
T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

TMS320F2837xD Flash API
Version 1.54

Reference Guide

Literature Number: SPNU629
March 2017

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

2 SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Table of Contents

Contents

1 Introduction... 4
1.1 Reference Material... 4
1.2 Function Listing Format ... 4

2 TMS320F2837xD Flash API Overview.. 6
2.1 Introduction.. 6
2.2 API Overview ... 6
2.3 Using API.. 7

3 API Functions .. 10
3.1 Initialization Functions ... 10
3.2 Flash State Machine Functions ... 12
3.3 Asynchronous Functions .. 18
3.4 Program Functions ... 22
3.5 Read Functions ... 25
3.6 Informational Functions .. 30
3.7 Utility Functions ... 33
3.8 User Definable Functions.. 34

4 Recommended FSM Flows .. 37
4.1 New devices from Factory ... 37
4.2 Recommended Erase Flow.. 38
4.3 Recommended Program Flow .. 39

Appendix A Flash State Machine Commands... 40
A.1 Flash State Machine Commands.. 40

Appendix B Object Library Function Information.. 41
B.1 C28x Library ... 41

Appendix C Typedefs, defines, enumerations and structures .. 43
C.1 Type Definitions ... 43
C.2 Defines.. 43
C.3 Enumerations .. 44
C.4 Structures... 47

Appendix D Parallel Signature Analysis (PSA) Algorithm .. 49
D.1 Function Details ... 49

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

www.ti.com

3SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

List of Figures

List of Figures
1 Recommended Erase Flow ... 38
2 Recommended Program Flow .. 39

List of Tables
1 Summary of Initialization Functions ... 6
2 Summary of Flash State Machine Functions... 6
3 Summary of Asynchronous Operation Functions.. 6
4 Summary of Programming Functions ... 6
5 Summary of Read Functions ... 6
6 Summary of Information Functions .. 7
7 Summary of User-Defined Functions ... 7
8 Summary of Utility Functions... 7
9 FMSTAT Register .. 12
10 FMSTAT Register Field Descriptions .. 12
11 Flash State Machine Commands .. 40
12 C28x Function Sizes and Stack Usage ... 41

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

4 SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Reference Guide
SPNU629–March 2017

1 Introduction

NOTE: This document has undergone extensive changes from SPNU595 to SPNU629. We have
separated these two documents for more clarity. SPNU595 is applicable only for
TMS320F28M35x/36x devices; SPNU629 is applicable only for TMS320F2837xD devices.

This reference guide provides a detailed description of Texas Instruments' TMS320F2837xD Flash API
functions that can be used to erase, program, and verify Flash on TMS320F2837xD devices.

1.1 Reference Material
Use this guide in conjunction with the device-specific data manual and technical reference manual that is
being used.

1.2 Function Listing Format
This is the general format of an entry for a function, compiler intrinsic, or macro.

A short description of what function function_name() does.

Synopsis
Provides a prototype for function function_name().
<return_type> function_name(

<type_1> parameter_1,
<type_2> parameter_2,

<type_n> parameter_n
)

Parameters

parameter_1 [in] Pointer to x
parameter_2 [out] Handle for y
parameter_n [in/out] Pointer to z

Parameter passing is categorized as follows:
• In — Means the function uses one or more values in the parameter that you give it without storing any

changes.
• Out — Means the function saves one or more of the values in the parameter that you give it. You can

examine the saved values to find out useful information about your application.
• In/out — Means the function changes one or more of the values in the parameter that you give it and

saves the result. You can examine the saved values to find out useful information about your
application.

Description
Describes the function function_name(). This section also describes any special characteristics or
restrictions that might apply:
• Function blocks or might block under certain conditions
• Function has pre-conditions that might not be obvious

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

www.ti.com Introduction

5SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

• Function has restrictions or special behavior

Restrictions
Specifies any restrictions in using this function.

Return Value
Specifies any value or values returned by function function_name().

See Also
Lists other functions or data types related to function function_name().

Example
Provides an example (or a reference to an example) that illustrates the use of function function_name().

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

TMS320F2837xD Flash API Overview www.ti.com

6 SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

2 TMS320F2837xD Flash API Overview

2.1 Introduction
The Flash API is a library of routines that when called with the proper parameters in the proper sequence,
erases, programs, or verifies Flash memory. The API verifies that the appropriate RWAIT value is set for
the specified system frequency.

NOTE: Please refer to the C2000 device-specific technical reference manual and data manual for
more details regarding waitstates.

2.2 API Overview

Table 1. Summary of Initialization Functions

API Function Description
Fapi_initializeAPI() Initializes the API for first use or frequency change

Table 2. Summary of Flash State Machine Functions

API Function Description
Fapi_getFsmStatus() Returns the FMSTAT status register value from the Flash memory controller (FMC)
Fapi_checkFsmForReady() Returns whether or not the Flash state machine is ready or busy
Fapi_setActiveFlashBank() Initializes the FMC and bank for an erase or program command
Fapi_issueFsmSuspendCommand() Suspends FSM commands program data and erase sector
Fapi_flushPipeline() Flushes the data cache in FMC
Fapi_isAddressEcc() Determines if address falls in ECC ranges
Fapi_remapEccAddress() Remaps an ECC address to the corresponding main address

Table 3. Summary of Asynchronous Operation Functions

API Function Description
Fapi_issueAsyncCommandWithAddress() Issues an erase sector command to FSM for the given sector address
Fapi_issueAsyncCommand() Issues a command (Clear Status, Program Resume, Erase Resume, Clear_More)

to FSM for operations that do not require an address

Table 4. Summary of Programming Functions

API Function Description

Fapi_issueProgrammingCommand() Sets up the required registers for programming and issues the command to the
FSM

(1) These functions are not supported for F2837xD ECC memory space.

Table 5. Summary of Read Functions (1)

API Function Description
Fapi_doVerify() Verifies specified Flash memory range against supplied values
Fapi_doBlankCheck() Verifies specified Flash memory range against erased state
Fapi_doPsaVerify() Verifies a specified Flash memory range against the supplied PSA value
Fapi_calculatePsa() Calculates a PSA value for the specified Flash memory range

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

www.ti.com TMS320F2837xD Flash API Overview

7SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

(1) These functions are deprecated in subsequent devices. Therefore, TI suggests not to use these functions.

Table 6. Summary of Information Functions

API Function Description
Fapi_getLibraryInfo() Returns the information specific to the compiled version of the API library
Fapi_getDeviceInfo() (1) Returns the information specific to the device on which the API library is being

executed
Fapi_getBankSectors() (1) Returns the sector information for a bank

(1) Users should not modify these functions, even though these functions are provided in the Fapi_User Defined Functions.c file.
These functions are not merged into the library and are provided in the User-Defined section to maintain the same code across
TI devices that share common code. These functions are merged into the library by TI in subsequent devices.

Table 7. Summary of User-Defined Functions

API Function Description
Fapi_serviceWatchdogTimer() User-modifiable function to service watchdog timer
Fapi_setupEepromSectorEnable() (1) Users should not modify nor edit the contents of this function. This function should

be used as provided by TI.
Fapi_setupBankSectorEnable() (1) User should not modify nor edit the contents of this function. This function should

be used as provided by TI.

Table 8. Summary of Utility Functions

API Function Description
Fapi_calculateFletcherChecksum() Function calculates a Fletcher checksum for the memory range specified
Fapi_calculateEcc() Calculates the ECC for the supplied address and 64-bit word

2.3 Using API
This section describes the flow for using various API functions.

2.3.1 Initialization Flow

2.3.1.1 After Device Power Up
After the device is first powered up, the Fapi_initializeAPI() function must be called before any other API
function can be used except for the Fapi_getLibraryInfo() and Fapi_getDeviceInfo() functions. This
initializes the API internal structures.

2.3.1.2 Bank Setup
Before performing a Flash operation for the first time, the Fapi_setActiveFlashBank() function must be
called.

2.3.1.3 On System Frequency Change
If the System operating frequency is changed after the initial call to Fapi_initializeAPI(), this function must
be called again before any other API function except Fapi_getLibraryInfo() and Fapi_getDeviceInfo() can
be used. This will update the API internal state variables.

