Steps to allow slave select in motorware
Based on Example_2806xExternalInterrupt.c from ControlSuite
Use XINT1 for SPISTEA falling edge = start communication with that slave
Use XINT2 for SPISTEA rising edge = stop communication with that slave
Interrupt prioritization based on https://e2e.ti.com/support/microcontrollers/c2000/f/902/t/462460
All additional code is indicated by :
- START : // ADDED CODE FOR 2 SPI SLAVES - BEGIN
- END : // ADDED CODE FOR 2 SPI SLAVES - END
proj_lab05e.c (in my case)
(1) Add:
#ifdef FLASH
#pragma CODE_SECTION(mainISR,"ramfuncs");

// ADDED CODE FOR 2 SPI SLAVES - BEGIN
#pragma CODE_SECTION(Interrupt_SPI_enableTx,"ramfuncs");
#pragma CODE_SECTION(Interrupt_SPI_disableTx,"ramfuncs");
// ADDED CODE FOR 2 SPI SLAVES - END

#endif
(2) Add in void main(void):
 // set the hardware abstraction layer parameters
 HAL_setParams(halHandle,&gUserParams);

// ADDED CODE FOR 2 SPI SLAVES - BEGIN
 // Disable slave output to allow multiple slaves
 // was enabled in HAL_setParams
 SPI_disableTx(halHandle->spiAHandle);
// ADDED CODE FOR 2 SPI SLAVES - END

…

 // initialize the interrupt vector table
 HAL_initIntVectorTable(halHandle);

// ADDED CODE FOR 2 SPI SLAVES - BEGIN
 // enable the External interrupts
 HAL_enableExtInts(halHandle);
// ADDED CODE FOR 2 SPI SLAVES - END

 // enable the ADC interrupts
 HAL_enableAdcInts(halHandle);
(3) Add at end of mainISR:
interrupt void mainISR(void)
{

 static uint16_t stCnt = 0;

 // acknowledge the ADC interrupt
 HAL_acqAdcInt(halHandle,ADC_IntNumber_1);

 // ADDED CODE FOR 2 SPI SLAVES - BEGIN
 // When entering ISR, all interrupt requests are put on hold
 // Store interrupt settings for ADCINT1 PIE_Group
 volatile unsigned short TempPIEIER = PIE_getIntEnables(halHandle->pieHandle,PIE_GroupNumber_10);
 // Re-enable CPU group with XINT1 & XINT2
 CPU_enableInt(halHandle->cpuHandle,CPU_IntNumber_1);
 // Disable CPU group with ADCINT1
 CPU_disableInt(halHandle->cpuHandle,CPU_IntNumber_10);
 // Disable PIE channel ADCINT1
 PIE_disableInt(halHandle->pieHandle,PIE_GroupNumber_10,PIE_InterruptSource_ADCINT_10_1);
 PIE_clearAllInts(halHandle->pieHandle);
 __asm(" NOP");
 ENABLE_INTERRUPTS; //EINT;
 // ADDED CODE FOR 2 SPI SLAVES - END
(4) Add at beginning of mainISR:
// ADDED CODE FOR 2 SPI SLAVES - BEGIN
 // Restore registers saved:
 // Disable interrupts before they will be automatically re-enabled after closing mainISR
 CPU_disableGlobalInts(halHandle->cpuHandle); //DINT;
 // Re-enable PIE channel ADCINT1
 PIE_enableInt(halHandle->pieHandle,PIE_GroupNumber_10,(PIE_InterruptSource_e)TempPIEIER); //PieCtrlRegs.PIEIER1.all = TempPIEIER;
// ADDED CODE FOR 2 SPI SLAVES - END

 return;
} // end of mainISR() function
(5) Add after mainISR:
// ADDED CODE FOR 2 SPI SLAVES - BEGIN
interrupt void Interrupt_SPI_enableTx(void)
{
 // acknowledge the External interrupt
 HAL_acqExtInt(halHandle);

