbt Rt R R R bR R Rt R bbb bR bbb 7-5

ePWM Time-Base SUD-MOTUIEcoiiiiiiiee e 7-7
EPWM Compare SUD-MOTUIEcveieieieese et nes 7-11
ePWM Action Qualifier SUD-MOTUIE...........coiviiiiiiic e 7-13
Asymmetric and Symmetric Waveform Generation using the ePWM............ccccovviviv e s 7-19
PWM Computation EXAMPIE...........coiiiiiiieiieiee ettt bbbt see b 7-20
ePWM Dead-Band SUD-MOGUIE............ooiiiiieieee e 7-21
EPWM Chopper SUD-IMOAUIEccoiiiieieie et 7-24
ePWM Digital Compare and Trip-Zone SUb-MOAUIES............cccoiiiiiiiiiie e 7-27
ePWM Event-Trigger SUD-MOTUIE ..ot e 7-33
Hi-Resolution PWM (HRPWIM) ..ottt s nne e 7-36
BCAP bbb h R R £ R R £ Rt R £ R R R R R R Rt R R Rt Rt n bt n e b e enes 7-37
LT OO OO R TR 7-43
Lab 7: CoNtrol PeriphEralS...... ..ottt e e srenre e 7-45

C2000 Microcontroller Workshop - Control Peripherals

PWM Review

PWM Review

What is Pulse Width Modulation?

¢ PWM is ascheme to represent a
signal as a sequence of pulses
ofixed carrier frequency
ofixed pulse amplitude

¢pulse width proportional to
instantaneous signal amplitude

¢ PWM energy =~ original signal energy

IIIIIIII/Ht

Original Signal PWM representation

Pulse width modulation (PWM) is a method for representing an analog signal with a digital
approximation. The PWM signal consists of a sequence of variable width, constant amplitude
pulses which contain the same total energy as the original analog signal. This property is
valuable in digital motor control as sinusoidal current (energy) can be delivered to the motor
using PWM signals applied to the power converter. Although energy is input to the motor in
discrete packets, the mechanical inertia of the rotor acts as a smoothing filter. Dynamic motor
motion is therefore similar to having applied the sinusoidal currents directly.

C2000 Microcontroller Workshop - Control Peripherals 7-3

PWM Review

Why use PWM with Power
Switching Devices?

¢ Desired output currents or voltages are known

¢ Power switching devices are transistors
+ Difficult to control in proportional region
¢ Easy to control in saturated region

¢ PWM is adigital signal = easy for MCU to output

DC Supply DC Supply
P, pumumn
’ , PWM
De5|r|ed PWM approx.
signal to of desired
Unknown Gate Signal Gate Signal Known with PWM

Power-switching devices are difficult to control in the proportional region but are easy to control
in the saturation and cutoff region. Since PWM is a digital signal and easy for microcontrollers to
generate, it is ideal for use with power-switching devices.

7-4 C2000 Microcontroller Workshop - Control Peripherals

ePWM

ePWM

ePWM Module Signals and Connections

-
ePWMx-1
EPWMxSYNCI | EPWMXTZINT
GPIO T71-T73
MUX EPWMXINT PIE
EQEP1ERR — TZ4 EPWMXA
soe GPIO
svecrr CLOCKFAIL - 175 ePWMx e o
cpy, EMUSTOP - 776
EPWMxSOCA
comp | SOMPXOUT EPWMxSOCB | ADC

EPWMxSYNCO

A 4

ePWMx+1

__/

An ePWM module can be synchronized with adjacent ePWM modules. The generated PWM
waveforms are available as outputs on the GPIO pins. Additionally, the EPWM module can
generate ADC starter conversion signals and generate interrupts to the PIE block. External trip
zone signals can trip the output and generate interrupts, too. The outputs of the comparators are
used as inputs to the digital compare sub-module. Next, we will look at the internal details of the

ePWM module.

C2000 Microcontroller Workshop - Control Peripherals

Dell
Highlight

Dell
Rectangle

ePWM

ePWM Block Diagram
Shadowed Shadowed
Clock Compare Compare
Prescaler Register Register
L Compare Action Dead
TMEAZESE Logic Qualifier Band
TBELK 1 Counter —|
EPWMXxSYNCI EPWMxSYNCO -
i Period L
rrrrsrara . Register L — = EPWMXxA
rp
[SiEituz Chopper Zone
SYSCLKOUT EPWMxB
I_T TZy
Digital |ed T21-723
Compare [+— COMPxOUT

The ePWM, or enhanced PWM block diagram, consists of a series of sub-modules. In this
section, we will learn about the operation and details of each sub-module.

7-6 C2000 Microcontroller Workshop - Control Peripherals

ePWM

ePWM Time-Base Sub-Module

ePWM Time-Base Sub-Module

Clock

Prescaler

TBCLK

SYSCLK

Shadowed Shadowed
Compare Compare
Register Register

16-Bit
Time-Base
Counter

»

5

EPWMXxSYNCI

X

EPWMxSYNCO

ouT

Compare Action Dead
Logic Qualifier Band _|
Period |
Register L —— = EPWMXA
rip
[EEEETT Chopper Zone
EPWMxB
I_T TzZy
Digital |ed T21-723

Compare [+=— COMPxOUT

In the time-base sub-module, the clock prescaler divides down the device core system clock and
clocks the 16-bit time-base counter. The time-base counter is used to generate asymmetrical and
symmetrical waveforms using three different count modes: count-up mode, countdown mode, and

count up and down mode. A period register is used to control the maximum count value.

Additionally, the time-base counter has the capability to be synchronized and phase-shifted with

other ePWM units.

C2000 Microcontroller Workshop - Control Peripherals

Dell
Highlight

ePWM

ePWM Time-Base Count Modes

TBCTR

TBPRD

Asymmetrical
Waveform

TBCTR
TBPRD
Asymmetrical
Waveform
TBCTR
TBPRD
Symmetrical
Waveform

Count Up and Down Mode

The upper two figures show the time-base counter in the count-up mode and countdown mode.
These modes are used to generate asymmetrical waveforms. The lower figure shows the time-
base counter in the count up and down mode. This mode is used to generate symmetrical
waveforms.

7-8 C2000 Microcontroller Workshop - Control Peripherals

ePWM

ePWM Phase Synchronization

Ext. Syncin

Phase En Syncin

[4=0°_ J+—0"" EPWM1A
—
CTR=zero
CTR=CMPB :é)\o— EPWM1B

X—0

———
SyncOut
To eCAP1
Syncin
Phase En Syncin
¢=120° EPWM2A
CTR=zero —0
CTR=CMPB —0 EPWM2B
X=—0
SyncOut

Phase En Syncin

$=240° EPWM3A
m——
CTR=zero —0
CTR=CMPB —0 EPWM3B
———

X=—0
SyncOut

If needed, an ePWM module can be synchronized with adjacent ePWM modules.
Synchronization is based on a synch-in signal, time-base counter equals zero, or time-base
counter equals compare B register. Additionally, the waveform can be phase-shifted.

ePWM Time-Base Sub-Module Registers

(lab file: EPwm.c)

Name Description Structure

TBCTL Time-Base Control EPwmxRegs.TBCTL.all =
TBSTS Time-Base Status EPwmxRegs.TBSTS.all =
TBPHS Time-Base Phase EPwmxRegs.TBPHS =
TBCTR Time-Base Counter EPwmxRegs.TBCTR =
TBPRD Time-Base Period EPwmxRegs.TBPRD =

C2000 Microcontroller Workshop - Control Peripherals

Dell
Oval

Dell
Highlight

Dell
Highlight

Dell
Highlight

Dell
Highlight

ePWM

ePWM Time-Base Control Register

EPwmxRegs.TBCTL

Upper Register:

Phase Direction
0 = count down after sync

1 = count up after sync TBCLK = SYSCLKOUT / (HSPCLKDIV * CLKDIV)
e N
™~ - ™
15-14 13 12 - 10 9-7
FREE_SOFT PHSDIR CLKDIV HSPCLKDIV
Emulation Halt Behavior TB Clock Prescale High Speed TB
00 = stop after next CTR inc/dec 000=/1 (default) Clock Prescale
01 = stop when: 001=/2 000=/1
Up Mode; CTR = PRD 010 = /4 001=/2 (default)
Down Mode; CTR=0 011=/8 010=1/4
Up/Down Mode; CTR =0 100 =/16 011 =1/6
1x = free run (do not stop) 101 =/32 100=/8
110 = /64 101 =/10
111 =/128 110 =/12
111 =/14

(HSPCLKDIV is for legacy compatibility)

ePWM Time-Base Control Register

EPwmxRegs.TBCTL

Lower Register:
Counter Mode
00 = count up

Software Force Sync Pulse 01 = count down

0 =no action 10 = count up and down
1 =force one-time sync 11 = stop — freeze (default)
6 5-4 3 2 1-0
SWFSYNC SYNCOSEL PRDLD | PHSEN CTRMODE
Sync Output Select Period Shadow Load Phase Reg. Enable
(source of EPWMxSYNCO signal)§ 0 =load on CTR=0 0 =disable
82 = (E;-|P-\|$VM)(()SYNCI 1 =load immediately 1=CTR =TBPHS on

EPWMxSYNCI signal
10=CTR = CMPB

11 = disable SyncOut

C2000 Microcontroller Workshop - Control Peripherals

Dell
Rectangle

Dell
Highlight

Dell
Highlight

Dell
Highlight

ePWM

ePWM Compare Sub-Module

ePWM Compare Sub-Module

| Shadowed Shadowed
Clock Compare
Prescaler Register
Tin116e-BBgse Compare p| Action Dead
. _ o
TECK | counter Logic p| Qualifier Band _|
A
EPWMxSYNCI EPWMXSYNCO N
Period |
................... Register L — . EPWMXxA
rip
[Shadowed Chopper Zone
SYSCLKOUT EPWMxB
r__j TZy
Digital |ed T21-723

Compare [+=— COMPxOUT

The compare sub-module uses two compare registers to detect time-base count matches. These
compare match events are fed into the action qualifier sub-module. Notice that the output of this

block feeds two signals into the action qualifier.

ePWM Compare Event Waveforms

TBCTR

| e = compare events are fed to the Action Qualifier Sub-Module |

TBPRD

CMPA
CMPB

Waveform

TBCTR

TBPRD

CMPA
CMPB

Waveform

TBCTR

TBPRD

CMPA
CMPB

Count Down Mode

Symmetric

Count Up and Down Mode

----- Asymmetrical

Asymmetrical

al

Waveform

C2000 Microcontroller Workshop - Control Peripherals

ePWM

The ePWM Compare Event Waveforms figures shows the compare matches that are fed into the
action qualifier. Notice that with the count up and countdown mode, there are matches on the up-
count and down-count.

ePWM Compare Sub-Module Registers

(lab file: EPwm.c)

Name Description Structure

CMPCTL Compare Control EPwmxRegs.CMPCTL.all =
CMPA Compare A EPwmxRegs.CMPA =
CMPB Compare B EPwmxRegs.CMPB =

ePWM Compare Control Register

EPwmxRegs.CMPCTL

CMPA and CMPB Shadow Full Flag

(bit automatically clears on load)
0 = shadow not full
1 =shadow full

A

/ Y
15-10 9 8 7
reserved SHDWBFULL | SHDWAFULL reserved
6 5 4 3-2 1-0
SHDWBMODE | reserved | SHDWAMODE LOADBMODE LOADAMODE
NV
CMPA and CMPB Operating Mode CMPA and CMPB Shadow Load Mode
0 = shadow mode;) 00 =load on CTR=0
double buffer w/ shadow register 01 =load on CTR = PRD
1 =immediate mode; 10 =load on CTR =0 or PRD
shadow register not used 11 = freeze (no load possible)

7-12 C2000 Microcontroller Workshop - Control Peripherals

Dell
Highlight

Dell
Highlight

Dell
Highlight

ePWM

ePWM Action Qualifier Sub-Module

ePWM Action Qualifier Sub-Module
Shadowed Shadowed
.| Clock Compare Compare
Prescaler Register Register
L Compare Action »| Dead
VilineAEee Logic Qualifier »| Band
TBELK 1 Counter ” —|
EPWMxSYNCI EPWMXSYNCO)
i Period L
rrrrsrara . Register L — . EPWMXxA
rp
Stz Chopper Zone
SYSCLKOUT EPWMxB
I_T TZy
Digital |ed T21-723
Compare [+=— COMPxOUT

The action qualifier sub-module uses the inputs from the compare logic and time-base counter to
generate various actions on the output pins. These first few modules are the main components
used to generate a basic PWM waveform.

ePWM Action Qualifier Actions

for EPWMA and EPWMB

SIW Time-Base Counter equals: EPWM
Force Ouf[put
Zero CMPA CMPB TBPRD Actions
S)\(N)Z(CXA CXB)P(Do Nothing
SlN f (iA C¢B i) Clear Low
S¥V % CTA CTB ,I}) Set High
SW Z CA CB P
T T T T T Toggle

C2000 Microcontroller Workshop - Control Peripherals 7-13

ePWM

This table shows the vario
counter equals zero, comp
selected match option, the

us action qualifier compare-match options for when the time-base
are A match, compare B match, and period match. Based on the
output pins can be configured to do nothing, clear low, set high, or

toggle. Also, the output pins can be forced to any action using software.

TBCTR

TBPRD
CMPA

CMPB

ePWM Count Up Asymmetric Waveform

with Independent Modulation on EPWMA / B

i 1

! 1 ' 1

"""""" AR ity Kl S M |
1 i 1

é

z|[P
| X

N R el
z|[P] [cB CA z|[P] [cB CA
M x| [X d M x| | x J

EPWMA I

z|[P] [cB
I X Y
EPWMBI

CA z1|[P]| [cB CA zl[p
X [T x| ¥ X! | X

The next few figures show how the action qualifier uses the compare matches to modulate the
output pins. Notice that the output pins for EPWMA and EPWMB are completely independent.
Here, on the EPWMA output, the waveform will be set high on zero match and clear low on

compare A match. On the

EPWMB output, the waveform will be set high on zero match and

clear low on compare B match.

C2000 Microcontroller Workshop - Control Peripherals

ePWM

ePWM Count Up Asymmetric Waveform

with Independent Modulation on EPWMA
TBCTR

TBPRD
CMPB

CMPA

EPWMA |

4 z
T T

EPWMB |

Z
T

This figure has the EPWMA output set high on compare A match and clear low on compare B
match, while the EPWMB output is configured to toggle on zero match.

ePWM Count Up-Down Symmetric
Waveform

with Independent Modulation on EPWMA / B

TBCTR

TBPRD
CMPB

CMPA

EPWMB |

Here you can see that we can have different output actions on the up-count and down-count using
a single compare register. So, for the EPWMA and EPWMB outputs, we are setting high on the

C2000 Microcontroller Workshop - Control Peripherals

ePWM

compare A and B up-count matches and clearing low on the compare A and B down-down
matches.

ePWM Count Up-Down Symmetric
Waveform

TBCTR with Independent Modulation on EPWMA

TBPRD
CMPB

CMPA

B
ED
ED

EPWMB I

And finally, again using different output actions on the up-count and down-count, we have the
EPWMA output set high on the compare A up-count match and clear low on the compare B

down-count match. The EPWMB output will clear low on zero match and set high on period
match.

C2000 Microcontroller Workshop - Control Peripherals

ePWM

ePWM Action Qualifier Sub-Module
Registers

(lab file: EPwm.c)

Name Description Structure

AQCTLA AQ Control Output A EPwmxRegs.AQCTLA.all =
AQCTLB AQ Control Output B EPwmxRegs.AQCTLB.all =
AQSFRC AQ S/W Force EPwmxRegs.AQSFRC.all =
AQCSFRC AQ Cont. S/W Force EPwmxRegs.AQCSFRC.all =

ePWM Action Qualifier Control Register

EPwmxRegs.AQCTLy (y =Aor B)

Action when Action when
CTR = CMPB CTR = CMPA Action when
on UP Count on UP Count CTR=0
15-12 11-10 9-8 7-6 5-4 3-2 1-0
reserved CBD CBU CAD CAU PRD ZRO
Action when Action when Action when
CTR = CMPB CTR = CMPA CTR =PRD

on DOWN Count on DOWN Count

00 = do nothing (action disabled)

01 = clear (low)

10 = set (high)

11 = toggle (low — high; high — low)

C2000 Microcontroller Workshop - Control Peripherals

ePWM

ePWM Action Qualifier S/W Force
Register
EPwmxRegs.AQSFRC
One-Time S/W Force on Output B /A

0 =no action
1 =single s/w force event

T

15-8 7-6 5 4-3 2 1-0
reserved RLDCSF OTSFB ACTSFB OTSFA ACTSFA
AQSFRC Shadow Reload Options Action on One-Time S/W Force B/A
00 =load on event CTR =0 00 = do nothing (action disabled)
01 =load on event CTR = PRD 01 =clear (low)
10 =load on event CTR=00or CTR=PRD 10 = set (high)
11 = load immediately (from active reg.) 11 =toggle (low — high; high - low)

ePWM Action Qualifier Continuous S/W
Force Register

EPwmxRegs.AQCSFRC

15-4 3-2 1-0
reserved CSFB CSFA

_

Continuous S/W Force on Output B /A

00 = forcing disabled
01 =force continuous low on output
10 =force continuous high on output
11 =forcing disabled

C2000 Microcontroller Workshop - Control Peripherals

ePWM

Asymmetric and Symmetric Waveform Generation using
the ePWM

PWM switching frequency:

The PWM carrier frequency is determined by the value contained in the time-base period register,
and the frequency of the clocking signal. The value needed in the period register is:

switching period
timer period

-1

Asymmetric PWM: period register :(

switching period

Symmetric PWM: period register = ¥ _
2(timer period)

Notice that in the symmetric case, the period value is half that of the asymmetric case. This is
because for up/down counting, the actual timer period is twice that specified in the period register
(i.e. the timer counts up to the period register value, and then counts back down).

PWM resolution:

The PWM compare function resolution can be computed once the period register value is
determined. The largest power of 2 is determined that is less than (or close to) the period value.
As an example, if asymmetric was 1000, and symmetric was 500, then:

Asymmetric PWM: approx. 10 bit resolution since 2'° = 1024 ~ 1000

Symmetric PWM: approx. 9 bit resolution since 2° = 512 ~ 500

PWM duty cycle:

Duty cycle calculations are simple provided one remembers that the PWM signal is initially
inactive during any particular timer period, and becomes active after the (first) compare match
occurs. The timer compare register should be loaded with the value as follows:

Asymmetric PWM: TXCMPR = (100% - duty cycle) * TxPR

Symmetric PWM: TxCMPR = (100% - duty cycle) * TxPR

Note that for symmetric PWM, the desired duty cycle is only achieved if the compare registers
contain the computed value for both the up-count compare and down-count compare portions of
the time-base period.

C2000 Microcontroller Workshop - Control Peripherals 7-19

Dell
Rectangle

Dell
Highlight

Dell
Highlight

Dell
Highlight

Dell
Highlight

Dell
Highlight

ePWM

PWM Computation Example

Symmetric PWM Computation Example

¢ Determine TBPRD and CMPA for 90 kHz, 25% duty
symmetric PWM from a 90 MHz time base clock

fowm = 90 kHz
(Tewm = 11.1 ps)

1 freax _ 1 90 MHz
e 2 90 kHz

CMPA = (100% - duty cycle)*TBPRD = 0.75*500 = 375

TBPRD = =500

Asymmetric PWM Computation Example

¢ Determine TBPRD and CMPA for 90 kHz, 25% duty
asymmetric PWM from a 90 MHz time base clock

foun = 90 kHz
(Tpwm = 11.1 ps)

Period
Compare

Counter

L feic = 90 MHZ _I
T =11.1ns
PWM Pln (TBCLK)

fracik 90 MHz
= -1= -1=999

CMPA = (100% - duty cycle)*(TBPRD+1) - 1 = 0.75%(999+1) - 1 = 749

7-20 C2000 Microcontroller Workshop - Control Peripherals

ePWM

ePWM Dead-Band Sub-Module

.| Clock Compare
Prescaler Register

Shadowed J Shadowed J

Compare
Register

5

ePWM Dead-Band Sub-Module

16-Bit

Action

Compare
Logic

Time-Base

Dead

Qualifier

TBELK 1 Counter

—| Band

:

EPWMXxSYNCI EPWMxSYNCO)
Period L

fereeeeesesssins : Register

Shadowed

EPWMXxA

L’ PWM

SYSCLKOUT

»|Chopper Zone

Trip

EPWMxB
I_T { TZy

Digital (e T21-723
Compare [+=— COMPxOUT

The dead-band sub-module provides a means to delay the switching of a gate signal, thereby

allowing time for gates to turn off and preventing a short circuit.

gate signals are
complementary PWM H (

Motivation for Dead-Band

supply rail

to power
switching
device

¢ Transistor gates turn on faster than they shut off
¢ Short circuit if both gates are on at same time!

C2000 Microcontroller Workshop - Control Peripherals

Dell
Highlight

ePWM

To explain further, power-switching devices turn on faster than they shut off. This issue would
momentarily provide a path from supply rail to ground, giving us a short circuit. The dead-band
sub-module alleviates this issue.

Dead-band control provides a convenient means of combating current shoot-through problems in
a power converter. Shoot-through occurs when both the upper and lower gates in the same phase
of a power converter are open simultaneously. This condition shorts the power supply and results
in a large current draw. Shoot-through problems occur because transistors open faster than they
close, and because high-side and low-side power converter gates are typically switched in a
complimentary fashion. Although the duration of the shoot-through current path is finite during
PWM cycling, (i.e. the closing gate will eventually shut), even brief periods of a short circuit
condition can produce excessive heating and over stress in the power converter and power supply.

ePWM Dead-Band Block Diagram
PWMXA
1| Rising Lo To !
fo Edlge L0 e S1 | pPwWMxA
: S4 E De ay ' \o_:—z_o H
L N | : : : :
e owmpepor—p T s
I (10-bit ' ' '
; ! counter)
; Falling :
fo i Sg%f, 50335FED51 5
0 S5 | | : j .05 S0 | PWMxB
Lo oupPor——
L1] @obit Lo
counter)
IN-MODE f POLSEL OUT-MODE
HALFCYCLE
PWMxB

Two basic approaches exist for controlling shoot-through: modify the transistors, or modify the
PWM gate signals controlling the transistors. In the first case, the opening time of the transistor
gate must be increased so that it (slightly) exceeds the closing time. One way to accomplish this
is by adding a cluster of passive components such as resistors and diodes in series with the
transistor gate, as shown in the next figure.

by-pass diode

PWM

signal
g R

Shoot-through control via power circuit modification

The resistor acts to limit the current rise rate towards the gate during transistor opening, thus
increasing the opening time. When closing the transistor however, current flows unimpeded from

C2000 Microcontroller Workshop - Control Peripherals

Dell
Highlight

Dell
Rectangle

ePWM

the gate via the by-pass diode and closing time is therefore not affected. While this passive
approach offers an inexpensive solution that is independent of the control microprocessor, it is
imprecise, the component parameters must be individually tailored to the power converter, and it
cannot adapt to changing system conditions.

The second approach to shoot-through control separates transitions on complimentary PWM
signals with a fixed period of time. This is called dead-band. While it is possible to perform
software implementation of dead-band, the C28x offers on-chip hardware for this purpose that
requires no additional CPU overhead. Compared to the passive approach, dead-band offers more
precise control of gate timing requirements. In addition, the dead time is typically specified with
a single program variable that is easily changed for different power converters or adapted on-line.

ePWM Dead-Band Sub-Module Registers

(lab file: EPwm.c)

Name Description Structure

DBCTL Dead-Band Control EPwmxRegs.DBCTL.all =
DBRED 10-bit Rising Edge Delay EPwmxRegs.DBRED =
DBFED\ 10-bit Falling Edge Delay EPwmxRegs.DBFED =

Rising\Edge Delay = T1gc .k X DBRED
Falling Edge Delay = Tygc x X DBFED

C2000 Microcontroller Workshop - Control Peripherals 7-23

ePWM

ePWM Dead Band Control Register

EPwmxRegs.DBCTL

Polarity Select
) 00 = active high
Half Cycle Clocking 01 = active low complementary (RED)
0 = full cycle clocking (TBCLK rate) 10 = active high complementary (FED)
1 = half cycle clocking (TBCLK*2 rate) 11 = active low

15 14 -6 5-4 3-2 1-0
HALFCYCLE reserved IN_MODE POLSEL OUT_MODE

In-Mode Control Out-Mode Control
00 = PWMXA is source for RED and FED 00 = disabled (DBM bypass)
01 = PWMXxA is source for FED 01 = PWMXxXA = no delay

PWMxB is source for RED PWMxB = FED
10 = PWMxA is source for RED 10 = PWMxA = RED

PWMxB is source for FED PWMxB = no delay

11 = PWMxB is source for RED and FED 11 = RED & FED (DBM fully enabled)

ePWM Chopper Sub-Module
ePWM Chopper Sub-Module

Shadowed

Shadowed
Compare

CompareJ

Clock
Prescaler Register Register
A Compare Action Dead
VllineAiEe Logic Qualifier Band
TBCLC 1 Counter —|
EPWMXxSYNCI EPWMxSYNCO .
: Period |
M. . Register L E—— = EPWMXxA
i P Trip
[Sictual Chopper »{ Zone
SYSCLKOUT EPWMxB
I_t Tzy

Digital le— TZ1-TZ3
Compare «—— COMPXxOUT

7-24 C2000 Microcontroller Workshop - Control Peripherals

Dell
Highlight

Dell
Highlight

Dell
Highlight

ePWM

The PWM chopper sub-module uses a high-frequency carrier signal to modulate the PWM

waveform. This is used with pulsed transformer-based gate drives to control power-switching

elements.

Purpose of the PWM Chopper

¢ Allows a high frequency carrier
signal to modulate the PWM
waveform generated by the Action
Qualifier and Dead-Band modules

¢ Used with pulse transformer-based
gate drivers to control power
switching elements

As you can see in this figure, a high-frequency carrier signal is ANDed with the ePWM outputs.
Also, this circuit provides an option to include a larger, one-shot pulse width before the sustaining

pulses.

EPWMXxA |

CHPFREQ |

EPWMXA |

ePWM Chopper Waveform

EPWMxB j §

EPWMxB |||| i

i« i
' Programmable

A

| Pulse Width |
OSHT (OSHTWTH) ; ,
E I Sustaining .]
EPWMXA | |||||||||||||| Pulses ||||||||||||||

With One-Shot Pulse on EPWMXxA and/or EPWMxB

C2000 Microcontroller Workshop - Control Peripherals

ePWM

ePWM Chopper Sub-Module Registers

(lab file: EPwm.c)

Name Description Structure
PCCTL PWM-Chopper Control EPwmxRegs.PCCTL.all =

ePWM Chopper Control Register

EPwmxRegs.PCCTL

Chopper CIk Freq.

000 = SYSCLKOUT/8 + 1
001 = SYSCLKOUT/8 + 2
010 = SYSCLKOUT/8 + 3
011 = SYSCLKOUT/8 + 4
100 = SYSCLKOUT/8 + 5)
101 = SYSCLKOUT/8 + 6 0 = disable (bypass)
110 = SYSCLKOUT/8 + 7 1=enable

111 = SYSCLKOUT/8 + 8 \

15-11 10-8 7-5 4-1 0
reserved CHPDUTY CHPFREQ OSHTWTH CHPEN

Chopper Clk Duty Cycle
000 = 1/8 (12.5%)

001 = 2/8 (25.0%)

010 = 3/8 (37.5%)

011 = 4/8 (50.0%)

100 = 5/8 (62.5%)

101 = 6/8 (75.0%)

110 = 7/8 (87.5%)

111 =reserved

Chopper Enable

One-Shot Pulse Width

0000 = 1 x SYSCLKOUT/8
0001 = 2 x SYSCLKOUT/8
0010 = 3 x SYSCLKOUT/8
0011 =4 x SYSCLKOUT/8
0100 = 5x SYSCLKOUT/8
0101 = 6 x SYSCLKOUT/8
0110 =7 x SYSCLKOUT/8
0111 = 8 x SYSCLKOUT/8

1000 = 9 x SYSCLKOUT/8
1001 =10 x SYSCLKOUT/8
1010 = 11 x SYSCLKOUT/8
1011 = 12 x SYSCLKOUT/8
1100 = 13 x SYSCLKOUT/8
1101 = 14 x SYSCLKOUT/8
1110 =15 x SYSCLKOUT/8
1111 = 16 x SYSCLKOUT/8

C2000 Microcontroller Workshop - Control Peripherals

ePWM

ePWM Digital Compare and Trip-Zone Sub-Modules

ePWM Digital Compare and Trip-Zone
Sub-Modules
Shadowed Shadowed
.| Clock Compare Compare
Prescaler Register Register
_ Tirr116e-BBgse Compare Action Dead
TBCLK Counter Logic Qualifier Band _|
EPWMxSYNCI EPWMXSYNCO)
i Period L
rrrrsrara . Register L — - EPWMXxA
rip —»
i Stz Chopper Zone
SYSCLKOUT 2 ChWMxB
|_4 o— TZy
Digital |« T21-723
Compare|<€— COMPxOUT

The trip zone and digital compare sub-modules provide a protection mechanism to protect the
output pins from abnormalities, such as over-voltage, over-current, and excessive temperature
rise.

Purpose of the Digital Compare
Sub-Module

¢ Generates ‘compare’ events that can:
¢ Trip the ePWM
¢ Generate a Trip interrupt
¢ Sync the ePWM
¢ Generate an ADC start of conversion

¢ The inputs to the digital compare module are:
¢ Analog comparator outputs (COMP1, COMP2, COMP3)
¢ Trip-zone input pins (TZ1, TZ2, TZ3)

¢ A compare event is generated when one or more
of its selected inputs are either high or low (shown
on later slide)

¢ Optional ‘Blanking’ can be used to temporarily
disable the compare action in alignment with
PWM switching to eliminate noise effects

C2000 Microcontroller Workshop - Control Peripherals 7-27

Dell
Highlight

Dell
Highlight

ePWM

Digital Compare Sub-Module Signals

Time-Base Sub-Module
Digital Trip _,M——| Generate PWM Sync [

DCAH
— d

TZ1 N Egﬁ%eﬁé DI Event-Trigger Sub-Module !
: blanking —»| Generate SOCA |
TZ2 : T o) o
N ‘ Digital Trip |<~~ Trlp Zone Sub-Module |
DCAL Event A2 Trip PWMA Output v
— Compare - -
TZ3 , Generate Trip Interrupt | | |
' DCAEVT2 o
COMP10UT ‘ Time-Base Sub-Module |
| |]DcBH Digitél Trip DCBEVTI—»I Generate PWM Sync [
Event B1 . oo
COMP20UT — Compare |<----, IEvent-Trlgger Sub-Module :
s | Generate SOCB |
; blanking -
COMP30UT Digital Trip |-~ Tr|p-Zone Sub-Module
DCBL Event B2 Trip PWMB Output
— Compare - .
Generate Trip Interrupt | ;
! ! DCBEVT2 T
DCTRIPSEL TZDCSEL DCACTL/ DCBCTL ----- '

The inputs to the digital compare sub-module are the trip zone pins and the analog comparator
outputs. This module generates compare events that can generate a PWM sync, generate an ADC
start of conversion, trip a PWM output, and generate a trip interrupt. Optional blinking can be
used to temporarily disable the compare action in alignment with PWM switching to eliminate

noise effects.

*

Digital Compare Events

¢ The user selects the input for each of

DCAH, D

Each A and B compare uses its
corresponding DCyH/L inputs (y = A or B)

CAL, DCBH, DCBL

The user selects the signal state that
triggers each compare from the following
choices:

i. DCxH - low DCxL - don’t care

ii. DCxH - high DCxL - don’t care

iii. DCxL = low DCxH - don’t care

iv. DCxL - high DCxH > don’t care

v. DCxL - high DCxH - low

C2000 Microcontroller Workshop - Control Peripherals

Dell
Oval

Dell
Highlight

ePWM

The PWM trip zone has a fast, clock-independent logic path to the PWM output pins where the
outputs can be forced to high impedance. Two actions are supported: One-shot trip for major
short circuits or over-current conditions, and cycle-by-cycle trip for current limiting operation.

Over
Current
Sensors

¢ Supports:

Trip-
¢ Trip-Zone has a fast, clock independent logic path to high-impedance
the EPWMXxA/B output pins

¢ Interrupt latency may not protect hardware when responding to over
current conditions or short-circuits through ISR software

Zone Features

#1) one-shot trip for major short circuits or over
current conditions

#2) cycle-by-cycle trip for current limiting operation

COMPxOUT Digital
*|Compare
TZ1 -

TZ2

TZ3
eQEP1 TZ4 EQEP1ERR
SyscTRL 125 CLOCKFAIL
cpu_126 EMUSTOP

CPU
core
EPWMXTZINT
Cycle-by-Cycle
Mode
One-Shot
Mode

\ 4

EPWMXxA
—

EPWMxB
——

nw—HCoUHCO Z=7T

The power drive protection is a safety feature that is provided for the safe operation of systems
such as power converters and motor drives. It can be used to inform the monitoring program of
motor drive abnormalities such as over-voltage, over-current, and excessive temperature rise. If
the power drive protection interrupt is unmasked, the PWM output pins will be put in the high-
impedance state immediately after the pin is driven low. An interrupt will also be generated.

C2000 Microcontroller Workshop - Control Peripherals

Dell
Highlight

Dell
Highlight

Dell
Highlight

Dell
Highlight

ePWM

ePWM Digital Compare and Trip-Zone

Sub-Module Registers

(lab file: EPwm.c)

Name Description Structure

DCACTL DC A Control EPwmxRegs.DCACTL.all =
DCBCTL DC B Control EPwmxRegs.DCBCTL.all =
DCTRIPSEL DC Trip Select EPwmxRegs.DCTRIPSEL .all =
DCCAPCTL Capture Control | EPWMxRegs.DCCAPCTL.all =
DCCAP Counter Capture | EPwmxRegs.DCCAP =
DCFCTL DC Filter Control | EPwmxRegs.DCFCTL.all =
DCFOFFSETCNT | Filter Offset Ctr | EPwmxRegs.DCOFFSETCNT =
DCFWINDOW Filter Window EPwmxRegs.DCFWINDOW =
DCFWINDOWCNT | Filter Window Ctr | EPwmxRegs.DCFWINDOWCNT =
TZDCSEL Digital Compare EPwmxRegs.TZDCSEL .all =
TZCTL Trip-Zone Control | EPwmxRegs.TZCTL.all =
TZSEL Trip-Zone Select | EPwmxRegs.TZSEL.all =
TZEINT Enable Interrupt EPwmxRegs.TZEINT.all =
TZFLG Trip-Zone Flag EPwmxRegs.TZFLG.all =
TZCLR Trip-Zone Clear EPwmxRegs.TZCLR.all =
TZFRC Trip-Zone Force EPwmxRegs.TZFRC.all =

ePWM Digital Compare Trip Select
Register

EPwmxRegs.DC

Digital Compare B
Low Input Source Select

TRIPSEL

Digital Compare B
High Input Source Select

15-12 11-8
DCBLCOMPSEL DCBHCOMPSEL
7-4 3-0
DCALCOMPSEL DCAHCOMPSEL

Digital Compare A
Low Input Source Select

~ Digital Compare A
High Input Source Select

1000 = COMP10
1001 = COMP20
1010 = COMP30

0000 = TZ1 input
0001 =TZ2 input
0010 = TZ3 input

other values reserved

UT input
UT input
UT input

C2000 M

icrocontroller Workshop - Control Peripherals

ePWM

ePWM Trip-Zone Digital Compare Event
Select Register

EPwmxRegs.TZDCSEL

15-12 11-9 8-6 5-3 2-0
reserved DCBEVT2 | DCBEVT1 | DCAEVT2 | DCAEVT1

Digital Compare Output B Digital Compare Output A
Event 2/1 Select Event 2/1 Select

000 = event disable

001 = DCBH = low, DCBL = don’t care
010 = DCBH - high, DCBL - don’t care
011 = DCBL = low, DCBH = don't care
100 = DCBL = high, DCBH > don’t care
101 = DCBL = high, DCBH > low

11x =reserved

ePWM Digital Compare Control Register

EPwmxRegs.DCyCTL (y = A or B)

DCyEVT2 Source Force DCyEVT1 SOC DCyEVT1 Source Force
Sync Signal Select Generation Sync Signal Select
0 =synchronous 0 =disable 0 =synchronous
1 =asynchronous 1 =enable 1 =asynchronous
15-10 9 8 7-4 3 2 1 0
EVT2FRC [EVT2SRC EVT1 EVT1 | EVT1FRC |EVT1SRC
reserved | SyNCseL | SeL |'eS®V€d| SYNCE | SOCE | SYNCSEL | SEL
DCyEVT2 Source DCyEVT1 SYNC DCyEVT1 Source
Signal Select Generation Signal Select
0 =DCyEVT2 signal 0 =disable 0 = DCyEVT1 signal
1 = DCEVTFILT signal 1 =-enable 1 = DCEVTFILT signal

C2000 Microcontroller Workshop - Control Peripherals

ePWM

ePWM Trip-Zone Control Register

EPwmxRegs.TZCTL

15-12 11-10 9-8 7-6 5-4 3-2 1-0

reserved DCBEVT2 |DCBEVT1|DCAEVT2 |DCAEVT1 TZB TZA

L |

Digital Compare Output Digital Compare Output |TZ1 to TZ6 Action on
Event 2/1 Action Event 2/1 Action EPWMxB / EPWMxA
on EPWMxB on EPWMxA

00 = high impedance

01 = force high

10 = force low

11 = do nothing (disable)

ePWM Trip-Zone Select Register

EPwmxRegs.TZSEL

One-Shot Trip Zone

(event only cleared under S/W
control; remains latched)

0 = disable as trip source
1 =enable as trip source

/\

15 14 13 12 11 10 9 8

DCBEVT1|DCAEVT1l| OSHT6 | OSHT5 | OSHT4 | OSHT3 | OSHT2 | OSHT1

7 6 5 4 3 2 1 0

DCBEVT2 |DCAEVT2| CBC6 CBC5 CBC4 CBC3 CBC2 CBC1

Y

Cycle-by-Cycle Trip Zone
(event cleared when CTR = 0;
i.e. cleared every PWM cycle)
0 = disable as trip source
1 =enable as trip source

C2000 Microcontroller Workshop - Control Peripherals

Dell
Rectangle

Dell
Highlight

Dell
Highlight

ePWM

ePWM Trip-Zone

Enable Interrupt

Register

EPwmxRegs.TZEINT

15-7 6 5 4 3 2 1 0
reserved [DCBEVT2|DCBEVT1|DCAEVT2 |[DCAEVT1| OST CBC |[reserved
Digital Compare Digital Compare One-Shot Cycle-by-Cycle
Output B Event 2/1 Output A Event 2/1 Interrupt Enable Interrupt Enable
Interrupt Enable Interrupt Enable 0 = disable 0 =disable
0 =disable 0 =disable 1 =-enable 1 =-enable
1 =enable 1 =-enable

ePWM Event-Trigger Sub-Module

ePWM Event-Trigger Sub-Module
Shadowed Shadowed
Clock Compare Compare
Prescaler Register Register
A Compare Action Dead
VllineAiEe Logic Qualifier Band
TBCHC | Counter —|
EPWMXxSYNCI EPWMxSYNCO N
: Period |
L, Register L — = EPWMxA
rip
[Shadowed | Chopper Zone
SYSCLKOUT EPWMxB
I_t Tzy
Digital [« T21-723
Compare|+—— COMPxOUT

The event-trigger sub-module is used to provide a triggering signal for interrupts and the start of

conversion for the ADC.