2.3.2 Building With the API

2.3.2.1 Object Library Files
The Flash API object file is distributed in the standard TI COFF object format

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

TMS320F2837xD Flash API Overview www.ti.com

8 SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

NOTE: Compilation requires the "Enable support for GCC extensions" option to be enabled.
Compiler version 6.4.0 and onwards have this option enabled by default.

2.3.2.2 Distribution Files
The following API files are distributed with the installer:
• Library Files

– F021_API_F2837xD_C28x.lib – This is the Flash API object file for both CPU1 and CPU2
applications in F2837xD devices.

– F021_API_F2837xD_C28x_FPU32.lib – This is the Flash API object file for both CPU1 and CPU2
applications in F2837xD that are using the floating point unit.

• Source Files
– Fapi_UserDefinedFunctions.c – This is file that contains the user definable functions. The

appropriate include file for the user’s device must be uncommented and the file must be compiled
with the user’s code. Note that users should not modify the Fapi_setupEeprom_SectorEnable() and
Fapi_setupBankSectorEnable() functions.

• Include Files
– This file sets up compile-specific defines and then includes the F021.h master include file.

• F021_F2837xD_C28x.h – The master include file for F2837xD devices.
• The following include files should not be included directly by the user’s code, but are listed here for

user reference:
– F021.h – This include file lists all API functions and includes all other include files.
– Helpers.h – Set of helper defines.
– Init.h – Defines the API initialization structure.
– Registers_C28x.h – Little endian Flash memory controller registers structure.
– Registers.h – Definitions common to all register implementations and includes the appropriate

register include file for the selected device type.
– Types.h – Contains all the enumerations and structures used by the API.
– Constants/Constants.h – Constant definitions common to some C2000 devices.
– Constants/F2837xD.h – Constant definitions for F2837xD devices.

2.3.3 Quick Facts About API Usage
Here are some important facts about API usage:
• Names of the Flash API functions start with a prefix “Fapi_”.
• EALLOW and EDIS should be executed before and after calling Flash API functions to allow and

disallow writes to protected registers, respectively.
• Pump semaphore should be gained by a CPU before performing Flash operations (erase, program,

verify) on its bank.
• Flash API does not configure PLL. The user application should configure the PLL as needed and pass

the configured CPUCLK value to Fapi_initializeAPI() function (details of this function are given later in
this document).

• Flash API execution is interruptible. However, there should not be any read/fetch access from the
Flash bank when an erase/program operation is in progress. Therefore, Flash API and the user
application functions that call Flash API functions must be executed from RAM. Reason even the user
application functions that call Flash API should be in RAM is that the return value (from Flash API
function) assignment code also should be in RAM so that Flash is not accessed until the Flash
operation is over and not just until when the Flash API function execution is over. For example, entire
below code snippet should be executed from RAM and not just the Flash API functions. It is because
the Fapi_issueAsyncCommandWithAddress() function issues the erase command to the FMC but it
does not wait until the erase operation is over. Hence, as long as the FMC is busy with the current
operation, there should not be a Flash access. This is just an example. This guideline is applicable for

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

www.ti.com TMS320F2837xD Flash API Overview

9SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

all the Flash API functions.
// Erase a Sector
oReturnCheck = Fapi_issueAsyncCommandWithAddress(Fapi_EraseSector,(uint32*)0x0080000);
// Wait until the erase operation is over
while (Fapi_checkFsmForReady() != Fapi_Status_FsmReady){}

• The Main Array flash programming must be aligned to 64-bit address boundaries and each 64-bit word
may only be programmed once per write/erase cycle.

• It is permissable to program the data and ECC separately. However, each 64-bit dataword and 16-bit
ECC word may only be programmed once per write/erase cycle.

• The DCSM OTP programming must be aligned to 128-bit address boundaries and each 128-bit word
may only be programmed once. The exceptions are:
– The DCSM Zx-LINKPOINTER1 and Zx-LINKPOINTER2 values in the DCSM OTP should be

programmed together, and may be programmed 1 bit at a time as required by the DCSM operation.
– The DCSM Zx-LINKPOINTER3 values in the DCSM OTP may be programmed 1 bit at a time on a

64-bit boundary to separate it from Zx-PSWDLOCK, which must only be programmed once.
• ECC should not be programmed for LINKPOINTER locations. Use Fapi_DataOnly mode for

programming these locations.
• When using INTOSC as the clock source, a few SYSCLK frequency ranges need an extra waitstate to

perform erase and program operations. After the operation is over, that extra waitstate is not needed.
Please refer to the data manual for more details.

• Always configure waitstates as per the data manual before calling Flash API functions.
• Flash API does not configure (enable/disable) the watchdog. The user application can configure

watchdog and service it as needed. In subsequent devices, the Fapi_ServiceWatchdogTimer() function
is no longer supported. Therefore, TI suggests to not use this function - Instead the user applications
can service the watchdog at regular interrupts (say by using a timer ISR) as needed.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

API Functions www.ti.com

10 SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

3 API Functions

3.1 Initialization Functions

3.1.1 Fapi_initializeAPI()
Initializes the Flash API

Synopsis
Fapi_StatusType Fapi_initializeAPI(

Fapi_FmcRegistersType *poFlashControlRegister,
uint32 u32HclkFrequency)

Parameters

poFlashControlRegister [in] Pointer to the Flash Memory Controller Registers base address
u32HclkFrequency [in] System clock frequency in MHz

Description
This function is required to initialize the Flash API before any other Flash API operation is performed. This
function must also be called if the System frequency is changed or RWAIT is changed.

NOTE: The RWAIT register value must be set before calling this function.

Return Value
• Fapi_Status_Success (success)

Sample Implementation
#include “F021_F2837xD_C28x.h”

#define CPUCLK_FREQUENCY 200 /* 200 MHz System frequency */

int main(void)
{

// Initialize System Control:
InitSysCtrl();

// Call Flash Initialization to setup flash waitstates
// This function must reside in RAM
InitFlash();

// Gain pump semaphore
SeizeFlashPump();

//Jump to RAM and call the Flash API functions
Example_CallFlashAPI();

}

#pragma CODE_SECTION(Example_CallFlashAPI, ramFuncSection);
void Example_CallFlashAPI(void)
{

Fapi_StatusType oReturnCheck;

oReturnCheck = Fapi_initializeAPI(F021_CPU0_BASE_ADDRESS,CPUCLK_FREQUENCY);
if(oReturnCheck != Fapi_Status_Success)
{

Example_Error (oReturnCheck);
}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

www.ti.com API Functions

11SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

/* User code for further flash operations */
}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

API Functions www.ti.com

12 SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

3.2 Flash State Machine Functions

3.2.1 Fapi_getFsmStatus()
Returns the value of the FMSTAT register

Synopsis
Fapi_FlashStatusType Fapi_getFsmStatus(void)

Parameters
None

Description
This function returns the value of the FMSTAT register. This register allows the user application to
determine whether an erase/program operation is successfully completed, in progress, suspended, or
failed. The user application should check the value of this registrer to determine if there is any failure
occurence after each erase and program operation.

Return Value

Table 9. FMSTAT Register
Bits
3 1 ... 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rsvd ILA Rsvd PGV Rsvd EV Rsvd Busy ERS PGM INV
DAT CSTAT Volt

Stat ESUSP PSUSP Rsvd

Table 10. FMSTAT Register Field Descriptions

Bit Field Description
31-15 RSVD Reserved

14 ILA

Illegal Address. When set, indicates that an illegal address is detected. The conditions below can
set an illegal address flag:

• Writing to an address location in an unimplemented flash space.
• The address range does not match the type of FSM command.

13 RSVD Reserved

12 PGV Program verify. When set, indicates that a word is not successfully programmed after the maximum
allowed number of program pulses are given for program operation.

11 RSVD Reserved

10 EV
Erase verify. When set, indicates that a sector is not successfully erased after the maximum
allowed number of erase pulses are given for erase operation. During Erase verify command, this
flag is set immediately if a bit is found to be 0.

9 RSVD Reserved
8 Busy When set, this bit indicates that a program, erase, or suspend operation is being processed.

7 ERS
Erase Active. When set, this bit indicates that the flash module is actively performing an erase
operation. This bit is set when erasing starts and is cleared when erasing is complete. It is also
cleared when the erase is suspended and set when the erase resumes.