 // enable SPI SOMI
 SPI_enableTx(halHandle->spiAHandle);

 return;
} // end of Interrupt_SPI_enableTx() function

interrupt void Interrupt_SPI_disableTx(void)
{
 // acknowledge the External interrupt
 HAL_acqExtInt(halHandle);

 // disable SPI SOMI
 SPI_disableTx(halHandle->spiAHandle);

 return;
} // end of Interrupt_SPI_disableTx() function
// ADDED CODE FOR 2 SPI SLAVES - END
hal.h
(1) Add:
extern interrupt void mainISR(void);

// ADDED CODE FOR 2 SPI SLAVES - BEGIN
extern interrupt void Interrupt_SPI_enableTx(void);
extern interrupt void Interrupt_SPI_disableTx(void);
// ADDED CODE FOR 2 SPI SLAVES - END
(2) Add (why not only prototype here and definition in hal.c?) :
// ADDED CODE FOR 2 SPI SLAVES - BEGIN
//! \brief Acknowledges an External interrupt so that another External interrupt can
//! happen again.
//! \param[in] handle The hardware abstraction layer (HAL) handle
//! \param[in] intNumber The interrupt number
//static inline void HAL_acqExtInt(HAL_Handle handle,const ADC_IntNumber_e intNumber)
static inline void HAL_acqExtInt(HAL_Handle handle)
{
 HAL_Obj *obj = (HAL_Obj *)handle;

 // Acknowledge interrupt from PIE group 1
 PIE_clearInt(obj->pieHandle,PIE_GroupNumber_1);

 return;
} // end of HAL_acqExtInt() function
// ADDED CODE FOR 2 SPI SLAVES - END
 (3) Add:
// ADDED CODE FOR 2 SPI SLAVES - BEGIN
//! \brief Enables the SPI-STEA interrupts
//! \details Enables the SPI-STEA interrupt in the PIE, and CPU. Enables the
//! interrupt to be sent from the SPI-STEA peripheral.
//! \param[in] handle The hardware abstraction layer (HAL) handle
extern void HAL_enableExtInts(HAL_Handle handle);
// ADDED CODE FOR 2 SPI SLAVES - END
(4) Add in static inline void HAL_initIntVectorTable(HAL_Handle handle):
 pie->ADCINT1 = &mainISR;

// ADDED CODE FOR 2 SPI SLAVES - BEGIN
pie->XINT1 = &Interrupt_SPI_enableTx;
pie->XINT2 = &Interrupt_SPI_disableTx;
// ADDED CODE FOR 2 SPI SLAVES - END
hal.c
// ADDED CODE FOR 2 SPI SLAVES - BEGIN
void HAL_enableExtInts(HAL_Handle handle)
{
	 HAL_Obj *obj = (HAL_Obj *)handle;

	 // enable the PIE interrupts associated with the External interrupts
	 PIE_enableExtInt(obj->pieHandle,CPU_ExtIntNumber_1);
	 PIE_enableExtInt(obj->pieHandle,CPU_ExtIntNumber_2);
	 PIE_setExtIntPolarity(obj->pieHandle,CPU_ExtIntNumber_1,PIE_ExtIntPolarity_FallingEdge);
	 PIE_setExtIntPolarity(obj->pieHandle,CPU_ExtIntNumber_2,PIE_ExtIntPolarity_RisingEdge);

	 ENABLE_PROTECTED_REGISTER_WRITE_MODE;
	 GPIO_setExtInt(obj->gpioHandle,GPIO_Number_19,CPU_ExtIntNumber_1);
	 GPIO_setExtInt(obj->gpioHandle,GPIO_Number_19,CPU_ExtIntNumber_2);
	 DISABLE_PROTECTED_REGISTER_WRITE_MODE;

	 // enable the cpu interrupt for external interrupts
	 CPU_enableInt(obj->cpuHandle,CPU_IntNumber_1);

	 return;
} // end of HAL_enableExtInts() function
[bookmark: _GoBack]// ADDED CODE FOR 2 SPI SLAVES - END