C2000 Microcontroller Workshop - Control Peripherals

Dell
Highlight

Dell
Highlight

ePWM

ePWM Event-Trigger Interrupts and SOC

EPWMA |

e ————
'

EPWMB |

CTR=PRD |

CTR=0o0r PRD

CTRU = CMPA |

CTRD = CMPA |
CTRU = CMPB |
CTRD = CMPB |

Event-trigger interrupts and start of conversions can be generated on counter equals zero, counter
equal period, counter equal zero or period, counter up equal compare A, counter down equal
compare A, counter up equal compare B, counter down equal compare B. Notice counter up and
down are independent and separate.

ePWM Event-Trigger Sub-Module
Registers

(lab file: EPwm.c)

Name Description Structure

ETSEL Event-Trigger Selection EPwmxRegs.ETSEL .all =
ETPS Event-Trigger Pre-Scale EPwmxRegs.ETPS.all =
ETFLG Event-Trigger Flag EPwmxRegs.ETFLG.all =
ETCLR Event-Trigger Clear EPwmxRegs.ETCLR.all =
ETFRC Event-Trigger Force EPwmxRegs.ETFRC.all =

C2000 Microcontroller Workshop - Control Peripherals

Dell
Highlight

ePWM

ePWM Event-Trigger Selection Register

EPwmxRegs.ETSEL

Enable SOCB / A

Enable EPWMXINT

0 =disable 0 =disable
1 =enable 1 =enable
15 14 -12 11 10-8 7-4 3 2-0
SOCBEN SOCBSEL SOCAEN SOCASEL reserved INTEN | INTSEL

EPWMxSOCB / A Select

000 = DCBEVT1/ DCAEVT1
001=CTR=0

010=CTR =PRD

011 =CTR=0o0r PRD

100 = CTRU = CMPA

101 = CTRD = CMPA

110 = CTRU = CMPB

111 = CTRD = CMPB

EPWMXINT Select

000 = reserved
001=CTR=0
010=CTR =PRD

011 =CTR=0o0r PRD
100 = CTRU = CMPA
101 = CTRD = CMPA
110 = CTRU = CMPB
111 = CTRD = CMPB

15-14

ePWM Event-Trigger Prescale Register

EPwmxRegs.ETPS

EPWMxSOCB / A Counter
(number of events have occurred)
00 = no events

01 =1event

10 =2 events

11 = 3 events

/\

13-12 11-10 9-8

EPWMXINT Counter

(number of events have occurred)
00 = no events

01 =1 event

10 = 2 events

11 = 3 events

7-4 2-3 1-0

SOCBCNT

SOCBPRD | SOCACNT

SOCAPRD

INTPRD

INTCNT

reserved

EPWMxSOCB / A Period
(number of events before SOC)
00 = disabled

01 = SOC on first event

10 = SOC on second event
11 = SOC on third event

EPWMXINT Period
(number of events before INT)
00 = disabled

01 =INT on first event

10 = INT on second event
11 = INT on third event

C2000 Microcontroller Workshop - Control Peripherals

ePWM

Hi-Resolution PWM (HRPWM)

PWM Period

Hi-Resolution PWM (HRPWM)

S

Regular
Device Clock PWM Step
i ie.11.1
(e 90MHZ) ||| | || R EEE L LR PRy G ttns)

HRPWM divides a clock Calibration Logic tracks the
cycle into smaller steps

i number of Micro Steps per
called Micro Steps clock to account for

(Step Size ~= 150 ps) | variations caused by
Temp/Volt/Process

Calibration Logic

| HRPWM
FEEEEEEEEEEETETEEE TR Micro Step (=150 ps)

¢ Significantly increases the resolution of conventionally derived digital PWM

¢ Uses 8-bit extensions to Compare registers (CMPxHR), Period register
(TBPRDHR) and Phase register (TBPHSHR) for edge positioning control

¢ Typically used when PWM resolution falls below ~9-10 bits which occurs at
frequencies greater than ~180 kHz (with system clock of 90 MHz)

¢ Not all ePWM outputs support HRPWM feature (see device datasheet)

The high-resolution PWM feature significantly increases the resolution of conventionally-derived
PWM. High-resolution PWM divides a clock cycle into smaller steps called micro steps. The
step size is approximately 150 picoseconds. This is typically used when PWM resolution falls
below approximately 9 or 10 bits, which occurs at frequencies greater than approximately 180

kHz with a system clock of 90 MHz.

C2000 Microcontroller Workshop - Control Peripherals

eCAP

eCAP

Capture Module (eCAP)

D | L

Timer

| Trigger Q
\(pin
Timestamp
Values

¢ The eCAP module timestamps transitions
on a capture input pin

The capture units allow time-based logging of external TTL signal transitions on the capture input
pins. The C28x has up to six capture units.

Capture units can be configured to trigger an A/D conversion that is synchronized with an
external event. There are several potential advantages to using the capture for this function over
the ADCSOC pin associated with the ADC module. First, the ADCSOC pin is level triggered,
and therefore only low to high external signal transitions can start a conversion. The capture unit
does not suffer from this limitation since it is edge triggered and can be configured to start a
conversion on either rising edges or falling edges. Second, if the ADCSOC pin is held high
longer than one conversion period, a second conversion will be immediately initiated upon
completion of the first. This unwanted second conversion could still be in progress when a
desired conversion is needed. In addition, if the end-of-conversion ADC interrupt is enabled, this
second conversion will trigger an unwanted interrupt upon its completion. These two problems
are not a concern with the capture unit. Finally, the capture unit can send an interrupt request to
the CPU while it simultaneously initiates the A/D conversion. This can yield a time savings
when computations are driven by an external event since the interrupt allows preliminary
calculations to begin at the start-of-conversion, rather than at the end-of-conversion using the
ADC end-of-conversion interrupt. The ADCSOC pin does not offer a start-of-conversion
interrupt. Rather, polling of the ADCSOC bit in the control register would need to be performed
to trap the externally initiated start of conversion.

C2000 Microcontroller Workshop - Control Peripherals 7-37

eCAP

Some Uses for the Capture Module

¢ Measure the time width of a pulse
¢ Low speed velocity estimation from incr. encoder:

Problem: At low speeds, calculation of speed

o X = X1
based on a measured position change at Vy &
fixed time intervals produces large estimate At
errors

Alternative: Estimate the speed using a measured time interval
at fixed position intervals

Signal from one
L quadrature ‘

t - teg encoder channel
}-— AX —-{

~

Vi &

¢ Auxiliary PWM generation

eCAP Module Block Diagram - capture Mode

CAP1POL
_,| Capture1 |__| | __| Polarity |__
Register Select 1
CAP2POL
| Captgrez o Polarity |_|
Register = Select 2 PRESCALE
32-Bit 3 E
' - vent
> Time-Stamp — g cApapoL | | Prescale ECAPX
Counter > :
i Capture 3 o Polarity pin
L > q a— [
Register Select 3
SYSCLKOUT
CAP4POL
| | Capture 4 | Polarity | |
Register Select 4

The capture module features a 32-bit time-stamp counter to minimize rollover. Each module has
four capture registers. Polarity can be set to trigger on rising or falling edge, and trigger events

7-38 C2000 Microcontroller Workshop - Control Peripherals

eCAP

can be pre-scaled. The capture module can operate in absolute time-stamp mode or difference

mode where the counter resets on each capture.

eCAP Module Block Diagram - apwm Mode

[shadowed Period "
)) Period Register sm%d%W
mmediate| Register | (CAP3)
(CAP1)
32-Bit PWM
¢ Time-Stamp Compare (—————
Counter Logic ECAP
i pin
SYSCLKOUT
) diat Compare
Immediate]
mode R AT Compare shadow
(CAP2) Register | “hode

| Shadowed (CAP4)

If the capture module is not used, it can be configured as an asynchronous PWM module.

eCAP Module Registers

(lab file: ECap.c)

Name Description Structure
ECCTL1 Capture Control 1 ECapxRegs.ECCTL1.all =
ECCTL2 Capture Control 2 ECapxRegs.ECCTL2.all =

TSCTR Time-Stamp Counter ECapxRegs.TSCTR =
CTRPHS | Counter Phase Offset ECapxRegs.CTRPHS =

CAP1 Capture 1 ECapxRegs.CAP1 =
CAP2 Capture 2 ECapxRegs.CAP2 =
CAP3 Capture 3 ECapxRegs.CAP3 =
CAP4 Capture 4 ECapxRegs.CAP4 =
ECEINT Enable Interrupt ECapxRegs.ECEINT.all =
ECFLG Interrupt Flag ECapxRegs.ECFLG.all =
ECCLR Interrupt Clear ECapxRegs.ECCLR.all =
ECFRC Interrupt Force ECapxRegs.ECFRC.all =

C2000 Microcontroller Workshop - Control Peripherals

eCAP

eCAP Control Register 1

ECapxRegs.ECCTL1

Upper Register:

CAP1 -4 Load
on Capture Event
0 =disable
1 =enable
15-14 13-9 8
FREE_SOFT PRESCALE CAPLDEN
Emulation Control Event Filter Prescale Counter
00 = TSCTR stops immediately 00000 = divide by 1 (bypass)
01 = TSCTR runs until equals 0 888(1)(1) = g:x:gg % 121
1X =free run (do not sto =
(P) 00011 = divide by 6

00100 = divide by 8

. .

11110 = divide by 60
11111 = divide by 62

eCAP Control Register 1

ECapxRegs.ECCTL1

Lower Register:

Counter Reset on Capture Event

0 = no reset (absolute time stamp mode)
1 =reset after capture (difference mode)

3 2 1 0

7 6 5 4
CTRRST4 |CAP4POL [CTRRST3 [CAP3POL [CTRRST2|CAP2POL [CTRRST1 |CAP1POL

T\ =

Capture Event Polarity
0 =trigger on rising edge
1 =trigger on falling edge

C2000 Microcontroller Workshop - Control Peripherals

eCAP

eCAP Control Register 2

ECapxRegs.ECCTL2

Upper Register:

Capture / APWM mode

0 = capture mode
1=APWM mode

15-11 10 9 8
reserved APWMPOL | CAP_APWM | SWSYNC

APWM Output Polarity Software Force

(valid only in APWM mode) Counter Synchronization
0 = active high output 0 = no effect
1 = active low output 1 =TSCTR load of current

module and other modules
if SYNCO_SEL bits =00

eCAP Control Register 2

ECapxRegs.ECCTL2

Lower Register:

Re-arm Continuous/One-Shot
Counter Sync-In (capture mode only) (capture mode only)
0 =disable 0 = no effect 0 = continuous mode
1 =enable 1=arm sequence 1 =one-shot mode
7-6 5 4 3 2-1 0

SYNCO_SEL | SYNCI_EN | TSCTRSTOP | REARM | STOP_WRAP | CONT_ONESHT

Sync-Out Select Time Stamp Stop Value for One-Shot Mode/
00 = sync-in to sync-out Counter Stop Wrap Value for Continuous Mode
01 =CTR =PRD event 0 =stop (capture mode only)

generates sync-out 1=run 00 = stop/wrap after capture event 1
1X =disable 01 = stop/wrap after capture event 2

10 = stop/wrap after capture event 3
11 = stop/wrap after capture event 4

C2000 Microcontroller Workshop - Control Peripherals

eCAP

The capture unit interrupts offer immediate CPU notification of externally captured events. In
situations where this is not required, the interrupts can be masked and flag testing/polling can be
used instead. This offers increased flexibility for resource management. For example, consider a
servo application where a capture unit is being used for low-speed velocity estimation via a
pulsing sensor. The velocity estimate is not used until the next control law calculation is made,
which is driven in real-time using a timer interrupt. Upon entering the timer interrupt service
routine, software can test the capture interrupt flag bit. If sufficient servo motion has occurred
since the last control law calculation, the capture interrupt flag will be set and software can
proceed to compute a new velocity estimate. If the flag is not set, then sufficient motion has not
occurred and some alternate action would be taken for updating the velocity estimate. As a
second example, consider the case where two successive captures are needed before a
computation proceeds (e.g. measuring the width of a pulse). If the width of the pulse is needed as
soon as the pulse ends, then the capture interrupt is the best option. However, the capture
interrupt will occur after each of the two captures, the first of which will waste a small number of
cycles while the CPU is interrupted and then determines that it is indeed only the first capture. If
the width of the pulse is not needed as soon as the pulse ends, the CPU can check, as needed, the
capture registers to see if two captures have occurred, and proceed from there.

eCAP Interrupt Enable Register

ECapxRegs.ECEINT

CTR = CMP CTR = Overflow Capture Event 3 Capture Event 1
Interrupt Enable Interrupt Enable Interrupt Enable Interrupt Enable

N N \ /

15-8 7 6 5 4 3 2 1 0
reserved| CTR=CMP |CTR=PRD |CTROVF |CEVT4 |CEVT3 |CEVT2 [CEVT1 |reserved

CTR =PRD Capture Event 4 Capture Event 2
Interrupt Enable Interrupt Enable Interrupt Enable

0 = disable as interrupt source
1 =enable as interrupt source

C2000 Microcontroller Workshop - Control Peripherals

eQEP

eQEP

What is an Incremental Quadrature
Encoder?
A digital (angular) position sensor

photo sensors spaced 0/4 deg. apart
V slots spaced 0 deg. apart
%@ r light source (LED)
= e
ch.A B
ch.B 5

0/4

shaft rotation

Incremental Optical Encoder Quadrature Output from Photo Sensors

The eQEP circuit, when enabled, decodes and counts the quadrature encoded input pulses. The
QEP circuit can be used to interface with an optical encoder to get position and speed information
from a rotating machine.

How is Position Determined from
Quadrature Signals?

Position resolution is 0/4 degrees

(00) (11) Increment decrement

= counter counter
AB)=" 10 (01
I I

[A

lllegal
PR Transitions; ______ .
generate
phase error
interrupt
v

Quadrature Decoder
State Machine

Ch. A

Ch.B

C2000 Microcontroller Workshop - Control Peripherals

eQEP

Using a quadrature decoder state machine, we can determine if the counter is incrementing or
decrementing, and therefore know if the disc is moving clockwise or counterclockwise.

Measure the elapsed time
between the unit position events;
used for low speed measurement
__,| Quadrature
Generate periodic Capture —
interrupts for velocity Quadrature - | | Direction -
calculations clock mode count mode
Nllonli(tors' tgt_a quadrature
clock to indicate proper
operatlion of the motion .EQEPX—A/XCLK
: : control system
| 32-BitUnit| | EQEPXB/XDIR
Time-Base OEP Quadrature™—
Decoder EQEPXI
................ Watchdog O
H EQEPXS
H —— <
SYSCLKOUT
|, |Position/Counter
Compare
Generate the direction and
clock for the position counter
Generate a sync output in quadrature count mode
and/or interrupt on a
position compare match

The QEP module features a direct interface to encoders. In addition to channels A and B being
used for rotational directional information, the index can be used to determine rotational speed,
and the strobe can be used for position from a homing sensor.

eQEP Module Connections

Ch. A
Quadrature
] Capture N Ch.B &
EQEPXA/XCLK
32-Bit Unit
i — EQEPXB/XDIR
: Time-Base QEP | [Quadrature n
i Decod ndex
N Watchdog ecoder EQEPXI e
: EQEPXS Strobe)
. from homing sensor
SYSCLKOUT
Position/Counter
—* Compare [

7-44 C2000 Microcontroller Workshop - Control Peripherals

Lab 7: Control Peripherals

Lab 7: Control Peripherals
» Objective

The objective of this lab is to become familiar with the programming and operation of the control
peripherals and their interrupts. ePWMZ1A will be setup to generate a 2 kHz, 25% duty cycle
symmetric PWM waveform. The waveform will then be sampled with the on-chip analog-to-
digital converter and displayed using the graphing feature of Code Composer Studio. Next,
eCAP1 will be setup to detect the rising and falling edges of the waveform. This information will
be used to determine the width of the pulse and duty cycle of the waveform. The results of this
step will be viewed numerically in a memory window.

Lab 7: Control Peripherals

ePWM1

! data
TB Counter CPU copies
memor
Compare connector ADC result to emory
Action Qualifier wire RESULTO buffer during o
ADC ISR £
— H
eCAP1 ADC- o
: INAO
—® T) &
Capture 2 Register ! - g
Capture 3 Register : E 3
Capture 4 Register !
View ADC
buffer PWM
ePWM2 triggering Samples
ADC on period match
using SOCA trigger every
20 ps (50 kHz) ePWM2 Code Composer
Studio

> Procedure

Open the Project

1. A project named Lab7 has been created for this lab. Open the project by clicking on
Project - Import CCS Projects. The “Import CCS Eclipse Projects”
window will open then click Browse... next to the “Select search-directory” box.
Navigate to: C:\C28x\Labs\Lab7\Project and click OK. Then click Finish to
import the project. All build options have been configured the same as the previous lab.
The files used in this lab are:

C2000 Microcontroller Workshop - Control Peripherals 7-45

Lab 7: Control Peripherals

Adc.c Gpio.c
CodeStartBranch.asm Lab.h
Defaultlsr_7.c Lab 5 6 _7.cmd
DelayUs.asm Main_7.c
ECap_7 8 9 10 12.c PieCtrl.c
EPwm 7 8 9 10 12.c PieVect.c
F2806x_Defaultlsr.h SysCtrl.c
F2806x_GlobalVvariableDefs.c Watchdog.c

F2806x_Headers_nonBI10S.cmd

Note: The ECap_7_8 9 10_12._c file will be added and used with eCAP1 to detect
the rising and falling edges of the waveform in the second part of this lab exercise.

Setup Shared I/O and ePWM1

2.
3.

Edit Gpio.c and adjust the shared 1/0 pin in GPIOO for the PWM1A function.

InEPwm_7_8 9 10 12 _c, setup ePWML1 to implement the PWM waveform as
described in the objective for this lab. The following registers need to be modified:
TBCTL (set clock prescales to divide-by-1, no software force, sync and phase disabled),
TBPRD, CMPA, CMPCTL (load on 0 or PRD), and AQCTLA (set on up count and clear
on down count for output A). Software force, deadband, PWM chopper and trip action
has been disabled. (Hint — notice the last steps enable the timer count mode and enable
the clock to the ePWM module). Either calculate the values for TBPRD and CMPA (as a
challenge) or make use of the global variable names and values that have been set using
#define in the beginning of Lab . h file. Notice that ePWMZ2 has been initialized earlier
in the code for the ADC lab. Save your work and close the modified files.

Build and Load

4,

Click the “Bui 1d” button and watch the tools run in the Consolle window. Check for
errors in the Problems window.

Click the “Debug” button (green bug). The “CCS Debug Perspective” view should
open, the program will load automatically, and you should now be at the start of
main(). If the device has been power cycled since the last lab exercise, be sure to
configure the boot mode to EMU_BOOT_SARAM using the Scripts menu.

Run the Code — PWM Waveform

6.

Open a memory browser to view some of the contents of the ADC results buffer. The
address label for the ADC results buffer is AdcBuf (type &AdcBuf) in the “Data”
memory page. We will be running our code in real-time mode, and we will need to have
the memory window continuously refresh.

Using a connector wire provided, connect the PWMZ1A (pin # GP10-00) to ADCINAO
(pin # ADC-AOQ) on the Docking Station.

Run the code (real-time mode) using the Script function: Scripts -> Realtime
Emulation Control - Run_Realtime_with_Reset. Watch the window
update. Verify that the ADC result buffer contains the updated values.

C2000 Microcontroller Workshop - Control Peripherals

Lab 7: Control Peripherals

9.

Open and setup a graph to plot a 50-point window of the ADC results buffer.
Click: Tools > Graph - Single Time and set the following values:

Acquisition Buffer Size 50

DSP Data Type

16-bit unsigned integer

Sampling Rate (Hz) 50000
Start Address AdcBuf
Display Data Size 50
Time Display Unit us

Select OK to save the graph options.

10. The graphical display should show the generated 2 kHz, 25% duty cycle symmetric
PWM waveform. The period of a 2 kHz signal is 500 ps. You can confirm this by
measuring the period of the waveform using the “measurement marker mode” graph
feature. Disable continuous refresh for the graph before taking the measurements. In the
graph window toolbar, left-click on the ruler icon with the red arrow. Note when you
hover your mouse over the icon, it will show “Toggle Measurement Marker
Mode”. Move the mouse to the first measurement position and left-click. Again, left-
click on the Toggle Measurement Marker Mode icon. Move the mouse to the
second measurement position and left-click. The graph will automatically calculate the
difference between the two values taken over a complete waveform period. When done,
clear the measurement points by right-clicking on the graph and select Remove All
Measurement Marks. Then enable continuous refresh for the graph.

Frequency Domain Graphing Feature of Code Composer Studio

11. Code Composer Studio also has the ability to make frequency domain plots. It does this
by using the PC to perform a Fast Fourier Transform (FFT) of the DSP data. Let's make
a frequency domain plot of the contents in the ADC results buffer (i.e. the PWM
waveform).

Click: Tools > Graph > FFT Magnitude and set the following values:

C2000 Microcontroller Workshop - Control Peripherals 7-47

Lab 7: Control Peripherals

Acquisition Buffer Size

50

DSP Data Type

16-bit unsigned integer

Sampling Rate (Hz) 50000
Start Address AdcBuf
Data Plot Style Bar
FFT Order 10

Select OK to save the graph options.

12. On the plot window, hold the mouse left-click key and move the marker line to observe
the frequencies of the different magnitude peaks. Do the peaks occur at the expected
frequencies?

13. Fully halt the CPU (real-time mode) by using the Script function: Scripts >
Realtime Emulation Control -> Full_Halt.

Setup eCAP1 to Measure Width of Pulse

The first part of this lab exercise generated a 2 kHz, 25% duty cycle symmetric PWM
waveform which was sampled with the on-chip analog-to-digital converter and displayed
using the graphing feature of Code Composer Studio. Next, eCAP1 will be setup to detect
the rising and falling edges of the waveform. This information will be used to determine the
period and duty cycle of the waveform. The results of this step will be viewed numerically in
a memory window and can be compared to the results obtained using the graphing features of
Code Composer Studio.

14. Switch to the “CCS Edit Perspective” view by clicking the CCS Edit icon in the upper
right-hand corner. Add the following file to the project from
C:\C28x\Labs\Lab7\Files:

ECap_7 8 9 10 12.c
Check your files list to make sure the file is there.

15. InMain_7.c, add code to call the Ini tECap () function. There are no passed
parameters or return values, so the call code is simply:

InitECap();
16. Edit Gpio.c and adjust the shared I/O pin in GP105 for the ECAP1 function.

17. Open and inspect the eCAP1 interrupt service routine (ECAP1_INT_ISR) in the file
Defaultlsr_7.c. Notice that PwmDuty is calculated by CAP2 — CAP1 (rising to
falling edge) and that PwmPeriod is calculated by CAP3 — CAPL (rising to rising edge).

18. INnECap_7_8 9 10 12.c, setup eCAP1 to calculate PWM_duty and PWM_period.
The following registers need to be modified: ECCTL2 (continuous mode, re-arm disable,
and sync disable), ECCTL1 (set prescale to divide-by-1, configure capture event polarity
without reseting the counter), and ECEINT (enable desired eCAP interrupt).

C2000 Microcontroller Workshop - Control Peripherals

Lab 7: Control Peripherals

19. Using the “PIE Interrupt Assignment Table” find the location for the eCAP1 interrupt
“ECAPL1_INT” and fill in the following information:

PIE group #: # within group:
This information will be used in the next step.

20. Modify theend of ECap_7 8 9 10 12.c to do the following:

- Enable the “ECAP1_INT” interrupt in the PIE (Hint: use the PieCtrIRegs structure)
- Enable the appropriate core interrupt in the IER register

Build and Load

21. Save all changes to the files and click the “Bui 1d” button. Select Yes to “Reload the
program automatically”. Switch back to the “CCS Debug Perspective” view by clicking
the CCS Debug icon in the upper right-hand corner.

Run the Code — Pulse Width Measurement

22. Open a memory browser to view the address label PwmPeriod. (Type &PwmPeriod in
the address box). The address label PwmDuty (address &PwmDuty) should appear in the
same memory browser window.

23. Set the memory browser properties format to “32-Bit Unsigned Integer”. We will be
running our code in real-time mode, and we will need to have the memory browser
continuously refresh.

24. Using the connector wire provided, connect the PWMZ1A (pin # GP10-00) to ECAP1 (pin
GPI10-05) on the Docking Station.

25. Run the code (real-time mode) by using the Script function: Scripts > Realtime
Emulation Control - Run_Realtime with_Reset. Notice the values for
PwmDuty and PwmPeriod.

26. Fully halt the CPU (real-time mode) by using the Script function: Scripts >
Realtime Emulation Control -> Full_Halt.

Questions:

e How do the captured values for PwmDuty and PwmPeriod relate to the compare register
CMPA and time-base period TBPRD settings for ePWM1A?

e What is the value of PwmDuty in memory?
o What is the value of PwmPeriod in memory?

o How does it compare with the expected value?

C2000 Microcontroller Workshop - Control Peripherals 7-49

Lab 7: Control Peripherals

Terminate Debug Session and Close Project

27. Terminate the active debug session using the Terminate button. This will close the
debugger and return CCS to the “CCS Edit Perspective” view.

28. Next, close the project by right-clicking on Lab7 in the Project Explorer window
and select Close Project.

Optional Exercise

If you finish early, you might want to experiment with the code by observing the effects of
changing the ePWM1 CMPA register using real-time emulation. Be sure that the jumper wire is
connecting PWMU1A (pin # GP10-00) to ADCINAO (pin # ADC-AQ), and the Single Time graph
is displayed. The graph must be enabled for continuous refresh. Run the code in real-time
mode. Open an Expressions window to the EPwm21Regs.CMPA register — in EPwm.c highlight
the “EPwm1Regs” structure and right click, then select Add Watch Expression... and then OK.
In the Expressions window open “EPwm1Regs”, then open “CMPA” and open “half”. Under
“half” change the “CMPA” value. The Expressions window must be enabled for continuous
refresh. Notice the effect on the PWM waveform in the graph.

You have just modulated the PWM waveform by manually changing the CMPA value. Next, we
will modulate the PWM automatically by having the ADC ISR change the CMPA value. In
Defaultlsr.c notice the code in ADCINT1_ADC used to modulate the ePWM1A output between
10% and 90% duty cycle. In Main.c add “PWM_MODULATE” to the Expressions window
using the same procedure above. Then with the code running in real-time mode, change the
“PWM_MODULATE” from 0 to 1 and observe the PWM waveform in the graph. Also, in the
Expressions window notice the CMPA value being updated. (If you do not have time to work on
this optional exercise, you may want to try this after the class).

End of Exercise

C2000 Microcontroller Workshop - Control Peripherals

Numerical Concepts

Introduction

In this module, numerical concepts will be explored. One of the first considerations concerns
multiplication — how does the user store the results of a multiplication, when the process of mul-
tiplication creates results larger than the inputs. A similar concern arises when considering accu-
mulation — especially when long summations are performed. Next, floating-point concepts will
be explored and 1Qmath will be described as a technique for implementing a “virtual floating-
point” system to simplify the design process.

The 1Qmath Library is a collection of highly optimized and high precision mathematical
functions used to seamlessly port floating-point algorithms into fixed-point code. These C/C++
routines are typically used in computationally intensive real-time applications where optimal
execution speed and high accuracy is needed. By using these routines a user can achieve
execution speeds considerable faster than equivalent code written in standard ANSI C language.
In addition, by incorporating the ready-to-use high precision functions, the IQmath library can
shorten significantly a DSP application development time. (The IQmath user's guide is included
in the application zip file, and can be found in the /docs folder once the file is extracted and
installed).

Module Objectives

Module Objectives

¢ Integers and Fractions
¢ |IEEE-754 Floating-Point
¢ IQOmath

¢ Format Conversion of ADC Results

C2000 Microcontroller Workshop - Numerical Concepts 8-1

Module Topics

Module Topics

N[O LT o= LI O] =T o) £ 8-1
IVIOTUIE TOPICS. vttt sttt sttt b et b ettt b ettt b ekt s btk e bt ek e s bt e bt e b et et e sb et et e et e ebenbe e 8-2
NUMDBDEFING SYSIEM BASICS ...ttt ittt sb ettt b et b e ettt sb e et e bt ebenbe e 8-3

2T T V20 VL] 0] o= £ 8-3
TWO's COMPIEMENT NUMDELSo.viiiiieceieece ettt ettt s aesre e e eneesaenaesrenneas 8-3
LT T T oSS 8-4
SIGN EXEENSION IMOTE.ccueieiiti ettt et e b e bbbttt e e e et et bt e 8-5
BiNary MUIIPIICALION ..ottt sb ettt e e b sne s 8-6
BINAIY FFACLIONS ...ttt bt h et b e bt bt bt b et et e b e sbesbesbe e b e e neen b e nnenbenbesbe s 8-8
Representing Fractions iN BINAIYcoooiiiiiiii e 8-8
FRACTION BASICSeveiteiteite ettt bttt b et bt bt bbb e e et e nbesb e e b e e bt e b e e e et et sbeneas 8-8
MuUltiplying BiNary FFACTIONScoiiiiiiiiiiie ettt bbbt b e 8-9
L= Tox 1 o] X O T [T S 8-11
Fractional vs. Integer REPreSENtAtION.......c.cvcveiirire it e e sre e e 8-12
L (o= 4o I o[S 8-13
(@] 1 F=1 1o OO OO TRS USRS 8-16
1Q Fractional REPIESENTALIONceiieieeeie ettt ettt sreere e e e e e nrenee e 8-16
Traditional “Q” Math APPrOACHcv i e 8-17
@] 4=V AN o] o] {0 = Ted USRS 8-19
TQMALN LEDIAIY ..ottt b bbbt b e e et e b s bt b e bt et e e e e b et sbe e 8-24
Converting ADC Results int0 1Q FOIMAL.........c.cooiiiiiiiiiiiece et 8-26
AC INAUCLION MOTOE EXAMPIE ...ttt bbb bt e e e sae s 8-28
TQMALN SUMMAIY ...ttt bbb bt b et et e b e sb e et e e be et e e ne et e neesbeneas 8-34
Lab 8: IQMALN FIR FIIEE......vi ittt ettt r e s s be e beebeenbeenbesbaesbeens 8-35

C2000 Microcontroller Workshop - Numerical Concepts

Numbering System Basics

Numbering System Basics

Given the ability to perform arithmetic processes (addition and multiplication) with the C28x, it is
important to understand the underlying mathematical issues which come into play. Therefore, we
shall examine the numerical concepts which apply to the C28x and, to a large degree, most
Processors.

Binary Numbers

The binary numbering system is the simplest numbering scheme used in computers, and is the
basis for other schemes. Some details about this system are:

e It uses only two values: 1 and 0

e Each binary digit, commonly referred to as a bit, is one “place” in a binary number
and represents an increasing power of 2.

e The least significant bit (LSB) is to the right and has the value of 1.
o Values are represented by setting the appropriate 1's in the binary number.
e The number of bits used determines how large a number may be represented.

Examples:

0110, = (0 * 8) + (1 *4) + (1 * 2) + (0 * 1) = 64
11110, = (1 * 16) + (L * 8) + (1 * 4) + (1 * 2) + (0 * 1) = 304

Two's Complement Numbers

Notice that binary numbers can only represent positive numbers. Often it is desirable to be able to
represent both positive and negative numbers. The two's complement numbering system modifies
the binary system to include negative numbers by making the most significant bit (MSB)
negative. Thus, two's complement numbers:

¢ Follow the binary progression of simple binary except that the MSB is negative — in
addition to its magnitude

e Can have any number of bits — more bits allow larger numbers to be represented

Examples:

0110, = (0 * -8) + (1 * 4 + (A *2) + (0 * 1) = 649
11110, = (A * -16) + (A *8) + (L. * 4 + (1 * 2) + (0 * 1) = -2

The same binary values are used in these examples for two's complement as were used above for
binary. Notice that the decimal value is the same when the MSB is 0, but the decimal value is
quite different when the MSB is 1.
Two operations are useful in working with two's complement numbers:

e The ability to obtain an additive inverse of a value

e The ability to load small numbers into larger registers (by sign extending)

C2000 Microcontroller Workshop - Numerical Concepts 8-3

Numbering System Basics

To load small two's complement numbers into larger registers:

The MSB of the original number must carry to the MSB of the number when represented in the

larger register.

1. Load the small number “right justified” into the larger register.

2. Copy the sign bit (the MSB) of the original number to all unfilled bits to the left in the
register (sign extension).

Consider our two previous values, copied into an 8-bit register:

Examples:

Original No. 0110, | =64 11110, |=-2p

1. Load low 0110 11110

2. Sign Extend 00000110 [=4+2=6 11111110 |=-128+64+..+2=-2

Integer Basics

Integer Basics

izn'l oo

¢ Unsigned Binary Integers
0100b = (0*23)+(1*22)+(0*21)+(0*20) = 4
1101b = (1*23)+(1*22)+(0*21)+(1*2%) = 13

¢ Signed Binary Integers (2's Complement)
0100b = (0*-28)+(1*22)+(0*21)+(0*2°) = 4
1101b = (1*-23)+(1*22)+(0*2%)+(1*2°) = -3

23 | 22 | 21| 20

C2000 Microcontroller Workshop - Numerical Concepts

Numbering System Basics

Sign Extension Mode

The C28x can operate on either unsigned binary or two's complement operands. The “Sign

Extension Mode” (SXM) bit, present within a status register of the C28x, identifies whether or
not the sign extension process is used when a value is brought into the accumulator. It is good
programming practice to always select the desired SXM at the beginning of a module to assure

the proper mode.

of the destination

What is Sign Extension?

¢ When moving a value from a narrowed width location to a
wider width location, the sign bit is extended to fill the width

¢ Sign extension applies to signed numbers only
¢ It keeps negative numbers negative!

¢ Sign extension controlled by SXM bit in STO register; When
SXM =1, sign extension happens automatically

memory (1101

<

ACC |1111/1101

4 bit Example: Load a memory value into the ACC

=-23+22+20=_3

l Load and sign extend

:_27+26+25+24+23+22+20
=-128+64+32+16+8+4+1
=3

C2000 Microcontroller Workshop - Numerical Concepts

Binary Multiplication

Binary Multiplication

Now that you understand two's complement numbers, consider the process of multiplying two
two's complement values. As with “long hand” decimal multiplication, we can perform binary
multiplication one “place” at a time, and sum the results together at the end to obtain the total
product.

Note: This is not the method the C28x uses in multiplying numbers — it is merely a way of observing
how binary numbers work in arithmetic processes.

The C28x uses 16-bit operands and a 32-bit accumulator. For the sake of clarity, consider the

example below where we shall investigate the use of 4-bit values and an 8-bit accumulation:

Integer Multiplication (signed)
0100 4
x 1101 X -3
0100
0000
0100
1100
1110100 -12
Accumulator | 11110100
Data Memory ?
In this example, consider the following:
o What are the two input values, and the expected result?
e Why are the “partial products” shifted left as the calculation continues?
e Why is the final partial product “different” than the others?
e What is the result obtained when adding the partial products?
e How shall this result be loaded into the accumulator?
e How shall we fill the remaining bit? Is this value still the expected one?
e How can the result be stored back to memory? What problems arise?

Note: With two’s complement multiplication, the leading “1” in the second multiplicand is a
sign bit. If the sign bit is “1”, then take the 2’s complement of the first multiplicand.
Additionally, each partial product must be sign-extended for correct computation.

8-6 C2000 Microcontroller Workshop - Numerical Concepts

Binary Multiplication

Note: All of the above questions except the final one are addressed in this module. The last
guestion may have several answers:

e Store the lower accumulator to memory. What problem is apparent using this
method in this example?

e Store the upper accumulator back to memory. Wouldn't this create a loss of
precision, and a problem in how to interpret the results later?

e Store both the upper and lower accumulator to memory. This solves the above
problems, but creates some new ones:

— Extra code space, memory space, and cycle time are used
— How can the result be used as the input to a subsequent calculation? Is such a
condition likely (consider any “feedback” system)?

From this analysis, it is clear that integers do not behave well when multiplied. Might some other
type of number system behave better? Is there a number system where the results of a
multiplication are bounded?

C2000 Microcontroller Workshop - Numerical Concepts 8-7

Binary Fractions

Binary Fractions

Given the problems associated with integers and multiplication, consider the possibilities of using
fractional values. Fractions do not grow when multiplied, therefore, they remain representable
within a given word size and solve the problem. Given the benefit of fractional multiplication,
consider the issues involved with using fractions:

o How are fractions represented in two's complement?
o What issues are involved when multiplying two fractions?