6 PGM
Program Active. When set, this bit indicates that the flash module is currently performing a program
operation. This bit is set when programming starts and is cleared when programming is complete. It
is also cleared when programming is suspended and set when programming is resumes.

5 INVDAT Invalid Data. When set, this bit indicates that the user attempted to program a “1” where a “0” was
already present. This bit is cleared by the Clear Status command.

4 CSTAT

Command Status. Once the FSM starts any failure will set this bit. When set, this bit informs the
host that the program or erase command failed and the command was stopped. This bit is cleared
by the Clear Status command. For some errors, this will be the only indication of an FSM error
because the cause does not fall within the other error bit types.

3 VOLTSTAT
Core Voltage Status. When set, this bit indicates that the core voltage generator of the pump power
supply dipped below the lower limit allowable during a program or erase operation. This bit is
cleared by the Clear Status command.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

www.ti.com API Functions

13SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Table 10. FMSTAT Register Field Descriptions (continued)
Bit Field Description

2 ESUSP
Erase Suspend. When set, this bit indicates that the flash module has received and processed an
erase suspend operation. This bit remains set until the erase resume command has been issued or
until the Clear_More command is run.

1 PSUSP
Program Suspend. When set, this bit indicates that the flash module has received and processed a
program suspend operation. This bit remains set until the program resume command has been
issued or until the Clear_More command is run.

0 RSVD RSVD

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

API Functions www.ti.com

14 SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

3.2.2 Fapi_checkFsmForReady()
Returns the status of the Flash State Machine

Synopsis
Fapi_StatusType Fapi_checkFsmForReady(void)

Parameters
None

Description
This function returns the status of the Flash State Machine indicating if it is ready to accept a new
command or not. Primary use is to check if an Erase or Program operation has finished.

Return Value
• Fapi_Status_FsmBusy (FSM is busy and cannot accept new command except for suspend

commands)
• Fapi_Status_FsmReady (FSM is ready to accept new command)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

www.ti.com API Functions

15SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

3.2.3 Fapi_setActiveFlashBank()
Initializes the FMC for erase and program operations

Synopsis
Fapi_StatusType Fapi_setActiveFlashBank(

Fapi_FlashBankType oNewFlashBank)

Parameters

oNewFlashBank [in] Bank number to set as active. Since there is only one bank per FMC
in the TMS320F2837xD device, only Fapi_FlashBank0 should be
used for this parameter. This is true for both CPU1 and CPU2.

Description
This function sets the Flash Memory Controller for further operations to be performed on the bank.

Return Value
• Fapi_Status_Success (success)
• Fapi_Error_InvalidBank (failure: Bank specified does not exist on device)
• Fapi_Error_InvalidHclkValue (failure: System clock does not match specified wait value)
• Fapi_Error_OtpChecksumMismatch (failure: Calculated TI OTP checksum does not match value in

TI OTP)

Sample Implementation
#include “F021_F2837xD_C28x.h”

#define CPUCLK_FREQUENCY 200 /* 200 MHz System frequency */

int main(void)
{

// Initialize System Control:
InitSysCtrl();

// Call Flash Initialization to setup flash waitstates
// This function must reside in RAM
InitFlash();

// Gain pump semaphore
SeizeFlashPump();

//Jump to RAM and call the Flash API functions
Example_CallFlashAPI();

}

#pragma CODE_SECTION(Example_CallFlashAPI, ramFuncSection);
void Example_CallFlashAPI(void)
{

Fapi_StatusType oReturnCheck;

oReturnCheck = Fapi_initializeAPI(F021_CPU0_BASE_ADDRESS,CPUCLK_FREQUENCY);
if(oReturnCheck != Fapi_Status_Success)
{

Example_Error (oReturnCheck);
}

oReturnCheck = Fapi_setActiveFlashBank(Fapi_FlashBank0);
if(oReturnCheck != Fapi_Status_Success)
{

// Check Flash API documentation for possible errors
Example_Error (oReturnCheck);

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

API Functions www.ti.com

16 SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

}

/* User code for further flash operations */
}

3.2.4 Fapi_issueFsmSuspendCommand()
Issues Flash State Machine suspend command

Synopsis
Fapi_StatusType Fapi_issueFsmSuspendCommand(void)

Parameters
None

Description
This function issues a Suspend Now command which will suspend the FSM commands, Program, and
Erase Sector, when they are the current active command. Use Fapi_getFsmStatus() to determine if the
operation is successful.

Return Value
• Fapi_Status_Success (success)

3.2.5 Fapi_flushPipeline()
Flushes the FMC pipeline buffers

Synopsis
void Fapi_flushPipeline(void)

Parameters
None

Description
This function flushes the FMC data cache. The data cache must be flushed before the first non-API Flash
read after an erase or program operation.

Return Value
None

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

www.ti.com API Functions

17SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

3.2.6 Fapi_remapEccAddress()
Takes ECC address and remaps it to the main address space

Synopsis
uint32 Fapi_remapEccAddress(

uint32 u32EccAddress)

Parameters

u32EccAddress [in] ECC address to remap

Description
This function returns the main Flash address for the given ECC Flash address.

Return Value
• 32-bit Main Flash Address

3.2.7 Fapi_isAddressEcc()
Indicates an address is in the Flash Memory Controller ECC space

Synopsis
boolean Fapi_isAddressEcc(

uint32 u32Address)

Parameters

u32Address [in] Address to determine if it lies in ECC address space

Description
This function returns True if address is in ECC address space or False if it is not.

Return Value
• FALSE (Address is not in ECC address space)
• TRUE (Address is in ECC address space)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

API Functions www.ti.com

18 SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

3.3 Asynchronous Functions

3.3.1 Fapi_issueAsyncCommandWithAddress()
Issues an erase command to the Flash State Machine along with a user-provided sector address

Synopsis
Fapi_StatusType Fapi_issueAsyncCommandWithAddress(

Fapi_FlashStateCommandsType oCommand,
uint32 *pu32StartAddress)

Parameters

oCommand [in] Command to issue to the FSM. Use Fapi_Erase sector.
pu32StartAddress [in] Flash sector address for erase operation

Description
This function issues an erase command to the Flash State Machine for the user-provided sector address.
This function does not wait until the erase operation is over, it just issues the command and returns back.
Hence, the user application must wait for the FMC to complete the erase operation before returning to any
kind of Flash accesses.

NOTE: This function does not check FMSTAT after issuing the erase command. The user
application must check the FMSTAT value when FSM has completed the erase operation.
FMSTAT indicates if there is any failure occurrence during the erase operation. The user
application can use the Fapi_getFsmStatus function to obtain the FMSTAT value.

Return Value
• Fapi_Status_Success (success)
• Fapi_Error_FeatureNotAvailable (failure: user requested a command that is not supported)

Sample Implementation

#include “F021_F2837xD_C28x.h”

#define CPUCLK_FREQUENCY 200 /* 200 MHz System frequency */

int main(void)
{

// Initialize System Control:
InitSysCtrl();

// Call Flash Initialization to setup flash waitstates
// This function must reside in RAM
InitFlash();

// Gain pump semaphore
SeizeFlashPump();

//Jump to RAM and call the Flash API functions
Example_CallFlashAPI();

}

#pragma CODE_SECTION(Example_CallFlashAPI, ramFuncSection);
void Example_CallFlashAPI(void)
{

Fapi_StatusType oReturnCheck;
Fapi_FlashStatusType oFlashStatus;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

www.ti.com API Functions

19SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

oReturnCheck = Fapi_initializeAPI(F021_CPU0_BASE_ADDRESS,CPUCLK_FREQUENCY);
if(oReturnCheck != Fapi_Status_Success)
{

Example_Error (oReturnCheck);
}

oReturnCheck = Fapi_setActiveFlashBank(Fapi_FlashBank0);
if(oReturnCheck != Fapi_Status_Success)
{

// Check Flash API documentation for possible errors
Example_Error (oReturnCheck);

}

// Erase a Sector
oReturnCheck = Fapi_issueAsyncCommandWithAddress(Fapi_EraseSector, (uint32 *)0x0080000);
// Wait until the erase operation is over
while (Fapi_checkFsmForReady() != Fapi_Status_FsmReady){}
if(oReturnCheck != Fapi_Status_Success)
{