Representing Fractions in Binary

In order to represent both positive and negative values, the two's complement process will again
be used. However, in the case of fractions, we will not set the LSB to 1 (as was the case for
integers). When one considers that the range of fractions is from -1 to ~+1, and that the only bit
which conveys negative information is the MSB, it seems that the MSB must be the “negative
ones position.” Since binary representation is based on powers of two, it follows that the next bit
would be the “one-halves” position, and that each following bit would have half the magnitude
again. Considering, as before, a 4-bit model, we have the representation shown in the following
example.

1 (.]0 1 1 |=-1+1/4+1/8=-5/8

-1 12 1/4 1/8

Fraction Basics

Fraction Basics

_20 2'1 2‘2 2'3 (XX} 2'(n'1)
([
1101b = (1%-20)+(1*2-1)+(0%2:2)+(1*23)
=-1+1/2+1/8
=-3/8

Fractions have the nice property that
fraction x fraction = fraction

8-8 C2000 Microcontroller Workshop - Numerical Concepts

Binary Fractions

Multiplying Binary Fractions

When the C28x performs multiplication, the process is identical for all operands, integers or
fractions. Therefore, the user must determine how to interpret the results. As before, consider the
4-bit multiply example:

Fraction Multiplication

0100 1/2
x 1101 x -3/8
0100
0000
0100
1100
1110100 -3/16

Accumulator 1@110&.00

Data Memory | 1110 -1/4

As before, consider the following:

e What are the two input values and the expected result?

o As before, “partial products” are shifted left and the final is negative.

e How is the result (obtained when adding the partial products) read?

e How shall this result be loaded into the accumulator?

o How shall we fill the remaining bit? Is this value still the expected one?

o How can the result be stored back to memory? What problems arise?
To “read” the results of the fractional multiply, it is necessary to locate the binary point (the base
2 equivalent of the base 10 decimal point). Start by identifying the location of the binary point in
the input values. The MSB is an integer and the next bit is 1/2, therefore, the binary point would
be located between them. In our example, therefore, we would have three bits to the right of the

binary point in each input value. For ease of description, we can refer to these as “Q3” numbers,
where Q refers to the number of places to the right of the point.

When multiplying numbers, the Q values add. Thus, we would (mentally) place a binary point
above the sixth LSB. We can now calculate the “Q6” result more readily.

C2000 Microcontroller Workshop - Numerical Concepts 8-9

Binary Fractions

As with integers, the results are loaded low and the MSB is a sign extension of the seventh bit. If
this value were loaded into the accumulator, we could store the results back to memory in a
variety of ways:

e Store both low and high accumulator values back to memory. This offers maximum
detail, but has the same problems as with integer multiply.

e Store only the high (or low) accumulator back to memory. This creates a potential for
a memory littered with varying Q-types.

e Store the upper accumulator shifted to the left by 1. This would store values back to
memory in the same Q format as the input values, and with equal precision to the
inputs. How shall the left shift be performed? Here’s three methods:

— Explicit shift (C or assembly code)
— Shift on store (assembly code)
— Use Product Mode shifter (assembly code)

8-10 C2000 Microcontroller Workshop - Numerical Concepts

Fraction Coding

Fraction Coding

Although COFF tools recognize values in integer, hex, binary, and other forms, they understand
only integer, or non-fractional values. To use fractions within the C28x, it is necessary to describe
them as though they were integers. This turns out to be a very simple trick. Consider the
following number lines:

Coding Traditional 16-bit Q15 Fractions

—_1-~1 32767 —— OX7FFF

—+ % 16384 - 0x4000
=

4+ o0 0 —— 0x0000

* 32768

4 Y -16384 _|. 0xC000
(2%)

B -32768 —L— 0x8000

Fraction Integer

¢ C-code example:y =0.707 * x

void main(void)
{
intl6 coef = 32768*707/1000; // 0.707 in Q15
intlé x, y;
y = (intle)((int32)coef * (int32)x) >> 15);
}

By multiplying a fraction by 32K (32768), a normalized fraction is created, which can be passed
through the COFF tools as an integer. Once in the C28x, the normalized fraction looks and
behaves exactly as a fraction. Thus, when using fractional constants in a C28x program, the coder
first multiplies the fraction by 32768, and uses the resulting integer (rounded to the nearest whole
value) to represent the fraction.

The following is a simple, but effective method for getting fractions past the assembler:
1. Express the fraction as a decimal number (drop the decimal point).

2. Multiply by 32768.

3. Divide by the proper multiple of 10 to restore the decimal position.

» Examples:
e Torepresent 0.62: 32768 x 62 / 100
e Torepresent 0.1405: 32768 x 1405 / 10000

This method produces a valid number accurate to 16 bits. You will not need to do the math
yourself, and changing values in your code becomes rather simple.

C2000 Microcontroller Workshop - Numerical Concepts 8-11

Fractional vs. Integer Representation

Fractional vs. Integer Representation

Integer vs. Fractions

Range Precision
Integer determined 1
by # of bits
Fraction ~+1to -1 determined
by # of bits

¢ Integers grow when you multiply them

¢ Fractions have limited range
¢ Fractions can still grow when you add them
¢ Scaling an application is time consuming

Are there any other alternatives?

The C28x accumulator, a 32-bit register, adds extra range to integer calculations, but this
becomes a problem in storing the results back to 16-bit memory.

Conversely, when using fractions, the extra accumulator bits increase precision, which helps
minimize accumulative errors. Since any number is accurate (at best) to + one-half of a LSB,
summing two of these values together would yield a worst case result of 1 LSB error. Four
summations produce two LSBs of error. By 256 summations, eight LSBs are “noisy.” Since the
accumulator holds 32 bits of information, and fractional results are stored from the high
accumulator, the extra range of the accumulator is a major benefit in noise reduction for long

sum-of-products type calculations.

C2000 Microcontroller Workshop - Numerical Concepts

Floating-Point

Floating-Point

IEEE-754 Single Precision Floating-Point

31 30 23 22 0
| s| eeeeeeee | FFFFFFFFFFFFFFFFFFFFFFF
1 bit sign 8 bit exponent 23 bit mantissa (fraction)

Casel: ife=255andf#0, thenv=NaN
Case 2: ife=255andf=0, thenv =][(-1)]*infinity
Normalized — Case 3: if 0 <e < 255, then v = [(-1)s]*[2(e-127]*(1.f)
values Case4: ife=0andf=0, then v = [(-1)5]*[2¢128)]*(0.f)
Case5: ife=0andf=0, then v = [(-1)5]*0

Example: 0x41200000 =0

S

100 0001 O
e =130

010 0000 0000 ... 0000 b
f=22=025

= Case 3 v =(-10)*2(130-1279*1 25 = 10.0

Advantage = Exponent gives large dynamic range
Disadvantage = Precision of a number depends on its exponent

Number Line Insight

Floating-Point:

| - |

+00 0 -00

¢ Non-uniform distribution
+ Precision greatest near zero
+ Less precision the further you get from zero

C2000 Microcontroller Workshop - Numerical Concepts

Floating-Point

Using Floating-Point

¢ Set the “Specify floating point support” project option to ‘fpu32’

When creating a new CCS project, choosing a device variant that
has the FPU will automatically select this option, so normally no
user action is required

¢ Adds the floating-point

RTS library(s) to the

type filter text

Processor Options (=l T

[Resource

- General

= Build

. [2-C2000 Compiler

: - Processor Options
- Optimization
- Indude Options
advanced Options

Configuration: |Debug [Active] 'I Manage Configurations...

Processor version (-silicon_version, -v)

¥ Use large memory model (—large_memary_model, -mi)

E—

CCS project

« standard RTS lib
(required)
+ rts2800_fpu32.lib
+ comes with compiler

| [2-C2000 Linker
- Basic Options
. Fie Search Path

- fast RTS lib (optional)
+ C28x_FPU_FastRTS.lib

¥ Unified memory (~unified_memory, -mt)

Advanced Options Spedfy CLA support (—da_support) cla0 -
. ~C2000 Hex Uity [Disablec] Spedify floating peint support (—float_suppart) - « on Tl web, #SPRC664
et Specify TMU support (~tmu_support) | + improved performance
s Bl T e) vaud - « Strongly
Recommended

¢ Selects ‘fpu32’ support
in CCS build
configuration settings

Getting the ADC Result into
Floating-Point Format

AdcResult.
LOlOlO[OIXIXIXIXIXIXIXIXIXIXIXIX] " b e Tx
ASM: C:
116TOF32 (float)

31 15 0 _
[sTelelelelelelelelf [f I [F[F [FIF [FIFIFIFIFIFIF[FIFIF[FIFIF[FIFIF] 32-bit float

#define AdcFsVoltage float(3.3)
float Result;

void main(void)

{

// Convert unsigned 16-bit result to 32-bit float. Gives value of 0 to 4095.
// Scale result by 1/4096. Gives value of 0 to ~1.

// Scale result by AdcFsVoltage. Gives value of 0 to ~3.3.

Result = (AdcFsVoltage/4096.0)*(float)AdcResult.ADCRESULTO;
! A)

e

// ADC full scale voltage
// ADC result

L Compiler will pre-compute at build-time.
No runtime division!

C2000 Microcontroller Workshop - Numerical Concepts

Floating-Point

Floating-Point Pros and Cons

¢ Advantages
¢ Easy to write code
¢ No scaling required

¢ Disadvantages
¢ Somewhat higher device cost

¢ May offer insufficient precision for some
calculations due to 23 bit mantissa and
the influence of the exponent

What if you don’t have the luxury of
using a floating-point C28x device?

C2000 Microcontroller Workshop - Numerical Concepts 8-15

IQmath

IQmath

Implementing complex digital control algorithms on a Digital Signal Processor (DSP), or any
other DSP capable processor, typically come across the following issues:

e Algorithms are typically developed using floating-point math

o Floating-point devices are more expensive than fixed-point devices

e Converting floating-point algorithms to a fixed-point device is very time consuming

e Conversion process is one way and therefore backward simulation is not always possible

The design may initially start with a simulation (i.e. MatLab) of a control algorithm, which
typically would be written in floating-point math (C or C++). This algorithm can be easily ported
to a floating-point device, however because of cost reasons most likely a 16-bit or 32-bit fixed-
point device would be used in many target systems.

The effort and skill involved in converting a floating-point algorithm to function using a 16-bit or
32-bit fixed-point device is quite significant. A great deal of time (many days or weeks) would
be needed for reformatting, scaling and coding the problem. Additionally, the final
implementation typically has little resemblance to the original algorithm. Debugging is not an
easy task and the code is not easy to maintain or document.

IQ Fractional Representation

A new approach to fixed-point algorithm development, termed “IQmath”, can greatly simplify the
design development task. This approach can also be termed “virtual floating-point” since it looks
like floating-point, but it is implemented using fixed-point techniques.

|IQ Fractional Representation

31 0

'S 11111111, FEFEFEFFFFFFFFFFFFFFFFF

32 bit mantissa

2042+ o+ 21 +20, 21422+ 0+ 20

18Q24 Example: 0x41200000
= 0100 0001 . 0010 0000 0000 0000 0000 0000 b
=26+ 20+ 23=65.125

Advantage = Precision same for all numbers in an 1Q format
Disadvantage = Limited dynamic range compared to floating-point

C2000 Microcontroller Workshop - Numerical Concepts

IQmath

The 1Qmath approach enables the seamless portability of code between fixed and floating-point
devices. This approach is applicable to many problems that do not require a large dynamic range,
such as motor or digital control applications.

Number Line Insight
Distributions

Floating-Point: non-uniform distribution (variable precision)

I e L

+00 0 -00

+00 0 -00

¢ Both floating-point and IQ formats have 232 possible
values on the number line

¢ It's how each distributes these values that differs

Traditional “Q” Math Approach

Traditional 32-bit “Q” Math Approach

y=mx+b

Q24 M

— s, Q48 > *

. Q24 X
[18,

R Q24 fjb—— 18, Q24
Align Binary
@ Point for Add

—_— ssssl8,y Q48 |

116 Q48 |

[]
Align Binary
@ Point for Store

Sssssssssssssssss 116, Q24 b /18, Q24 Y

in C:| Y = ((int64) M * (int64) X + (int64) B << Q) >> Q; |

Note: Requires support for 64-bit integer data type in compiler

C2000 Microcontroller Workshop - Numerical Concepts 8-17

IQmath

The traditional approach to performing math operations, using fixed-point numerical techniques
can be demonstrated using a simple linear equation example. The floating-point code for a linear
equation would be:

float Y, M, X, B;
Y =M* X+ B;

For the fixed-point implementation, assume all data is 32-bits, and that the "Q" value, or location
of the binary point, is set to 24 fractional bits (Q24). The numerical range and resolution for a
32-bit Q24 number is as follows:

Q value Min Value Max Value Resolution

Q24 | -2%%29=_128.000 000 00 | 27?9 _ (15)** = 127.999 999 94 | (%4)** = 0.000 000 06

The C code implementation of the linear equation is:

int32 Y, M, X, B; // numbers are all Q24
Y = ((int64) M * (int64) X + (int64) B << 24) >> 24;

Compared to the floating-point representation, it looks quite cumbersome and has little resem-
blance to the floating-point equation. It is obvious why programmers prefer using floating-point
math.

The slide shows the implementation of the equation on a processor containing hardware that can
perform a 32x32 bit multiplication, 64-bit addition and 64-bit shifts (logical and arithmetic) effi-
ciently.

The basic approach in traditional fixed-point "Q" math is to align the binary point of the operands
that get added to or subtracted from the multiplication result. As shown in the slide, the multipli-
cation of M and X (two Q24 numbers) results in a Q48 value that is stored in a 64-bit register.
The value B (Q24) needs to be scaled to a Q48 number before addition to the M*X value (low
order bits zero filled, high order bits sign extended). The final result is then scaled back to a Q24
number (arithmetic shift right) before storing into Y (Q24). Many programmers may be familiar
with 16-bit fixed-point "Q" math that is in common use. The same example using 16-bit numbers
with 15 fractional bits (Q15) would be coded as follows:

intlé Y, M, X, B; // numbers are all Q15
Y = ((int32) M * (int32) X + (int32) B << 15) >> 15;

In both cases, the principal methodology is the same. The binary point of the operands that get
added to or subtracted from the multiplication result must be aligned.

C2000 Microcontroller Workshop - Numerical Concepts

IQmath

IQmath Approach
32-bit IQmath Approach

y=mx+b

18, Q24 M
[116 Q48
18 24
Align Binary @ . O X
Point Of Multiply

[sssssssssssssssssl16, Q24 |

l 18 Q24 B

18

e Q24 ——{18, Q24 Y

in C: |Y = ((int64) M * (int64) X) >> Q + B;

In the "IQmath™ approach, rather then scaling the operands, which get added to or subtracted
from the multiplication result, we do the reverse. The multiplication result binary point is scaled
back such that it aligns to the operands, which are added to or subtracted from it. The C code
implementation of this is given by linear equation below:

int32 Y, M, X, B;
Y = ((int64) M * (int64) X) >> 24 + B;

The slide shows the implementation of the equation on a processor containing hardware that can
perform a 32x32 bit multiply, 32-bit addition/subtraction and 64-bit logical and arithmetic shifts
efficiently.

The key advantage of this approach is shown by what can then be done with the C and C++ com-
piler to simplify the coding of the linear equation example.

Let’s take an additional step and create a multiply function in C that performs the following oper-
ation:

int32 _1024mpy(int32 M, int32 X) { return ((int64) M * (int64) X) >> 24; }
The linear equation can then be written as follows:
Y = _1Q24mpy(M , X) + B;

Already we can see a marked improvement in the readability of the linear equation.

C2000 Microcontroller Workshop - Numerical Concepts 8-19

IQmath

Using the operator overloading features of C++, we can overload the multiplication operand "*"
such that when a particular data type is encountered, it will automatically implement the scaled
multiply operation. Let’s define a data type called "iq" and assign the linear variables to this data

type:

iq Y, M, X, B // numbers are all Q24

The overloading of the multiply operand in C++ can be defined as follows:

iq operator*(const iq &M, const iq &X){return((int64)M*(int64) X) >> 24;}
Then the linear equation, in C++, becomes:

Y=M?*X + B;

This final equation looks identical to the floating-point representation. It looks "natural”. The
four approaches are summarized in the table below:

Math Implementations Linear Equation Code
32-bit floating-point math in C Y=M*X+B;
32-bit fixed-point "Q" math in C Y = ((int64) M * (int64) X) + (int64) B << 24) >> 24;
32-bit IQmath in C Y = _1Q24mpy(M, X) + B;
32-bit IQmath in C++ Y=M*X+B;

Essentially, the mathematical approach of scaling the multiplier operand enables a cleaner and a
more "natural™ approach to coding fixed-point problems. For want of a better term, we call this
approach "1Qmath" or can also be described as "virtual floating-point".

C2000 Microcontroller Workshop - Numerical Concepts

IQmath

IQmath Approach

Multiply Operation

] Y = ((i64) M * (i64) X) >> Q + B; \

Redefine the multiply operation as follows:
| _1Qmpy(M,X) == ((i64) M * (i64) X) >> Q |
This simplifies the equation as follows:
| Y = _1Qmpy(M,X) + B; |

C28x compiler supports “_1Qmpy” intrinsic; assembly code generated:

MOVL XT,@m
IMPYL P,XT,@X ; P
QMPYL ACC,XT,@X ; ACC = high 32-bits of M*X
LSL64 ACC:P,#(32-Q) ; ACC = ACC:P << 32-Q

; (same as P = ACC:P >> Q)

low 32-bits of M*X

ADDL ACC, @B ; Add B
MOVL @Y ,ACC ; Result = Y = _IQmpy(M*X) + B
; 7 Cycles

IQmath Approach

It looks like floating-point!

. . float Y, M, X, B;
Floating-Point

Y=M?=*X + B;
long Y, M, X, B;

Traditional
Fix-Point Q v = ((i64) M * (i64) X + (i64) B << Q)) >> Q;
ulQmathu _iq Y, M, X, B;
InC Y = _1Qmpy(M, X) + B;
uIQmathn iq Y, M, X, B;
In C++

Y=M*X + B;

“IQmath” code is easy to read!

C2000 Microcontroller Workshop - Numerical Concepts

IQmath

IQmath Approach
GLOBAL_Q simplification

User selects “Global Q" value for the whole application
GLOBAL_Q

o
based on the required dynamic range or resolution, for example:
GLOBAL_Q Max Val Min Val Resolution
28 7-.999 999 996 -8.000 000 000 | 0.000 000 004
24 127.999 999 94 -128.000 000 00 |0.000 000 06
20 2047 .999 999 -2048.000 000 0.000 001

#define GLOBAL_Q 18 // set in “IQmathLib_h” file
_ig Y, M, X, B;
Y = _10mpy(M,X) + B; // all values are in Q = 18

The user can also explicitly specify the Q value to use:
_ig20 Y, M, X, B;

Y = _1Q20mpy(M,X) + B; // all values are in Q = 20

The basic "IQmath" approach was adopted in the creation of a standard math library for the Texas
Instruments TMS320C28x DSP fixed-point processor. This processor contains efficient hardware
for performing 32x32 bit multiply, 64-bit shifts (logical and arithmetic) and 32-bit add/subtract
operations, which are ideally suited for 32 bit "IQmath".

Some enhancements were made to the basic "IQmath" approach to improve flexibility. They are:

Setting of GLOBAL_Q Parameter Value: Depending on the application, the amount of numerical
resolution or dynamic range required may vary. In the linear equation example, we used a Q val-
ue of 24 (Q24). There is no reason why any value of Q can't be used. In the "IQmath" library,
the user can set a GLOBAL_Q parameter, with a range of 1 to 30 (Q1 to Q30). All functions
used in the program will use this GLOBAL_Q value. For example:

#define GLOBAL_Q 18
Y = _1Qmpy(M, X) + B; // all values use GLOBAL_Q = 18

If, for some reason a particular function or equation requires a different resolution, then the user
has the option to implicitly specify the Q value for the operation. For example:

Y = _1Q23mpy(M,X) + B; // all values use Q23, including B and Y

The Q value must be consistent for all expressions in the same line of code.

C2000 Microcontroller Workshop - Numerical Concepts

IQmath

IQmath Provides Compatibility Between
Floating-Point and Fixed-Point

1) Develop any mathematical function
| Y = _IQmpy(M, X) + Bj; |

2) Select math type in IQmathLib.h
|#if MATH_TYPE == 1Q_MATH | |#if MATH_TYPE == FLOAT_MATH |

3) Compiler automatically converts to: .
| Y = (float)M * (Float)X + (Float)B; |

Fixed-Point

Floating-Point
Math Code

Math Code

Compile & Run
on Fixed-Point
F2803x

Compile & Run
on Floating-Point
F2806x *

All “1IQmath” operations have an equivalent floating-point operation

* Can also compile floating-point code on any floating-point compiler (e.g., PC, Matlab, fixed-point w/ RTS lib, etc.)

Selecting FLOAT_MATH or IQ_MATH Mode: As was highlighted in the introduction, we would
ideally like to be able to have a single source code that can execute on a floating-point or fixed-
point target device simply by recompiling the code. The "IQmath" library supports this by setting
a mode, which selects either IQ_MATH or FLOAT_MATH. This operation is performed by
simply redefining the function in a header file. For example:

#if MATH_TYPE == I1Q_MATH

#define _1Qmpy(M , X) _1Qmpy(M , X)
#elseif MATH_TYPE == FLOAT_MATH

#define _1Qmpy(M , X) (Float) M * (float) X
#endif

Essentially, the programmer writes the code using the "IQmath" library functions and the code
can be compiled for floating-point or "IQmath" operations.

C2000 Microcontroller Workshop - Numerical Concepts 8-23

IQmath Library

IQmath Library

IQmath Library: Math & Trig Functions
Operation Floating-Point “IQmath” in C “IQmath” in C++
type float A, B; _ig A, B; iq A, B;
constant A =1.2345 A =_1Q(1.2345) A =1Q(1.2345)
multiply A*B _lQmpy(A , B) A*B
divide A/B _1Qdiv (A, B) A/B
add A+B A+B A+B
substract A-B A-B A-B
boolean >, >=, <, <=, =5, |5, &&, || > >=, <, <=, ==, |5, &&, || > >=, <, <=, =5, |5, &&, ||
trig sin(A),cos(A) _IQsin(A), _IQcos(A) 1Qsin(A),IQcos(A)
and sin(A*2pi),cos(A*2pi) |_IQsinPU(A), _IQcosPU(A) | IQsinPU(A),IQcosPU(A)
power asin(A),acos(A) _IQasin(A),_lQacos(A) IQasin(A),IQacos(A)
functions atan(A),atan2(A,B) | _lQatan(A), _IQatan2(A,B) | IQatan(A),IQatan2(A,B)
atan2(A,B)/2pi _IQatan2PU(A,B) IQatan2PU(A,B)
sqrt(A),1/sqrt(A) _1Qsqrt(A), _IQisqrt(A) 1Qsqrt(A),IQisqgrt(A)
sqrt(A*A + B*B) _lQmag(A,B) IQmag(A,B)
exp(A) _lQexp(A) 1Qexp(A)
saturation if(A > Pos) A = Pos _lQsat(A,Pos,Neg) IQsat(A,Pos,Neg)
if(A < Neg) A = Neg
Accuracy of functions/operations approx ~28 to ~31 bits

Additionally, the "IQmath" library contains DSP library modules for filters (FIR & IIR) and Fast
Fourier Transforms (FFT & IFFT).

IQmath Library: Conversion Functions
Operation Floating-Point “IQmath” in C “IQmath” in C++
iq to igN A _IQtolQN(A) IQtoIQN(A)
igN to iq A _IQNtolQ(A) IQNtolQ(A)
integer(iq) (long) A _lQint(A) 1Qint(A)
fraction(iq) A - (long) A _IQfrac(A) 1Qfrac(A)
iq =ig*long A * (float) B _1Qmpyl32(A,B) 1Qmpyl32(A,B)
integer(ig*long) (long) (A * (float) B) _lQmpyl32int(A,B) IQmpyl32int(A,B)
fraction(ig*long) | A - (long) (A * (float) B) | _IQmpyl32frac(A,B) | IQmpyl32frac(A,B)
gNtoiq A _QNtolQ(A) QNtolQ(A)
ig to gN A _IQtoQN(A) IQtoQN(A)
string to iq atof(char) _atolQ(char) atolQ(char)
1Q to float A _IQtoF(A) IQtoF(A)
IQ to ASCII sprintf(A,B,C) _1QtoA(A,B,C) IQtoA(A,B,C)
IQmath.lib > contains library of math functions
IQmathLib.h > C header file
IQmathCPP.h > C++ header file

8-24 C2000 Microcontroller Workshop - Numerical Concepts

IQmath Library

16 vs. 32 Bits

The "IQmath" approach could also be used on 16-bit numbers and for many problems, this is suf-
ficient resolution. However, in many control cases, the user needs to use many different "Q" val-
ues to accommodate the limited resolution of a 16-bit number.

With DSP devices like the TMS320C28x processor, which can perform 16-bit and 32-bit math
with equal efficiency, the choice becomes more of productivity (time to market). Why bother
spending a whole lot of time trying to code using 16-bit numbers when you can simply use 32-bit
numbers, pick one value of "Q" that will accommodate all cases and not worry about spending
too much time optimizing.

Of course there is a concern on data RAM usage if numbers that could be represented in 16 bits
all use 32 bits. This is becoming less of an issue in today's processors because of the finer tech-
nology used and the amount of RAM that can be cheaply integrated. However, in many cases,
this problem can be mitigated by performing intermediate calculations using 32-bit numbers and
converting the input from 16 to 32 bits and converting the output back to 16 bits before storing
the final results. In many problems, it is the intermediate calculations that require additional ac-
curacy to avoid quantization problems.

C2000 Microcontroller Workshop - Numerical Concepts 8-25

Converting ADC Results into 1Q Format

Converting ADC Results into 1Q Format

Getting the ADC Result into 1Q Format

AdcResult.
[OIO[O[OIX[XIXIX[XIXIX[XIXIX[X[X] ADCRESULTx

Do not sign extendl
31 15 0

[O]OJO0]0]O]O]0JO[O[OTOTOTO]OJO[OTOTOTOIX X [X XXX XXX [X[X[X] 32-bit long

Notice that the 32-bit long is already in 1Q12 format

#define AdcFsVoltage _1Q(3.3) // ADC full scale voltage

_iq Result, temp; // ADC result

void main(void)

{

// convert the unsigned 16-bit result to unsigned 32-bit
// temp = AdcResult.ADCRESULTO;

// convert resulting 1Q12 to Global 1Q format

// temp = _1Q12tolQ(temp);
// scale by ADC full-scale range (optional)
// Result = _1Qmpy(AdcFsVoltage, temp);
Result = _1Qmpy(AdcFsVoltage, _1Q12tolQ((_ig)AdcResult.ADCRESULTO));

As you may recall, the converted values of the ADC are placed in the lower 12 bits of the
ADCRESULTO register. Before these values are filtered using the IQmath library, they need to
to be put into the 1Q format as a 32-bit long. For uni-polar ADC inputs (i.e., 0 to 3.3 V inputs), a
conversion to global 1Q format can be achieved with:

IQresult_unipolar = _1Qmpy(_1Q(3-3),_1012tolQ((_iq) AdcResult_ADCRESULTO));

How can we modify the above to recover bi-polar inputs, for example +-1.65 volts? One could
do the following to offset the +1.65V analog biasing applied to the ADC input:

IQresult_bipolar =
_10mpy(_10(3.3).,_1012to1Q((_iq) AdcResult.ADCRESULTO0)) - _1Q(1.65);

However, one can see that the largest intermediate value the equation above could reach is 3.3.
This means that it cannot be used with an 1Q data type of 1Q30 (1Q30 range is -2 < x < ~2). Since
the IQmath library supports 1Q types from 1Q1 to 1Q30, this could be an issue in some applica-
tions.

The following clever approach supports 1Q types from 1Q1 to 1Q30:

IQresult_bipolar =
_1Qmpy(_1Q(1.65),_1015tolQ(C_iq) ((intl6) (AdcResult.ADCRESULTO ~
0x8000)))):

The largest intermediate value that this equation could reach is 1.65. Therefore, 1Q30 is easily
supported.

C2000 Microcontroller Workshop - Numerical Concepts

Converting ADC Results into IQ Format

Can a Single ADC Interface Code Line be
Written for IQmath and Floating-Point?
#if MATH_TYPE == 1Q_MATH
#define AdcFsVoltage _1Q(3.3) // ADC full scale voltage
#else // VMATH_TYPE is FLOAT_MATH
#define AdcFsVoltage _1Q(3.374096.0) // ADC full scale voltage
#endif
_ig Result; // ADC result
void main(void)
{
Result = _1Qmpy(AdcFsVoltage, _1Q12tolQ((_igq)AdcResult.ADCRESULTO));
b | | |
FLOAT_MATH
behavior: * does float
nothing

C2000 Microcontroller Workshop - Numerical Concepts 8-27

AC Induction Motor Example

AC Induction Motor Example

AC Induction Motor Example
One of the more complex motor control algorithms

AC INDUCTION MOTOR
T FORWARD CONTROL MODEL
id_rof=N pPin_REGI
——w—

et ot A o nees | — ipark_o PARE L »
spd_filh P e PIDEFET g out H—ipark o ACH |psi_r_beta
)
= |-|nnu ind ipark_a —psi_r_alfa—b
L inlind
L ek PARK |........_,J
M=park_d
x_0-| M-park_q

s
thutn_e_un —M=thata_c_fa ==
. ACH
- I_dr_s0 —d=psi_dr 1
7 Mo hat_so e |n:
- 3 Mevsl_ar_se ——pai_ar fe
: . | a5
© dver_hat_rpm_se
H _ds_sn
FEEDBACK CONTROL e 5 E ! ! !

Figure &

¢ Sensorless, ACl induction machine direct rotor flux control
¢ Goal: motor speed estimation & alpha-axis stator current estimation

The "IQmath" approach is ideally suited for applications where a large numerical dynamic range
is not required. Motor control is an example of such an application (audio and communication
algorithms are other applications). As an example, the IQmath approach has been applied to the
sensor-less direct field control of an AC induction motor. This is probably one of the most chal-
lenging motor control problems and as will be shown later, requires numerical accuracy greater
then 16-bits in the control calculations.

The above slide is a block diagram representation of the key control blocks and their interconnec-
tions. Essentially this system implements a "Forward Control™ block for controlling the d-q axis
motor current using PID controllers and a "Feedback Control" block using back emf's integration
with compensated voltage from current model for estimating rotor flux based on current and volt-
age measurements. The motor speed is simply estimated from rotor flux differentiation and open-
loop slip computation. The system was initially implemented on a "Simulator Test Bench™ which
uses a simulation of an "AC Induction Motor Model" in place of a real motor. Once working, the
system was then tested using a real motor on an appropriate hardware platform.

Each individual block shown in the slide exists as a stand-alone C/C++ module, which can be
interconnected to form the complete control system. This modular approach allows reusability
and portability of the code. The next few slides show the coding of one particular block, PARK
Transform, using floating-point and "IQmath" approaches in C:

C2000 Microcontroller Workshop - Numerical Concepts

AC Induction Motor Example

AC Induction Motor Example
Park Transform — floating-point C code

#include “math.h”

#define TWO_PI 6.28318530717959
void park_calc(PARK *v)

{
float cos_ang , sin_ang;
sin_ang = sin(TWO_PI * v->ang);
cos_ang = cos(TWO_PI * v->ang);
v->de = (v->ds * cos_ang) + (v->gs * sin_ang);
v->ge = (v->gs * cos_ang) - (v->ds * sin_ang);
}

AC Induction Motor Example
Park Transform - converting to “IQmath” C code

#include “math_h”
#include “I1QmathLib.h”

#define TWO_PI _10Q(6.28318530717959)
void park_calc(PARK *v)
{
_ig cos_ang , sin_ang;
sin_ang = _IQsin(_IQmpy(TWO_PI , v->ang));
cos_ang = _1Qcos(_IQmpy(TWO_PI , v->ang));
v->de = _I1Qmpy(v->ds , cos_ang) + _I1Qmpy(v->gs , sin_ang);
v->qe = _lQmpy(v->gs , cos_ang) - _IQmpy(v->ds , sin_ang);

The complete system was coded using "IQmath"”. Based on analysis of coefficients in the system,
the largest coefficient had a value of 33.3333. This indicated that a minimum dynamic range of 7
bits (+/-64 range) was required. Therefore, this translated to a GLOBAL_Q value of 32-7 = 25
(Q25). Just to be safe, the initial simulation runs were conducted with GLOBAL_Q = 24 (Q24)

C2000 Microcontroller Workshop - Numerical Concepts 8-29

AC Induction Motor Example

value. The plots start from a step change in reference speed from 0.0 to 0.5 and 1024 samples are

taken.
AC Induction Motor Example
GLOBAL_Q = 24, system stable
: ..-:.-..-....___. = -.‘- ,...._,._-. T
: R NV nN——————- I\ i I\ W e o
Al B ||l | | [l i L
: L'l_.' .!Ik"’l'ul'l,(VLA LI
m*w ﬂUJ' I TRVAVAVAVAVAURTAIR
‘f RN R AT
_____________________ omamament
I ,'\b.'"ll A e G;j ||i|i| ||r|| |ﬁ| (-
VAR = WA A A aan AR
ik ||,|_:JU':‘|[| ||'|I'|!"|'|I| |
lﬁ ||U ‘u |J| iIrI RV H Ii.,u'l |||| |“| \f |II
o= | '
= L

The speed eventually settles to the desired reference value and the stator current exhibits a clean
and stable oscillation. The block diagram slide shows at which points in the control system the

plots are taken from.

What’s Happening Here?

Equal Precision in the Computation Region

Floating-Point:

[I T
+00

l I
1

ame precision as 18Q24

S
18Q24 Fractions: \
"
|
I

e e e A o
e T T T

+00 0 -00

In the region where these particular computations occur, the
precision of single-precision floating-point just happens to equal
the precision of the 18Q24 format.

So, both produce similar results!

8-30 C2000 Microcontroller Workshop - Numerical Concepts

AC Induction Motor Example

AC Induction Motor Example
GLOBAL_Q =27, system unstable

AC Induction Motor Example
GLOBAL_Q =16, system unstable

C2000 Microcontroller Workshop - Numerical Concepts 8-31

AC Induction Motor Example

With the ability to select the GLOBAL_Q value for all calculations in the "IQmath", an experi-
ment was conducted to see what maximum and minimum Q value the system could tolerate be-
fore it became unstable. The results are tabulated in the slide below:

AC Induction Motor Example
Q stability range

Q range Stability Range
Unstable

Q31to Q27 (not enough dynamic range)

Q26 to Q19 Stable

Q18 to QO Unstable

(not enough resolution, quantization problems)

The developer must pick the right GLOBAL_Q value!

The above indicates that, the AC induction motor system that we simulated requires a minimum
of 7 bits of dynamic range (+/-64) and requires a minimum of 19 bits of numerical resolution (+/-
0.000002). This confirms our initial analysis that the largest coefficient value being 33.33333
required a minimum dynamic range of 7 bits. As a general guideline, users using 1Qmath should
examine the largest coefficient used in the equations and this would be a good starting point for
setting the initial GLOBAL_Q value. Then, through simulation or experimentation, the user can
reduce the GLOBAL._Q until the system resolution starts to cause instability or performance deg-
radation. The user then has a maximum and minimum limit and a safe approach is to pick a mid-
point.

What the above analysis also confirms is that this particular problem does require some calcula-
tions to be performed using greater then 16 bit precision. The above example requires a mini-
mum of 7 + 19 = 26 bits of numerical accuracy for some parts of the calculations. Hence, if one
was implementing the AC induction motor control algorithm using a 16 bit fixed-point DSP, it
would require the implementation of higher precision math for certain portions. This would take
more cycles and programming effort.

The great benefit of using GLOBAL_Q is that the user does not necessarily need to go into de-
tails to assign an individual Q for each variable in a whole system, as is typically done in conven-
tional fixed-point programming. This is time consuming work. By using 32-bit resolution and the
"lQmath" approach, the user can easily evaluate the overall resolution and quickly implement a
typical digital motor control application without quantization problems.

C2000 Microcontroller Workshop - Numerical Concepts

AC Induction Motor Example

AC Induction Motor Example

Performance comparisons

(20 kHz control loop)

Benchmark C28x C C28x C C28x C
floating-point | floating-point IQmath
std. RTS lib fast RTS lib v1l.4d
(150 MHz) (150 MHz) (150 MHz)
B1: ACI module cycles 401 401 625
B2: Feedforward control cycles 421 371 403
B3: Feedback control cycles 2336 792 1011
Total control cycles (B2+B3) 2757 1163 1414
% of available MHz used 36.8% 15.5% 18.9%

fast RTS lib v1.0betal
IQmath lib v1.4d

Notes: C28x compiled on codegen tools v5.0.0, -g (debug enabled), -03 (max. optimization)

Using the profiling capabilities of the respective DSP tools, the table above summarizes the num-

ber of cycles and code size of the forward and feedback control blocks.

The MIPS used is based on a system sampling frequency of 20 kHz, which is typical of such sys-

tems.

C2000 Microcontroller Workshop - Numerical Concepts

IQmath Summary

IQmath Summary

IQmath Approach Summary

“IQmath” + fixed-point processor with 32-bit capabilities =

¢ Seamless portability of code between fixed and floating-point
devices

¢ User selects target math type in “IQmathLib.h” file
& #if MATH_TYPE == IQ_MATH
& #if MATH_TYPE == FLOAT_MATH
¢ One source code set for simulation vs. target device
¢ Numerical resolution adjustability based on application
requirement
¢ Setin “IQmathLib.h” file
¢ #define GLOBAL_Q 18
¢ Explicitly specify Q value
¢ _iq20 XY, Z;
¢ Numerical accuracy without sacrificing time and cycles
¢ Rapid conversion/porting and implementation of algorithms

IQmath library is freeware - available from controlSUITE and Tl website
http://www.ti.com/c2000

The 1Qmath approach, matched to a fixed-point processor with 32x32 bit capabilities enables the
following:

Seamless portability of code between fixed and floating-point devices
Maintenance and support of one source code set from simulation to target device
Adjustability of numerical resolution (Q value) based on application requirement
Implementation of systems that may otherwise require floating-point device
Rapid conversion/porting and implementation of algorithms

C2000 Microcontroller Workshop - Numerical Concepts

Lab 8: IQmath FIR Filter

Lab 8: IQmath FIR Filter
» Objective

The objective of this lab is to become familiar with IQmath programming. In the previous lab,
ePWM1A was setup to generate a 2 kHz, 25% duty cycle symmetric PWM waveform. The
waveform was then sampled with the on-chip analog-to-digital converter. In this lab the sampled
waveform will be passed through an FIR filter and displayed using the graphing feature of Code
Composer Studio. The filter math type is selected in the “IQmathLib.h” file.

ePWM1

TB Counter ADCINAO
Compare

Action Qualifier

connector
wire

ePWM2 triggering ADC on period
match using SOCA trigger every
20 ps (50 kHz)

ADC

RESULTO

Lab 8: IQmath FIR Filter

5

ePWM2

pointer rewind

FIR Filter

data
memory

CPU copies
resultto
buffer during
ADC ISR

—

Display
using CCS

» Procedure

Open the Project

1. A project named Lab8 has been created for this lab. Open the project by clicking on
Project - Import CCS Projects. The “Import CCS Eclipse Projects”
window will open then click Browse... next to the “Select search-directory” box.
Navigate to: C:\C28x\Labs\Lab8\Project and click OK. Then click Finish to
import the project. All build options have been configured the same as the previous lab.

The files used in this lab are:

C2000 Microcontroller Workshop - Numerical Concepts

Lab 8: IQmath FIR Filter

Adc.c Filter.c
CodeStartBranch.asm Gpio.c
Defaultlsr_8.c Lab.h
DelayUs.asm Lab_8.cmd
ECap_7 8 9 10 12.c Main_8.c
EPwm_7 8 9 10 12.c PieCtrl.c
F2806x_Defaultlsr.h PieVect.c
F2806x_GlobalVariableDefs.c SysCtrl.c
F2806x_Headers_ nonBI0S.cmd Watchdog.c

Project Build Options

2. To configure the build options, right-click on Lab8 in the Project Explorer

window and select Properties. We need to setup the include search path to include
the IQmath header file. Under “C2000 Compiler” select “Include Options”. Inthe
lower box that opens (“Add dir to #include search path”) click the Add
icon (first icon with green plus sign). Then in the “Add directory path” window type:

${PROJECT _ROOT}/../../1Qmath/include
Click OK to include the search path.

Next, we need to setup the library search path to include the IQmath library. Under
“C2000 Linker” select “File Search Path”. In the top box (“Include
library file or command file as input”)click the Add icon. Then in the
“Add file path” window type:

IQmath.lib

Click OK to include the library file.

In the bottom box (“Add <dir> to library search path”)click the Add
icon. In the “Add directory path” window type:

${PROJECT_ROOT}/../../1Qmath/lib
Click OK to include the library search path.

Finally, select OK to save and close the Properties window.

Include IQmathLib.h

4.

Inthe Project Explorer window edit Lab . h and uncomment the line that includes
the 1QmathLib.h header file. Next, in the Function Prototypes section, uncomment
the function prototype for 1Qssfir(), the 1Q math single-sample FIR filter function. In the
Global Variable References section uncomment the four _iq references. Save the changes
and close the file.

Inspect Lab_8.cmd

5.

Open and inspect Lab_8.cmd. First, notice that a section called “IQmath” is being
linked to LASARAM. The IQmath section contains the IQmath library functions (code).
Second, notice that a section called “IQmathTables” is being linked to the

C2000 Microcontroller Workshop - Numerical Concepts

Lab 8: IQmath FIR Filter

IQTABLES with a TYPE = NOLOAD modifier after its allocation. The 1Qmath tables
are used by the IQmath library functions. The NOLOAD modifier allows the linker to
resolve all addresses in the section, but the section is not actually placed into the .out
file. This is done because the section is already present in the device ROM (you cannot
load data into ROM after the device is manufactured!). The tables were put in the ROM
by TI when the device was manufactured. All we need to do is link the section to the
addresses where it is known to already reside (the tables are the very first thing in the
BOOT ROM, starting at address 0x3F8000). Close the inspected file.

Select a Global 1Q value

6. Inthe Project Explorer window under the Includes folder open:
C:\C28x\Labs\IQmath\include\IQmathLib.h. Confirm that the GLOBAL_ Q
type (near beginning of file) is set to a value of 24. If it is not, modify as necessary:

#define GLOBAL_Q 24

Recall that this Q type will provide 8 integer bits and 24 fractional bits. Dynamic range
is therefore -128 < x < +128, which is sufficient for our purposes in the workshop.

Notice that the math type is defined as IQmath by:
#define MATH_TYPE 1Q_MATH
Close the file.

IQmath Single-Sample FIR Filter

7. Open and inspect Defaultlsr_8.c. Notice that the ADCINTL_ISR calls the IQmath
single-sample FIR filter function, 1Qssfir(). The filter coefficients have been defined in
the beginning of Main_8.c. Also, as discussed in the lecture for this module, the ADC
results are read with the following instruction:

*AdcBuflIQPtr = _1Qmpy(ADC_FS VOLTAGE,
_1Q12tol1Q((_ig)AdcResult . ADCRESULTO));

The value of ADC_FS_VOLTAGE will be discussed in the next lab step.

8. Open and inspect Lab . h. Notice that, as discussed in the lecture for this module,
ADC_FS_VOLTAGE is defined as:

#1T MATH_TYPE == I1Q_MATH

#define ADC_FS VOLTAGE _1Q(3.3)
#else // MATH_TYPE is FLOAT_MATH
#define ADC_FS VOLTAGE _1Q(3.374096.0)
#endif

9. Open and inspect the 1Qssfir() function in Fi l'ter .c. This is a simple, non-optimized
coding of a basic 1Qmath single-sample FIR filter. Close the inspected files.

Build and Load

10. Click the “Bui 1d” button and watch the tools run in the Console window. Check for
errors in the Problems window.

C2000 Microcontroller Workshop - Numerical Concepts 8-37

Lab 8: IQmath FIR Filter

11.

Click the “Debug” button (green bug). The “CCS Debug Perspective” view should
open, the program will load automatically, and you should now be at the start of
main(). If the device has been power cycled since the last lab exercise, be sure to
configure the boot mode to EMU_BOOT_SARAM using the Scripts menu.

Run the Code — Filtered Waveform

12. Open a memory browser to view some of the contents of the filtered ADC results buffer.
The address label for the filtered ADC results buffer is AdcBufFilteredIQ in the “Data”
memory page. Set the format to 32-Bit Signed Integer. Right-click in the memory
window, select ConFigure... and set the Q-Value to 24 (which matches the 1Q format
being used for this variable). Then click OK to save the setting. We will be running our
code in real-time mode, and will need to have the window continuously refresh.

Note: For the next step, check to be sure that the jumper wire connecting PWM1A (pin #
GP10-00) to ADCINAO (pin # ADC-AQ) is in place on the Docking Station.

13. Run the code in real-time mode using the Script function: Scripts - Realtime
Emulation Control - Run_Realtime_with_Reset, and watch the memory
browser update. Verify that the ADC result buffer contains updated values.

14. Open and setup a dual-time graph to plot a 50-point window of the filtered and unfiltered
ADC results buffer. Click: Tools - Graph - Dual Time and set the following
values:

Acquisition Buffer Size 50
DSP Data Type 32-bit signed integer
Q Value 24
Sampling Rate (Hz) 50000
Start Address A AdcBufFilteredlQ
Start Address B AdcBuflQ
Display Data Size 50
Time Display Unit us
Select OK to save the graph options.
15. The graphical display should show the generated FIR filtered 2 kHz, 25% duty cycle

symmetric PWM waveform in the Dual Time A display and the unfiltered waveform
generated in the previous lab exercise in the Dual Time B display. Notice the shape and
phase differences between the waveform plots (the filtered curve has rounded edges, and
lags the unfiltered plot by several samples). The amplitudes of both plots should run
from 0 to 3.3.

C2000 Microcontroller Workshop - Numerical Concepts

Lab 8: IQmath FIR Filter

16. Open and setup two (2) frequency domain plots — one for the filtered and another for the
unfiltered ADC results buffer. Click: Tools > Graph > FFT Magnitude and
set the following values:

GRAPH #1 GRAPH #2
Acquisition Buffer Size 50 50
DSP Data Type 32-bit signed integer 32-bit signed integer
Q Value 24 24
Sampling Rate (Hz) 50000 50000
Start Address AdcBufFilteredlQ AdcBuflQ
Data Plot Style Bar Bar
FFT Order 10 10

Select OK to save the graph options.

17. The graphical displays should show the frequency components of the filtered and
unfiltered 2 kHz, 25% duty cycle symmetric PWM waveforms. Notice that the higher
frequency components are reduced using the Low-Pass FIR filter in the filtered graph as
compared to the unfiltered graph.

18. Fully halt the CPU (real-time mode) by using the Script function: Scripts >
Realtime Emulation Control - Full_Halt.
Changing Math Type to Floating-Point

19. Switch to the “CCS Edit Perspective” view by clicking the CCS Edit icon in the upper
right-hand corner. Inthe Project Explorer window under the Includes folder
open: C:\C28x\Labs\1Qmath\include\l1QmathLib_h. Edit IQmathLib_h
to define the math type as floating-point. Change #define

from: #define MATH_TYPE 1Q_MATH
to: #define MATH_TYPE FLOAT_MATH

Save the change to the IQmathLib_h and close the file.

Build and Load

20. Click the “Bui 1d” button. Select Yes to “Reload the program automatically”. Switch
back to the “CCS Debug Perspective” view by clicking the CCS Debug icon in the
upper right-hand corner.

C2000 Microcontroller Workshop - Numerical Concepts 8-39

Lab 8: IQmath FIR Filter

Run the Code — Floating-Point Filtered Waveform

21.

22.

23.

24.

Change the dual-time and FFT Magnitude graphs to display 32-bit floating-point rather
than 32-bit signed integer. Click the “Show the Graph Properties” icon for
each graph and change the DSP Data Type to 32-bit floating-point.

Run the code (real-time mode) by using the Script function: Scripts -> Realtime
Emulation Control - Run_Realtime_with_Reset.

The graphical display should show the generated FIR filtered 2 kHz, 25% duty cycle
symmetric PWM waveform in the Dual Time A display and the unfiltered waveform in
the Dual Time B display. The FFT Magnitude graphical displays should show the
frequency components of the filtered and unfiltered 2 kHz, 25% duty cycle symmetric
PWM waveforms.

Fully halt the CPU (real-time mode) by using the Script function: Scripts ->
Realtime Emulation Control - Full_Halt.

Terminate Debug Session and Close Project

25.

26.

Terminate the active debug session using the Terminate button. This will close the
debugger and return CCS to the “CCS Edit Perspective” view.

Next, close the project by right-clicking on Lab8 in the Project Explorer window
and select Close Project.

End of Exercise

C2000 Microcontroller Workshop - Numerical Concepts

Lab 8: IQmath FIR Filter

Lab 8 Reference: Low-Pass FIR Filter

Bode Plot of Digital Low Pass Filter
Coefficients: [1/16, 4/16, 6/16, 4/16, 1/16]
Sample Rate: 50 kHz

Low-Fass Filter Magnitude

o o o
e [a7] (u]

o
(]

Magnitude [dimensionless)

a 0.5 1 14 2 245
Frequency (Hz) <10

Lowe-Pass Fitter Phase

-100

o 200

Fhasze (deg)

-300

-400
a

Frequency I:HZII. w10t

C2000 Microcontroller Workshop - Numerical Concepts 8-41

Lab 8: IQmath FIR Filter

8-42 C2000 Microcontroller Workshop - Numerical Concepts

Direct Memory Access Controller

Introduction

This module explains the operation of the direct memory access (DMA) controller. The DMA
provides a hardware method of transferring data between peripherals and/or memory without

intervention from the CPU, thus freeing up bandwidth for other system functions. The DMA has
six channels with independent PIE interrupts.

Module Objectives

Module Objectives

¢ Understand the operation of the

Direct Memory Access (DMA)
controller

¢ Show how to use the DMA to transfer
data between peripherals and/or

memory without intervention from
the CPU

The DMA allows data to be transferred between peripherals and/or memory without intervention
from the CPU. The DMA can read data from the ADC result registers, transfer to or from
memory blocks L5 through L8, transfer to or from the McBSP, and also modify registers in the

ePWM. Triggers are used to initiate the transfers, and when completed the DMA can generate an
interrupt.

C2000 Microcontroller Workshop - Direct Memory Access Controller

Module Topics

Module Topics

Direct Memory ACCESS CONTIOIIETcv it 9-1
T T LU T o] (oSSR 9-2
Direct Memory ACCESS (DIMA)c.viiiiieiieteeieee sttt e e s e et e et e besre s e e enee st e aestesaeareaneensenaenseneennens 9-3

2 FE T Tl @] 1< L4 T o SRS 9-4
1Y eV 1] S 9-6
1Y N g o] 120 Y4 [0 T =TSSP 9-8
DIMA TREOUGRNPUL ...ttt bbb bbbt ek e e b e b sb e e b e bt e b e e e e b e b seeneas 9-9
DIMA REGISLEIS ...ttt ettt ettt sttt sttt st s b et b ekt e st e s e ee e b e e ke ebe ekt e b e e se e e et e nbesbeebesbeene e e et e nbesbens 9-10
Lab 9: Servicing the ADC With DIMA. ..ot bbbt 9-14

9-2 C2000 Microcontroller Workshop - Direct Memory Access Controller

Direct Memory Access (DMA)

Direct Memory Access (DMA)

DMA Triggers, Sources, and Destinations

CTUTPIE T
! DINTCH1-6 |
ADC """" ; -------
—_ | :
Result 0-15 H McBSP-A
DMA
L5 DPSARAM |« »| 6-channels
Triggers » PWM1 ——
L6 DPSARAM (€ t > PWM2
ADCINT1 // ADCINT2 " » PWM3 ——
MXEVTA / MREVTA > PWM4 —
L7 DPSARAM [« XINT1-3 / TINT0-2 * L ras
ePWM1-6 (SOCA-B ; ¢ —
USBOEP1(-3RX/TX) / » PWM6 ——
L8 DPSARAM ¢ software /

SysCtrIRegs.EPWMCNF.bit. CONCNF'
(maps ePWM to DMA bus or CLA bus)

DMA Definitions

¢ Word

¢ 16 or 32 bits

¢ Word size is configurable per DMA channel
¢ Burst

¢ Consists of multiple words

¢ Smallest amount of data transferred at one time
¢ Burst Size

¢ Number of words per burst

¢ Specified by BURST_SIZE register

¢ 5-bit ‘N-1’ value (maximum of 32 words/burst)

¢ Transfer

¢ Consists of multiple bursts
¢ Transfer Size

¢ Number of bursts per transfer

¢ Specified by TRANSFER_SIZE register
¢ 16-bit ‘N-1' value - exceeds any practical requirements

C2000 Microcontroller Workshop - Direct Memory Access Controller 9-3

Direct Memory Access (DMA)

Basic Operation

Simplified State Machine Operation

The DMA state machine at its most basic
level is two nested loops

’ Start Transfer """""“““““"'“““"""“':

Transfer Size times

DMA can be configured to

End Transfer } re-initialize at the end of the ----

transfer (continuous mode)

Basic Address Control Registers

32
_ . ! SRC_ADDR |
Active pointers
| DST_ADDR |
Pointer shadow registers SRC ADDR SHADOW |
copied to active pointers at — —
start of transfer DST_ADDR_SHADOW |

Signed value added to active | SRC_BURST_STEP |
pointer after each word | DST BURST STEP |

Signed value added to active |SRC—TRANSFER—STEP|
pointer after each burst |DST TRANSEER STEP|

9-4 C2000 Microcontroller Workshop - Direct Memory Access Controller

Direct Memory Access (DMA)

Simplified State Machine Example

3 words/burst
2 bursts/transfer

Start Transfer

Wait for event

/' N

to start/continue
transfer

Read/Write Data

Moved
“Burst Size”
Words?

Add Burst Step
to Address
Pointer

Moved N
“Transfer Size”
Bursts?

Add Transfer
Step to Address
Pointer

Y

A\ 4

End Transfer

DMA Interrupts

Mode #1:

Interrupt <---

at start of
transfer

Start Transfer

¢ Each DMA channel has its
own PIE interrupt

¢ The mode for each
interrupt can be configured
individually

¢ The CHINTMODE bit in the
MODE register selects the
interrupt mode

Mode #2:

Interrupt <---

at end of
transfer

Wait for event

A

to start/continue
transfer

Read/Write Data

Moved
“Burst Size”
Words?

Add Burst Step
to Address
Pointer

Moved
“Transfer Size”
Bursts?

Add Transfer
Step to Address
Pointer

v

End Transfer

C2000 Microcontroller Workshop - Direct Memory Access Controller

Direct Memory Access (DMA)

DMA Examples

Simple Example

Objective: Move 4 words from memory location 0xF00O to
memory location 0x4000 and interrupt CPU at end of transfer

BURST_SIZE* 0x0001 2 words/burst .
"~ —
TRANSFER_SIZE* 0x0001 2 bursts/transfer art Transfer
v
* Size registers are N-1 Waitfor event
to start/continue
. transfer
Source Registers Addr Value
SRC_ADDR _ O0XF000 | Ox1111
0xF001 | 0x2222
SRC_ADDR_SHADOW [0x0000F000 0xF002 (03333 oy 'Add Burst Step
SRC_BURST_STEP 0x0001 0xF003 [Oxaadd “Burst Size" to Address
SRC_TRANSFER_STEP 0x0001 X X ords? Eointex

Moved Add Transfer
“Transfer Size” Step to Address
Bursts? Pointer

Destination Registers Addr Value
DST_ADDR [[0x000000001] 0x4000

DST_ADDR_SHADOW [(0x00004000 0x4001

> Interrupt to PIE

0x4002
DST_BURST_STEP 0x0001 0x4003 [EndTranster]
DST_TRANSFER_STEP 0x0001

Note: This example could also have been done using 1 word/burst and 4 bursts/transfer, or 4 words/burst
and 1 burst/transfer. This would affect Round-Robin progression, but not interrupts.

Data Binning Example
Objective: Bin 3 samples of 5 ADC channels, then interrupt the CPU
L7 SARAM
0xF000
ADC Results CHO 0xF001
0xF002
3rd Conversion Sequence 0xF003
CH1 0xF004
0x0B00 | CHO 0xF005
0x0B01 | CH1 0xF006
0x0B02 | CH2 CH2 0xF007
0x0B03 | CH3 0xF008
0x0B04 | CH4 0xF009
CH3 OxFOO0A
0xFOOB
0XxFO0C
CH4 0XFOOD
OXFOOE

C2000 Microcontroller Workshop - Direct Memory Access Controller

Direct Memory Access (DMA)

ADC Registers:

SOCO — SOC4 configured to CHO — CH4, respectively,
ADC configured to re-trigger (continuous conversion)

DMA Registers:

BURST_SIZE* 0x0004 5 words/burst
TRANSFER_SIZE* 0x0002 3 bursts/transfer
SRC_ADDR_SHADOW [0x00000B00
SRC_BURST_STEP 0x0001
SRC_TRANSFER_STEP OXFEEC (-4)
DST_ADDR_SHADOW [0x0000F000 | starting address**
DST_BURST_STEP 0x0003
DST_TRANSFER_STEP OxFFF5 (-11)

* Size registers are N-1
** Typically use a relocatable symbol in your code, not a hard value

ADC Results

0x0B00
0x0B01
0x0B02
0x0B03
0x0B04

Data Binning Example Register Setup
Objective: Bin 3 samples of 5 ADC channels, then interrupt the CPU

L7 SARAM

0xF000 |CHO

0xF001 |CHO

0xF002 |CHO

0xF003 |CH1

0xF004 |CH1

CHO

0xF005 |CH1

CH1

0xF006 |CH2

CH2

0xF007 |CH2

CH3

0xF008 |CH2

CH4

0xF009 |CH3

OxFO0A |CHS

0xF00B |CH3

0xF00C |CH4

0xFoOD |CH4

OxFOOE |CH4

Ping-Pong Buffer Example

Objective: Buffer ADC ch. 0 ping-pong style, 50 samples per buffer

ADC Result Register L5 DPSARAM
0x0B00 ADCRESULTO 0xC140 ~
SOCO configured to ADCINAO
with 1 conversion per trigger 50 word
>~ ‘Ping’ buffer
DMA
=< ’ Interrupt
50 word
>~ ‘Pong’ buffer

) DMA

Interrupt

C2000 Microcontroller Workshop - Direct Memory Access Controller

Direct Memory Access (DMA)

Ping-Pong Example Register Setup

Objective: Buffer ADC ch. 0 ping-pong style, 50 samples per buffer

ADC Registers:

|C0nvert ADC Channel ADCINAO — 1 conversion per trigger (i.e. ePWM2SOCA) |

DMA Registers:

SRC_ADDR_SHADOW | 0x00000B0Q0 | starting address
SRC_BURST_STEP |_don'tcare | since BURST_SIZE =0

SRC_TRANSFER_STEP [__0x0000 o Addess
Words? Pointer

DST_ADDR_SHADOW [0x0000C140 | starting address**
DST_BURST_STEP | _don'tcare | since BURST_SIZE =0
DST_TRANSFER_STEP 0x0001

BURST_SIZE* 0x0000 1 word/burst
TRANSFER_SIZE* 0x0031 | 50 bursts/transfer

oved
G i Add Transfer Stej
Tragj{g{sg'ze {0 Addie5% Pornter
Y

Other: [DMA configured to re-init after transfer (CONTINUOUS = 1) |

End Transfer

* Size registers are N-1
** DST_ADDR_SHADOW must be changed between ping and pong buffer address in
the DMA ISR. Typically use a relocatable symbol in your code, not a hard value.

DMA Priority Modes

.

-

-

¢ Round Robin Mode:

¢ Channel 1 High Priority Mode:

Channel Priority Modes

All channels have equal priority

After each enabled channel has
transferred a burst of words, the
next enabled channel is serviced
in round robin fashion

DMA
event?

Same as Round Robin except CH1
can interrupt DMA state machine

If CH1 trigger occurs, the current
word (not the complete burst) on
any other channel is completed
and execution is halted

CH1 is serviced for complete burst

When completed, execution
returns to previous active channel

This mode is intended primarily
for the ADC, but can be used by
any DMA event configured to
trigger CH1

C2000 Microcontroller Workshop - Direct Memory Access Controller

Direct Memory Access (DMA)

Priority Modes and the State Machine
Point where other

pending channels
are serviced]

Wait for event
to start/continue

/' N

transfer

Read/Write Data
Point where
CH1 can =
interrupt other Moved Add Burst Step
channels in “Burst Size” to Address
CH1 Priority Mode Words? Pointer

Moved Add Transfer
“Transfer Size” Step to Address
Bursts? Pointer

Y

v

End Transfer

DMA Throughput

DMA Throughput

¢ 4 cycles/word (5 for McBSP reads)

¢ 1 cycle delay to start each burst

¢ 1 cycle delay returning from CH1
high priority interrupt

¢ 32-bit transfer doubles throughput
(except McBSP, which supports 16-bit transfers only)

Example: 128 16-bit words from ADC to RAM
8 bursts * [(4 cycles/word * 16 words/burst) + 1] = 520 cycles

Example: 64 32-bit words from ADC to RAM
8 bursts * [(4 cycles/word * 8 words/burst) + 1] = 264 cycles

C2000 Microcontroller Workshop - Direct Memory Access Controller 9-9

Direct Memory Access (DMA)

DMA vs. CPU Access Arbitration

¢ DMA has priority over CPU
¢ If a multi-cycle CPU access is already in
progress, DMA stalls until current CPU
access finishes

¢ The DMA will interrupt back-to-back CPU
accesses

¢ Can the CPU be locked out?

¢ Generally No!

#DMA is multi-cycle transfer; CPU will sneak
in an access when the DMA is accessing the
other end of the transfer (e.g. while DMA
accesses destination location, the CPU can
access the source location)

DMA Registers

DMA Registers

DmaRegs.name (lab file: Dma.c)

Register Description
DMACTRL DMA Control Register
PRIORITYCTRL1 Priority Control Register 1
MODE Mode Register
CONTROL Control Register
BURST_SIZE Burst Size Register
BURST_COUNT Burst Count Register

g SRC_BURST_STEP Source Burst Step Size Register

.g DST_BURST_STEP Destination Burst Step Size Register

& TRANSFER_SIZE Transfer Size Register

§< TRANSFER_COUNT Transfer Count Register

::) SRC_TRANSFER_STEP Source Transfer Step Size Register

E DST_TRANSFER_STEP Destination Transfer Step Size Register
SRC_ADDR_SHADOW Shadow Source Address Pointer Register
SRC_ADDR Active Source Address Pointer Register
DST_ADDR_SHADOW Shadow Destination Address Pointer Register
DST_ADDR Active Destination Address Pointer Register

For a complete list of registers refer to the DMA Module Reference Guide

C2000 Microcontroller Workshop - Direct Memory Access Controller

Direct Memory Access (DMA)

DMA Control Register

DmaRegs.DMACTRL

Hard Reset

0 = writes ignored (always reads back 0)
1 =reset DMA module

\

15-2 1 0
reserved PRIORITYRESET | HARDRESET

Priority Reset

0 = writes ignored (always reads back 0)

1 =reset state-machine after any pending
burst transfer complete

Priority Control Register 1

DmaRegs.PRIORITYCTRL1

15-1 0
reserved CH1PRIORITY

DMA CH1 Priority

0 = same priority as other channels
1 = highest priority channel

C2000 Microcontroller Workshop - Direct Memory Access Controller 9-11

Direct Memory Access (DMA)

Channel Interrupt

Upper Register:

Mode Register

DmaRegs.CHx.MODE

One Shot Mode
0 = one burst transfer per trigger

g Z ghsaab%e 1 =subsequent burst transfers
| occur without additional trigger
15 14 13-12 1 10
CHINTE DATASIZE reserved CONTINUOUS ONESHOT

Data Size Mode

0 = 16-bit transfer
1 = 32-bit transfer

Continuous Mode

0 = DMA stops
1 = DMA re-initializes

Mode Register

DmaRegs.CHx.MODE

Lower RegiSter: Peripheral Overflow
) Interrupt Trigger Interrupt Enable
Channel Interrupt Generation 0 = disable 0 = disable
0 = at beginning of transfer 1 =enable 1 =enable
1 =at end of transfe//
9 8 7 6-5 4-0
CHINTMODE | PERINTE | OVRINTE reserved PERINTSEL

Peripheral Interrupt Source Select

Peripheral INT Peripheral INT Peripheral INT Peripheral INT
0 |none 8 |USBOEP1TX 16 |reserved 24 |ePWM4SOCA
1 [ADCINT1 9 |USBOEP2RX 17 |Reserved 25 [ePWM4S0OCB
2 |ADCINT2 10 ([USBOEP2TX 18 |ePWM1SOCA 26 |[ePWM5SOCA
3 |[XINT1 11 | TINTO 19 |ePWM1SOCB 27 |ePWM5SOCB
4 |XINT2 12 [TINT1 20 |[ePWM2SOCA 28 |[ePWM6BSOCA
5 |XINT3 13 [TINT2 21 |ePWM2S0OCB 29 |ePWM6SOCB
6 |reserved 14 |MXEVTA 22 |ePWM3SOCA 30 |USBOEP3RX
7 |USBOEP1RX 15 [MREVTA 23 |ePWM3SOCB 31 |USBOEP3TX

C2000 Microcontroller Workshop - Direct Memory Access Controller

Direct Memory Access (DMA)

Control Register

DmaRegs.CHx.CONTROL

Upper Register:

Burst Status *
0 =no activity

Overflow Flag *
0 =no overflow

1 =overflow 1 =servicing burst
15 14 13 12 11 10-9 8
reserved| OVRFLG|RUNSTS | BURSTSTS |TRANSFERRST reserved PERINTFLG

Run Status * Transfer Status *

0 = channel disabled 0 =no activity
1 =channel enabled 1 =transferring

0 =no inter

Peripheral Interrupt Trigger Flag *

1 =interrupt event trigger

rupt event trigger

* = read-only

Control Register

DmaRegs.CHx.CONTROL

Lower Register:

Error Clear Peripheral Interrupt Force Run
0 = no effect 0 = no effect 0 = no effect
1 =clear SYNCERR 1 =sets event and PERINTFLG 1=run
7 6-5 4 3 2 1 0
ERRCLR reserved PERINTCLR [PERINTFRC |SOFTRESET | HALT | RUN
Peripheral Interrupt Clear Soft Reset Halt
0 = no effect 0 = no effect 0 = no effect
1 =clears event and PERINTFLG 1 = default state 1 =halt

C2000 Microcontroller Workshop - Direct Memory Access Controller

Lab 9: Servicing the ADC with DMA

Lab 9: Servicing the ADC with DMA
» Objective

The objective of this lab is to become familiar with operation of the DMA. In the previous lab,
the CPU was used to store the ADC conversion result in the memory buffer during the ADC ISR.
In this lab the DMA will be configured to transfer the results directly from the ADC result
registers to the memory buffer. ADC channel AO will be buffered ping-pong style with 50
samples per buffer. As an operational test, the filtered 2 kHz, 25% duty cycle symmetric PWM
waveform (ePWM1A) will be displayed using the graphing feature of Code Composer Studio.

Lab 9: Servicing the ADC with DMA

ePWM1 ADC DMA
TB Counter ADCINAO | RESULTO
Compare
Action Qualifier
connector + .
wire l ping
data
memory
ePWM2 triggering ADC on period pong
match using SOCA trigger every
20 ps (50 kHz)
ePWM2 CPU runs

FIR data through

i filter during
Filter et

Objective: 5o
Configure the DMA to buffer £< (% mamary
ADC Channel A0 ping-pong a®
style with 50 samples per buffer Display
using CCS

» Procedure

Open the Project

1. A project named Lab9 has been created for this lab. Open the project by clicking on
Project - Import CCS Projects. The “Import CCS Eclipse Projects”
window will open then click Browse... next to the “Select search-directory” box.
Navigate to: C:\C28x\Labs\Lab9\Project and click OK. Then click Finish to
import the project. All build options have been configured the same as the previous lab.
The files used in this lab are:

9-14 C2000 Microcontroller Workshop - Direct Memory Access Controller

Lab 9: Servicing the ADC with DMA

Adc.c Filter.c
CodeStartBranch.asm Gpio.c
Defaultlsr 9.c Lab.h
DelayUs.asm Lab_9.cmd
Dma.c Main_9.c
ECap_7 8 9 10 12.c PieCtrl.c
EPwm_7 8 9 10 12.c PieVect.c
F2806x_Defaultlsr.h SysCtrl.c
F2806x_GlobalVariableDefs.c Watchdog.c

F2806x_Headers_ nonBI0S.cmd

Inspect Lab_9.cmd

2. Openand inspect Lab_9.cmd. Notice that a section called “dmaMemBufs” is being
linked to LSDPSARAM. This section links the destination buffer for the DMA transfer to
a DMA accessible memory space.

Setup DMA Initialization

The DMA controller needs to be configured to buffer ADC channel A0 ping-pong style with 50
samples per buffer. One conversion will be performed per trigger with the ADC operating in
single sample mode.

3. Edit Dma. c to implement the DMA operation as described in the objective for this lab
exercise. Configure the DMA Channel 1 Mode Register (MODE) so that the ADC
ADCINT1 is the peripheral interrupt source. Enable the peripheral interrupt trigger and
set the channel for interrupt generation at the start of transfer. Configure for 16-bit data
transfers with one burst per trigger and auto re-initialization at the end of the transfer. In
the DMA Channel 1 Control Register (CONTROL) clear the error and peripheral
interrupt bits. Enable the channel to run.

4. OpenMain_9.c andadd a line of code in main() to call the InitDma() function.
There are no passed parameters or return values. You just type

Initbma();

at the desired spot in main().

Setup PIE Interrupt for DMA

Recall that ePWM2 is triggering the ADC at a 50 kHz rate. In the previous lab exercise, the ADC
generated an interrupt to the CPU, and the CPU implemented the FIR filter in the ADC ISR. For

this lab exercise, the ADC is instead triggering the DMA, and the DMA will generate an interrupt
to the CPU. The CPU will implement the FIR filter in the DMA ISR.

5. Edit Adc.c to comment out the code used to enable the ADCINT1 interrupt in PIE group 1.
This is no longer being used. The DMA interrupt will be used instead.

6. Using the “PIE Interrupt Assignment Table” find the location for the DMA Channel 1
interrupt “DINTCHL1” and fill in the following information:

PIE group #: # within group:

C2000 Microcontroller Workshop - Direct Memory Access Controller 9-15

Lab 9: Servicing the ADC with DMA

This information will be used in the next step.

7. Modify the end of Dma.c to do the following:

- Enable the “DINTCHL” interrupt in the PIE (Hint: use the PieCtrlIRegs structure)
- Enable the appropriate core interrupt in the IER register

8. Open and inspect Defaultlsr_9.c. Notice that this file contains the DMA interrupt
service routine. Save and close all modified files.

Build and Load

9. Click the “Bui 1d” button and watch the tools run in the Console window. Check for
errors in the Problems window.

10. Click the “Debug” button (green bug). The “CCS Debug Perspective” view should
open, the program will load automatically, and you should now be at the start of
main(). If the device has been power cycled since the last lab exercise, be sure to
configure the boot mode to EMU_BOOT_SARAM using the Scripts menu.

Run the Code — Test the DMA Operation

Note: For the next step, check to be sure that the jJumper wire connecting PWM1A (pin #
GP10-00) to ADCINAO (pin # ADC-AQ) is in place on the Docking Station.

11. Run the code in real-time mode using the Script function: Scripts > Realtime
Emulation Control - Run_Realtime_with_Reset, and watch the memory
browser update. Verify that the ADC result buffer contains updated values.

12. Setup a dual-time graph of the filtered and unfiltered ADC results buffer. Click:
Tools > Graph -> Dual Time and set the following values:

Acquisition Buffer Size 50

DSP Data Type 32-bit floating-point
Sampling Rate (Hz) 50000

Start Address — A AdcBufFilteredlQ
Start Address - B AdcBuflQ

Display Data Size 50

Time Display Unit us

13. The graphical display should show the filtered PWM waveform in the Dual Time A
display and the unfiltered waveform in the Dual Time B display. You should see that the
results match the previous lab exercise.

14. Fully halt the CPU (real-time mode) by using the Script function: Scripts >
Realtime Emulation Control -> Full_Halt.

9-16 C2000 Microcontroller Workshop - Direct Memory Access Controller

Lab 9: Servicing the ADC with DMA

Terminate Debug Session and Close Project

15. Terminate the active debug session using the Terminate button. This will close the
debugger and return CCS to the “CCS Edit Perspective” view.

16. Next, close the project by right-clicking on Lab9 in the Project Explorer window
and select Close Project.

End of Exercise

C2000 Microcontroller Workshop - Direct Memory Access Controller

Lab 9: Servicing the ADC with DMA

9-18 C2000 Microcontroller Workshop - Direct Memory Access Controller

Control Law Accelerator

Introduction

This module explains the operation of the control law accelerator (CLA). The CLA is an
independent, fully programmable, 32-bit floating-point math processor that enables concurrent
execution into the C28x family. This extends the capabilities of the C28x CPU by adding parallel
processing. The CLA has direct access to the ADC result registers, and all ePWM, HRPWM,
eCAP, eQEP and comparator registers. This allows the CLA to read ADC samples “just-in-time”
and significantly reduces the ADC sample to output delay enabling faster system response and
higher frequency operation. Utilizing the CLA for time-critical tasks frees up the CPU to perform
other system and communication functions concurrently.

Module Objectives

Module Objectives

¢ Explain the purpose and operation of the
Control Law Accelerator (CLA)

¢ Describe the CLA initialization procedure

¢ Review the CLA registers, instruction set,
and programming flow

The control law accelerator is an independent, 32-bit, floating-point, math accelerator. It
executes algorithms independently and in parallel with the CPU. It has direct access to the
ePWM, high-resolution PWM, eCAP, eQEP, ADC result and comparator registers. It responds to
peripheral interrupts independently of the CPU and frees up the CPU for other tasks, such as
communications and diagnostics.