// Check Flash API documentation for possible errors
Example_Error (oReturnCheck);

}

// Read FMSTAT register contents to know the status of FSM
// after erase command to see if there are any erase operation
// related errors
oFlashStatus = Fapi_getFsmStatus();
if (oFlashStatus!=0)
{

FMSTAT_Fail();
}

// Do blank check.
// Verify that the sector is erased.
oReturnCheck = Fapi_doBlankCheck((uint32 *)0x0080000, Bzero_16KSector_u32length,

&oFlashStatusWord);
if(oReturnCheck != Fapi_Status_Success)
{

// Check Flash API documentation for error info
Example_Error(oReturnCheck);

}

/* User code for further flash operations */
}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

API Functions www.ti.com

20 SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

3.3.2 Fapi_issueAsyncCommand()
Issues a command to the Flash State Machine

Synopsis
Fapi_StatusType Fapi_issueAsyncCommand(

Fapi_FlashStateCommandsType oCommand)

Parameters

oCommand [in] Command to issue to the FSM

Description
This function issues a command to the Flash State Machine for commands not requiring any additional
information. Typical commands are Clear Status, Program Resume, Erase Resume and Clear_More. This
function does not wait until the command is over, it just issues the command and returns back. Hence, the
user application must wait for the FMC to complete the given command before returning to any kind of
Flash accesses.

Below are the details of these commands:
• Clear Status (Fapi_ClearStatus): Executing this command clears the ILA, PGV, EV, CSTAT,

VOLTSTAT, and INVDAT bits in the FMSTAT register. Flash API issues this command before issuing
a program or an erase command.

• Clear More (Fapi_ClearMore): Executing this command clears everything the Clear Status command
clears and additionally, clears the ESUSP and PSUSP bits in the FMSTAT register.

• Program Resume (Fapi_ProgramResume): Executing this command will resume the previously
suspended program operation. Issuing a resume command when suspend is not active has no effect.
Note that a new program operation cannot be initiated while a previous program operation is
suspended.

• Erase Resume (Fapi_Erase Resume): Executing this command will resume the previously suspended
erase operation. Issuing a resume command when suspend is not active has no effect. Note that a
new erase operation cannot be initiated while a previous erase operation is suspended.

NOTE: This function does not check FMSTAT after issuing the command. The user application must
check the FMSTAT value when FSM has completed the operation. FMSTAT indicates if
there is any failure occurrence during the operation. The user application can use the
Fapi_getFsmStatus function to obtain the FMSTAT value.

Return Value
• Fapi_Status_Success (success)

Sample Implementation
#include “F021_F2837xD_C28x.h”

#define CPUCLK_FREQUENCY 200 /* 200 MHz System frequency */

int main(void)
{

// Initialize System Control:
InitSysCtrl();

// Call Flash Initialization to setup flash waitstates
// This function must reside in RAM
InitFlash();

// Gain pump semaphore
SeizeFlashPump();

//Jump to RAM and call the Flash API functions

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

www.ti.com API Functions

21SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Example_CallFlashAPI();
}

#pragma CODE_SECTION(Example_CallFlashAPI, ramFuncSection);
void Example_CallFlashAPI(void)
{

Fapi_StatusType oReturnCheck;
Fapi_FlashStatusType oFlashStatus;

oReturnCheck = Fapi_initializeAPI(F021_CPU0_BASE_ADDRESS,CPUCLK_FREQUENCY);
if(oReturnCheck != Fapi_Status_Success)
{

Example_Error (oReturnCheck);
}

oReturnCheck = Fapi_setActiveFlashBank(Fapi_FlashBank0);
if(oReturnCheck != Fapi_Status_Success)
{

// Check Flash API documentation for possible errors
Example_Error (oReturnCheck);

}

// Issue an async command
oReturnCheck = Fapi_issueAsyncCommand(Fapi_ClearMore);
// Wait until the operation is over
while (Fapi_checkFsmForReady() != Fapi_Status_FsmReady){}
if(oReturnCheck != Fapi_Status_Success)
{

// Check Flash API documentation for possible errors
Example_Error (oReturnCheck);

}

// Read FMSTAT register contents to know the status of FSM
// after the command to see if there are any operation specific errors
oFlashStatus = Fapi_getFsmStatus();
if (oFlashStatus!=0)
{

FMSTAT_Fail();
}

/* User code for further flash operations */
}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

API Functions www.ti.com

22 SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

3.4 Program Functions

3.4.1 Fapi_issueProgrammingCommand()
Sets up data and issues program command to valid Flash memory addresses

Synopsis
Fapi_StatusType Fapi_issueProgrammingCommand(

uint32 *pu32StartAddress,
uint16 *pu16DataBuffer,
uint16 u16DataBufferSizeInWords,
uint16 *pu16EccBuffer,
uint16 u16EccBufferSizeInBytes,
Fapi_FlashProgrammingCommandType oMode)

Parameters

pu32StartAddress [in] start address in Flash for the data and ECC to be programmed
pu16DataBuffer [in] pointer to the Data buffer address
u16DataBufferSizeInWords [in] number of 16-bit words in the Data buffer
pu16EccBuffer [in] pointer to the ECC buffer address
u16EccBufferSizeInBytes [in] number of bytes in the ECC buffer
oMode [in] Indicates the programming mode to use:

Fapi_DataOnly Programs only the data buffer
Fapi_AutoEccGeneration Programs the data buffer and

auto generates and programs the
ECC.

Fapi_DataAndEcc Programs both the data and ECC
buffers

Fapi_EccOnly Programs only the ECC buffer

Description
This function sets up the programming registers of the Flash State Machine based on the supplied
parameters. It offers four different programming modes to the user. The pu16EccBuffer word corresponds
to the main array aligned on a 128-bit address boundary. The LSB of pu16EccBuffer corresponds to the
lower 64-bits of the main array and the MSB of pu16EccBuffer corresponds to the upper 64-bits of the
main array.

This function does not wait until the program operation is over, it just issues the command and returns
back. Hence, the user application must wait for the FMC to complete the program operation before
returning to any kind of Flash accesses.

Programming modes:
Fapi_DataOnly – This mode will only program the data portion in Flash at the address specified. It can
program from 1-bit up to 8 16-bit words. However, review the restrictions provided for this function to know
the limitations of flash programming data size. The supplied starting address to program at plus the data
buffer length cannot cross the 128-bit aligned address boundary.

Fapi_AutoEccGeneration – This will program the supplied data portion in Flash along with automatically
generated ECC. The ECC is calculated for every 64-bit data aligned on a 64-bit memory boundary, and
data not supplied is treated as 0xFF. The data restrictions for Fapi_DataOnly also exist for this option.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

www.ti.com API Functions

23SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

NOTE: Fapi_AutoEccGeneration mode will program the supplied data portion in Flash along with
automatically generated ECC. The ECC is calculated for 64-bit aligned address and the
corresponding 64-bit data. Any data not supplied is treated as 0xFFFF. Note that there are
practical implications of this when writing a custom programming utility that streams in the
output file of a code project and programs the individual sections one at a time into flash. If a
64-bit word spans more than one section (that is, contains the end of one section, and the
start of another), values of 0xFFFF cannot be assumed for the missing data in the 64-bit
word when programming the first section. When you go to program the second section, you
will not be able to program the ECC for the first 64-bit word since it was already (incorrectly)
computed and programmed using assumed 0xFFFF for the missing values. One way to
avoid this problem is to align all sections linked to flash on a 64-bit boundary in the linker
command file for your code project.

Here is an example:
SECTIONS
{
.text : > FLASH, PAGE = 0, ALIGN(4)
.cinit : > FLASH, PAGE = 0, ALIGN(4)
.const : > FLASH, PAGE = 0, ALIGN(4)
.econst : > FLASH, PAGE = 0, ALIGN(4)
.pinit : > FLASH, PAGE = 0, ALIGN(4)
.switch : > FLASH, PAGE = 0, ALIGN(4)
}

If you do not align the sections in flash, you would need to track incomplete 64-bit words in a
section and combine with the words in other sections that complete the 64-bit word. This will
be difficult to do so it is recommended to align your sections on 64-bit boundaries.

Fapi_DataAndEcc – This will program both the supplied data and ECC in Flash at the address specified.
The data supplied must be aligned on a 64-bit word and the length of data must correlate to the supplied
ECC. (For example, data buffer length is 4 words, the ECC buffer must be 1 byte).

The LSB of pu16EccBuffer corresponds to the lower 64-bits of the main array and the MSB of
pu16EccBuffer corresponds to the upper 64-bits of the main array.

Fapi_EccOnly – This mode will only program the ECC portion in Flash at the address specified. It can
program either 1 byte or 2 bytes (2 is max).

The LSB of pu16EccBuffer corresponds to the lower 64-bits of the main array and the MSB of
pu16EccBuffer corresponds to the upper 64-bits of the main array.

NOTE: The length of pu16DataBuffer and pu16EccBuffer cannot exceed 8 and 2, respectively.

NOTE: This function does not check FMSTAT after issuing the program command. The user
application must check the FMSTAT value when FSM has completed the program operation.
FMSTAT indicates if there is any failure occurrence during the program operation. The user
application can use the Fapi_getFsmStatus function to obtain the FMSTAT value.

Restrictions
• As described above, this function can program only a max of 128-bits (given the address provided is

128-bit aligned) at a time. If the user wants to program more than that, this function should be called in
loop to program 128-bits (or 64-bits as needed by application) at a time.

• The Main Array flash programming must be aligned to 64-bit address boundaries and each 64-bit word
may only be programmed once per write/erase cycle.

• It is alright to program the data and ECC separately. However, each 64-bit dataword and 16-bit ECC
word may only be programmed once per write/erase cycle.

• The DCSM OTP programming must be aligned to 128-bit address boundaries and each 128-bit word
may only be programmed once. The exceptions are:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

API Functions www.ti.com

24 SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

– The DCSM Zx-LINKPOINTER1 and Zx-LINKPOINTER2 values in the DCSM OTP should be
programmed together, and may be programmed 1 bit at a time as required by the DCSM operation.

– The DCSM Zx-LINKPOINTER3 values in the DCSM OTP may be programmed 1 bit at a time on a
64-bit boundary to separate it from Zx-PSWDLOCK, which must only be programmed once.

Return Value
• Fapi_Status_Success (success)
• Fapi_Error_AsyncIncorrectDataBufferLength (failure: Data buffer size specifiedis incorrect)
• Fapi_Error_AsyncIncorrectEccBufferLength (failure: ECC buffer size specified is incorrect)
• Fapi_Error_AsyncDataEccBufferLengthMismatch (failure: Data buffer size either is not 64-bit

aligned or data length crosses the 128-bit aligned memory boundary)

Sample Implementation
#include “F021_F2837xD_C28x.h”

#define CPUCLK_FREQUENCY 200 /* 200 MHz System frequency */
int main(void)
{

// Initialize System Control:
InitSysCtrl();

// Call Flash Initialization to setup flash waitstates
// This function must reside in RAM
InitFlash();

// Gain pump semaphore
SeizeFlashPump();

//Jump to RAM and call the Flash API functions
Example_CallFlashAPI();

}

#pragma CODE_SECTION(Example_CallFlashAPI, ramFuncSection);
void Example_CallFlashAPI(void)
{

Fapi_StatusType oReturnCheck;
Fapi_FlashStatusType oFlashStatus;
uint16 au16DataBuffer[8] = {0x0001, 0x0203, 0x0405, 0x0607, 0x0809, 0x0A0B, 0x0C0D, 0x0E0F};
uint32 *DataBuffer32 = (uint32 *)au16DataBuffer;
uint32 u32Index = 0;

oReturnCheck = Fapi_initializeAPI(F021_CPU0_BASE_ADDRESS,CPUCLK_FREQUENCY);
if(oReturnCheck != Fapi_Status_Success)
{

Example_Error (oReturnCheck);
}

oReturnCheck = Fapi_setActiveFlashBank(Fapi_FlashBank0);
if(oReturnCheck != Fapi_Status_Success)
{

// Check Flash API documentation for possible errors
Example_Error (oReturnCheck);

}

for(u32Index = 0x80000; (u32Index < 0x80200) &&
(oReturnCheck == Fapi_Status_Success); u32Index+=8)

{
// Issue program command
oReturnCheck = Fapi_issueProgrammingCommand((uint32 *)u32Index, au16DataBuffer, 8,

0, 0, Fapi_AutoEccGeneration);

// Wait until the Flash program operation is over

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

www.ti.com API Functions

25SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

while (Fapi_checkFsmForReady() != Fapi_Status_FsmReady){}
if(oReturnCheck != Fapi_Status_Success)
{

// Check Flash API documentation for possible errors
Example_Error (oReturnCheck);

}

// Read FMSTAT register contents to know the status of FSM after
// program command to see if there are any program operation related errors
oFlashStatus = Fapi_getFsmStatus();
if(oFlashStatus != 0)
{

//Check FMSTAT and debug accordingly
FMSTAT_Fail();

}

// Verify the programmed values
oReturnCheck = Fapi_doVerify((uint32 *)u32Index, 4, DataBuffer32, &oFlashStatusWord);
if(oReturnCheck != Fapi_Status_Success)
{

// Check Flash API documentation for possible errors
Example_Error(oReturnCheck);

}
}

/* User code for flash operations */
}

3.5 Read Functions

3.5.1 Fapi_doBlankCheck()
Verifies region specified is erased value

Synopsis
Fapi_StatusType Fapi_doBlankCheck(

uint32 *pu32StartAddress,
uint32 u32Length,
Fapi_FlashStatusWordType *poFlashStatusWord)

Parameters

pu32StartAddress [in] start address for region to blank check
u32Length [in] length of region in 32-bit words to blank check
poFlashStatusWord [out] returns the status of the operation if result is not

Fapi_Status_Success
->au32StatusWord[0] address of first non-blank location
->au32StatusWord[1] data read at first non-blank location
->au32StatusWord[2] value of compare data (always 0xFFFFFFFF)
->au32StatusWord[3] N/A

Description
This function checks the device for blank (erase state) starting at the specified address for the length of
32-bit words specified. If a non-blank location is found, these results will be returned in the
poFlashStatusWord parameter.

Restrictions
This function is not supported for F2837xD ECC memory space.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

API Functions www.ti.com

26 SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Return Value
• Fapi_Status_Success (success)
• Fapi_Error_Fail (failure: region specified is not blank)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

www.ti.com API Functions

27SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

3.5.2 Fapi_doVerify()
Verifies region specified against supplied data

Synopsis
Fapi_StatusType Fapi_doVerify(

uint32 *pu32StartAddress,
uint32 u32Length,
uint32 *pu32CheckValueBuffer,
Fapi_FlashStatusWordType *poFlashStatusWord)

Parameters

pu32StartAddress [in] start address for region to verify
u32Length [in] length of region in 32-bit words to verify
pu32CheckValueBuffer
[in]

address of buffer to verify region against

poFlashStatusWord [out] returns the status of the operation if result is not
Fapi_Status_Success

->au32StatusWord[0] address of first verify failure location
->au32StatusWord[1] data read at first verify failure location
->au32StatusWord[2] value of compare data
->au32StatusWord[3] N/A

Description
This function verifies the device against the supplied data starting at the specified address for the length of
32-bit words specified. If a location fails to compare, these results will be returned in the
poFlashStatusWord parameter. This will use normal read, read margin 0 and read margin 1 modes for
verifying the data.

Restrictions
This function is not supported for F2837xD ECC memory space.

Return Value
• Fapi_Status_Success (success)
• Fapi_Error_Fail (failure: region specified does not match supplied data)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

API Functions www.ti.com

28 SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

3.5.3 Fapi_doPsaVerify()
Verifies region specified against specified PSA value

Synopsis
Fapi_StatusType Fapi_doPsaVerify(

uint32 *pu32StartAddress,
uint32 u32Length,
uint32 u32PsaValue,
Fapi_FlashStatusWordType *poFlashStatusWord)

Parameters

pu32StartAddress [in] start address for region to verify PSA value
u32Length [in] length of region in 32-bit words to verify PSA value
u32PsaValue [in] PSA value to compare region against
poFlashStatusWord [out] returns the status of the operation if result is not

Fapi_Status_Success
->au32StatusWord[0] Actual PSA

Description
This function verifies the device against the supplied PSA value starting at the specified address for the
length of 32-bit words specified. The calculated PSA values for all 3 margin modes are returned in the
poFlashStatusWord parameter.