C2000 Microcontroller Workshop - Control Law Accelerator 10-1

Module Topics

Module Topics

CONLFOL LAW ACCEIBIALONcviiiiiitiieeieiee ettt sttt bbbt 10-1
0T LU T=N o] oSS 10-2
Control Law ACCEIErator (CLA) ..ottt sttt srenae e enaeeeneeneenneas 10-3

L@ N Y ool 1 D - | Uy oSS 10-3
CLA MemOry and REJISTEr ACCESS ..vcuverveeirieirestesteieeseeseesieseessessesseasesseessessessessessessessesssessesseseessesses 10-4
L0 I I T OSSOSOV 10-4
Control and EXECULION REGISLEISeiuiiieieiiteite sttt sttt sa e bbb e b e b e 10-5
(O I N T 1] (T USROS 10-6
CLA TNITIAIIZATION ...t bbbttt b e bbbt ebe e e b e b e 10-9
CLA TaSK ProgrammMingcocooeoieeeeie ettt she sttt eeseesaesbesbe s b sbe s e eneesnesbeseesaens 10-10
CLA C Language Implementation and ReStHCHIONSccoiiiiiiiiiiiiiee e 10-10
CLA Assembly Language Implementationccoeeeiiiiieiineneeieeee e 10-13
(O I @ o (3 1= o0 To o OSSN 10-16
controlSUITE™ - CLA SOftWare SUPPOITocuviieeieeie e e siese st seee e ste e sre s e eneeseesneseesnens 10-16
Lab 10: CLA Floating-Point FIR FIlter ...t 10-17

10-2

C2000 Microcontroller Workshop - Control Law Accelerator

Control Law Accelerator (CLA)

Control Law Accelerator (CLA)

Control Law Accelerator (CLA)

ADC C28x CPU
& PWM
CMP CLA

JVAVAVAV/ T

UL
HIHH

¢ An independent 32-bit floating-point math
accelerator

¢ Executes algorithms independently and in
parallel with the main CPU

¢ Direct access to ePWM / HRPWM, eCAP, eQEP,
ADC result and comparator registers

¢ Responds to peripheral interrupts
independent of the CPU

¢ Frees up the CPU for other tasks
(communications and diagnostics)

CLA Block Diagram
CLA Block Diagram

Task Triggers
(Peripheral Interrupts)

ADCINT1 to
ADCINT8

EPWMI1_INT to CLA
EPWMS8_INT
= C28x
ECAPL_INT to || MPERINTL-8 . CLAINTL-8\| p| |INT1L
ECAP3INT Control & Execution LVF, LUF INT12 | CPU
— Registers
EQEP1_INT to

EQEP2_INT
CPU Timer 0

CLA Program Bus

CLA Data Bus

Program Data Data Data E;AF?S RA&’\C; Z(gg)g Relgs
to esults
RAM RAMO RAM1 RAM2 CLAto CPU SPWM
HRPWM
Comparator
eCAP
eQEP

C2000 Microcontroller Workshop - Control Law Accelerator 10-3

Control Law Accelerator (CLA)

CLA Memory and Register Access

CLA Program Memory

+ Initialized by the CPU

CLA Memory and Register Access

+ Contains CLA program code + Used to pass data between
+ Mapped to the CPU at reset

Message RAMs

the CPU and CLA
+ Always mapped to both

the CPU and CLA

—=

L3 DPSARAM L1 DPSARAM L2 DPSARAM LO DPSARAM PFO PFO & PF1
Program Data Data Data MSG RAMs Periph. Relgs
CPU to CLA ADC Results
RAM RAMO RAM1 RAM2 CLAto CPU SPWM
(4Kw) _(IKw) (1Kw) (Kkw) _J (128w/128w) HRPWM
Comparator
eCAP
CLA Data Memory eQEP

+ Contains variables and coefficients
used by the CLA program code

+ Mapped to the CPU at reset
+ Initialized by CPU

=

Peripheral Reg Access
+ ADC Results Regs + Comparator (all regs)
+ ePWM (all regs) « eCAP (all regs)
+ HRPWM (all regs) -+ eQEP (all regs)

CLA Tasks

CLA Tasks

Task Triggers
(Peripheral Interrupts)

ADCINT1 to
ADCINT8

EPWM1_INT to

EPWMS8_INT CI—A
— MPERINT1-8 .

ECAP1 INT to Control & Execution

ECAP3_INT Registers

EQEPL_INT to
EQEP2_INT

CPU Timer 0

INT11 | C28X
INT12| CPU

CLA_INT1-8
LVF, LUF

PIE

¢ A Task is similar to an interrupt service routine
¢ CLA supports 8 Tasks (Task1-8)

¢ Atask is started by a peripheral interrupt trigger
¢ Triggers are enabled in the MPISRCSEL1 register

¢ When atrigger occurs the CLA begins execution at
the associated task vector entry (MVECT1-8)

¢ Once atask begins it runs to completion (no nesting)

10-4

C2000 Microcontroller Workshop - Control Law Accelerator

Control Law Accelerator (CLA)

Software Triggering a Task

¢ Tasks can also be started by a software trigger
using the CPU

¢ Method #1: Write to Interrupt Force Register (MIFRC) register

15-8 7 6 5 4 3 2 1 0
reserved INT8 [INT7 | INT6 | INT5 [INT4 | INT3 |INT2 | INT1

asm(*" EALLOW™); //enable protected register access

ClalRegs-MIFRC.bit.INT4 = 1; //start task 4

asm(** EDIS™); //disable protected register access

¢ Method #2: Use IACK instruction

asm(** IACK #0x0008"); //set bit 3 in MIFRC to start task 4

More efficient — does not require EALLOW
Note: Use of IACK requires ClalRegs.MCTL.bit.IACKE = 1

Control and Execution Registers

CLA Control and Execution Registers

MPISRCSEL1 MIFR MIER

ADCINTL1 to
ADCINT8 T AN
EPWMI_INT to CtCEl 'ELTJlF'a
EPWMB8_INT o o . CLA i pi [INT1L, | C28x
ECAPL_INT to 4 ° o > P
ECAP3TINT J . o Core INT12| CPU
EQEP1_INT to =N o AN
EQEP2TINT g 0] MRD
CPU Timer 0 MRL
no source wiFre LW rgger MARD
MR2
MAR1
[MPC +—MVECT1-8| 4 [WR3
Program Data
Memory CLA Program Bus CLA Data Bus Memory

MPISRCSELL1 - Peripheral Interrupt Source Select (Task 1-8)

MVECT1-8 — Task Interrupt Vector (MVECT1/2/3/4/5/6/7/8)

MMEMCFG — Memory Map Configuration (RAM2E, RAM1E, RAMOE, PROGE)
MPC - 12-bit Program Counter (initialized by appropriate MVECTX register)
MRO-3 — CLA Floating-Point Result Registers (32-bit)

MARO-1 — CLA Auxiliary Registers (16-bit)

L IR IR R R R 4

C2000 Microcontroller Workshop - Control Law Accelerator 10-5

Control Law Accelerator (CLA)

CLA Registers

CLA Registers
ClalRegs.register (lab file: Cla.c)

Register Description
MCTL Control Register
MMEMCFG Memory Configuration Register
MPISRCSEL1 Peripheral Interrupt Source Select 1 Register
MIFR Interrupt Flag Register
MIER Interrupt Enable Register
MIFRC Interrupt Force Register
MICLR Interrupt Flag Clear Register
MIOVF Interrupt Overflow Flag Register
MICLROVF Interrupt Overflow Flag Clear Register
MIRUN Interrupt Run Status Register
MVECTx Task x Interrupt Vector (x = 1-8)
MPC CLA 12-bit Program Counter
MARX CLA Auxiliary Register x (x = 0-1)
MRx CLA Floating-Point 32-bit Result Register (x = 0-3)
MSTF CLA Floating-Point Status Register

CLA Control Register

ClalRegs.MCTL

IACK Enable parg Reset
0 = CPU IACK instruction ignored 1 = CLA reset
1=CPU IACK instruction triggers a task (registers set
\ to defau{state)
15-3 2 1 0
reserved IACKE |SOFTRESET|HARDRESET

Soft Reset

0 = no effect
1=CLAreset
(stop current task)

10-6 C2000 Microcontroller Workshop - Control Law Accelerator

Control Law Accelerator (CLA)

CLA Memory Configuration Register

ClalRegs.MMEMCFG

CLA Data RAM2 / RAM1 / RAMO CPU Access Enable

0 =mapped as RAM2E / RAM1E / RAMO
1 =CPU access to RAM while mapped to CLA data space

15-11 7 10 9 g
reserved RAM2CPUE | RAM1CPUE | RAMOCPUE
7 6 5 4 3-1 0
reserved RAM2E RAM1E RAMOE reserved PROGE
e %

CLA Data RAM2 / RAM1 / RAMO Enable

CLA Program Space Enable

0 =mapped to CPU program and data space
1 =mapped to CLA program space

0 = mapped to CPU program and data space
1 =mapped to CLA data space

CLA Peripheral Interrupt Source
Select 1 Register

ClalRegs.MPISRCSEL1

Upper Register:

31-28 27 - 24 23-20 19-16
PERINT8SEL PERINT7SEL PERINTG6SEL PERINT5SEL

Task 8 Peripheral
Interrupt Input
0000 = ADCINTS8
0010 = CPU Timer 0
0100 = eQEP1

0101 = eQEP2

1000 = eCAP1

1001 = eCAP2

1010 = eCAP3
other = no source

Task 7 Peripheral
Interrupt Input
0000 = ADCINT7
0010 = ePWM7
0100 = eQEP1
0101 = eQEP2
1000 = eCAP1
1001 = eCAP2
1010 = eCAP3
other = no source

Note: select ‘no source’ if task is generated by software

Task 6 Peripheral
Interrupt Input
0000 = ADCINT6
0010 = ePWM6
0100 = eQEP1
0101 = eQEP2
1000 = eCAP1
1001 = eCAP2
1010 = eCAP3
other = no source

Task 5 Peripheral
Interrupt Input
0000 = ADCINT5
0010 = ePWM5
0100 = eQEP1
0101 = eQEP2
1000 = eCAP1
1001 = eCAP2
1010 = eCAP3
other = no source

0000 = Default

C2000 Microcontroller Workshop - Control Law Accelerator

10-7

Control Law Accelerator (CLA)

CLA Peripheral Interrupt Source
Select 1 Register

ClalRegs.MPISRCSEL1

Lower Register:

15-12 11-8 7-4 3-0
PERINT4SEL PERINT3SEL PERINT2SEL PERINT1SEL

Task 4 Peripheral
Interrupt Input
0000 = ADCINT4
0010 = ePWM4
0100 = eQEP1
0101 = eQEP2
1000 = eCAP1
1001 = eCAP2
1010 = eCAP3
other =no source

Task 3 Peripheral
Interrupt Input
0000 = ADCINT3
0010 = ePWM3
Xxxx1 =no source

Note: select ‘no source’ if task is generated by software

Task 2 Peripheral
Interrupt Input
0000 = ADCINT2
0010 = ePWM2
xxX1 =no source

Task 1 Peripheral
Interrupt Input

0000 = ADCINT1
0010 = ePWM1
Xxx1 =no source

0000 = Default

CLA Interrupt Enable Register

ClalRegs.MIER

15-8

7 6 5

4 3 2

1 0

reserved

INT8 [INT7 | INT6

INTS | INT4 | INT3

INT2 | INT1

e

0 =task interrupt disable (default)
1 =task interrupt enable

#include “F2806x_Device.h”
ClalRegs-MIER.bIt.INT2 = 1;
ClalRegs-MIER.all = 0x0028;

//enable Task 2 interrupt
//enable Task 6 and 4 interrupts

10-8

C2000 Microcontroller Workshop - Control Law Accelerator

Control Law Accelerator (CLA)

CLA Initialization

CLA Initialization

CLA initialization is performed by the CPU using C code
(typically done with the Peripheral Register Header Files)

* & o

1. Copy CLA task code from flash to CLA program RAM
2. Initialize CLA data RAMs, as needed
* Populate with data coefficients, constants, etc.

3. Configure the CLA registers

Enable the CLA clock (PCLKCRS3 register)

Populate the CLA task interrupt vectors (MVECT1-8 registers)

Select the desired task interrupt sources (MPISRCSEL1 register)

If desired, enable IACK to start task using software (avoids EALLOW)

Map CLA program RAM and data RAMs to CLA space

4. Configure desired CLA task completion interrupts in the PIE
Enable CLA tasks triggers in the MIER register

Initialize the desired peripherals to trigger the CLA tasks

Data is passed between the CLA and CPU via message RAMs

Enabling CLA Supportin CCS

Set the “Specify CLA support” project option to ‘cla0’ -

When creating a new CCS project, choosing a device
variant that has the CLA will automatically select this
option, so normally no user action is required

type filter text
[#-Resource
-~ General
(=1~ Build
[C2000 Compiler
{ i-Processor Options
Optimization
ndude Options
i [Advanced Options
) C2000 Linker
Basic Options
File Search Path
[#- Advanced Options
£..C2000 Hex Utility [Disabled]
- Debug

Processor Options

Se i

Configuration: [Debug [Active]

j Manage Configurations...

Processor version (~siicon_version,) [
¥ Use large memory model (~4arge_memory_model, -nl)
¥ unified memry (~unified_memory, -mt)

Specify CLA support (--da_support) Ida0

=

Specify floating point support (~float_support) [fou32

Specify TMU suppart (—tmu_support) |

Specify VCU support (--vcu_support) IvcuU

Lol L1 L

C2000 Microcontroller Workshop - Control Law Accelerator

10-9

Control Law Accelerator (CLA)

CLA Task Programming

CLA Task Programming

¢ Can be written in C or assembly code

¢ Assembly code will give best performance
for time-critical tasks

¢ Writing in assembly may not be so bad!
¢ CLA programs in floating point

¢ Often not that much code in a task

¢ Commonly, the user will use assembly for
critical tasks, and C for non-critical tasks

CLA C Language Implementation and Restrictions

CLA C Language Implementation

4 Supports C onIy (no C++ or GCC extension support)

Different data type sizes than C28x CPU
¢ No support for 64-bit integer or 64-bit floating point

TYPE CPU CLA

char, short 16 bit 16 bit
int 16 bit 32 bit
long 32 bit 32 bit
long long 64 bit 32 bit
float, double 32 bit 32 bit
long double 64 bit 32 bit
pointers 32 bit 16 bit

¢ CLA architecture is designed for 32-bit data types
¢ 16-bit computations incur overhead for sign-extension

¢ Primarily used for reading and writing to 16-bit
peripheral registers

10-10

C2000 Microcontroller Workshop - Control Law Accelerator

Control Law Accelerator (CLA)

int x;
int x=5;

CLA C Language Restrictions @of2

¢ CLA C compiler does not support:

¢ Initialized global and static data
// valid

// not valid

¢ Initialized variables need to be manually
handled by an initialization task

¢ More than 1 level of function nesting

& Task can call a function, but a function
cannot call another function

¢ Function with more than two arguments
¢ Recursive function calls
¢ Function pointers

Uint32 i; if@
int32 i; ifQ
vintlé i; ifQ@
intl6é i; ifQi
float32 x; if(x

<10 {.}
<10 {.}
<10 {.}
<10 {.}
<10 {.}

¢ modulus (remainder): z = x%y;

/77
/77
/7
/77
/7

CLA C Language Restrictions o2

¢ CLA C compiler does not support:
¢ Certain fundamental math operations

¢ integer division: z = x/y;

¢ unsigned 32-bit integer compares

not valid
valid
valid
valid

valid

¢ C Standard math library functions

C2000 Microcontroller Workshop - Control Law Accelerator

10-11

Control Law Accelerator (CLA)

CLA Compiler Scratchpad Memory Area

¢ For local and compiler temporary variables
< Static allocation, used instead of a stack

¢ Defined in linker command file

Lab.cmd *
CLA_SCRATCHPAD SIZE = Ox100; +—m

--undef_sym=__cla_scratchpad_end
—--undef_sym=__cla_scratchpad_start \
MEMORY —e Scratchpad area
t accessed directly

3 using symbols

Linker defined symbol
specifies size for
scratchpad area

All CLA C code will be
placed in the section

SECTIONS — &
{ . /
ClalProg -> L3DPSARAM,

PAGE = 0

ClalProg

RUN_START(_ClalProg_Start) e—mmm—1 |

CLAscratch :{*.obj(CLAscratch
. += CLA_SCRATCHPAD_SIZE;

*_obj (CLAscrafEnd)/—\\
} > L2DPSARAM, PAGE = 1 | N @

— & Symbol used to define

the start of CLA
program memory

Must allocate to
memory section that
CLA has write access

CLA Task C Code Example

ClaTasks_C.cla «—_

#include '"Lab.h"
o e T ——& .claextension causes
interrupt void ClalTaskl (void) the ¢2000 compiler to
{ invoke the CLA
e compiler
__mdebugstop(Q); . .
: «—# All code within this
xDelay[0] = (Float32)AdcResult.ADCRESULTO; file is plgc?d In th(?,
Y = coeffs[4] * xDelay[4]; \ section 7€ alprog
xDelay[4] = xDelay[3]: ~~e C Peripheral Register
: Header File references
xDelay[1] = xDelay[0]; can beusedin CLAC
Y = Y + coeffs[0] * xDelay[0]; and assembly code
ClaFilteredOutput = (Uintl6)Y; .
3 ¢ Closing braces are
- replaced with MSTOP
interrupt void ClalTask2 (void) Icnosr’#]rgi?gé)ns when
{
}

10-12

C2000 Microcontroller Workshop - Control Law Accelerator

Control Law Accelerator (CLA)

CLA Assembly Language Implementation

CLA Assembly Language
Implementation

¢ Same assembly instruction format as the
C28x and C28x+FPU

Destination operand is always on the left

¢ Same mnemonics as C28x+FPU but with a

leading “M”
CPU: MPY ACC, T, locl6
FPU: MPYF32 ROH, R1H, R2H
CLA: MMPYF32 MRO, MR1, MR2
Destinltion Source Operands

CLA Assembly Instruction Overview

Type Example Cycles
Load (Conditional) MMOV32 MRa,mem32{ , CONDF} 1
Store MMOV32 mem32,MRa 1
Load with Data Move MMOVD32 MRa,mem32 1
Store/Load MSTF MMOV32 MSTF,mem32 1
Compare, Min, Max MCMPF32 MRa,MRb 1
Absolute, Negative Value MABSF32 MRa,MRb 1
Unsigned Integer to Float MUI16TOF32 MRa,meml6 1
Integer to Float MI32TOF32 MRa,mem32 1
Float to Integer & Round MF32TOI116R MRa,MRb 1
Float to Integer MF32T0132 MRa,MRb 1
Multiply, Add, Subtract MMPYF32 MRa,MRb,MRc 1
1/X (16-bit Accurate) MEINVF32 MRa,MRb 1
1/Sqrt(x) (16-bit Accurate) MEISQRTF32 MRa,MRb 1
Integer Load/Store MMOV16 MRa,mem16 1
Load/Store Auxiliary Register MMOV16 MAR, mem16 1
Branch/Call/Return MBCNDD 16bitdest {,CNDF} 1-7
Conditional Delayed

Integer Bitwise AND, OR, XOR MAND32 MRa,MRb,MRc 1
Integer Add and Subtract MSUB32 MRa,MRb,MRc 1
Integer Shifts MLSR32 MRa,#SHIFT 1
Write Protection Enable/Disable MEALLOW 1
Halt Code or End Task MSTOP 1
No Operation MNOP 1

C2000 Microcontroller Workshop - Control Law Accelerator 10- 13

Control Law Accelerator (CLA)

CLA Assembly Parallel Instructions

¢ Parallel bars indicate a parallel instruction

¢ Parallel instructions operate as a single instruction with
a single opcode and performs two operations

¢ Example: Add + Parallel Store

MADDF32 MR3, MR3, MR1
Il MMOV32 @ Var, MR3

Instruction Example Cycles
Multiply MMPYF32 MRa,MRb,MRc 1
& Parallel Add/Subtract | WS [e il
Multiply, Add, Subtract MADDF32 MRa,MRb,MRc
& Parallel Store 1] MMOV3Z mem32,MRe !
Multiply, Add, Subtract, MAC MADDF32 MRa,MRb,MRc
[l MMOV32 MRe, mem32 1

& Parallel Load

Both operations complete in a single cycle

CLA Assembly Addressing Modes

¢ Two addressing modes: Direct and Indirect

¢ Both modes can access the low 64Kw of memory only:
¢ All of the CLA data space
¢ Both message RAMs
¢ Shared peripheral registers

¢ Direct — Populates opcode field with 16-bit address of the variable

example 1: MMOV32 MR1, @ VarA
example 2: MMOV32 MR1, @ EPwmlRegs.CMPA.all

¢ Indirect — Uses the address in MARO or MAR1 to access memory;
after the read or write MARO/MARL is incremented by a
16 bit signed value

example 1: MMOV32 MRO, *MARO[2]++
example 2: MMOV32 MR1, *MAR1[-2]++

10-14 C2000 Microcontroller Workshop - Control Law Accelerator

Control Law Accelerator (CLA)

CLA Task Assembly Code Example

ClaTasks.asm

.cdecls "Lab.h" «—
.sect "ClalProg"
_ClalProg_Start:

¢ .cdecls directive used
to include the C
header file in the CLA

_ClalTaskl: ; FIR Filter assemb|y file
MUI16TOF32 MR2, @ AdcResult.ADCRESULTO \0 .sect directive used to
MMPYF32 MR2, MRL, MRO place CLA assembly

: code in its own
MADDF32 MR3, MR3, MR2 \ section
MF32TOUI16 MR2, MR3 & C Peripheral Register
MMOV16 @ _ClaFilteredOutput, MR2 Header F||e references
: can be used in CLA
MSTOP ; End of task assembly code

———& MSTOP instruction

ClalTask2:
- . used at the end of the
: task
MSTOP
_ClalTask3:
MSTOP

CLA Initialization Code Example

Lab.h .

#include "F2806x_Cla_typedefs.h" «— * Eggglgls r%ztiasttglpses and
#include “F2806x_Device.h" \ SpECifiC to the CLA
extern Uintl6 ClalProg Start; \‘ Defines register bit
extern interrupt void CIalTaskvl()\ field structures

extern interrupt void ClalTask2(); \
: \ ¢ Symbol for start of CLA
extern interrupt void ClalTask8(); program RAM defined
\ in Lab.cmd
Cla.c

: = = ¢ CLA task prototypes
#include "Lab-h are prefixed with the
‘interrupt’ keyword

// Symbols used to calculate vector address
ClalRegs.-MVECT1 =
QUint16)((Uint32)sclaiTaski - «——F—® CLAtask symbols are
(Uint32)&ClalProg_Start); visible to all C28x CPU
ClalRegs.MVECT2 = and CLA code

Uintl6) ((Uint32)&ClalTask2 -
Uint32)&ClalProg_Start);

MVECTX contains the offset address from the start of the CLA Program RAM

C2000 Microcontroller Workshop - Control Law Accelerator 10-15

Control Law Accelerator (CLA)

CLA Code Debugging

CLA Code Debugging

e The CLA can halt, single-step and run independently from the CPU
« Both the CLA and CPU are debugged from the same JTAG port

1. Insert a breakpoint in CLA code
. Insert MDEBUGSTOP instruction to halt CLA and then rebuild/reload
2. Enable CLA breakpoints
. Enable CLA breakpoints in the debugger
3. Start the task
. Done by peripheral interrupt, software (IACK) or MIFRC register
. CLA executes instructions until MDEBUGSTOP
. MPC will the have address of MDEBUGSTOP instruction
4. Single step the CLA code
. Once halted, single step the CLA code
. Can also run to the next MDEBUGSTOP or to the end of task
. If another task is pending it will start at end of previous task

5. Disable CLA breakpoints, if desired

Note: When debugging C code, the _mdebugstop() intrinsic places the
MDEBUGSTORP instruction at that position in the generated assembly code

® CLA single step — CLA pipeline is clocked only one cycle and then frozen
« CPU single step — CPU pipeline is flushed for each single step

controlSUITE™ - CLA Software Support

controlSUITE™ - CLA Software Support

#' Tl Resource Explorer - contralSUTTE

,.-J s
WESE
e
£ e
_J 0t 100

Date Moced: Frday,
Beptmrtnr 11, 013, S04 0 2808 g0 J B3

_._JI 2806 sart

Wasting for fe: |1/ TTfcontroiSLITTE Abs math (L mathyiv 400 fexanples |

¢ Tl provided functions to support floating-point math CLA operations

10-16

C2000 Microcontroller Workshop - Control Law Accelerator

Lab 10: CLA Floating-Point FIR Filter

Lab 10: CLA Floating-Point FIR Filter
» Objective

The objective of this lab is to become familiar with operation and programming of the CLA. In
the previous lab, the CPU was used to filter the ePWM1A generated 2 kHz, 25% duty cycle
symmetric PWM waveform. In this lab, the PWM waveform will be filtered using the CLA. The
CLA will directly read the ADC result register and a task will run a low-pass FIR filter on the
sampled waveform. The filtered result will be stored in a circular memory buffer. Note that the
CLA is operating concurrently with the CPU. As an operational test, the filtered and unfiltered
waveforms will be displayed using the graphing feature of Code Composer Studio.

Lab 10: CLA Floating-Point FIR Filter

ePWM1 ADC CLA
TB Counter ADCINAO | RESULTO ClalTask1
Compare I:I ClalTask2
Action Qualifier :
+
Eenecion : ClalTasks
ePWM2 triggering ADC on period
match using SOCA trigger every data
20 ps (50 kHz) memory
ePWM2
he]
£
£ CPU copies
o resultto
o buffer during
Q - CLA ISR
o -
£ -
N =——
Display
using CCS

Recall that a task is similar to an interrupt service routine. Once a task is triggered it runs to
completion. In this lab two tasks will be used. Task 1 contains the low-pass filter. Task 8
contains a one-time initialization routine that is used to clear (set to zero) the filter delay chain.
This must be done by the CLA since the CPU does not have access to this array.

Since there are tradeoffs between the conveniences of C programming and the performance
advantages of assembly language programming, three different task scenarios will be explored:

1. Filter and initialization tasks both in C
2. Filter task in assembly, initialization task in C
3. Filter and initialization tasks both in assembly

These three scenarios will highlight the flexibility of programming the CLA tasks, as well as
show the required configuration steps for each. Note that scenarios 1 and 2 are the most likely to
be used in a real application. There is little to be gained by putting the initialization task in
assembly with scenario 3, but it is shown here for completeness as an all-assembly CLA setup.

C2000 Microcontroller Workshop - Control Law Accelerator 10 - 17

Lab 10: CLA Floating-Point FIR Filter

> Procedure

Open the Project
1. A project named Lab10 has been created for this lab. Open the project by clicking on

Project - Import CCS Projects. The “Import CCS Eclipse Projects”
window will open then click Browse... next to the “Select search-directory” box.
Navigate to: C:\C28x\Labs\Lab10\Project and click OK. Then click Finishto
import the project. All build options have been configured the same as the previous lab.
The files used in this lab are:

Adc.c F2806x_GlobalVvariableDefs.c
Cla_10.c F2806x_Headers_nonB10S.cmd
ClaTasks.asm Filter.c

ClaTasks_C.cla Gpio.c

CodeStartBranch._.asm Lab.h

Defaultlsr_10 12.c Lab 10.cmd

DelayUs.asm Main_10.c

Dma.c PieCtrl.c

ECap_7 8 9 10 12.c PieVect.c

EPwm_7 8 9 10 12.c SysCtrl.c
F2806x_Cla_typedefs.h Watchdog.c

F2806x_Defaultlsr.h

Note: The ClaTasks.asm file will be added during the lab exercise.

Enabling CLA Support in CCS

2. Open the build options by right-clicking on Lab10 inthe Project Explorer

window and select Properties. Then under “C2000 Compiler” select “Processor
Options”. Notice the “Specify CLA support” is set to cla0. This is needed to
compile and assemble CLA code. Click OK to close the Properties window.

Inspect Lab_10.cmd
3. Open and inspect Lab_10.cmd. Notice that a section called “ClalProg” is being

linked to L3DPSARAM. This section links the CLA program tasks to the CPU memory
space. This memory space will be remapped to the CLA memory space during
initialization. Additionally, we are defining a symbol (ClalProg_Start) with the
run-time start address of this memory block. This symbol will be used to calculate the
CLA task vector addresses. Also, notice the two message RAM sections used to pass
data between the CPU and CLA.

We are linking CLA code directly to the CLA program RAM because we are not yet
using the flash memory. CCS will load the code for us into RAM, and therefore the CPU
will not need to copy the CLA code into the CLA program RAM. In the flash
programming lab later in this workshop, we will modify the linking so that the CLA code
is loaded into flash, and the CPU will do the copy.

The CLA C compiler uses a memory section called CLAscratch for storing local and
compiler temporary variables. This scratchpad memory area is allocated using the linker
command file. It is accessed directly using the symbols ___cla_scratchpad_start

10-18

C2000 Microcontroller Workshop - Control Law Accelerator

Lab 10: CLA Floating-Point FIR Filter

and ___cla_scratchpad_end. The scratchpad size is designated using the linker
defined symbol CLA__SCRATCHPAD_SIZE. We are reserving a 0x100 word memory
hole to be used as the compiler scratchpad area. This value can be changed based on
your application. At the top of Lab_10.cmd notice the preprocessor option setting for
including the scratchpad. We will make use of this setting later in the lab exercise.

Setup CLA Initialization

During the CLA initialization, the CPU memory block L3DPSARAM needs to be configured as
CLA program memory. This memory space contains the CLA Task routines. A one-time force
of the CLA Task 8 will be executed to clear the delay buffer. The CLA Task 1 has been
configured to run an FIR filter. The CLA needs to be configured to start Task 1 on the ADCINT1
interrupt trigger. The next section will setup the PIE interrupt for the CLA.

5. Open ClaTasks_C.cla and notice Task 1 has been configured to run an FIR filter.
Within this code the ADC result integer (i.e. the filter input) is being first converted to
floating-point, and then at the end the floating-point filter output is being converted back
to integer. Also, notice Task 8 is being used to initialize the filter delay line. The .cla
extension is recognized by the compiler as a CLA C file, and the compiler will generate
CLA specific code. At the beginning of the file notice the line that includes the
F2806x_Cla_typedefs_h header file. This file is needed to make the CLA C
compiler work correctly with the peripheral register header files when unsupported data
types are used.

6. Edit Cla_10.c to implement the CLA operation as described in the objective for this
lab exercise. Configure the L3DPSARAM memory block to be mapped to CLA program
memory space. Configure the L2ZDPSARAM memory block to be mapped to CLA data
memory space for the CLA C compiler scratchpad. Set Task 1 peripheral interrupt
source to ADCINT1 and set the other Task peripheral interrupt source inputs to no
source. Enable CLA Task 1 interrupt. Enable the use of the IACK instruction to trigger
a task, and then enable Task 8 interrupt.

7. Open Main_10.c and add a line of code in main() to call the InitCla() function.
There are no passed parameters or return values. You just type

InitClaQ);
at the desired spot in main().

8. InMain_10.c comment out the line of code in main() that calls the Initbma()
function. The DMA is no longer being used. The CLA will directly access the ADC
RESULTO register.

Setup PIE Interrupt for CLA

Recall that ePWM2 is triggering the ADC at a 50 kHz rate. In the IQmath FIR Filter lab exercise,
the ADC generated an interrupt to the CPU, and the CPU implemented the FIR filter in the ADC
ISR. Then in the DMA lab exercise, the ADC instead triggered the DMA, and the DMA
generated an interrupt to the CPU, where the CPU implemented the FIR filter in the DMA ISR.
For this lab exercise, the ADC is instead triggering the CLA, and the CLA will directly read the
ADC result register and run a task implementing an FIR filter. The CLA will generate an

C2000 Microcontroller Workshop - Control Law Accelerator 10-19

Lab 10: CLA Floating-Point FIR Filter

interrupt to the CPU, which will store the filtered results to a circular buffer implemented in the
CLA ISR.

9. Remember that in Adc . c we commented out the code used to enable the ADCINT1
interrupt in PIE group 1. This is no longer being used. The CLA interrupt will be used
instead.

10. Using the “PIE Interrupt Assignment Table” find the location for the CLA Task 1
interrupt “CLAL_INT21” and fill in the following information:

PIE group #: # within group:
This information will be used in the next step.

11. Modify the end of Cla_10.c to do the following:

- Enable the “CLAL_INTL1” interrupt in the PIE (Hint: use the PieCtrIRegs structure)
- Enable the appropriate core interrupt in the IER register

12. Open and inspect Defaultlsr_10_12_c. Notice that this file contains the CLA
interrupt service routine. Save and close all modified files.

Build and Load

13. Click the “Bui 1d” button and watch the tools run in the Console window. Check for
errors in the Prob lems window.

14. Click the “Debug” button (green bug). The “CCS Debug Perspective” view should
open, the program will load automatically, and you should now be at the start of
main(). If the device has been power cycled since the last lab exercise, be sure to
configure the boot mode to EMU_BOOT_SARAM using the Scripts menu.

Run the Code — Test the CLA Operation (Tasks in C)

Note: For the next step, check to be sure that the jJumper wire connecting PWM1A (pin #
GP10-00) to ADCINAO (pin # ADC-AQ) is in place on the Docking Station.

15. Run the code in real-time mode using the Script function: Scripts - Realtime
Emulation Control - Run_Realtime_with_Reset, and watch the memory
window update. Verify that the ADC result buffer contains updated values.

16. Setup a dual-time graph of the filtered and unfiltered ADC results buffer. Click:
Tools - Graph - Dual Time and set the following values:

10-20 C2000 Microcontroller Workshop - Control Law Accelerator

Lab 10: CLA Floating-Point FIR Filter

Acquisition Buffer Size

50

DSP Data Type

16-bit unsigned integer

Sampling Rate (Hz)

50000

Start Address A AdcBufFiltered
Start Address B AdcBuf
Display Data Size 50

Time Display Unit us

17. The graphical display should show the filtered PWM waveform in the Dual Time A
display and the unfiltered waveform in the Dual Time B display. You should see that the
results match the previous lab exercise.

18. Fully halt the CPU (real-time mode) by using the Script function: Scripts >
Realtime Emulation Control - Full_Halt.

Change Task 1 to FIR Filter in Assembly

Previously, the initialization and filter tasks were implemented in C. In this part, we will not
be using the C implementation of the FIR filter located at Task 1 in ClaTasks_C.cla.
Instead, we will add ClaTasks . asm to the project and use the assembly implementation of
the FIR filter located at Task 1 in this file. The CLA setup code in Cla_10.c and the filter
initialization C-code located at Task 8 in ClaTasks_C.cla will not need to change.

19. Switch to the “CCS Edit Perspective” view by clicking the CCS Edit icon in the upper
right-hand corner. Open ClaTasks_C.cla and at the beginning of Task 1 change the
#if preprocessor directive from 1 to 0. The sections of code between the #if and #endif
will not be compiled. This has the same effect as commenting out this code. We need to
do this to avoid a conflict with the Task 1 in ClaTask.asm file.

20. Add ClaTasks.asm to project from C:\C28x\Labs\Lab10\Files.

21. Open ClaTasks.asm and notice that the .cdecls directive is being used to include the
C header file in the CLA assembly file. Therefore, we can use the Peripheral Register
Header File references in the CLA assembly code. Next, notice Task 1 has been
configured to run an FIR filter. Within this code special instructions have been used to
convert the ADC result integer (i.e. the filter input) to floating-point and the floating-
point filter output back to integer. Notice at Task 2 the assembly preprocessor .if
directive is set to 0. The assembly preprocessor .endif directive is located at the end of
Task 8. With this setting, Tasks 2 through 8 will not be assembled, again avoiding a
conflict with Task 2 through 8 in the ClaTasks_C.clafile. Save and close all
modified files.

C2000 Microcontroller Workshop - Control Law Accelerator 10-21

Lab 10: CLA Floating-Point FIR Filter

Build and Load

22.

Click the “Bui 1d” button. Select Yes to “Reload the program automatically”. Switch
back to the “CCS Debug Perspective” view by clicking the CCS Debug icon in the
upper right-hand corner.

Run the Code — Test the CLA Operation (Tasks in C and ASM)

23.

24,

Run the code in real-time mode using the Script function: Scripts - Realtime
Emulation Control - Run_Realtime_with_Reset, and watch the graph
window update. To confirm these are updated values, carefully remove and replace the
connector wire to ADCINAOQ. The results should be the same as before.

Fully halt the CPU (real-time mode) by using the Script function: Scripts ->
Realtime Emulation Control -> Full_Halt.

Change All Tasks to Assembly

In this part, we will be using the assembly implementation of the FIR filter and filter delay
line initialization routine located at Task 1 and Task 8, respectively, in the ClaTasks.asm
file. The setup in Cla_10.c will remain the same. The ClaTasks_C.cla s no longer
needed and will be excluded from the build. As a result, the CLA C compiler is not used and
the CLA C compiler scratchpad area allocated by the linker command file will not be needed.

25.

26.

27.

Switch to the “CCS Edit Perspective” view by clicking the CCS Edit icon in the upper
right-hand corner. Open ClaTasks.asm and at the beginning of Task 2 change the
assembly preprocessor .if directive to 1. Recall that the assembly preprocessor .endif
directive is located at the end of Task 8. Now Task 2 through Task 8 will be assembled,
along with Task 1.

Exclude ClaTasks_C.cla from the project to avoid conflicts with ClaTasks .asm.
In the Project Explorer window right-click on ClaTasks_C.cla and select:
Resource Configurations > Exclude from Build..

click Select Al (for Debug and Release) and then OK. This file is no longer needed
since all of the tasks are now in ClaTasks.asm.

Open Lab_10.cmd and at the beginning of the file change the preprocessor option
setting to O so that the scratchpad will not be used. This needs to be done to avoid linking
errors. Save and close all modified files.

Build and Load

28.

Click the “Bui 1d” button. Select Yes to “Reload the program automatically”. Switch
back to the “CCS Debug Perspective” view by clicking the CCS Debug icon in the
upper right-hand corner.

Run the Code — Test the CLA Operation (Tasks in ASM)

29.

Run the code in real-time mode using the Script function: Scripts > Realtime
Emulation Control - Run_Realtime_with_Reset, and watch the graph

10 - 22

C2000 Microcontroller Workshop - Control Law Accelerator

Lab 10: CLA Floating-Point FIR Filter

window update. To confirm these are updated values, carefully remove and replace the
connector wire to ADCINAOQ. The results should be the same as before.

30. Fully halt the CPU (real-time mode) by using the Script function: Scripts ->
Realtime Emulation Control -> Full_Halt.
Terminate Debug Session and Close Project

31. Terminate the active debug session using the Terminate button. This will close the
debugger and return CCS to the “CCS Edit Perspective” view.

32. Next, close the project by right-clicking on Lab10 in the Project Explorer
window and select Close Project.

End of Exercise

C2000 Microcontroller Workshop - Control Law Accelerator 10 - 23

Lab 10: CLA Floating-Point FIR Filter

10-24 C2000 Microcontroller Workshop - Control Law Accelerator

Viterbi, Complex Math, CRC Unit

Introduction

The Viterbi, Complex Math, CRC Unit (VCU) is a fully programmable block that greatly
increases the performance of communication, as well as signal processing algorithms. In
addition, the VCU eliminates the need for a second processor to manage the communication link.

Module Objectives

Module Objectives

¢ Understand the purpose and operation
of the Viterbi, Complex Math and CRC
Unit (VCU)
¢VCU Overview
¢ CRC Unit
¢ Viterbi Unit
¢ Complex Math Unit

The Viterbi complex math CRC unit extends the C2000 instruction set to support Viterbi
operations used in communications; complex math, which includes complex FFTs and complex
filters, and is used in power line communications and radar applications; and cyclical redundancy
check, which is used in communications and memory robustness checks.