Restrictions
This function is not supported for F2837xD ECC memory space.

Return Value
• Fapi_Status_Success (success)
• Fapi_Error_Fail (failure: region specified does not match supplied data)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

www.ti.com API Functions

29SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

3.5.4 Fapi_calculatePsa()
Calculates the PSA for a specified region

Synopsis
uint32 Fapi_calculatePsa(

uint32 *pu32StartAddress,
uint32 u32Length,
uint32 u32PsaSeed,
Fapi_FlashReadMarginModeType oReadMode)

Parameters

pu32StartAddress [in] start address for region to calculate PSA value
u32Length [in] length of region in 32-bit words to calculate PSA value
u32PsaSeed [in] seed value for PSA calculation
oReadMode [in] only normal mode is applicable. Use Fapi_NormalRead

Description
This function calculates the PSA value for the region specified starting at pu32StartAddress for u32Length
32-bit words using u32PsaSeed value.

Restrictions
This function is not supported for F2837xD ECC memory space.

Return Value
• PSA value (success)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

API Functions www.ti.com

30 SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

3.6 Informational Functions

3.6.1 Fapi_getLibraryInfo()
Returns information about this compile of the Flash API

Synopsis
Fapi_LibraryInfoType Fapi_getLibraryInfo(void)

Parameters
None

Description
This function returns information specific to the compile of the Flash API library. The information is
returned in a struct Fapi_LibraryInfoType. The members are as follows:
• u8ApiMajorVersion – Major version number of this compile of the API
• u8ApiMinorVersion – Minor version number of this compile of the API. Minor version is 54 for F2837xD

devices.
• u8ApiRevision – Revision version number of this compile of the API
• oApiProductionStatus – Production status of this compile (Alpha_Internal, Alpha, Beta_Internal, Beta,

Production)
• u32ApiBuildNumber – Build number of this compile. Used to differentiate between different alpha and

beta builds
• u8ApiTechnologyType – Indicates the Flash technology supported by the API. Tech type used in this

device is of type 0x4
• u8ApiTechnologyRevision – Indicates the revision of the Technology supported by the API
• u8ApiEndianness – Always returns a value of 1 (little endian)
• u32ApiCompilerVersion – Version number of the Code Composer Studio code generation tools used to

compile the API

Return Value
• Fapi_LibraryInfoType (gives the information retrieved about this compile of the API)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

www.ti.com API Functions

31SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

3.6.2 Fapi_getDeviceInfo()
Returns information about specific to device code is being executed on

Synopsis
Fapi_DeviceInfoType Fapi_getDeviceInfo(void)

Parameters
None

Description
This function returns information about the specific device the Flash API library is being executed on. The
information is returned in a struct Fapi_DeviceInfoType. The members are as follows:
• u16NumberOfBanks – Number of banks on the device
• u16DevicePackage – Device package pin count
• u16DeviceMemorySize – Device memory size
• u32AsicId – Device ASIC id
• u32LotNumber – Device lot number
• u16FlowCheck – Device Flow check
• u16WaferNumber – Device wafer number
• u16WaferXCoordinate – Device wafer X coordinate
• u16WaferYCoordinate – Device wafer Y coordinate

Restrictions
This function is deprecated and not supported in subsequent devices. Therefore, TI suggests to not use
this function.

Return Value
• Fapi_DeviceInfoType (gives the information retrieved about this compile of the API)

3.6.3 Fapi_getBankSectors()
Returns the sector information for the requested bank

Synopsis
Fapi_StatusType Fapi_getBankSectors(

Fapi_FlashBankType oBank,
Fapi_FlashBankSectorsType *poFlashBankSectors)

Parameters

oBank [in] Bank to get information on
poFlashBankSectors [out] Returned structure with the bank information

Description
This function returns information about the bank starting address, number of sectors, sector sizes, and
bank technology type. The information is returned in a struct Fapi_FlashBankSectorsType. The members
are as follows:
• oFlashBankTech – Indicates if bank is an FLEP, FLEE or FLES bank type
• u32NumberOfSectors – Indicates the number of sectors in the bank.
• u32BankStartAddress – Starting address of the bank.
• au8SectorSizes[] – An array of sectors sizes for each sector in the bank.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

API Functions www.ti.com

32 SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Sector size returned by Fapi_getBankSectors() function can be decoded as shown below:

Sector size value returned by Fapi_getBankSectors() Corresponding Flash sector size
0x08 16K
0x10 32K
0x20 64K
0x40 128K

Restrictions
This function is deprecated and not supported in subsequent devices. Therefore, TI suggests to not use
this function.

Return Value
• Fapi_Status_Success (success)
• Fapi_Error_FeatureNotAvailable (failure: Not all devices have this support in the Flash Memory

Controller)
• Fapi_Error_InvalidBank (failure: Bank does not exist on this device)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

www.ti.com API Functions

33SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

3.7 Utility Functions

3.7.1 Fapi_calculateFletcherChecksum()
Calculates the Fletcher checksum from the given address and length

Synopsis
uint32 Fapi_calculateFletcherChecksum(

uint16 *pu16Data,
uint16 u16Length)

Parameters

pu16Data [in] Address to start calculating the checksum from
u16Length [in] Number of 16-bit words to use in calculation

Description
This function generates a 32-bit Fletcher checksum starting at the supplied address for the number of 16-
bit words specified.

Restrictions
This function is not supported for F2837xD ECC memory space.

Return Value
• 32-bit Fletcher Checksum value

3.7.2 Fapi_calculateEcc()
Calculates the ECC for a 64-bit value

Synopsis
uint8 Fapi_calculateEcc(

uint32 u32Address,
uint64 u64Data)

Parameters

u32Address [in] Address of the 64-bit value to calculate the ECC
u64Data [in] 64-bit value on which to calculate ECC (should be in little

endian order)

Description
This function will calculate the ECC for a 64-bit aligned word including address. Note that the user
application should left-shift the address by 1 position before passing to this function.

Return Value
• 8-bit calculated ECC (upper 8 bits of the 16-bit return value should be ignored)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

API Functions www.ti.com

34 SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

3.8 User Definable Functions
These functions are distributed in the file Fapi_UserDefinedFunctions.c. These are the base functions
called by the API and can be modified to meet the user’s need for these operations. This file must be
compiled with the user’s code.

3.8.1 Fapi_serviceWatchdogTimer()
This function services the Watchdog timer. Flash API does not configure (enable or disable) the
Watchhdog. It is up to the user to decide whether Watchdog should be enabled or disabled during Flash
API execution. Flash API is interruptible. Therefore, the user application can service the Watchdog via an
ISR (for example, timer ISR) as needed, instead of using this function. However, ISR should be mapped in
RAM since Flash should not be accessed when Flash API execution is in progress. Users should pay
special attention to the Description and Restrictions of this function provided below.

Synopsis
Fapi_StatusType Fapi_serviceWatchdogTimer(void)

Parameters
None

Description
This function allows the user to service their Watchdog timer in the Read Functions, Table 5. This function
is called in the Read functions when the address being read crosses the 256-word (16-bit word) aligned
address boundaries.

NOTE: Users may modify the Fapi_serviceWatchdogTimer() function as needed, but must ensure
that they include EALLOW before the return statement at the end of this function so that
Flash API can write to protected registers as needed.

Restrictions
This function is deprecated and not supported in subsequent devices. Therefore, TI suggests to not use
this function.

Return Value
• Fapi_Status_Success (success)

Sample Implementation
#include “F021_F2837xD_C28x.h”
Fapi_StatusType Fapi_serviceWatchdogTimer(void)
{

/* User to add their own watchdog servicing code here */

return(Fapi_Status_Success);
}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

www.ti.com API Functions

35SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

3.8.2 Fapi_setupEepromSectorEnable()
Sets up the sectors available on the EEPROM bank for erase and programming. However, note that users
should not edit the contents of this function and should be used as provided by TI. These functions are left
in Fapi_UserDefinedFunctions.c to keep source compatibility across TI devices that use similar Flash
technology.