C2000 Microcontroller Workshop - Viterbi, Complex Math, CRC Unit 11-1

Module Topics

Module Topics

Viterbi, Complex Math, CRC UNIt ... e nre e 11-1

0T LU T=N o] oSS 11-2

Viterbi, Complex Math, CRC UNIt........ccccciiiire et nns 11-3

W CU OVEIVIBW ...ttt etttk b ettt b ettt b ekt b etk s btk sb et ekt s b et et e ab et et e nbe e ebenne e 11-3

107 O U o OSSOSOV 11-5

WIEEIDT UNIL. .ot et b ettt b ettt b e et e bt et sb ettt e ebesne e 11-6

CoMPIEX MALH UNIE ...ttt bbbt e e b b e 11-8

WV CU SUMMIBIY <.ttt b bbbk e b ekt e bt e bt s b e e he e ehe e ebe e ke e m bt en b e ebbeebeenbeeebeebeaneeeanas 11-10

11-2 C2000 Microcontroller Workshop - Viterbi, Complex Math, CRC Unit

Viterbi, Complex Math, CRC Unit

Viterbi, Complex Math, CRC Unit

VCU Overview

VCU Overview

¢ Viterbi operations
¢ Decode for communications

¢ Complex math

algorithms
¢ Complex filters

efficiency

applications

¢ Cyclic Redundancy Check (CRC)
¢ Communications and memory robustness checks

Extends C28x instruction set to support:

¢ 16-bit fixed-point complex FFT (5 cycle butterfly)
used in spread spectrum communications, and many signal processing

< used to improve data reliability, transmission distance, and power

¢ Power Line Communications (PLC) and radar

VCU Registers
| 32-Bit | -
Status register {“ VSTATUS ||<—>
Viterbi transition | V70 | P . .
registers | = |‘ I VILSﬁEth
- VRO | .) :
| VR1 | h -
| VR2 |
Viterbi and Complex | VRs | < > Complex
Math general | VR4 | Math
- Unit
purpose registers | VRS | P
| VR6 |
| VR7 |
<«—» CRC
Accumulated \| = || onit
umu < >
CRC result —{“ VERe |I‘ e

C2000 Microcontroller Workshop - Viterbi, Complex Math, CRC Unit

11-3

Viterbi, Complex Math, CRC Unit

C28x+FPU

leading “V”

VCU Instructions

¢ Same instruction format as the C28x and

Destination operand is always on the left

¢ Same mnemonics as C28x and FPU but with a

CPU:
FPU:
VCU:

MPY ACC, T, loclé6

MPYF32 ROH, R1H, R2H

VCMPY VR3, VR2, VR1, VRO
Destination

Source Operands

Enabling VCU Support in CCS

Set the “Specify VCU support” project option to ‘vcu0’ 4

When creating a new CCS project, choosing a device
variant that has the VCU will automatically select this
option, so normally no user action is required

\

type filter text

[#-Resource
- General

[=1-Build

- Advanced Options
2000 Linker
-~ Basic Options

- C2000 Hex Utility [Disabled]
-Debug

Processor Options

S -

- -

Configuration: [Debua [Active]

7| Manage Configurations...

Pracessor version {—siicon_version, -v) [
[¥ Use large memary model {—large_memory_model, -mi)

[V Unified memary (—urified_memory, -mt)

Kl

Specify CLA support (—cla_support))

Specify floating paint support (—float_support) [fou32

Spedify TMU support (—tmu_support) I

Specify ¥CU support (~vcu_support) veuo

o] Ll 1] 1

11-4

C2000 Microcontroller Workshop - Viterbi, Complex Math, CRC Unit

Viterbi, Complex Math, CRC Unit

controlSUITE™ - VCU Software Support

120 2806%_CFFT _64p

[ER& =P Library - VcU 122 2808x_CFFT_64p_brev
- pocumentation 10D 2806x_CFFT_128p
12 2806x_CFFT_256p

= i

E Example Projects) 2806%_CRC_genTables
= View all 3 Example Projects 1) 2806%_CRC_wTables
= 128 Point Complex FFT [2806x_RFFT_128p
5 256 Paint Complex FFT D 2606x RFFT_356p

A T [2806x_RFFT_s12p

1% &4 Point Complex with Bit Reversal) 2806x_RIFFT_s4p
=+ CRC Functions Example (Generated Tables) 152 2806x_RIFFT_128p
2 CRC Functions Example (Linked Tahles) () 2806w _RIFFT_2560

[2806x_VITERBI_K7CRhalf

¢ Tl provided C-callable assembly functions (including
source code) to support VCU operation:

plcSUITE

¢ Viterbi Decoder

¢ CRC Functions

¢ Complex FFT and Filters

¢ C28x Codegen Tools (v6.x) linker can generate a CRC of an
output section and automatically embed it into the .out file

CRC Unit

CRC Unit

¢ Cyclic Redundancy Check (CRC) is an
error detecting code used to ensure data
integrity
¢ Communication networks
¢ Data storage (memory content check)

¢ Supports 4 different CRC polynomials:

CRC Operation | Polynomial | Standard

CRC8 0x07 PRIME

CRC16 Poly 1 | 0x8005

CRC16 Poly 2 |0x1021 G3-PLC, Zigbee

CRC32 0x4cl1ldb7 |PRIME, Ethernet, memory

PRIME = PoweRline Intelligent Metering Evolution

C2000 Microcontroller Workshop - Viterbi, Complex Math, CRC Unit 11-5

Viterbi, Complex Math, CRC Unit

CRC Instructions

¢ Polynomial used is determined by instruction

CRC Operation Example Instruction Cycles
Load CRC result register VMOV32 VCRC, mem32 1
Store CRC result register VMOV32 mem32,VCRC 1
Clear CRC result register VCRCCLR 1
) VCRC8L_1 mem16 1
CRC8 Poly: 0x07 VCRC8H_1 mem16 1
) VCRC16P1L_1 meml6 1
CRC16 Poly 1: 0x8005 VCRCI6PIL 1 memi16 0
) VCRC16P2L_1 meml6 1
CRC16 Poly 2: 0x1021 VCRCI6P2L 1 mem16 1
) VCRC32L_1 mem16 1
CRC32 Poly: 0x04C11DB7 VCRC32H_1 memnle 1

¢ CRC register (VCRC) contains current CRC value;
updated as CRC instructions read memory

Viterbi Unit

Viterbi Unit

¢ Viterbi — an error correcting decoder
¢ Encoder adds redundant data to a message
+ Viterbi decoder used to detect and correct errors

i > ; > Viterbi F28x
Corévoluélonal | Modulation —L A, Decoder —»
1 Encoder . > N/ vev)

¢ Commonly used in:
+ Power line communications (PLC)
+ Mobile communications
+ Satellite communications
+ Digital video and radio

11-6 C2000 Microcontroller Workshop - Viterbi, Complex Math, CRC Unit

Viterbi, Complex Math, CRC Unit

Viterbi Decoder

Viterbi F28x
Decoder —»

— (VQy)

¢ VCU efficiently implements a software
Viterbi decoder

Allows flexibility and can change with evolving

standards
¢ Viterbi is a maximum likelihood decoding
algorithm
Identifies the path taken through a Trellis
diagram

Selects survivor paths for each state by using a
Hamming distance calculation

Viterbi Implementation
¢ Decoder has 3 main parts:

¢ Branch metrics calculation

¢Calculates local distance between every possible
state and the received symbol

¢ Code Rate =1/2 1 cycle

¢ Code Rate = 1/3 2p cycles

¢ Butterfly “add-compare-select” operation
¢Calculates path metrics to choose an optimal path
¢4 calculations done in a single cycle (viTDLADDSUB)

|#VCU: 2 cycles F28x: 15 cycles |
¢ Trace back

¢Reconstructs the original data using the maximum
likelihood path for the input sequence (VTRACE)
|#VCU: 3cycles/stage F28x: 22 cycles/stage |

Code Rate = number of inputs / number of outputs; VCU supports CR = 1/2 and CR = 1/3

C2000 Microcontroller Workshop - Viterbi, Complex Math, CRC Unit 11-7

Viterbi, Complex Math, CRC Unit

Viterbi Instructions

Viterbi Operation Example Instruction Cycles
Clear Viterbi Transition
Registers (VTO, VT1) e 1
Double Add andSubtract VITDLADDSUB VR4 ,VR3,VR2,VRa 1
(low or high) VI1TDHADDSUB VR4 ,VR3,VR2,VRa 1
Double Subtract and Add VITDLSUBADD VR4,VR3,VR2,VRa 1
(low or high) VI1TDHSUBADD VR4 ,VR3,VR2,VRa 1
Branch Metrics Calculation VBITM2 VRO 1
Code Rate = 1/2 or 1/3 VBITM3 VRO, VR1, VR2 2p
Viterbi Select VITLSEL VRa, VRb, VR4, VR3 1
(low or high) VITHSEL VRa, VRb, VR4, VR3 1

VTRACE mem32, VRO, VTO, VT1 1
Trace Back VTRACE VR1, VRO, VTO, VT1 1
Double Add and Subtract or
Subtract and Add | IWE%QDDSUB \nﬁggé\ZIR\%\éRz »VRa 1/1
with Parallel Store ’
Branch Matric (CR=1/2 or 1/3) VBITM3 VRO, VR1, VR2 /1
with Parallel Load 1 1vMOV32 VR2, mem32 P
Viterbi Select VITLSEL VRa,VRb,VR4,VR3 11
with Parallel Load] |VMOV32 VR2, mem32

** VBITM2 || VMOV32 (For CR = 1/2) cycles are 1/1

Complex Math Unit

Complex Math Unit

Complex number: a+bj

a = real part
b = imaginary part j?>=-1

¢ Supports 16-bit complex number calculations
+ Arithmetic, complex filters, and complex FFT

¢ Complex addition and subtraction (1-cycle)

¢ Complex multiplication
16-bit x 16-bit = 32-bit real and imaginary parts (2

pipelined cycles)

¢ 2-cycle Complex multiply and accumulate (MAC)
¢ Repeat (RPT ||) complex MAC operation

11-8 C2000 Microcontroller Workshop - Viterbi, Complex Math, CRC Unit

Viterbi, Complex Math, CRC Unit

32-bit Complex Addition

(a+bj)+(c+dj)=(u+c)+(b+d)j

VR3 | a | Input 1; VR3: 32-bit real
VR2 | bj | VR2: 32-bit imaginary
VRS | c | Input 2; VRS: 32-bit real
VR4 | dj | VR4: 32-bit imaginary

VCADD VR5, VR4, VR3, VR2

VRS | (a + ¢ >>SHR) | Result; VRS: 32-bit real
VR4 | (b + d >> SHR)j | VR4: 32-bit imaginary

Complex Multiply

(a + bj)(c +dj) = ac + bcj + adj + bd(j)?
=(ac-bd) + (bc + ad)j

VRO | a | bj | Input 1; VROH: 16-bit real
VROL: 16-bit imaginary

VR1 | c | dj | Input 2; VR1H: 16-bit real
VRI1L: 16-bit imaginary

VCMPY VR3, VR2, VR1, VRO

VR3 | (ac-bd) | Result; VR3: 32-bit real
VR2 | (bc + ad)j | VR2: 32-bit imaginary

C2000 Microcontroller Workshop - Viterbi, Complex Math, CRC Unit 11-9

Viterbi, Complex Math, CRC Unit

Complex Math Instructions
Complex Math Operation | Example Instruction Cycles
Negative VNEG VRa 1
Setup Shift Value VSETSHR #5bit 1
Left and Right VSETSHL #5bit
Saturation On/Off VSATON / VSATOFF 1
Rounding On/Off VRNDON / VRNDOFF 1
Clear Overflow Flag VCLROVFR 1
Real & Imaginary VCLROVFI
32+32=32-bit VCADD VR5, VR4, VR3, VR2 1
Add or Subtract VCSUB VR5, VR4, VR3, VR2 1
16+32=16-bit VCDADD16 VR5, VR4, VR3, VR2 1
Add or Subtract VCDSUB16 VR5, VR4, VR3, VR2 1
16x16 = 32-bit
Multiply VCMPY VR3, VR2, VR1, VRO 2p
Complex MAC VCMAC VR5, VR4, VR3, VR2, VR1, VRO 2p
RPT || MAC VCMAC VR7, VR6, VR5, VR4, mem32, XAR7++ | 2p+N
Add/Sub/Multiply VCADD VR5,VR4,VR3,VR2 ”n
with Parallel Load | IVMOV32 VR2, mem32
ADD16/SUB16 VCSUB16 VR6,VR4,VR3,VR2 n
with Parallel Load | IVMOV32 VR2, mem32
Multiply VCMPY VR3, VR2, VR1, VRO 20/1
with Parallel Store | IVMOV32 mem32, VR2 2
MAC VMAC VR5, VR4, VR3, VR2, VR1, VRO 20/1
with Parallel Load [IVMOV32 VRa, mem32 2

VCU Summary

VCU Summary
¢ VCU extends the capability of the C28x
CPU with additional support for:
¢ CRC operations
¢ Viterbi decode
¢ Complex math

¢ Instructions are an extension of the
current instruction set

¢ Targeted towards specific algorithms

¢ Communications and memory robustness
checking

¢ Fast Viterbi decode for communications
¢ Complex filters and FFT
¢ PLC and radar applications

11-10 C2000 Microcontroller Workshop - Viterbi, Complex Math, CRC Unit

System Design

Introduction

This module discusses various aspects of system design. Details of the emulation and analysis
block along with JTAG will be explored. Flash memory programming and the Code Security
Module will be described.

Module Objectives

Module Objectives

¢ Emulation and Analysis Block

¢ Flash Configuration and

Memory Performance
¢ Flash Programming

¢ Code Security Module (CSM)

C2000 Microcontroller Workshop - System Design 12-1

Module Topics

Module Topics

RSV (= I 1= oo P 12-1
0T LU T=N o] oSS 12-2
Emulation and ANAIYSIS BIOCKcciviieiiiiie et sttt see e e e 12-3
Flash Configuration and Memory PerfOrmManceccciviveiererereseseseeeeseese e se e ssesreseesee e see e e 12-6
FIash Programmingcccueoeiesese e ees et st et e et et stestesseese e e et e saesaesbesneeneeneaneeseeneeneenes 12-9
Code Security MOAUIE (CSM)ooieiiiiie et ettt saeere e e e s e nneneenne e 12-11
Lab 12: Programming the FIash ... s 12-14

12-2 C2000 Microcontroller Workshop - System Design

Emulation and Analysis Block

Emulation and Analysis Block

JTAG Emulation System

(based on IEEE 1149.1 Boundary Scan Standard)

System Under Test
E' SCAN IN
e A TMS320C2000
> ra [*TPD =y
E SCAN OUT \
R %

Some Available Emulators
XDS510 CLASS -

BlackHawk: USB2000 2nd are muoh lower sost than emulaiors
Signum System: JTAGjet-C2000

R that support all T MCU/DSP platforms
Spectrum Digital: XDS510LC (although those can certainly be used)

XDS100 CLASS -

BlackHawk: USB100

Olimex: TMS320-JTAG-USB
Spectrum Digital: XDS100

These emulators are much slower than
the ones listed above, but are also
available at a lower cost than XDS510
class and are NOT C2000 specific

XDS200 CLASS - offers a balance of low cost with good performance fitting between XDS100 and XDS510

Emulator Connections to the Device

Vce (3.3V)
GND vee (3.3V)
TMS320F2806x Emulator Header
13| emuo PD |2
14
EMU1
— 2| —— 4
TRST |4 TRST GND
1 6
T™S < ™S GND
8
TDI _4 3| 1pi GND
7 10
TDO > TDO GND
11 12
TCK | TCK GND
o v
TCK_RET GND

-: If distance between device and header is greater than 6 inches

C2000 Microcontroller Workshop - System Design 12 -3

Emulation and Analysis Block

On-Chip Emulation Analysis Block:
Capabilities

Two hardware analysis units can be configured to provide
any one of the following advanced debug features:

Analysis Configuration Debug Activity

Halt on a specified instruction
(for debugging in Flash)

2 Hardware Breakpoints

A memory location is getting
corrupted; halt the processor when
any value is written to this location

2 Address Watchpoints

1 Address Watchpoint with Data Halt program execution after a

specific value is written to a variable

b U 4} J

1 Pair Chained Breakpoints Halt on a specified instruction only
after some other specific routine has

executed

On-Chip Emulation Analysis Block:
Hardware Breakpoints and Watchpoints

Hat SR o trum Address
Drvw BMUPH [fake Hemary woke

5 S ok Mty i Debugaer Resense

Cunreri Courd 00 Condtion
Acton Heman raled Action Feman Haed
Miicelamous Miscelanenus
Grogn U iy Group Ded ot Groagy
Ham bregor Name ‘Watchooint
xmmmuhﬂdhdwmum "%ﬁ&z’lﬁmﬂhwﬂm
Canel Cancel
Hardware Breakpoint Hardware Watchpoint
Properties Properties

12-4 C2000 Microcontroller Workshop - System Design

Emulation and Analysis Block

Online Stack Overflow Detection

¢ Emulation analysis registers are accessible to code as well!

¢ Configure a watchpoint to monitor for writes near the end of
the stack

¢ Watchpoint triggers maskable RTOSINT interrupt

¢ Works with DSP/BIOS and non-DSP/BIOS
¢ See Tl application report SPRA820 for implementation details

Region of Stack grows
memory towards higher
occupied memory
by the addresses
stack Monitor for data

writes in region near
the end of the stack

Data Memory

On-Chip Emulation Analysis Block:

C2000 Microcontroller Workshop - System Design

12-5

Flash Configuration and Memory Performance

Flash Configuration and Memory Performance

Basic Flash Operation

¢ Flash is arranged in pages of 128 words

¢ Wait states are specified for consecutive accesses within a page,
and random accesses across pages

¢ OTP has random access only

¢ Must specify the number of SYSCLKOUT wait-states;
Reset defaults are maximum value (15)

¢ Flash configuration code should not be run from the Flash memory

15 12 11 8 7 4 3 0

FlashRegs.FBANKWAIT reserved PAGEWAIT reserved RANDWAIT

15 5 4 0

FlashRegs.FOTPWAIT reserved OTPWAIT

*** Refer to the F2806x datasheet for detailed numbers ***
For 90 MHz, PAGEWAIT = 3, RANDWAIT = 3, OTPWAIT =5

Speeding Up Code Execution in Flash

Flash Pipelining (for code fetch only)

k— 16—
16 or 32
k—— 64— (ispatched
64 C28x Core
decoder unit

Aligned 2-level deep

64-bit fetch buffer

fetch

Flash Pipeline Enable
0 = disable (default)

1 =enable
FlashRegs.FOPT.bit.ENPIPE = 1;
15 1 0
reserved ENPIPE

12-6

C2000 Microcontroller Workshop - System Design

Flash Configuration and Memory Performance

Code Execution Performance

¢ Assume 90 MHz SYSCLKOUT, 16-bit instructions

(80% of instructions are 16 bits wide — Rest are 32 bits)

Internal RAM: 90 MIPS
Fetch up to 32-bits every cycle = 1 instruction/cycle * 90 MHz = 90 MIPS

Flash (w/ pipelining): 90 MIPS
RANDWAIT =3
Fetch 64 bits every 3 cycles, but it will take 4 cycles to execute them =
4 instructions/4 cycles * 90 MHz = 90 MIPS
RPT will increase this; PC discontinuity will degrade this
Benchmarking in control applications has shown actual performance of about 81 MIPS

Data Access Performance

¢ Assume 90 MHz SYSCLKOUT

Memory 16-bit access 32-bit access Notes
(words/cycle) (words/cycle)

Internal RAM 1 1

Flash 0.33 0.33 RANDWAIT = 2
Flash is read only!

¢ Internal RAM has best data performance — put time critical data here
¢ Flash performance usually sufficient for most constants and tables

¢ Note that the flash instruction fetch pipeline will also stall during a
flash data access

C2000 Microcontroller Workshop - System Design

12 -7

Flash Configuration and Memory Performance

Other Flash Configuration Registers

FlashRegs.name

Address | Name Description

0x00 0A80 | FOPT Flash option register

0x00 0A82 | FPWR Flash power modes registers

0x00 OA83 | FSTATUS Flash status register

0x00 0A84 | FSTDBYWAIT | Flash sleep to standby wait register

0x00 0A85 | FACTIVEWAIT | Flash standby to active wait register
0x00 0A86 | FBANKWAIT Flash read access wait state register
0x00 0A87 | FOTPWAIT OTP read access wait state register

FPWR: Save power by putting Flash/OTP to ‘Sleep’ or ‘Standby’
mode; Flash will automatically enter active mode if a Flash/OTP

access is made

FSTATUS: Various status bits (e.g. PWR mode)

FSTDBYWAIT, FACTIVEWAIT: Specify # of delay cycles during
wake-up from sleep to standby, and from standby to active,
respectively. The delay is needed to let the flash stabilize.
Leave these registers set to their default maximum value.

See the “TMS320x2806x Piccolo Technical Reference Manual” — Systems
Control and Interrupts section in SPRUH18 for more information

12 -8

C2000 Microcontroller Workshop - System Design

Flash Programming

Flash Programming

Flash Programming Basics

¢ The device CPU performs the flash programming

¢ The CPU executes Flash utility code from RAM that reads the Flash
data and writes it into the Flash

¢ We need to get the Flash utility code and the Flash data into RAM

FLASH |¢«— CPU
Flash f
utility || - - - Sl Emulator L ol 1TAG b o o - - o - -
Code Emulator |— > JTAG |— >
7 RAM
------ >|R5232|—-> scl |—---> _
1
———————————— >| SPI i— -—> = 1
o ;
Flash s 3 ’
Data || === ========= > 12C __->8‘_8 -—-
o
———————————— »| CAN i— --3 &
gl mmmm e = | GPIO i— -—>
TMS320F2806x

Flash Programming Basics

¢ Sequence of steps for Flash programming:

Algorithm Function
1. Erase - Set all bits to zero, then to one
2. Program - Program selected bits with zero
3. Verify - Verify flash contents

¢ Minimum Erase size is a sector (8Kw or 16Kw)
¢ Minimum Program size is a bit!

¢ Important not to lose power during erase step:
If CSM passwords happen to be all zeros, the
CSM will be permanently locked!

¢ Chance of this happening is quite small! (Erase
step is performed sector by sector)

C2000 Microcontroller Workshop - System Design 12-9

Flash Programming

Flash Programming Utilities

¢ JTAG Emulator Based
+ Code Composer Studio on-chip Flash programmer
+ BlackHawk Flash utilities (requires Blackhawk emulator)
+ Elprotronic FlashPro2000
+ Spectrum Digital SDFlash JTAG (requires SD emulator)
+ Signum System Flash utilities (requires Signum emulator)
¢ SCI Serial Port Bootloader Based
+ Code-Skin (http://www.code-skin.com)
+ Elprotronic FlashPro2000
¢ Production Test/Programming Equipment Based
+ BP Micro programmer
+ Data I/O programmer
¢ Build your own custom utility
+ Can use any of the ROM bootloader methods
+ Can embed flash programming into your application
+ Flash API algorithms provided by TI

* Tl web has links to all utilities (http://www.ti.com/c2000)

CCS On-Chip Flash Programmer

¢ On-Chip Flash programmer is integrated into the CCS debugger

£ On-Chip Flash 52 =& T On-Chip Flash 52 = &8
type filter text On-Chip Flash (TMS320028%X) (7] — type fiter text Key 7 (0xAE7): | Frer =
Memory Map -Memory Map Key & (0xAEs): [FFeF
~Clogk € "
GEL Files o GEL Files s [
On-Chip Flash Y On-Chip Flash
Program/Memary Load Options -Program/Memory Load Options Key 4 (OxAE4): [FFFF
Auto Run and Launch Options CLKINDIV: 2 - Auto Run and Launch Optians e
Misc/Other Options e Misc/Other Options
€28 Disassembly Style Optians : C28x Disassembly Style Options || Key 2 (0xAE2): [Frrr
[Flash Program Setting: —————| Key 1(0xAE1): | FFFF
% Erase, Program, Verify Key 0 (0xAE0): | FFFF
" Pragram, Verify
P — Program Passward | Lock | Unlock
" Verify Only FrequencyTest——————————
~Erase Sector Selection L N |
[Sector A: (0x3F4000 - Ox3F7FFF)
[¥ Sector B: (0x3F0000 - 0x3F3FFF) Start Frequency Test | End Frequency Test |
[¥ Sector C: (0x3EC000 - Ox3EFFFF)
[¥ Sector D: (0x3E5000 - Ox3EBFFF) Depletion Recovery
[¥ Sector E: (0x3E4000 - 0x3ETFFF) Depletion Recovery
[¥ Sector F: (0x3E0000 - 0x3E3FFF)
~Checksum
[sector G: (0x30C000 - Ox30FFFF)
[¥ Sector H: (0x308000 - 0x3DBFFF) Flash Checksum:
—— OTP Checksum:
Calcuiate Chedksum
Code Security Passward
’V Key 7 (0xAE7): [FFFF = I™ Enable Verbose Output B

¢ Tools > On-Chip Flash

12-10 C2000 Microcontroller Workshop - System Design

Code Security Module (CSM)

Code Security Module (CSM)
Code Security Module (CSM)

¢ Access to the following on-chip memory is restricted:

0x000A80

Flash Registers

0x008000
0x008800
0x008C00
0x009000
0x00A000
0x00C000
0x3D7800
0x3D7C00
0x3D7C80

EO"DPSARAM (2K w)

11 DPSARAM (1KW)

E2°DPSARAM (1K w)

E3DPSARAM (4K wW)

1:4'DPSARAM.(8KW)
reserved

User. OTP.(1Kw.)

reserved

ADC FOSCrcal: data

0x3D7CCO TSEE)

0x3D8000 FLASH (128KW)

OXBF7FF8 it st i kil
OX3F8000 PASSWORDS".(8W).

¢ Data reads and writes from restricted memory are only
allowed for code running from restricted memory
¢ All other data read/write accesses are blocked:

JTAG emulator/debugger, ROM bootloader, code running in
external memory or unrestricted internal memory

CSM Password

0x3D8000

FLASH (128Kw) CSM Password
Locations (PWL)
OX3F7FFS8 [ty nildrd Ox3F7FF8 - Ox3F7FFF

128-Bit-Passwotd

¢ 128-bit user defined password is stored in Flash

¢ 128-bit KEY registers are used to lock and unlock
the device
¢ Mapped in memory space 0x00 OAEO — 0x00 OAE7
¢ Registers “EALLOW” protected

C2000 Microcontroller Workshop - System Design 12-11

Code Security Module (CSM)

CSM Regqisters

Key Registers —accessible by user; EALLOW protected

Address | Name Description

0x00 OAEO|KEYO Low word of 128-bit Key register
0x00 OAE1|KEY1 2"d word of 128-bit Key register
0x00 OAE2 |KEY2 34 word of 128-bit Key register
0x00 OAE3|KEY3 4t word of 128-bit Key register
0x00 OAE4|KEY4 5th word of 128-bit Key register
0x00 OAE5 | KEY5 6th word of 128-bit Key register
0x00 OAE6 | KEY6 7th word of 128-bit Key register
0x00 OAE7 |KEY7 High word of 128-bit Key register

0x00 OAEF| CSMSCR | CSM status and control register
PWL in memory — reserved for passwords only

Address | Name Description

O0x3F 7FF8 | PWLO Low word of 128-bit password
0x3F 7FF9 | PWL1 27d word of 128-bit password
O0x3F 7FFA| PWL2 34 word of 128-bit password
O0x3F 7FFB| PWL3 4th word of 128-bit password

O0x3F 7FFC| PWL4 5th word of 128-bit password
0x3F 7FFD| PWL5 6th word of 128-bit password
0x3F 7FFE| PWL6 7th word of 128-bit password
O0x3F 7FFF | PWL7 High word of 128-bit password

Locking and Unlocking the CSM

¢ The CSM is always locked after reset

¢ To unlock the CSM:

¢ Perform a dummy read of each PWL
(passwords in the flash)

¢ Write the correct password to each KEY
register
¢ Passwords are all OxFFFF on new devices

#When passwords are all OxFFFF, only a read of
each PWL is required to unlock the device

¢ The bootloader does these dummy reads and
hence unlocks devices that do not have
passwords programmed

12 -12 C2000 Microcontroller Workshop - System Design

Code Security Module (CSM)

CSM Caveats

¢ Never program all the PWL'’s as 0x0000
¢ Doing so will permanently lock the CSM

¢ Flash addresses 0x3F7F80 to Ox3F7FF5,
inclusive, must be programmed to 0x0000 to
securely lock the CSM

¢ Remember that code running in unsecured
RAM cannot access data in secured memory
¢ Don’t link the stack to secured RAM if you have

any code that runs from unsecured RAM

¢ Do not embed the passwords in your code!
¢ Generally, the CSM is unlocked only for debug
¢ Code Composer Studio can do the unlocking

CSM Password Match Flow

@ Device permanently locked
Flash device
secure after
reset or runtime
Do dummy reads of PWL Write password to KEY registers
O0x3F 7FF8 — Ox3F 7FFF N 0x00 OAEOQ — 0x00 OAE7
I (EALLOW) protected

Device unlocked

Correct Yes

password? User can access on-

chip secure memory

C2000 Microcontroller Workshop - System Design 12 - 13

Lab 12: Programming the Flash

Lab 12: Programming the Flash
» Objective

The objective of this lab is to program and execute code from the on-chip flash memory. The
TMS320F28069 device has been designed for standalone operation in an embedded system.
Using the on-chip flash eliminates the need for external non-volatile memory or a host processor
from which to bootload. In this lab, the steps required to properly configure the software for
execution from internal flash memory will be covered.

Lab 12: Programming the Flash
ePWM1 ADC CLA
TB Counter ADCINAO | RESULTO _ClalTaskl
Compare _ClalTask2
Action Qualifier :
Eenecion ? _ClalTasks
ePWM2 triggering
ADC on period match @ data
using SOCA trigger every memory
20 ps (50 kHz) ePWM2
°
=
S CPU copies
o resultto
.) o buffer during
Objective: g : CLAISR
¢ Program system into Flash Memory '2 E
¢ Learn use of CCS Flash Programmer Display
using CCS
¢ DO NOT PROGRAM PASSWORDS

» Procedure

Open the Project

1. A project named Labl12 has been created for this lab. Open the project by clicking on
Project - Import CCS Projects. The “Import CCS Eclipse Projects”
window will open then click Browse... next to the “Select search-directory” box.
Navigate to: C:\C28x\Labs\Lab12\Project and click OK. Then click Finishto

import the project. All build options have been configured the same as the previous lab.
The files used in this lab are:

12-14 C2000 Microcontroller Workshop - System Design

Lab 12: Programming the Flash

Adc.c F2806x_Headers_nonBI0S.cmd
Cla_12.c Filter.c
ClaTasks.asm Flash.c
ClaTasks_C.cla Gpio.c
CodeStartBranch.asm Lab.h
Defaultlsr_10 12.c Lab_12.cmd
DelayUs.asm Main_12.c
Dma.c Passwords.asm
ECap_7 8 9 10 12.c PieCtrl.c
EPwm 7 8 9 10 12.c PieVect.c
F2806x_Cla_typedefs.h SysCtrl.c
F2806x_Defaultlsr._h Watchdog.-c

F2806x_GlobalVvariableDefs.c

Note: The Flash.c and Passwords.asm files will be added during the lab exercise.

Link Initialized Sections to Flash

Initialized sections, such as code and constants, must contain valid values at device power-up.
Stand-alone operation of an F28069 embedded system means that no emulator is available to
initialize the device RAM. Therefore, all initialized sections must be linked to the on-chip flash
memory.

Each initialized section actually has two addresses associated with it. First, it hasa LOAD
address which is the address to which it gets loaded at load time (or at flash programming time).
Second, it has a RUN address which is the address from which the section is accessed at runtime.
The linker assigns both addresses to the section. Most initialized sections can have the same
LOAD and RUN address in the flash. However, some initialized sections need to be loaded to
flash, but then run from RAM. This is required, for example, if the contents of the section needs
to be modified at runtime by the code.

2. Open and inspect the linker command file Lab_12.cmd. Notice that a memory block
named FLASH_ABCDEFGH has been been created at origin = 0x3D8000, length =
0x01FF80 on Page 0. This flash memory block length has been selected to avoid
conflicts with other required flash memory spaces. See the reference slide at the end of
this lab exercise for further details showing the address origins and lengths of the various
memory blocks used.

3. EditLab_12.cmd to link the following compiler sections to on-chip flash memory
block FLASH_ABCDEFGH:

Compiler Sections:

text .cinit .const .econst .pinit .switch

4. InLab_12.cmd notice that the section named “I1Qmath” is an initialized section that
needs to load to and run from flash. Previously the “1Qmath” section was linked to
L4SARAM. Edit Lab_12.cmd so that this section is how linked to
FLASH_ABCDEFGH. Save your work and close the file.

C2000 Microcontroller Workshop - System Design 12 -15

Lab 12: Programming the Flash

Copying Interrupt Vectors from Flash to RAM

The interrupt vectors must be located in on-chip flash memory and at power-up needs to be
copied to the PIE RAM as part of the device initialization procedure. The code that performs this
copy is located in InitPieCtri (). The C-compiler runtime support library contains a
memory copy function called memcpy() which will be used to perform the copy.

5. Open and inspect InitPieCtrl() in PieCtrl .c. Notice the memcpy() function used to
initialize (copy) the PIE vectors. At the end of the file a structure is used to enable the
PIE.

Initializing the Flash Control Registers

The initialization code for the flash control registers cannot execute from the flash memory (since
it is changing the flash configuration!). Therefore, the initialization function for the flash control
registers must be copied from flash (load address) to RAM (run address) at runtime. The memory
copy function memcpy() will again be used to perform the copy. The initialization code for the
flash control registers InitFlash() is located in the Flash. c file.

6. Add Flash.c to the project.

7. Open and inspect Flash.c. The C compiler CODE_SECTION pragma is used to place
the InitFlash() function into a linkable section named “secureRamFuncs”.

8. The “secureRamFuncs” section will be linked using the user linker command file
Lab_12_cmd. Open and inspect Lab_12_cmd. The “secureRamFuncs” will load
to flash (load address) but will run from L4SARAM (run address). Also notice that the
linker has been asked to generate symbols for the load start, load size, and run start
addresses.

While not a requirement from a MCU hardware or development tools perspective (since
the C28x MCU has a unified memory architecture), historical convention is to link code
to program memory space and data to data memory space. Therefore, notice that for the
L4SARAM memory we are linking “secureRamFuncs” to, we are specifiying “PAGE
= 0” (which is program memory).

9. Open and inspect Main_12.c. Notice that the memory copy function memcpy() is
being used to copy the section “secureRamFuncs”, which contains the initialization
function for the flash control registers.

10. Add a line of code in main() to call the InitFlash() function. There are no passed
parameters or return values. You just type

InitFlash();

at the desired spot in main().

Code Security Module and Passwords

The CSM module provides protection against unwanted copying (i.e. pirating!) of your code from
flash, OTP memory, and the LO, L1, L2, L3 and L4 RAM blocks. The CSM uses a 128-bit
password made up of 8 individual 16-bit words. They are located in flash at addresses Ox3F7FF8

12 -16

C2000 Microcontroller Workshop - System Design

Lab 12: Programming the Flash

to Ox3F7FFF. During this lab, dummy passwords of OxFFFF will be used — therefore only
dummy reads of the password locations are needed to unsecure the CSM. DO NOT PROGRAM
ANY REAL PASSWORDS INTO THE DEVICE. After development, real passwords are
typically placed in the password locations to protect your code. We will not be using real
passwords in the workshop.

The CSM module also requires programming values of 0x0000 into flash addresses 0x3F7F80
through Ox3F7FF5 in order to properly secure the CSM. Both tasks will be accomplished using a
simple assembly language file Passwords . asm.

11. Add Passwords.asm to the project.

12. Open and inspect Passwords.asm. This file specifies the desired password values
(DO NOT CHANGE THE VALUES FROM 0xFFFF) and places them in an initialized
section named “passwords”. It also creates an initialized section named “csm_rsvd”
which contains all 0x0000 values for locations O0x3F7F80 to Ox3F7FF5 (length of 0x76).

13. Open Lab_12.cmd and notice that the initialized sections for “passwords” and
“csm_rsvd” are linked to memories named PASSWORDS and CSM_RSVD,
respectively.

Executing from Flash after Reset

The F28069 device contains a ROM bootloader that will transfer code execution to the flash after
reset. When the boot mode selection is set for “Jump to Flash” mode, the bootloader will branch
to the instruction located at address Ox3F7FF6 in the flash. An instruction that branches to the
beginning of your program needs to be placed at this address. Note that the CSM passwords
begin at address Ox3F7FF8. There are exactly two words available to hold this branch
instruction, and not coincidentally, a long branch instruction “LB” in assembly code occupies
exactly two words. Generally, the branch instruction will branch to the start of the C-
environment initialization routine located in the C-compiler runtime support library. The entry
symbol for this routine is _c_int00. Recall that C code cannot be executed until this setup routine
is run. Therefore, assembly code must be used for the branch. We are using the assembly code
file named CodeStartBranch.asm.

14. Open and inspect CodeStartBranch.asm. This file creates an initialized section
named “codestart” that contains a long branch to the C-environment setup routine.
This section needs to be linked to a block of memory named BEGIN_FLASH.

15. In the earlier lab exercises, the section “codestart” was directed to the memory
named BEGIN_MO. Edit Lab_12.cmd so that the section “codestart” will be
directed to BEGIN_FLASH. Save your work and close the opened files.

On power up the reset vector will be fetched and the ROM bootloader will begin execution. If
the emulator is connected, the device will be in emulator boot mode and will use the EMU_KEY
and EMU_BMODE values in the PIE RAM to determine the boot mode. This mode was utilized
in an earlier lab. In this lab, we will be disconnecting the emulator and running in stand-alone
boot mode (but do not disconnect the emulator yet!). The bootloader will read the OTP_KEY
and OTP_BMODE values from their locations in the OTP. The behavior when these values have
not been programmed (i.e., both OXFFFF) or have been set to invalid values is boot to flash boot
mode.