Synopsis
Fapi_StatusType Fapi_setupEepromSectorEnable(void)

Parameters
None

Description
This function sets up the sectors in the EEPROM bank that are available for erase and programming
operations.

Restrictions
This function is deprecated and not supported in subsequent devices (but users should not remove or edit
this function in TMS320F2837xD devices).

Return Value
• Fapi_Status_Success (success)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

API Functions www.ti.com

36 SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

3.8.3 Fapi_setupBankSectorEnable()
Sets up the sectors available on the bank for erase and programming

Synopsis
Fapi_StatusType Fapi_setupBankSectorEnable(void)

Parameters
None

Description
This function sets up the sectors in the bank that are available for erase and programming operations.

Restrictions
Note that users should not edit the contents of this function even though it is provided in the
Fapi_UserDefinedFunctions.C file. This function should be used as provided by TI. The reason TI provides
this function outside of the API Library is to keep source compatibility across TI devices where applicable.
This function is deprecated and not supported in subsequent devices, but users should not remove or edit
this function in TMS320F2837xD devices.

Return Value
• Fapi_Status_Success (success)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

www.ti.com Recommended FSM Flows

37SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

4 Recommended FSM Flows

4.1 New devices from Factory
Devices are shipped erased from the Factory. It is recommended, but not required to do a blank check on
devices received to verify that they are erased.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

Start

Done

Yes

Yes

DUT fails Erase

No

Call
Fapi_issueAsyncCommandWithAddress()

Using Fapi_EraseSector command

Fapi_checkFsmForReady()

!=Fapi_Status_FsmBusy

Fapi_getFsmStatus()

= = 0

No

Call
Fapi_setActiveFlashBank()

More data to program?

* Pump program must be gained by the

core using pump semaphore. Please

refer to the technical reference manual

for more information.

Yes

No

Execute EALLOW

gain pump access*

Call

Fapi_InitializeAPI()

Recommended FSM Flows www.ti.com

38 SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

4.2 Recommended Erase Flow
The following diagram describes the high-level flow for erasing a sector(s). Please refer to Figure 1 for
further information.

Figure 1. Recommended Erase Flow

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

Start

Done

Yes

Yes

DUT fails program

No

Call
Fapi_issueProgrammingCommand()

Supplying address, data and mode

Fapi_checkFsmForReady()

!=Fapi_Status_FsmBusy

Fapi_getFsmStatus()

= = 0

No

Call
Fapi_setActiveFlashBank()

More data to program?

* Pump program must be gained by the

core using pump semaphore. Please

refer to the technical reference manual

for more information.

Yes

No

Execute EALLOW

gain pump access*

Call

Fapi_InitializeAPI()

www.ti.com Recommended FSM Flows

39SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

4.3 Recommended Program Flow
The following diagram describes the high-level flow for programming a device. This flow assumes the user
has already erased all affected sectors or banks following the Recommended Erase Flow (see Figure 2).
See Section 3.4 for further information.

Figure 2. Recommended Program Flow

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

40 SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Flash State Machine Commands

Appendix A
SPNU629–March 2017

Flash State Machine Commands

A.1 Flash State Machine Commands

Table 11. Flash State Machine Commands

Command Description Enumeration Type API Call(s)
Program
Data

Used to program data to
any valid Flash address Fapi_ProgramData Fapi_issueProgrammingCommand()

Erase Sector
Used to erase a Flash
sector located by the
specified address

Fapi_EraseSector Fapi_issueAsyncCommandWithAddress()

Clear Status Clears the status register Fapi_ClearStatus Fapi_issueAsyncCommand()
Program
Resume

Resumes a suspended
programming operation Fapi_ProgramResume Fapi_issueAsyncCommand()

Erase
Resume

Resumes a suspended
erase operation Fapi_EraseResume Fapi_issueAsyncCommand()

Clear More Clears the status register Fapi_ClearMore Fapi_issueAsyncCommand()

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

41SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Object Library Function Information

Appendix B
SPNU629–March 2017

Object Library Function Information

B.1 C28x Library

Table 12. C28x Function Sizes and Stack Usage

Function Name Size In
Words

Worst
Case
Stack
Usage

Fapi_calculateEcc TBD TBD
Fapi_calculateFletcherChecksum TBD TBD
Fapi_calculatePsa
Includes references to the following functions

• Fapi_isAddressEcc
• Fapi_serviceWatchdogTimer

TBD TBD

Fapi_checkFsmForReady TBD TBD
Fapi_doBlankCheck
Includes references to the following functions

• Fapi_flushPipeline
• Fapi_serviceWatchdogTimer
• Fapi_waitDelay
• Fapi_isAddressEcc

TBD TBD

Fapi_doVerify
Includes references to the following functions

• Fapi_flushPipeline
• Fapi_serviceWatchdogTimer
• Fapi_waitDelay
• Fapi_isAddressEcc

TBD TBD

Fapi_flushPipeline
Includes references to the following functions

• Fapi_waitDelay

TBD TBD

Fapi_getBankSectors TBD TBD
Fapi_getDeviceInfo TBD TBD
Fapi_getFsmStatus TBD TBD
Fapi_getLibraryInfo TBD TBD
Fapi_initializeAPI TBD TBD
Fapi_isAddressEcc TBD TBD
Fapi_issueAsyncCommand TBD TBD
Fapi_issueAsyncCommandWithAddress
Includes references to the following functions

• Fapi_setupBankSectorEnable
• Fapi_setupEepromSectorEnable

TBD TBD

Fapi_issueFsmSuspendCommand TBD TBD

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

C28x Library www.ti.com

42 SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Object Library Function Information

Table 12. C28x Function Sizes and Stack Usage (continued)

(1) As this is a user modifiable function, this information is variable and dependent on the user's code.

Fapi_issueProgrammingCommand
Includes references to the following functions

• Fapi_calculateEcc
• Fapi_setupBankSectorEnable
• Fapi_setupEepromSectorEnable

TBD TBD

Fapi_remapEccAddress TBD TBD
Fapi_setActiveFlashBank
Includes references to the following functions

• Fapi_calculateFletcherChecksum

TBD TBD

Fapi_serviceWatchdogTimer (1) TBD TBD
Fapi_setupBankSectorEnable TBD TBD
Fapi_setupEepromSectorEnable TBD TBD

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

43SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Typedefs, defines, enumerations and structures

Appendix C
SPNU629–March 2017

Typedefs, defines, enumerations and structures

C.1 Type Definitions
#if defined(__TMS320C28XX__)

typedef unsigned char boolean;

typedef unsigned int uint8; //This is 16 bits in C28x
typedef unsigned int uint16;
typedef unsigned long int uint32;
typedef unsigned long long int uint64;

typedef unsigned int uint16_least;
typedef unsigned long int uint32_least;

typedef signed int sint16_least;
typedef signed long int sint32_least;

typedef float float32;
typedef long double float64;

#else

typedef unsigned char boolean;

typedef unsigned char uint8;
typedef unsigned short uint16;
typedef unsigned int uint32;
typedef unsigned long long int uint64;

typedef signed char sint8;
typedef signed short sint16;
typedef signed int sint32;
typedef signed long long int sint64;

typedef unsigned int uint8_least;
typedef unsigned int uint16_least;
typedef unsigned int uint32_least;

typedef signed int sint8_least;
typedef signed int sint16_least;
typedef signed int sint32_least;

typedef float float32;
typedef double float64;

#endif

C.2 Defines
#if FALSE != 0
#define false FALSE
#endif
#if TRUE != 1
#define true TRUE

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

Enumerations www.ti.com

44 SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Typedefs, defines, enumerations and structures

#endif

C.3 Enumerations

C.3.1 Fapi_CpuType
This is used to indicate which type of CPU is being used.
typedef enum
{

ARM7,
M3,
R4,
R4F,
C28,
Undefined

} ATTRIBUTE_PACKED Fapi_CpuType;

C.3.2 Fapi_AddressMemoryType
This is used to indicate which type of Address is being used.
typedef enum
{

Fapi_Flash,
Fapi_FlashEcc,
Fapi_Otp,
Fapi_OtpEcc,
Fapi_Undefined

} ATTRIBUTE_PACKED Fapi_AddressMemoryType;