C2000 Microcontroller Workshop - System Design 12 - 17

Lab 12:

Programming the Flash

Initializing the CLA

Previously, the named section “ClalProg” containing the CLA program tasks was linked
directly to the CPU memory block L3DPSARAM for both load and run purposes. At runtime, all
the code did was map the L3DPSARAM block to the CLA program memory space during CLA
initialization. For an embedded application, the CLA program tasks are linked to load to flash
and run from RAM. At runtime, the CLA program tasks must be copied from flash to
L3DPSARAM. The memory copy function memcpy() will once again be used to perform the
copy. After the copy is performed, the L3DPSARAM block will then be mapped to CLA program
memory space as was done in the earlier lab.

16. Open and inspect Lab_12_cmd. Notice that the named section “ClalProg” will now
load to flash (load address) but will run from L3DPSARAM (run address). The linker will
also be used to generate symbols for the load start, load size, and run start addresses.

17. Open Cla_12.c and notice that the memory copy function memcpy() is being used to
copy the CLA program code from flash to L3DPSARAM using the symbols generated by
the linker. Just after the copy the ClalRegs structure is used to configure the
L3DPSARAM block as CLA program memory space. Close the inspected files.

Build — Lab.out

18. Click the “Bui 1d” button to generate the Lab . out file to be used with the CCS Flash
Programmer. Check for errors in the Problems window.

Programming the On-Chip Flash Memory

In CCS the on-chip flash programmer is integrated into the debugger. When the program is
loaded CCS will automatically determine which sections reside in flash memory based on the
linker command file. CCS will then program these sections into the on-chip flash memory.
Additionally, in order to effectively debug with CCS, the symbolic debug information (e.g.,
symbol and label addresses, source file links, etc.) will automatically load so that CCS knows
where everything is in your code. Clicking the “Debug” button in the “CCS Edit Perspective”
will automatically launch the debugger, connect to the target, and program the flash memory in a
single step.

19. Program the flash memory by clicking the “Debug” button (green bug). (If needed,
when the “Progress Information’ box opens select “Detai ls >>" in order to watch
the programming operation and status). After successfully programming the flash
memory the “Progress Information” box will close.

Running the Code — Using CCS
20. Reset the CPU using the “Reset CPU” button or click:
Run -> Reset - Reset CPU

The program counter should now be at address 0x3FF75C in the “Disassembly” window,
which is the start of the bootloader in the Boot ROM. If needed, click on the “View
Disassembly...” button in the window that opens, or click View -> Disassembly.

12 -18

C2000 Microcontroller Workshop - System Design

Lab 12: Programming the Flash

21. Under Scripts on the menu bar click:
EMU Boot Mode Select -> EMU_BOOT_FLASH.
This has the debugger load values into EMU_KEY and EMU_BMODE so that the
bootloader will jump to "Flash" at address Ox3F7FF6.

22. Single-Step by using the <F5> key (or you can use the Step Into button on the
horizontal toolbar) through the bootloader code until you arrive at the beginning of the
codestart section in the CodeStartBranch.asm file. (Be patient, it will take about
125 single-steps). Notice that we have placed some code in CodeStartBranch.asm
to give an option to first disable the watchdog, if selected.

23. Step a few more times until you reach the start of the C-compiler initialization routine at
the symbol _c_int00.

24. Now do Run -> Go Main. The code should stop at the beginning of your
main)routine. If you got to that point succesfully, it confirms that the flash has been
programmed properly, that the bootloader is properly configured for jump to flash mode,
and that the codestart section has been linked to the proper address.

25. You can now run the CPU, and you should observe the LED on the control CARD
blinking. Try resetting the CPU, select the EMU_BOOT_FLASH boot mode, and then
hitting run (without doing all the stepping and the Go Main procedure). The LED should
be blinking again.

26. Halt the CPU.

Terminate Debug Session and Close Project

27. Terminate the active debug session using the Terminate button. This will close the
debugger and return CCS to the “CCS Edit Perspective” view.

28. Next, close the project by right-clicking on Lab12 in the Project Explorer
window and select Close Project.

Running the Code — Stand-alone Operation (No Emulator)

Recall that if the device is in stand-alone boot mode, the state of GP1034 and GPIO37 pins are
used to determine the boot mode. On the control CARD switch SW1 controls the boot options for
the F28069 device. Check that switch SW1 positions 1 and 2 are set to the default “1 — on”
position (both switches up). This will configure the device (in stand-alone boot mode) to
GetMode. Since the OTP_KEY has not been programmed, the default GetMode will be boot
from flash. Details of the switch positions can be found in Appendix A.

29. Close Code Composer Studio.

30. Disconnect the USB cable (emulator) from the Docking Station (i.e. remove power from
the controlCARD).

31. Re-connect the USB cable to the Docking Station to power the controlCARD. The LED
should be blinking, showing that the code is now running from flash memory.

End of Exercise

C2000 Microcontroller Workshop - System Design 12 -19

Lab 12: Programming the Flash

Lab 12 Reference: Programming the Flash

origin =

0x3F 7F80

Ox3F 7FF6

0x3F 7FF8

Flash Memory Section Blocks

0x3D 8000

FLASH
length = Ox1FF80
page =0

CSM_RSVD
length = 0x76
page =0

BEGIN_FLASH
length = 0x2
page =0

PASSWORDS
length = 0x8
page =0

Lab_12.cmd

SECTIONS

{
codestart :> BEGIN_FLASH, PAGE=0
passwords :> PASSWORDS, PAGE=0
csm_rsvd > CSM_RSVD, PAGE =0

D

Startup Sequence from Flash Memory
0x3D 8000 |) —C_Int00| " 152800 ml.lib”
— OX3F7FF6 [LB
| _c_int00 —— CS > “user” code sections
Passwords (8w) main ()
N {
N e
©) N e
Ox3F 8000 | Boot ROM (32Kw) }
Boot Code \\
0X3F F75C N
{SCAN GPIO} @ \\
BROM vector (32w) \\\
Ox3F FFCO Ox3F F75C — A
RESET

12-20

C2000 Microcontroller Workshop - System Design

Communications

Introduction

The TMS320C28x contains features that allow several methods of communication and data
exchange between the C28x and other devices. Many of the most commonly used
communications techniques are presented in this module.

The intent of this module is not to give exhaustive design details of the communication
peripherals, but rather to provide an overview of the features and capabilities. Once these
features and capabilities are understood, additional information can be obtained from various
resources such as documentation, as needed. This module will cover the basic operation of the
communication peripherals, as well as some basic terms and how they work.

Module Objectives

Module Objectives

¢ Serial Peripheral Interface (SPI)
¢ Serial Communication Interface (SCI)

¢ Multichannel Buffered Serial Port (McBSP)
¢ Inter-Integrated Circuit (12C)

¢ Universal Serial Bus (USB)

¢ Enhanced Controller Area Network (eCAN)

Note: Up to 2 SPI modules (A/B), 2 SCI module (A), 1 McBSP module (A), 1 12C module (A),
1 USB (0), and 1 eCAN module (A) are available on the F2806x devices

C2000 Microcontroller Workshop - Communications 13-1

Module Topics

Module Topics

COMIMUNICALIONS ...ttt bbbt s bbbt bbbt b bbb e bbb ene st e e 13-1
0T LU T=N o] oSS 13-2
CommMUNICAIONS TECANIQUEScvveuveieitisiesieeieeeeie sttt te e et e e s reste e e es e seetestestesreaneenaeseenreneennens 13-3
Serial Peripheral INterface (SPI) ..ottt r et sne e e e e e nne s 13-4

ST B T] S S 13-7
IS I TU 0] 0 0=V SR 13-8
Serial Communications INErface (SCI)coiiiiiiie e e 13-9
MultiprocesSOr Wake-Up MOUES.coui ittt bbbt ee e 13-11
S O [T 1] (=] £SO URUPOUTUPPRN 13-14
SCH U SUMMAIY .ttt bbbt st b e eb e s be e bt ekt e s b e e heeebeeebeebeenbeenbensnenbeen 13-15
Multichannel Buffered Serial POrt (MCBSP)ooi oot 13-16
Definition: Bit, WOrd, and FIamM@ccoiiiiiiiie ittt 13-16
MUILI-ChanNEl SEIECLION ..ottt sb e ebe b 13-17
MICBSP SUMIMAIYoueiieieite et ettt tee st te e e s e saeesteebeenteesseas e sseestaesteesteesaeaneesreenneenneenseenes 13-18
Inter-Integrated CIrCUIL (I2C)iuiiiiiiicie ettt et reer e e e e e nrenre e 13-19
12C Operating Modes and Data FOMMALScccucivieeiierieieresese s seesie st nes 13-20
O 1H 4] 0= S 13-21
UNiIversal SErial BUS (USB)cuiuiiiiiiiiiiieiinie sttt st 13-22
USB COMMUNICALION ...ttt ittt sttt bbbttt et e b e sb et e bt et e e neeneeneenbe b e 13-23
ENUMETALION ...ttt b e bbbt et et e b b e b e s bt et e e s e enteneesbe b e 13-23
F2806X USB HAITWAIEeeieiiiitiiteiieiie ettt sttt sttt b ettt ettt st bbbt et e et e e nbe e 13-24
USB CONEFOIEI SUMMAIY......eiiiitiitiiteii ettt ettt b bbbt st e et nee b e 13-24
Enhanced Controller Area Network (EBCAN) ..ot 13-25
CAN BUS 8N NOGE ...ttt ettt bbb bbb 13-26
PrinCiples 0f OPEratioNciviieieice ettt re e et e e nre e e 13-27
Message Format and BIOCK DIagram........c.cceeeiuriirieieeeeieeie e sie e siesreeseeieseesee e e sressaesseseessessesns 13-28
B AN SUIMIMAIY ...veieeeiteeite ettt see e e e eeee e s reesteesae e sees e eseesseesteeteeseeaseeameeaseenneeseenseensenseenrenns 13-30

13-2

C2000 Microcontroller Workshop - Communications

Communications Techniques

Communications Techniques

Several methods of implementing a TMS320C28x communications system are possible. The
method selected for a particular design should reflect the method that meets the required data rate
at the lowest cost. Various categories of interface are available and are summarized in the
learning objective slide. Each will be described in this module.

Synchronous vs. Asynchronous

¢ Synchronous ¢ Asynchronous
Short distances (on-board) ¢ longer distances
¢ High data rate ¢ Lower data rate (= 1/8 of SPI)
¢ Explicit clock ¢ Implied clock (clk/data
mixed)
¢ Economical with reasonable
performance
C28x C28x
Port «<— U2 Port —
Destination
PCB PCB

Serial ports provide a simple, hardware-efficient means of high-level communication between
devices. Like the GPIO pins, they may be used in stand-alone or multiprocessing systems.

In a multiprocessing system, they are an excellent choice when both devices have an available
serial port and the data rate requirement is relatively low. Serial interface is even more desirable
when the devices are physically distant from each other because the inherently low number of
wires provides a simpler interconnection.

Serial ports require separate lines to implement, and they do not interfere in any way with the data
and address lines of the processor. The only overhead they require is to read/write new words
from/to the ports as each word is received/transmitted. This process can be performed as a short
interrupt service routine under hardware control, requiring only a few cycles to maintain.

The C28x family of devices have both synchronous and asynchronous serial ports. Detailed
features and operation will be described next.

C2000 Microcontroller Workshop - Communications 13-3

Serial Peripheral Interface (SPI)

Serial Peripheral Interface (SPI)

The SPI module is a synchronous serial I/O port that shifts a serial bit stream of variable length
and data rate between the C28x and other peripheral devices. During data transfers, one SPI
device must be configured as the transfer MASTER, and all other devices configured as
SLAVES. The master drives the transfer clock signal for all SLAVES on the bus. SPI
communications can be implemented in any of three different modes:

o MASTER sends data, SLAVES send dummy data
¢ MASTER sends data, one SLAVE sends data
e MASTER sends dummy data, one SLAVE sends data

In its simplest form, the SPI can be thought of as a programmable shift register. Data is shifted in
and out of the SPI through the SPIDAT register. Data to be transmitted is written directly to the
SPIDAT register, and received data is latched into the SPIBUF register for reading by the CPU.
This allows for double-buffered receive operation, in that the CPU need not read the current
received data from SPIBUF before a new receive operation can be started. However, the CPU
must read SPIBUF before the new operation is complete of a receiver overrun error will occur. In
addition, double-buffered transmit is not supported: the current transmission must be complete
before the next data character is written to SPIDAT or the current transmission will be corrupted.

The Master can initiate a data transfer at any time because it controls the SPICLK signal. The
software, however, determines how the Master detects when the Slave is ready to broadcast.

SPI Data Flow

¢ Simultaneous transmits and receive
¢ SPI Master provides the clock signal

SPI Device #1 - Master SPI Device #2 - Slave
shift shift
| SPI Shift Register | | SPI Shift Register |
clock

13-4

C2000 Microcontroller Workshop - Communications

Serial Peripheral Interface (SPI)

SPI Block Diagram

C28x - SPI Master Mode Shown

LSPCLK

MSB

RX FIFO_0

RX FIFO_3

SPIRXBUF.15-0

f

SPIDAT.15-0 |

LSB

SPISIMO

SPISOMI

T‘ J

SPITXBUF.15-0

TX FIFO_0

TXFIFO_3

baud
rate

clock

polarity

clock
phase

SPICLK

SPI Transmit / Receive Sequence

1.

> wn

© o© N o O

Slave writes data to be sent to its shift register (SPIDAT)

Master writes data to be sent to its shift register (SPIDAT or SPITXBUF)

Completing Step 2 automatically starts SPICLK signal of the Master

MSB of the Master’s shift register (SPIDAT) is shifted out, and LSB of the Slave’s shift

register (SPIDAT) is loaded

Step 4 is repeated until specified number of bits are transmitted

SPIDAT register is copied to SPIRXBUF register

SPI'INT Flag bitis setto 1

An interrupt is asserted if SPI INT ENA bitis setto 1

If data is in SPITXBUF (either Slave or Master), it is loaded into SPIDAT and transmission
starts again as soon as the Master’s SPIDAT is loaded

C2000 Microcontroller Workshop - Communications

13-5

Serial Peripheral Interface (SPI)

Since data is shifted out of the SPIDAT register MSB first, transmission characters of less than 16
bits must be left-justified by the CPU software prior to be written to SPIDAT.

Received data is shifted into SPIDAT from the left, MSB first. However, the entire sixteen bits
of SPIDAT is copied into SPIBUF after the character transmission is complete such that received
characters of less than 16 bits will be right-justified in SPIBUF. The non-utilized higher
significance bits must be masked-off by the CPU software when it interprets the character. For
example, a 9 bit character transmission would require masking-off the 7 MSB’s.

SPI| Data Character Justification

¢ Programmable data
length of 1to 16 bits SPIDAT - Processor #1

¢ Transmitted data of less 11001001 XXXXXXXX
than 16 bits must be left

justified
€ MSB transmitted first
¢ Received data of less

than 16 bits are right
justified

SPIDAT - Processor #2

XXXXXXXX11001001

¢ User software must
mask-off unused MSB’s

13-6 C2000 Microcontroller Workshop - Communications

Serial Peripheral Interface (SPI)

SPI Registers

SPI Baud Rate Register

SpixRegs.SPIBRR

Need to set this only when in master mode!

15-7 6-0
reserved SPI BIT RATE
&, SPIBRR =3 to 127
(SPIBRR + 1)
SPICLK signal =
LfU(, SPIBRR =0, 1, or 2

Baud Rate Determination: The Master specifies the communication baud rate using its baud rate
register (SPIBRR.6-0):

e For SPIBRR =3to 127; SPI Baud Rate = ﬂ bits/sec
(SPIBRR +1)
e ForSPIBRR=0,1,0r2: SPIlBaud Rate = % bits/sec

From the above equations, one can compute
Maximum data rate = 20 Mbps @ 80 MHz

Character Length Determination: The Master and Slave must be configured for the same
transmission character length. This is done with bits 0, 1, 2 and 3 of the configuration control
register (SPICCR.3-0). These four bits produce a binary number, from which the character length
is computed as binary + 1 (e.g. SPICCR.3-0 = 0010 gives a character length of 3).

C2000 Microcontroller Workshop - Communications 13-7

Serial Peripheral Interface (SPI)

Select SPI Registers

¢ Configuration Control spixregs.spiccr
¢ Reset, Clock Polarity, Loopback, Character Length

¢ Operation Control spixregs.spicTL
¢ Overrun Interrupt Enable, Clock Phase, Interrupt Enable
¢ Master / Slave Transmit enable

& Status spixregs.SPIST
¢ RX Overrun Flag, Interrupt Flag, TX Buffer Full Flag

¢ FIFO Transmit spixregs.SPIFFTX
FIFO Receive spixregs.SPIFFRX
¢ FIFO Enable, FIFO Reset
¢ FIFO Over-flow flag, Over-flow Clear
¢ Number of Words in FIFO (FIFO Status)
¢ FIFO Interrupt Enable, Interrupt Status, Interrupt Clear
¢ FIFO Interrupt Level (Number of Words in FIFO)

Note: refer to the reference guide for a complete listing of registers

SPI Summary

SPI Summary

¢ Synchronous serial communications
¢ Two wire transmit or receive (half duplex)
¢ Three wire transmit and receive (full duplex)

¢ Software configurable as master or slave
¢ C28x provides clock signal in master mode

¢ Data length programmable from 1-16 bits
¢ 125 different programmable baud rates

13-8 C2000 Microcontroller Workshop - Communications

Serial Communications Interface (SCI)

Serial Communications Interface (SCI)

The SCI module is a serial I/O port that permits Asynchronous communication between the C28x
and other peripheral devices. The SCI transmit and receive registers are both double-buffered to
prevent data collisions and allow for efficient CPU usage. In addition, the C28x SCl is a full
duplex interface which provides for simultaneous data transmit and receive. Parity checking and

data formatting is also designed to be done by the port hardware, further reducing software
overhead.

SCI Pin Connections

(Full Duplex Shown)

TX FIFO_0

TX FIFO_3

Transmitter-data
buffer register

TX FIFO_0

TX FIFO_3

Transmitter-data
buffer register

Transmitter SCITXD SCITXD Transmitter
shift register shift register
Receiver SCIRXD SCIRXD Receiver
shift register shift register

Receiver-data Receiver-data
buffer register buffer register
RX FIFO_0 RX FIFO_0
RX FIFO_3 RX FIFO_3
SCI Device #1 SCI Device #2

C2000 Microcontroller Workshop - Communications

13-9

Serial Communications Interface (SCI)

SCI Data Format

NRZ (non-return to zero) format

Addr/ | _ . I I
Start | LSB 2 3 4 5 6 7 MSB Data Parity |Stop 1 Stop 2

This bit present only in Address-bit mode A

Communications Control Register (ScixRegs.SCICCR)

7 6 5 4 3 2 1 0
Stop |Even/Odd| Parity |Loopback|Addr/idle SCI SCI SCI
Bits Parity Enable Enable Mode Char2 Charl Char0
| '
0 =1 Stop bit 0 = Disabled 0 = Idle-line mode # of data bits = (binary + 1)
1 =2 Stop bits 1 =Enabled 1 =Addr-bit mode e.g. 110b gives 7 data bits
0=0dd 0 = Disabled
1=Even 1=Enabled

The basic unit of data is called a character and is 1 to 8 bits in length. Each character of data is
formatted with a start bit, 1 or 2 stop bits, an optional parity bit, and an optional address/data bit.
A character of data along with its formatting bits is called a frame. Frames are organized into
groups called blocks. If more than two serial ports exist on the SCI bus, a block of data will
usually begin with an address frame which specifies the destination port of the data as determined
by the user’s protocol.

The start bit is a low bit at the beginning of each frame which marks the beginning of a frame.
The SCI uses a NRZ (Non-Return-to-Zero) format which means that in an inactive state the
SCIRX and SCITX lines will be held high. Peripherals are expected to pull the SCIRX and
SCITX lines to a high level when they are not receiving or transmitting on their respective lines.

When configuring the SCICCR, the SCI port should first be held in an inactive state. This
is done using the SW RESET bit of the SCI Control Register 1 (SCICTL1.5). Writing a 0 to this
bit initializes and holds the SCI state machines and operating flags at their reset condition. The
SCICCR can then be configured. Afterwards, re-enable the SCI port by writing a 1 to the SW
RESET bit. At system reset, the SW RESET bit equals 0.

13-10 C2000 Microcontroller Workshop - Communications

Serial Communications Interface (SCI)

SCI Data Timing

¢ Start bit valid if 4 consecutive SCICLK periods of
zero bits after falling edge

¢ Majority vote taken on 4%, 5 ‘and 6" SCICLK cycles

Majority

Vi

SCICLK

Internal
():' 1 2 3 45 6 7 8 1 2 3 45 6 7 8 1 2

Pl L1
SCIRXD—IiVVVV VUV y W(

Start Bit LSB of Data

" Falling Edge Detected

Note: 8 SCICLK periods per data bit

Multiprocessor Wake-Up Modes

Multiprocessor Wake-Up Modes

¢ Allows numerous processors to be hooked
up to the bus, but transmission occurs
between only two of them

¢ Idle-line or Address-bit modes

¢ Sequence of Operation

1. Potential receivers set SLEEP = 1, which disables RXINT except
when an address frame is received

2. All transmissions begin with an address frame
3. Incoming address frame temporarily wakes up all SCIs on bus
4. CPUs compare incoming SCI address to their SCI address

5. Process following data frames only if address matches

C2000 Microcontroller Workshop - Communications 13-11

Serial Communications Interface (SCI)

Idle-Line Wake-Up Mode

¢ Idle time separates blocks of frames

¢ Receiver wakes up when SCIRXD high for 10 or
more bit periods

¢ Two transmit address methods
¢ Deliberate software delay of 10 or more bits

¢ Set TXWAKE bit to automatically leave exactly 11 idle bits

Idle periods
of less than Block of Frames
10 bits N

SCIRXD/ """\ 4stpata; s |sT| Addr Jsp|sT| _pam |sp|sT[Lastbaa | sp isTi Addr P
scitxp @ - T —HHeme/e— =l — = —— 7 s

\// v \ /

Idle Address frame 1st data frame Idle
Period follows 10 bit Period

10 bits ’ 10 bits
or greater OF greater idle or greater

Address-Bit Wake-Up Mode

¢ All frames contain an extra address bit
¢ Receiver wakes up when address bit detected

¢ Automatic setting of Addr/Data bit in frame by setting
TXWAKE =1 prior to writing address to SCITXBUF

Block of Frames

28:?;3/ Tllastpataio: s |sT| Addr [1]sp|sT[Data |0]SP|ST|LastDatd 0|SPLST! Addr i1:SPi

Sy A\ A T g
>/_/ First frame within 1st data frame

Idle Period block is Address. id?é’ﬁ?sdﬁggfe'd
length of no ADDR/DATA beyond stop bits
significance

bit set to 1

13-12 C2000 Microcontroller Workshop - Communications

Serial Communications Interface (SCI)

The SCI interrupt logic generates interrupt flags when it receives or transmits a complete
character as determined by the SCI character length. This provides a convenient and efficient
way of timing and controlling the operation of the SCI transmitter and receiver. The interrupt
flag for the transmitter is TXRDY (SCICTL2.7), and for the receiver RXRDY (SCIRXST.6).
TXRDY is set when a character is transferred to TXSHF and SCITXBUF is ready to receive the
next character. In addition, when both the SCIBUF and TXSHF registers are empty, the TX
EMPTY flag (SCICTL2.6) is set. When a new character has been received and shifted into
SCIRXBUF, the RXRDY flag is set. In addition, the BRKDT flag is set if a break condition
occurs. A break condition is where the SCIRXD line remains continuously low for at least ten
bits, beginning after a missing stop bit. Each of the above flags can be polled by the CPU to
control SCI operations, or interrupts associated with the flags can be enabled by setting the
RX/BK INT ENA (SCICTL2.1) and/or the TX INT ENA (SCICTL2.0) bits active high.

Additional flag and interrupt capability exists for other receiver errors. The RX ERROR flag is
the logical OR of the break detect (BRKDT), framing error (FE), receiver overrun (OE), and
parity error (PE) bits. RX ERROR high indicates that at least one of these four errors has
occurred during transmission. This will also send an interrupt request to the CPU if the RX ERR
INT ENA (SCICTL1.6) bit is set.

C2000 Microcontroller Workshop - Communications 13-13

Serial Communications Interface (SCI)

SCI Registers

SCI Baud Rate Registers

_LSPCLK BRR=1t065535
(BRR+1)x 8
SCIl baud rate =
_LSPCLK _ BRR=0
16

Baud-Select MShyte Register (ScixRegs.SCIHBAUD)

7 6 5 4 3 2 1 0

BAUD15
(MSB)

BAUD14 | BAUD13 | BAUD12 | BAUD11 | BAUD10 | BAUD9 | BAUDS8

Baud-Select LSbyte Register (ScixRegs.SCILBAUD)
7 6 5 4 3 2 1 0

BAUDO
(LSB)

BAUD7 | BAUD6 | BAUDS5 | BAUD4 | BAUD3 | BAUD2 | BAUD1

Baud Rate Determination: The values in the baud-select registers (SCIHBAUD and SCILBAUD)

concatenate to form a 16 bit number that specifies the baud rate for the SCI.

e For BRR =1to 65535: SCI Baud Rate = ﬂ bits/sec
(BRR+1)x8
e ForBRR=0: SCI Baud Rate = % bits/sec

Max data rate = 5 Mbps @ 80 MHz
Note that the CLKOUT for the SCI module is one-half the CPU clock rate.

13-14

C2000 Microcontroller Workshop - Communications

Serial Communications Interface (SCI)

Select SCI Registers

¢ Control 1 scixregs.scicTL1
¢ Reset, Transmitter / Receiver Enable
¢ TX Wake-up, Sleep, RX Error Interrupt Enable

¢ Control 2 scixregs.spicTL2
¢ TX Buffer Full / Empty Flag, TX Ready Interrupt Enable
¢ RX Break Interrupt Enable
¢ Receiver Status scixRegs.SCIRXST
¢ Error Flag, Ready, Flag Break-Detect Flag, Framing
Error Detect Flag, Parity Error Flag, RX Wake-up
Detect Flag
¢ FIFO Transmit scixregs.SCIFFTX
FIFO Receive scixregs.SCIFFRX
¢ FIFO Enable, FIFO Reset
¢ FIFO Over-flow flag, Over-flow Clear
¢ Number of Words in FIFO (FIFO Status)
¢ FIFO Interrupt Enable, Interrupt Status, Interrupt Clear
¢ FIFO Interrupt Level (Number of Words in FIFO)

Note: refer to the reference guide for a complete listing of registers

SCI Summary

SCI Summary

¢ Asynchronous communications format
¢ 65,000+ different programmable baud rates

¢ Two wake-up multiprocessor modes
¢ Idle-line wake-up & Address-bit wake-up

¢ Programmable data word format
¢ 1to 8 bit data word length

¢ 1or 2 stop bits
¢ even/odd/no parity

¢ Error Detection Flags
¢ Parity error; Framing error; Overrun error; Break detection

¢ Transmit FIFO and receive FIFO
¢ Individual interrupts for transmit and receive

C2000 Microcontroller Workshop - Communications 13-15

Multichannel Buffered Serial Port (McBSP)

Multichannel Buffered Serial Port (McBSP)

McBSP Block Diagram

Peripheral / DMA Bus > +—> MFSXx
JEI‘ Ji_(il» e——> MCLKXx
| DXR2 TX Buffer | DxR1TXBuffer |
5 B
| XSR2 —> XSR1 ——» MDXx

i)

R

N

[—

MDRXx

l—

ps)
n
o

R

16

16

| RBR2 Register |

| RBR1 Register |

16

(5]

5]

| DRR2RxBuffer |

| DRR1RXBuffer | fe—— MCLKRX

il

5]

+«— MFSRx

Peripheral / DMA Bus |

<

Definition: Bit, Word, and Frame

Definition: Bit and Word

cxJUUULUUUUUUUUL
FS B
D (alja0) | (67/b6)bS ba)b3 b2 b1 ho)
> < Word >
Bit

¢ “Bit” - one data bit per serial clock period

¢ “Word” or “channel” contains
number of bits (8, 12, 16, 20, 24, 32)

13-16

C2000 Microcontroller Workshop - Communications

Multichannel Buffered Serial Port (McBSP)

Definition: Word and Frame

FS [

D (wexw7) (WO XWX wW2XW3XWAXWEXWEXWT)
AR 4+—— Frame ——»
Word

¢ Number of words per frame: 1-128

¢ “Frame” - contains one or multiple words

Multi-Channel Selection

Frame

Multi-Channel Selection

TDM Bit Stream

OmMmOoOOn

- 0—|Ch31| | chi | Cho |—.

1 —|Ch31| | chi | cho |—»

Multi-channel Control Reg

Multi-channel

Ch0-0

Transmit
&
Receive

TBVWO =

Channels

only selected

Cho-1

Ch5-0

Ch5-1

N

Ch27-0

Rec/Xmt Channel Enable Regs

Ch27-1

¢ Multi-channel mode controlled primarily via two registers:

MCR |

| RIXCER (AH)

(enables Mc-mode)

(enable/disable channels)

¢ Upto 128 channels can be enabled/disabled

¢ Allows multiple channels (words) to be independently selected for transmit
and receive (e.g. only enable ChQ, 5, 27 for receive, then process via CPU)

¢ The McBSP keeps time sync with all channels, but only “listens” or “talks”
if the specific channel is enabled (reduces processing/bus overhead)

C2000 Microcontroller Workshop - Communications

13-17

Multichannel Buffered Serial Port (McBSP)

McBSP Summary

McBSP Summary

¢ Independent clocking and framing for
transmit and receive

¢ Internal or external clock and frame sync
¢ Data size of 8, 12, 16, 20, 24, or 32 bits

¢ TDM mode - up to 128 channels
¢ Used for T1/E1 interfacing

¢ u-law and A-law companding

¢ SPI mode

¢ Direct Interface to many codecs
¢ Can be serviced by the DMA

13-18 C2000 Microcontroller Workshop - Communications

Inter-Integrated Circuit (12C)

Inter-Integrated Circuit (12C)

L 2R 2R R JER JEE 2R BN 4

VDD

Pull-up
Resistors

Serial Data (SDA)

28xX
12C

Inter-Integrated Circuit (12C)

Philips 12C-bus specification compliant, version 2.1
Data transfer rate from 10 kbps up to 400 kbps
Each device can be considered as a Master or Slave
Master initiates data transfer and generates clock signal
Device addressed by Master is considered a Slave
Multi-Master mode supported
Standard Mode — send exactly n data values (specified in register)

Repeat Mode — keep sending data values (use software to initiate a
stop or new start condition)

12C

Controller

l

Serial Clock (SCL)

12C

EPROM

28xx
12C

12C Block Diagram

SDA <

SCL

A 4

A

[2CXSR (= I2CDXR
TX FTIFO
RX FIFO

I2CRSR > IZCgRR

Clock

Circuits

C2000 Microcontroller Workshop - Communications

13-19

Inter-Integrated Circuit (12C)

I2C Operating Modes and Data Formats

|I2C Operating Modes

Operating Mode Description

Slave-receiver mode Module is a slave and receives data from a master
(all slaves begin in this mode)

Slave-transmitter mode Module is a slave and transmits data to a master
(can only be entered from slave-receiver mode)

Master-receiver mode Module is a master and receives data from a slave
(can only be entered from master-transmit mode)

Master-transmitter mode | Module is a master and transmits to a slave
(all masters begin in this mode)

|12C Serial Data Formats

7-Bit Addressing Format
1 7 1 1 n 1 n 1 1
|s| Slave Address |R/W|ACK| Data |ACK| Data |ACK| P |

10-Bit Addressing Format

1 7 1 1 8 1 n 1 1
| S | 11110AA |R/W|ACK| AAAAAAAA |ACK| Data |ACK| P |
Free Data Format
1 n 1 n 1 n 1 1
[s] Data [ACK] Data | AcK] Data [AcK]| P |

R/W = 0 — master writes data to addressed slave

R/W = 1 — master reads data from the slave

n =1 to 8 bits

S = Start (high-to-low transition on SDA while SCL is high)
P = Stop (low-to-high transition on SDA while SCL is high)

13-20

C2000 Microcontroller Workshop - Communications

Inter-Integrated Circuit (12C)

12C Arbitration

competing transmitters

binary value

SCL 1

¢ Arbitration procedure invoked if two or more master-
transmitters simultaneously start transmission

+ Procedure uses data presented on serial data bus (SDA) by

» First master-transmitter which drives SDA high is overruled
by another master-transmitter that drives SDA low

+ Procedure gives priority to the data stream with the lowest

Device #1 lost arbitration
and switches to slave-

Data from T i
device #1 1 I 0 '\/ receiver mode
; Device #2
Data from 1}o o ‘;01/ drives SDA
SDA 1ho of1]o[1
I2C Summary
12C Summary

specification (version 2.1)
¢ 7-bit and 10-bit addressing
¢ Configurable 1 to 8 bit data

¢ Data transfer rate from 10 k
400 kbps

¢ Compliance with Philips 12C-bus

¢ Transmit FIFO and receive FIFO

modes
words
bps up to

C2000 Microcontroller Workshop - Communications

13-21

Universal Serial Bus (USB)

Universal Serial Bus (USB)

Universal Serial Bus (USB) Controller

¢ Complies with USB 2.0 Implementers Forum certification standards

¢ Full-speed (12 Mbps) operation in Device mode; Full- /low-speed
(12 Mbps / 1.5 Mbps) operation in Host mode

¢ Integrated PHY
¢ Efficient transfers using direct memory access controller (DMA)
¢ All six endpoints can trigger separate DMA events

¢ Channel requests asserted when FIFO contains required
amount of data

DA
Requests

Py s Interrupts

., AHB bus
- Slave
¢ mote

......

CL

oA " . AMBbus
- Master

Controller
(opticnal) | Y mode

USB

¢ Formed by the USB Implementers Forum (USB-IF)
¢ http://lwww.usb.org

¢ USB-IF has defined standardized interfaces for

common USB application, known as Device Classes

¢ Human Interface Device (HID)

¢ Mass Storage Class (MSC)

¢ Communication Device Class (CDC)

¢ Device Firmware Upgrade (DFU)

¢ Refer to USB-IF Class Specifications for more information

¢ USB is:

¢ Differential

¢ Asynchronous

¢ Serial

¢ NRZI Encoded

¢ Bit Stuffed

¢ USB is a HOST centric bus!

13-22 C2000 Microcontroller Workshop - Communications

Universal Serial Bus (USB)

USB Communication

USB Communication

¢ A component on the bus is either a...
¢ Host (the master)

¢ Device (the slave) — also known as peripheral or
function

¢ Hub (neither master nor slave; allows for expansion)
¢ Communication model is heavily master/slave
¢ As opposed to peer-to-peer/networking (i.e. 1394/Firewire)

¢ Master runs the entire bus
¢ Only the master keeps track of other devices on bus
¢ Only the master can initiate transactions

¢ Slave simply responds to host commands

¢ This makes USB simpler, and cheaper to
implement

Enumeration

Enumeration

¢ USB is universal because of Enumeration
¢ Process in which a Host attempts to identify a Device

¢ If no device attached to a downstream port,
then the port sees Hi-Z

¢ When full-speed device is attached, it pulls up
D+ line

¢ When the Host see a Device, it polls for
descriptor information
¢ Essentially asking, “what are you?”

¢ Descriptors contain information the host can
use to identify a driver

C2000 Microcontroller Workshop - Communications 13-23

Universal Serial Bus (USB)

F2806x USB Hardware
F2806x USB Hardware

¢ The USB controller requires a total of three signals (D+, D-, and
VBuSs) to operate in device mode and two signals (D+, D-) to operate
in embedded host mode
¢ VBus implemented in software using external interrupt or polling
¢ GPIOs are NOT 5V tolerant
¢ Make them tolerant using 100k and internal device ESD diode clamps

F2806x Piccolo

T MAA GPIO

D+

Note: (1) VBus sensing is only required in self-powered applications

(2) Device pins D+ and D- have special buffers to support the high speed requirements
of USB; therefore their position on the device is not user-selectable

USB Controller Summary

USB Controller Summary

¢ Complies with USB 2.0 specifications
¢ Full-speed (12 Mbps) Device controller

¢ Full- /Low-speed (12 Mbps/1.5 Mbps) Host
controller

¢ Can be accessed via DMA

¢ Full software library with application
examples is provided within ControlSUITE™

¢ Only available on TMS320F2806xU devices

13-24 C2000 Microcontroller Workshop - Communications

Enhanced Controller Area Network (eCAN)

Enhanced Controller Area Network (eCAN)
Controller Area Network (CAN)

A Multi-Master Serial Bus System
¢ CAN 2.0B Standard

¢ High speed (up to 1 Mbps)

¢ Add a node without disturbing the bus (number of nodes not
limited by protocol)

¢ Less wires (lower cost, less maintenance, and more reliable)

¢ Redundant error checking (high reliability)

¢ No node addressing (message identifiers)

¢ Broadcast based signaling

CAN does not use physical addresses to address stations. Each message is sent with an identifier
that is recognized by the different nodes. The identifier has two functions — it is used for message
filtering and for message priority. The identifier determines if a transmitted message will be
received by CAN modules and determines the priority of the message when two or more nodes
want to transmit at the same time.

C2000 Microcontroller Workshop - Communications 13-25

Enhanced Controller Area Network (eCAN)

CAN Bus and Node

CAN Bus

¢ Two wire differential bus (usually twisted pair)

¢ Max. bus length depend on transmission rate
¢ 40 meters @ 1 Mbps

CAN CAN
NODE A NODE B

CAN_H

1200 1200
CAN_L

The MCU communicates to the CAN Bus using a transceiver. The CAN bus is a twisted pair

wire and the transmission rate depends on the bus length. If the bus is less than 40 meters the
transmission rate is capable up to 1 Mbit/second.

CAN Node

Wired-AND Bus Connection

CAN_H

1200 [:]

1200
CAN_L

M

CAN Transceiver
(e.g. TI SN65HVD23Xx)

TX RX

CAN Controller
(e.g. TMS320F28035)

13- 26 C2000 Microcontroller Workshop - Communications

Enhanced Controller Area Network (eCAN)

Principles of Operation

Principles of Operation

¢ Data messages transmitted are identifier based, not
address based

¢ Content of message is labeled by an identifier that is
unique throughout the network

¢ (e.g. rpm, temperature, position, pressure, etc.)

¢ All nodes on network receive the message and each
performs an acceptance test on the identifier

¢ If message is relevant, it is processed (received);
otherwise it is ignored

¢ Unique identifier also determines the priority of the
message

¢ (lower the numerical value of the identifier, the higher the
priority)
¢ When two or more nodes attempt to transmit at the
same time, a non-destructive arbitration technique
guarantees messages are sent in order of priority
and no messages are lost

Non-Destructive Bitwise Arbitration

¢ Bus arbitration resolved via arbitration with
wired-AND bus connections
¢ Dominate state (logic 0, bus is high)
¢ Recessive state (logic 1, bus is low)

"
Node A ™ P Node A wins

............ e
Node B L1

CANBus = L _l S

Node B loses k Node C loses
arbitration arbitration

C2000 Microcontroller Workshop - Communications 13- 27

Enhanced Controller Area Network (eCAN)

Message Format and Block Diagram

CAN Message Format

¢ Data is transmitted and received using Message Frames
¢ 8 byte data payload per message
¢ Standard and Extended identifier formats

¢ Standard Frame: 11-bit Identifier (CAN v2.0A)

Arbitration Control
Field Field Data Field

S| 11pit |RY|!
O | Identifier ; D(r0| pLC | 0...8 Bytes Data |CRC |ACK

mom

¢ Extended Frame: 29-bit Identifier (CAN v2.0B)

Control

Arbitration Field Field Data Field
S Lols + R E
11-bit 18-bit
|C:) Identifier | R E identifier ;rl r0| DLC | 0...8 Bytes Data |CRC | ACK ('3

The MCU CAN module is a full CAN Controller. It contains a message handler for transmission
and reception management, and frame storage. The specification is CAN 2.0B Active —that is,

the module can send and accept standard (11-bit identifier) and extended frames (29-bit
identifier).

13- 28 C2000 Microcontroller Workshop - Communications

Enhanced Controller Area Network (eCAN)

eCAN Block Diagram

eCANOINT eCANLINT
Address I_I Data

L

Memory Management |:> eCAN Memory

"’{g'l'g%’;gé;\” (512 bytes)
CPU Interface, Register and Message
32 Mailboxes Receive Control Unit 9 g

BLIT

(4 x 32-bit words) Timer Management Unit Object Control

A message mailbox
Identifier — MID

Control — MCF -
Data low — MDL Receive Buffer
Data high - MDH Transmit Buffer

Control Buffer
Status Buffer

SN65HVD23x
3.3-V CAN Transceiver

—l__ CAN Bus

The CAN controller module contains 32 mailboxes for objects of 0 to 8-byte data lengths:
e configurable transmit/receive mailboxes
o configurable with standard or extended indentifier

The CAN module mailboxes are divided into several parts:
e MID - contains the identifier of the mailbox

¢ MCF (Message Control Field) — contains the length of the message (to transmit or
receive) and the RTR bit (Remote Transmission Request — used to send remote
frames)

¢ MDL and MDH - contains the data

The CAN module contains registers which are divided into five groups. These registers are
located in data memory from 0x006000 to 0x0061FF. The five register groups are:

e Control & Status Registers

e Local Acceptance Masks

e Message Object Time Stamps
e Message Object Timeout

e Mailboxes

C2000 Microcontroller Workshop - Communications 13-29

Dell
Highlight

Dell
Highlight

Enhanced Controller Area Network (eCAN)

eCAN Summary

eCAN Summary

¢ Fully compliant with CAN standard v2.0B
¢ Supports data rates up to 1 Mbps
¢ Thirty-two mailboxes
¢ Configurable as receive or transmit
¢ Configurable with standard or extended identifier
¢ Programmable receive mask
¢ Uses 32-bit time stamp on messages
¢ Programmable interrupt scheme (two levels)
¢ Programmable alarm time-out
¢ Programmable wake-up on bus activity

¢ Self-test mode

13-30 C2000 Microcontroller Workshop - Communications

Development Support

Introduction

This module contains various references to support the development process.

Module Objectives

Module Objectives

¢ Tl Workshops Download Site
¢ controlSUITE™
¢ Tl Development Tools

¢ Additional Resources
¢ Product Information Center
¢On-line support

C2000 Microcontroller Workshop - Development Support 14-1

Module Topics

Module Topics
(D TCY 2T (o] o g =T L AT U o] oo PSS 14-1
0T LU T=N o] oSS 14-2
IS0 o] Lo =T U o= O S 14-3
C2000 Workshop DOWNIOAA WIKIcveveieiiieieiiseseeiesees sttt nne e 14-3
CONETOISUTTE ™ ...t et b et bbbtk bbb st st ben e bbb 14-4
C2000 EXPEIMENTEI™S KIS ..uiviiviiererieieieitestestestesese e te e st e e e ra e e et e saesaestesresreaneeneeeeneeseenrenes 14-5
F28335 Peripheral EXPIOTEr Kil........cooiiiiiiiie ittt et 14-6
C2000 control STICK EValuation TOOIccccoiiiiiiieiiiee et 14-7
C2000 LaunchPad EValuation Kitcocooiiiiiiiiieiiee st 14-8
C2000 control CARD APPHICALION KItS........oiiiiiiiiiiieieiese et 14-9
Product INfOrmation RESOUITESc.ccuiiiiiiieiieeieieetee ettt et bbbt see b e 14-10
14 -2 C2000 Microcontroller Workshop - Development Support

Tl Support Resources

Tl Support Resources
C2000 Workshop Download Wiki
C2000 Workshop Download Wiki

i3 TExAs INSTRUMENTS

Products Applications Tools & Software Support & Community ~ Sample &Buy ~ About Tl W sample & Purchase Cart

Texas Instruments Wiki & Log in / create account

Navigation Page Discussion Read View source View history
Main Page
ol e Hands-On Training for TI| Embedded Processors

All categories
Popular pages
Popular authors

Hands-On Training for T| Embedded Processors Translate this page “,I zh-CN - 3z (hE KHE) =] Tranalate I
TI's Technical Training Organization (TTO) conducts hands

-on training for Tl embedded processors at various worldwide locations. You can access the workshop materials from
this site, organized by specific processor families. You can also enroll in a live workshop using the links below.

Popular categories
Category stats
Recent changes

Raoompage Workshop Descriptions and Materials

Hel
Goopgle Search C2000™ 32-bit Real-Time MCU Training
C2000™ Cne-Day Workshop - online videos provided
Print/export C2000™ Multi-Day Workshop
Creale 2 book F28M35x™ Workshop
Download as PDF F2837xD™ Workshop
Printable version C2000™ Archived Workshops (F2407 / F2812 / F2808 / F28335 / Delfino / Piccolo)

http://www.ti.com/hands-on-training

At the C2000 Workshop Download Wiki you will find all of the materials for the C2000 One-day
and Multi-day Workshops, as well as the C2000 archived workshops, which include support for
the F2407, F2812, F2808, and F28335 device families.

C2000 Microcontroller Workshop - Development Support 14 -3

Tl Support Resources

controlSUITE™

controlSUITE™

S T=TES|
B
pevess: [5 1o [5| 2 5
sdeess: [=l
B

controlSUITE™ Software

4 st TE™ for C2000" is & cohesiva sat of sftware, hardware,
B-W seckonmn e and technical rescurces designed to minimize svstem develoomert time, From device-
#-{ Tranng spacific drivars and suppart scftwars to complete syster examples and technical
gk Developes Network Eraining, controlSUITE provides supoort for evary stage of development and evaluataon.
et g G0 beyond simple code snippets and genseric demo hardware - jump start vour reak-
WD) Checs fior conitrolS) ITTE Lipdabes time system with optimized, real-world software and hardware.
= Cinese
o Bt -
® ¥ FRIN |-
L] Pt
S L] :Em " Documentation
el and su
R ppod
w3 s
] .I:n-‘ i e
L

controlSUITE is a single portal for all C2000 software and has been designed to minimize
software development time. Included in controlSUITE are device-specific drivers and support
software, as well as complete system design examples used in sophisticated applications.

controlSUITE is a one-stop, single centralized location to find all of your C2000 software needs.
Download controlSUITE from the TI website.

14 -4 C2000 Microcontroller Workshop - Development Support

Tl Support Resources

C2000 Experimenter’s Kits

C2000 Experimenter’s Kits

F28069, F28035, F28027, F28335, F2808, C28343, C28346, F28M35, F28377D

¢ Experimenter Kits include
¢ controlCARD
¢ USB docking station

¢ C2000 Applications Software CD
with example code and full

¢ Part Number: hardware details
¢ TMDSDOCK28069 ¢ Code Composer Studio
¢ TMDSDOCK28035 & Docking station features
¢ TMDSDOCK?28027 .
o TMDSDOCK 28335 ¢ Access to controlCARD signals
¢ TMDSDOCK?2808 ¢ Breadboard areas
¢ TMDSDOCKH52C1 ¢ Onboard USB JTAG Emulation
¢ TMDSDOCK28377D ¢ JTAG emulator not required

JTAG emulator required for: o Avgjlable through Tl authorized

¢ TMDSDOCK28343 distributors and the Tl eStore
+ TMDSDOCK28346-168

The C2000 development Kits are designed to be modular and robust. These kits are complete,
open source, evaluation and development tools where the user can modify both the hardware and
software to best fit their needs.

The various Experimenter’s Kits shown on this slide include a specific controlCARD and
Docking Station. Most have onboard USB JTAG emulation and no external emulator or power
supply is required. However, where noted, the kits based on a DIMM-168 control CARD include
a 5-volt power supply and require an external JTAG emulator.

C2000 Microcontroller Workshop - Development Support 14 -5

Tl Support Resources

F28335 Peripheral Explorer Kit
F28335 Peripheral Explorer Kit

¢ Experimenter Kit includes
¢ F28335 controlCARD
¢ Peripheral Explorer baseboard

¢ C2000 Applications Software CD with
example code and full hardware details

¢ Code Composer Studio
¢ Peripheral Explorer features
¢ ADC input variable resistors
¢ GPIO hex encoder & push buttons
¢ eCAP infrared sensor
¢ GPIO LEDs, I12C & CAN connection
¢ Analog I/O (AIC+McBSP)
¢ Onboard USB JTAG Emulation
¢ JTAG emulator not required
¢ Available through Tl authorized
distributors and the Tl eStore

TMDSPREX28335

The Peripheral Explorer Kit provides a simple way to learn and interact with all F28335
peripherals. It includes onboard USB JTAG emulation.

14 -6 C2000 Microcontroller Workshop - Development Support

Tl Support Resources

C2000 controlSTICK Evaluation Tool
C2000 controlSTICK Evaluation Tool

F28069, F28027

¢ Low-cost USB evaluation tool
¢ Onboard JTAG Emulation

¢ JTAG emulator not required

¢ Access to controlSTICK signals

¢ C2000 Applications Software
CD with example code and full
hardware details

¢ Part Number:

& TMDX28069USB
¢ TMDS28027USB ¢ Code Composer Studio

¢ Available through Tl authorized
distributors and the Tl eStore

The controlSTICK is an entry-level evaluation kit. It is a simple, stand-alone tool that allows
users to learn the device and software quickly and easily.

C2000 Microcontroller Workshop - Development Support 14 -7

Tl Support Resources

C2000 LaunchPad Evaluation Kit
C2000 LaunchPad Evaluation Kit

F28027, F28027F

¢ Low-cost evaluation kit

¢ F28027 standard version

& F26027F version with InstaSPIN-FOC
¢ Various BoosterPacks available

¢ Onboard JTAG Emulation

¢ JTAG emulator not required
¢ Access to LaunchPad signals

¢ C2000 Applications Software
with example code and full

Part Number- hardware details in available in
¢ Part Number: controlSUITE

¢ LAUNCHXL-F28027
¢ LAUNCHXL-F28027F

¢ Code Composer Studio

¢ Available through Tl authorized
distributors and the Tl eStore

The LaunchPad is a low-cost evaluation kit. Like the controlSTICK, it is a simple, stand-alone
tool that allows users to learn the device and software quickly and easily. Additionally, various
BoosterPacks are available.

14 -8 C2000 Microcontroller Workshop - Development Support

Tl Support Resources

C2000 controlCARD Application Kits
C2000 controlCARD Application Kits

SO ¢ Developer’s Kit for — Motor Control,
PFC, High Voltage, Digital Power,
Renewable Energy, LED Lighting, etc.
¢ Kitsincludes

+ controlCARD and application specific
baseboard

+ Code Composer Studio
¢ Software download includes

+ Complete schematics, BOM, gerber
files, and source code for board and
all software

+ Quickstart demonstration GUI for
quick and easy access to all board
features

+ Fully documented software specific to
each kit and application

¢ See www.ti.com/c2000 for other kits
and more details

¢ Available through Tl authorized
distributors and the TI eStore

The control CARD based Application Kits demonstrate the full capabilities of the C2000 device in
an application. All kits are completely open source with full documentation.

C2000 Microcontroller Workshop - Development Support 14 -9

Tl Support Resources

Product Information Resources

For More Information . ..

¢ USA — Product Information Center (PIC)
¢ Phone: 800-477-8924 or 512-434-1560
¢ E-mail: support@ti.com
¢ Tl E2E Community (videos, forums, blogs)
¢ http://e2e.ti.com
¢ Embedded Processor Wiki
¢ http://processors.wiki.ti.com
¢ Tl Training
< http://www.ti.com/training
¢ Tl eStore
¢ http://estore.ti.com
¢ Tl website
¢ http://www.ti.com

For more information and support, you can contact the product information center, visit the Tl
E2E community, embedded processor Wiki, Tl training web page, T1 eStore, and the T1 website.

14 -10 C2000 Microcontroller Workshop - Development Support

Appendix A — Experimenter’s Kit

C2000 Microcontroller Workshop - Appendix A - Experimenter's Kit A-1

Module Topics

Module Topics
Appendix A — EXPerimenter’™s Kit.......cooiiiiiieii et et nesre e A-1
IVIOTUIE TOPICS. vttt ettt ettt ettt bbb bbbt e bbb bbb st b et s ettt b et en bt n b s A-2
F28069 CONIOICARD ..ottt ettt bbb b b s bttt ettt be b b s A-3
F28069 PCB OULIINE (TOP VIBW) ..uveveiiiieite ettt sttt sttt aenaesaeae e snesaeanaeneens A-3
LDZL / LD2 / LD3 ...ttt sttt sttt st ettt et btk bbb bbbttt et A-3
RS OO A-3
SV 2 et e b et bR bt R Rt Rt R ARkt R e R e ARt Re bRt R e bRt be b n e Rt ne et e A-4
F28035 CONIOICARD ...ttt b bbbt b e bbbt bt b e e e et e sbesbesbeebeebeenes A-5
F28035 PCB OULIINE (TOP VIBW) ...ttt sttt ettt sttt se et bbb A-5
[I 12 I OO A-5
Y OO A-5
RSOOSR A-6
31T OO A-6
F28335 CONIOICARD ..ottt ettt bbbt bbb bbbt b ettt en bt ne s A-7
F28335 PCB OULIINE (TOP VIBW) ..cuverieieiieite ettt sttt st enae e a et snesneanaeneens A-7
[I 7 I OO SOOI A-8
RS OO A-8
SV 2 e E b bR bR R b £ Rt R R R R R R bt R b bRt b e n s A-9
DOCKING STALION........eeitiitiieeie ettt ettt b et bt bt bt st e e e et sbe et e e bt ese e e et e ebesbesbeaneeneas A-10
SWL T LDttt ettt sttt et b et e b et e e bt E e bt e Re b e te et e teeae e nenrs A-10
JPL T IP2 ettt e b bR R bR R bRt R et R bt r bt n ettt ne e A-10
BN A L AN £ 1 L OSSPSR A-10
F2833X BOOt MOAE SEIECHION ...t et bt A-11
F280XX BOOt MOTE SEIECTIONc.viviiiiiiiitcie bbbt A-11
J3 — DB-9 10 4-Pin Header Cable ..o e A-12
A-2 C2000 Microcontroller Workshop - Appendix A - Experimenter's Kit

F28069 controlCARD

F28069 control CARD
F28069 PCB Outline (Top View)

LD1 LD2 LD3

NN

F28060 contreiCARD

° o [n
m% ST
Instruments %

LD1/LD2/LD3

LD1 — Turns on when controlCARD is powered on
LD2 — Controlled by GP10-31
LD3 — Controlled by GPI0O-34

SW1
SW1 — controls the boot options of the F28069 device

Position 1 | Position 2
(GPIO-34) | (TDO)
0 0 Parallel 110
0 1 Wait mode
1 0 SCI
1 1 (default) Get mode; the default get mode is boot from FLASH

C2000 Microcontroller Workshop - Appendix A - Experimenter's Kit A-

F28069 controlCARD

SW2

SW2 — ADC VREF control

The ADC will by default convert from O to 3.3V and scale this to 0-4096 ADC
counts, however if the ADC (in software) is configured to use external references,
the ADC will convert its full range of resolution (0-4096) from VREF-LO to VREF-
HI.

Position 1 controls VREF-HI, the value that the ratiometric ADC will convert as
the maximum 12-bit value, OXOFFF. Inthe downward position, VREF-HI will be
connected to 3.3V. In the upward position, VREF-HI will be connected to pin 66
of the DIMM100-socket. This will allow a connecting board to control the ADC-
VREFHI value.

Position 2 controls VREF-LO, the value that the ratiometric ADC will convert as
the minimum 12-bit value, 0x0000. In the downward position, VREF-LO will be
connected to OV. In the upward position, VREF-LO will be connected to pin 16 of
the DIMM100-socket. This will allow a connecting board to control the ADC-
VREFLO value.

A-4 C2000 Microcontroller Workshop - Appendix A - Experimenter's Kit

F28035 controlCARD

F28035 controlCARD

F28035 PCB Outline (Top View)

SW1 LD1 LD2 LD3

| N\ /

TTT T R 7 2 e
- E&[j s E 1
2 gEs

‘?‘Enuﬁ N E T

SW3 SW2

LD1/LD2/LD3

LD1 — Turns on when controlCARD is powered on
LD2 — Controlled by GP10-31
LD3 — Controlled by GPI0O-34

SwW1

SW1 - controls whether on-card RS-232 connection is enabled or disabled.

e ON — RS-232 transceiver will be enabled and allow communication
through a serial cable via pins 2 and 42 of the DIMM-100 socket. Putting
SW1 in the “ON” position will allow the F28035 controlCARD to be card
compatible with the F2808, F28044, F28335, and F28027 controlCARDs.
GPI10-28 will be stuck as logic high in this position.

e OFF — The default option. SW1 in the “OFF” position allows GPIO-28 to
be used as a GPIO. Serial communication is still possible, however an
external transceiver such as the FTDI — FT2232D chip.

C2000 Microcontroller Workshop - Appendix A - Experimenter's Kit A-5

F28035 controlCARD

SW2

SW2 — controls the boot options of the F28035 device

Position 1 | Position 2
(GPIO-34) | (TDO)
0 0 Parallel /1O
0 1 Wait mode
1 0 SCI
1 1 (default) Get mode; the default get mode is boot from FLASH

SW3

SW3 - ADC VREF control

The ADC will by default convert from 0 to 3.3V, however if in the ADC registers
the ADC is configured to use external limits the ADC will convert its full range of
resolution from VREF-LO to VREF-HI.

Position 1 controls VREF-HI, the value that the ratiometric ADC will convert as
the maximum 12-bit value, OXOFFF. Inthe downward position, VREF-HI will be
connected to 3.3V. In the upward position, VREF-HI will be connected to pin 66
of the DIMM100-socket. This would allow a connecting board to control the
ADC-VREFHI value.

Position 2 controls VREF-LO, the value that the ratiometric ADC will convert as
the minimum 12-bit value, 0x0000. In the downward position, VREF-LO will be
connected to OV. In the upward position, VREF-LO will be connected to pin 16 of
the DIMM100-socket. This would allow a connecting board to control the ADC-
VREFLO value.

A-6 C2000 Microcontroller Workshop - Appendix A - Experimenter's Kit

F28335 controlCARD

F28335 controlCARD

F28335 PCB Outline (Top View)

PGF — Release 1.x
SW1 SW2 LD1 LD2 LD3

F28335 PGF controlCARD RRELEASE 1.0 DRIy
TMDSCNCD28335PGF R1.0 § €29 E]

8 8

@ CHmmmmcs - z (T

ANELERERRORRERCRRRRERCRRERROO IR RO =

ZJZ — Release 2.x
SW1 SW2 LD1 LD2 LD3

F28335 controlCARD RELEASE 2.2
s 1 | =

TMDSCNCD28335 R2.2
'y,

i s L

~
=
|||||||| = &
"‘r‘* Te H

E Instruments

uEI ‘I - g-
@ EEENcs =

C2000 Microcontroller Workshop - Appendix A - Experimenter's Kit A-7

F28335 controlCARD

BGA — Release 1.x

LD3 LD2 LD1
L] '.u4° c7um U1::::.“.“":: — =u= . WB..C';? .
c5 |eses L] == 32 -

7 Y AR T e .

oy e H] R mm R
%llll :llll‘ }]lll ':: b 3='|:| | | i R10 “wuz

vile 033 i
JENEHUR HRE C49 | ooreniriiiis EE S Tw -:-:Rm“ﬁ]'&"'las Re

.............. e = WE commEE NuEE

: T30 RN HNLs g
RN2 3==‘==L- ENu cs2iEm % 3V3

Rel-1.2

-
2
©
=
i
=
o
Qo
S
=
(5]
e =

~ F2833x—BGA
o &

o

Note: Older versions of the F28335 controlCARD do not include SW1 or
SW2.

LD1/LD2/LD3

LD1 — Turns on when controlCARD is powered on

LD2 — Controlled by GPIO-31
LD3 - Controlled by GP10-34

SW1

SW1 — controls whether on-card RS-232 connection is enabled or disabled.
e ON — RS-232 transceiver will be enabled and allow communication
through a serial cable via pins 2 and 42 of the DIMM-100 socket. Putting

SW1 in the “ON” position will allow the F28335 controlCARD to be card
compatible with the F2808, F28044, F28035, and F28027 controlCARDs.
GPIO-28 will be stuck as logic high in this position.

e OFF =SW1 in the “OFF” position allows GPI0O-28 to be used as a GP|O.
Serial communication is still possible, however an external transceiver is
needed such as the FTDI — FT2232D chip.

o This is primarily used for communicating over the USB to serial
bridge included in the onboard XDS100 JTAG emulation on many

C2000 development boards.

A-8 C2000 Microcontroller Workshop - Appendix A - Experimenter's Kit

F28335 controlCARD

SW2

SW2 — controls the boot options of the F28335 device.

The boot options used in this workshop are shown below:

Position 1 Position 2 Position 3 Position 4 Boot Mod
(GPIO-84) | (GPIO-85) | (GPIO-86) | (GPIO-87) |°90tMode
0 0 1 0 SARAM
1 1 1 1 FLASH

For a complete list of boot mode options see the F2833x Boot Mode
Selection table in the Docking Station section in this appendix.

Some earlier versions of the F28335 control CARD use the ZJZ (a BGA)
package. These are functionally equivalent to versions that use the PFG

package.

C2000 Microcontroller Workshop - Appendix A - Experimenter's Kit

Docking Station

Docking Station

2833x
Boot*

Texas Instruments Docking-Stn USB-EMUWR31

J3—>33E|é3:3 ~JP2
~SW1
/ “ JP1

280xx

Boot*

*Note: Jumper Left = 1; Jumper Right =0

SW1/LD1

SW1 - USB: Power from USB; ON — Power from JP1

LD1 — Power-On indicator

JP1/JP2
JP1-5.0 V power supply input
JP2 — USB JTAG emulation port

J1/J32/33/38/J9

J1 — ControlCARD 100-pin DIMM socket

J2 — JTAG header connector

J3 — UART communications header connector

J8 — Internal emulation enable/disable jumper (NO jumper for internal emulation)

J9 — User virtual COM port to C2000 device (Note: ControlCARD would need to be
modified to disconnect the C2000 UART connection from header J3)

A-10 C2000 Microcontroller Workshop - Appendix A - Experimenter's Kit

Docking Station

Note:

device. By default this device enables the USB connection to perform JTAG
communication and in parallel create a virtual serial port (SCI/UART). As shipped, the
C2000 device is not connected to the virtual COM port and is instead connected to J3.

The internal emulation logic on the Docking Station routes through the FT2232 USB

F2833x Boot Mode Selection

MODE

GPIOBT/XA15

GPIOB6/XA14

GPIOB5/XA13

GPIOB4/XA12

MODE "

F

1

1

Jump to Flash

SCI-A boot

SPI-A boot

12C-A boot

eCAN-A boot

McBSP-A boot

Jump to XINTF x16

Jump to XINTF x32

Jump to OTP

Parallel GRIO /O boot

Parallel XINTF boot

Jump to SARAM

Branch to check boot mede

P | = ||| ~|@|o|=m|O|D|m

claolalalalo|l == == =] =] =

wlalololwl=lolo|l=|l=lo|lal| =

0
1
0
1
0
1
0
1
0
1
0
1
0

Branch to Flash, skip ADC
calibration

Branch to SARAM, skip ADC
calibration

Branch to SCI, skip ADC
calibration

N

All four GPIO pins have an internal pullup.

F280xx Boot Mode Selection

Mode

Description

GPlO18 GPIO29 GPIO34

SPICLKA) SCITXDA
SCITXDB

Boot to Flash @)

SCI-A Boot
SFI-A Boot
12C Boot

eCAN-A Boot 3
Boot to MO SARAM)
Boot to OTP ¥
Parallel I/O Boot

Jump to flash address 0x3F 7FF&. You must have programmed

a branch instruction here prior to reset to redirect code
execution as desired.

Load a data stream from SCI-A.
Load from an external serial SPI EEFROM on SPI-A.
Load data from an external EEPROM at address 0x50 on the

12C bus.
Call CAN_Boot to load from eCAN-A mailbox 1.
Jump to M0 SARAM address 0x00 0000
Jump to OTP address 0x3D 7800.

Load data from GFPIOO0 - GPIO15

1 1

1 1

0
1 0
0 1
0 1
0 0
0 0

o = O =

(1
(2

(3)

(4)

You must take extra care because of any effect toggling SPICLKA to select a boot mode may have on external logic.
When booting directly to flash, it is assumed that you have previously programmed a branch statement at Ox3F 7FF6 to redirect
program flow as desired.
On devices that do not have an eCAN-A module this configuration is reserved. If it is selected, then the eCAN-A bootloader will
run and will loop forever waiting for an incoming message.
When booting directly to OTP or MO SARAM, it is assumed that you have previously programmed or loaded code starting at the
entry point location.

C2000 Microcontroller Workshop - Appendix A - Experimenter's Kit

Docking Station

J3 - DB-9to 4-Pin Header Cable

Note: This cable is NOT included with the Experimenter’s Kit and is only shown for reference.

DB-9 Male Pin-Out Table for Both Ends of the Cable:

10— Data carrier detect DB-9 female SIL 0.1" female

fO—— Data set ready Pin# Pin#
20—1—Receive data
70— Request to send

30— Transmit data 2 (black) 1 (TX)
O———Clear t ol
i 40— Data terminai ready 3 (red) 4 (RX)

o 5(bare wire) 3 (GND)

Protective ground Note: pin 2 on SIL is a no-connect

A-12 C2000 Microcontroller Workshop - Appendix A - Experimenter's Kit

	Important Notice
	Revision History
	Mailing Address

	C2000™ Microcontroller Workshop
	C2000™ Microcontroller Workshop Outline
	Required Workshop Materials
	C2000™ Experimenter Kit
	C2000 Delfino / Piccolo Comparison

	C28xm01.pdf
	Architecture Overview
	Module Topics
	What is the TMS320C2000™?
	TMS320C2000™ Internal Bussing

	F28x CPU + FPU + VCU and CLA
	Special Instructions
	Pipeline Advantage
	F28x CPU + FPU + VCU Pipeline

	Memory
	Memory Map
	Code Security Module (CSM)
	Peripherals

	Fast Interrupt Response
	Summary

	C28xm02.pdf
	Programming Development Environment
	Module Topics
	Code Composer Studio
	Software Development and COFF Concepts
	Code Composer Studio
	Edit and Debug Perspective (CCSv6)
	Target Configuration
	CCSv6 Project
	Creating a New CCSv6 Project
	CCSv6 Build Options – Compiler / Linker
	CCSv6 Debug Environment

	Creating a Linker Command File
	Sections
	Program Code (.text)
	Constants (.cinit – initialized data)
	Variables (.ebss – uninitialized data)

	Linker Command Files (.cmd)
	Memory-Map Description
	Section Placement
	Summary: Linker Command File

	Lab File Directory Structure
	Lab 2: Linker Command File
	Start Code Composer Studio and Open a Workspace
	Setup Target Configuration
	Create a New Project
	Project Build Options
	Linker Command File – Lab2.cmd
	Build and Load the Project
	Debug Environment Windows
	Single-stepping the Code
	Terminate Debug Session and Close Project
	End of Exercise

	C28xm03.pdf
	Peripherial Registers Header Files
	Module Topics
	Traditional and Structure Approach to C Coding
	Naming Conventions
	F2806x C-Code Header Files
	Global Variable Definitions File
	Mapping Structures to Memory
	Linker Command File
	Peripheral Specific Routines

	Summary

	C28xm04.pdf
	Reset and Interrupts
	Module Topics
	Reset
	Reset - Bootloader
	Emulation Boot Mode
	Stand-Alone Boot Mode
	Reset Code Flow – Summary
	Emulation Boot Mode using Code Composer Studio GEL
	Getting to main()

	Interrupts
	Interrupt Processing
	Interrupt Flag Register (IFR)
	Interrupt Enable Register (IER)
	Interrupt Global Mask Bit (INTM)
	Peripheral Interrupt Expansion (PIE)
	PIE Block Initialization
	Interrupt Signal Flow – Summary
	Interrupt Response and Latency

	C28xm05.pdf
	System Initialization
	Module Topics
	Oscillator/PLL Clock Module
	Watchdog Timer
	General-Purpose Digital I/O
	External Interrupts
	Low Power Modes
	Register Protection
	Lab 5: System Initialization
	Create a New Project
	Project Build Options
	Modify Memory Configuration
	Setup System Initialization
	Build and Load
	Run the Code – Watchdog Reset
	Setup PIE Vector for Watchdog Interrupt
	Build and Load
	Run the Code – Watchdog Interrupt
	Terminate Debug Session and Close Project
	End of Exercise

	C28xm06.pdf
	Analog-to-Digital Converter and Comparator
	Module Topics
	Analog-to-Digital Converter
	ADC Block and Functional Diagrams
	ADC Triggering
	ADC Conversion Priority
	ADC Clock and Timing
	ADC Converter Registers
	Signed Input Voltages
	ADC Calibration and Reference

	Comparator
	Comparator Block Diagram
	Comparator Registers

	Lab 6: Analog-to-Digital Converter
	Notes
	Open the Project
	Setup ADC Initialization and Enable Core/PIE Interrupts
	Build and Load
	Run the Code
	Using Real-time Emulation
	Terminate Debug Session and Close Project
	Optional Exercise
	If you finish early, you might want to experiment with the code by observing the effects of changing the OFFTRIM value. Open a watch window to the AdcRegs.ADCOFFTRIM register and change the OFFTRIM value. If you did not get 0x0000 in step 11, you ca...
	End of Exercise

	C28xm07.pdf
	Control Peripherals
	Module Topics
	PWM Review
	ePWM
	ePWM Time-Base Sub-Module
	ePWM Compare Sub-Module
	ePWM Action Qualifier Sub-Module
	Asymmetric and Symmetric Waveform Generation using the ePWM
	PWM Computation Example
	ePWM Dead-Band Sub-Module
	ePWM Chopper Sub-Module
	ePWM Digital Compare and Trip-Zone Sub-Modules
	ePWM Event-Trigger Sub-Module
	Hi-Resolution PWM (HRPWM)

	eCAP
	eQEP
	Lab 7: Control Peripherals
	Open the Project
	Setup Shared I/O and ePWM1
	Build and Load
	Run the Code – PWM Waveform
	Frequency Domain Graphing Feature of Code Composer Studio
	Setup eCAP1 to Measure Width of Pulse
	Build and Load
	Run the Code – Pulse Width Measurement
	Terminate Debug Session and Close Project
	Optional Exercise
	End of Exercise

	C28xm08.pdf
	Numerical Concepts
	Module Topics
	Numbering System Basics
	Binary Numbers
	Examples:

	Two's Complement Numbers
	Examples:
	To load small two's complement numbers into larger registers:
	Examples:

	Integer Basics
	Sign Extension Mode

	Binary Multiplication
	Binary Fractions
	Representing Fractions in Binary
	Fraction Basics
	Multiplying Binary Fractions

	Fraction Coding
	Fractional vs. Integer Representation
	Floating-Point
	IQmath
	IQ Fractional Representation
	Traditional “Q” Math Approach
	IQmath Approach

	IQmath Library
	16 vs. 32 Bits

	Converting ADC Results into IQ Format
	AC Induction Motor Example
	IQmath Summary
	Lab 8: IQmath FIR Filter
	Open the Project
	Project Build Options
	Include IQmathLib.h
	Inspect Lab_8.cmd
	Select a Global IQ value
	IQmath Single-Sample FIR Filter
	Build and Load
	Run the Code – Filtered Waveform
	Changing Math Type to Floating-Point
	Build and Load
	Run the Code – Floating-Point Filtered Waveform
	Terminate Debug Session and Close Project
	End of Exercise

	Lab 8 Reference: Low-Pass FIR Filter

	C28xm09.pdf
	Direct Memory Access Controller
	Module Topics
	Direct Memory Access (DMA)
	Basic Operation
	DMA Examples
	DMA Priority Modes
	DMA Throughput
	DMA Registers

	Lab 9: Servicing the ADC with DMA
	Open the Project
	Inspect Lab_9.cmd
	Setup DMA Initialization
	Setup PIE Interrupt for DMA
	Build and Load
	Run the Code – Test the DMA Operation
	Terminate Debug Session and Close Project
	End of Exercise

	C28xm10.pdf
	Control Law Accelerator
	Module Topics
	Control Law Accelerator (CLA)
	CLA Block Diagram
	CLA Memory and Register Access
	CLA Tasks
	Control and Execution Registers
	CLA Registers
	CLA Initialization
	CLA Task Programming
	CLA C Language Implementation and Restrictions
	CLA Assembly Language Implementation
	CLA Code Debugging
	controlSUITE™ - CLA Software Support

	Lab 10: CLA Floating-Point FIR Filter
	Open the Project
	Note: The ClaTasks.asm file will be added during the lab exercise.
	Enabling CLA Support in CCS
	Inspect Lab_10.cmd
	Setup CLA Initialization
	Setup PIE Interrupt for CLA
	Build and Load
	Run the Code – Test the CLA Operation (Tasks in C)
	Change Task 1 to FIR Filter in Assembly
	Build and Load
	Run the Code – Test the CLA Operation (Tasks in C and ASM)
	Change All Tasks to Assembly
	Build and Load
	Run the Code – Test the CLA Operation (Tasks in ASM)
	Terminate Debug Session and Close Project
	End of Exercise

	C28xm11.pdf
	Viterbi, Complex Math, CRC Unit
	Module Topics
	Viterbi, Complex Math, CRC Unit
	VCU Overview
	CRC Unit
	Viterbi Unit
	Complex Math Unit
	VCU Summary

	C28xm12.pdf
	System Design
	Module Topics
	Emulation and Analysis Block
	Flash Configuration and Memory Performance
	Flash Programming
	Code Security Module (CSM)
	Lab 12: Programming the Flash
	Open the Project
	Link Initialized Sections to Flash
	Copying Interrupt Vectors from Flash to RAM
	Initializing the Flash Control Registers
	Code Security Module and Passwords
	Executing from Flash after Reset
	Initializing the CLA
	Build – Lab.out
	Programming the On-Chip Flash Memory
	Running the Code – Using CCS
	Terminate Debug Session and Close Project
	Running the Code – Stand-alone Operation (No Emulator)
	End of Exercise

	Lab 12 Reference: Programming the Flash

	C28xm13.pdf
	Communications
	Module Topics
	Communications Techniques
	Serial Peripheral Interface (SPI)
	SPI Transmit / Receive Sequence
	SPI Registers
	SPI Summary

	Serial Communications Interface (SCI)
	Multiprocessor Wake-Up Modes
	SCI Registers
	SCI Summary

	Multichannel Buffered Serial Port (McBSP)
	Definition: Bit, Word, and Frame
	Multi-Channel Selection
	McBSP Summary

	Inter-Integrated Circuit (I2C)
	I2C Operating Modes and Data Formats
	I2C Summary

	Universal Serial Bus (USB)
	USB Communication
	Enumeration
	F2806x USB Hardware
	USB Controller Summary

	Enhanced Controller Area Network (eCAN)
	CAN Bus and Node
	Principles of Operation
	Message Format and Block Diagram
	eCAN Summary

	C28xm14.pdf
	Development Support
	Module Topics
	TI Support Resources
	C2000 Workshop Download Wiki
	controlSUITE™
	C2000 Experimenter’s Kits
	F28335 Peripheral Explorer Kit
	C2000 controlSTICK Evaluation Tool
	C2000 LaunchPad Evaluation Kit
	C2000 controlCARD Application Kits
	Product Information Resources

	C28xmA.pdf
	Appendix A – Experimenter’s Kit
	Module Topics
	F28069 controlCARD
	F28069 PCB Outline (Top View)
	LD1 / LD2 / LD3
	SW1
	SW2

	F28035 controlCARD
	F28035 PCB Outline (Top View)
	LD1 / LD2 / LD3
	SW1
	SW2
	SW3

	F28335 controlCARD
	F28335 PCB Outline (Top View)
	LD1 / LD2 / LD3
	SW1
	SW2

	Docking Station
	SW1 / LD1
	JP1 / JP2
	J1 / J2 /J3 / J8 / J9
	F2833x Boot Mode Selection
	F280xx Boot Mode Selection
	J3 – DB-9 to 4-Pin Header Cable