C.3.3 Fapi_FlashProgrammingCommandsType
This contains all the possible modes used in the Fapi_IssueAsyncProgrammingCommand().
typedef enum
{
Fapi_AutoEccGeneration, /* This is the default mode for the command and will
auto generate the ecc for the provided data buffer */

Fapi_DataOnly, /* Command will only process the data buffer */
Fapi_EccOnly, /* Command will only process the ecc buffer */
Fapi_DataAndEcc /* Command will process data and ecc buffers */

} ATTRIBUTE_PACKED Fapi_FlashProgrammingCommandsType;

C.3.4 Fapi_FlashBankType
This is used to indicate which Flash bank is being used.
typedef enum
{

Fapi_FlashBank0,
Fapi_FlashBank1, /* Not used for TMS320F2837xD devices */
Fapi_FlashBank2, /* Not used for TMS320F2837xD devices */
Fapi_FlashBank3, /* Not used for TMS320F2837xD devices */
Fapi_FlashBank4, /* Not used for TMS320F2837xD devices */
Fapi_FlashBank5, /* Not used for TMS320F2837xD devices */
Fapi_FlashBank6, /* Not used for TMS320F2837xD devices */
Fapi_FlashBank7 /* Not used for TMS320F2837xD devices */

} ATTRIBUTE_PACKED Fapi_FlashBankType;

C.3.5 Fapi_FlashBankTechType
This is used to indicate what F021 Bank Technology the bank is
typedef enum

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

www.ti.com Enumerations

45SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Typedefs, defines, enumerations and structures

{
Fapi_FLEP,
Fapi_FLEE,
Fapi_FLES,
Fapi_FLHV,
Fapi_TechTBD

} ATTRIBUTE_PACKED Fapi_FlashBankTechType;

C.3.6 Fapi_FlashStateCommandsType
This contains all the possible Flash State Machine commands.
typedef enum
{

Fapi_ProgramData = 0x0002,
Fapi_EraseSector = 0x0006,
Fapi_EraseBank = 0x0008, /* Not available for TMS320F2837xD devices */
Fapi_ValidateSector = 0x000E, /* Not available for TMS320F2837xD devices */
Fapi_ClearStatus = 0x0010,
Fapi_ProgramResume = 0x0014,
Fapi_EraseResume = 0x0016,
Fapi_ClearMore = 0x0018

} ATTRIBUTE_PACKED Fapi_FlashStateCommandsType;

C.3.7 Fapi_FlashReadMarginModeType
This contains all the possible Flash State Machine commands.
typedef enum
{

Fapi_NormalRead = 0x0,
Fapi_RM0 = 0x1, /* Technology used in TMS320F2837xD devices does not need this */
Fapi_RM1 = 0x2 /* Technology used in TMS320F2837xD devices does not need this */

} ATTRIBUTE_PACKED Fapi_FlashReadMarginModeType;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

Enumerations www.ti.com

46 SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Typedefs, defines, enumerations and structures

C.3.8 Fapi_StatusType
This is the master type containing all possible returned status codes.
typedef enum
{

Fapi_Status_Success=0, /* Function completed successfully */
Fapi_Status_FsmBusy, /* FSM is Busy */
Fapi_Status_FsmReady, /* FSM is Ready */
Fapi_Status_AsyncBusy, /* Async function operation is Busy */
Fapi_Status_AsyncComplete, /* Async function operation is Complete */
Fapi_Error_Fail=500, /* Generic Function Fail code */
Fapi_Error_StateMachineTimeout, /* State machine polling never returned ready and timed out */
Fapi_Error_OtpChecksumMismatch, /* Returned if OTP checksum does not match expected value */
Fapi_Error_InvalidDelayValue, /* Returned if the Calculated RWAIT value exceeds 15 -

Legacy Error */
Fapi_Error_InvalidHclkValue, /* Returned if FClk is above max FClk value -

FClk is a calculated from HClk and RWAIT/EWAIT */
Fapi_Error_InvalidCpu, /* Returned if the specified Cpu does not exist */
Fapi_Error_InvalidBank, /* Returned if the specified bank does not exist */
Fapi_Error_InvalidAddress, /* Returned if the specified Address does not exist in Flash

or OTP */
Fapi_Error_InvalidReadMode, /* Returned if the specified read mode does not exist */
Fapi_Error_AsyncIncorrectDataBufferLength,
Fapi_Error_AsyncIncorrectEccBufferLength,
Fapi_Error_AsyncDataEccBufferLengthMismatch,
Fapi_Error_FeatureNotAvailable /* FMC feature is not available on this device */

} ATTRIBUTE_PACKED Fapi_StatusType;

C.3.9 Fapi_ApiProductionStatusType
This lists the different production status values possible for the API.
typedef enum
{

Alpha_Internal, /* For internal TI use only. Not intended to be used by customers */
Alpha, /* Early Engineering release. May not be functionally complete */
Beta_Internal, /* For internal TI use only. Not intended to be used by customers */
Beta, /* Functionally complete, to be used for testing and validation */
Production /* Fully validated, functionally complete, ready for production use */

} ATTRIBUTE_PACKED Fapi_ApiProductionStatusType;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

www.ti.com Structures

47SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Typedefs, defines, enumerations and structures

C.4 Structures

C.4.1 Fapi_EngineeringRowType
This is used to return the information from the engineering row in the TI OTP.
typedef struct
{

uint32 u32AsicId;
uint8 u8Revision;
uint32 u32LotNumber;
uint16 u16FlowCheck;
uint16 u16WaferNumber;
uint16 u16XCoordinate;
uint16 u16YCoordinate;

} ATTRIBUTE_PACKED Fapi_EngineeringRowType;

C.4.2 Fapi_FlashStatusWordType
This structure is used to return status values in functions that need more flexibility
typedef struct
{

uint32 au32StatusWord[4];
} ATTRIBUTE_PACKED Fapi_FlashStatusWordType;

C.4.3 Fapi_LibraryInfoType
This is the structure used to return API information
typedef struct
{

uint8 u8ApiMajorVersion;
uint8 u8ApiMinorVersion;
uint8 u8ApiRevision;
Fapi_ApiProductionStatusType oApiProductionStatus;
uint32 u32ApiBuildNumber;
uint8 u8ApiTechnologyType;
uint8 u8ApiTechnologyRevision;
uint8 u8ApiEndianness;
uint32 u32ApiCompilerVersion;

} Fapi_LibraryInfoType;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

Structures www.ti.com

48 SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Typedefs, defines, enumerations and structures

C.4.4 Fapi_DeviceInfoType
This is the structure used to return device information
typedef struct
{
#if defined(_LITTLE_ENDIAN)

uint16 u16NumberOfBanks;
uint16 u16Reserved;
uint16 u16DeviceMemorySize;
uint16 u16DevicePackage;
uint32 u32AsicId;
uint32 u32LotNumber;
uint16 u16WaferNumber;
uint16 u16FlowCheck;
uint16 u16WaferYCoordinate;
uint16 u16WaferXCoordinate;

#else
uint16 u16Reserved;
uint16 u16NumberOfBanks;
uint16 u16DevicePackage;
uint16 u16DeviceMemorySize;
uint32 u32AsicId;
uint32 u32LotNumber;
uint16 u16FlowCheck;
uint16 u16WaferNumber;
uint16 u16WaferXCoordinate;
uint16 u16WaferYCoordinate;

#endif
} Fapi_DeviceInfoType;

C.4.5 Fapi_FlashBankSectorsType
This gives the structure of a bank and technology type
typedef struct
{

Fapi_FlashBankTechType oFlashBankTech;
uint32 u32NumberOfSectors;
uint32 u32BankStartAddress;
uint8 au8SectorSizes[16];

} Fapi_FlashBankSectorsType;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

49SPNU629–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Parallel Signature Analysis (PSA) Algorithm

Appendix D
SPNU629–March 2017

Parallel Signature Analysis (PSA) Algorithm

D.1 Function Details
The functions Section 3.5.3 and Section 3.5.4 make use of the Parallel Signature Analysis (PSA)
algorithm. Those functions are typically used to verify a particular pattern is programmed in the Flash
Memory without transferring the complete data pattern. The PSA signature is based on this primative
polynomial:
f(X) = 1 + X + X2 + X22 + X31

uint32 calculatePSA (uint32* pu32StartAddress,
uint32 u32Length, /* Number of 32-bit words */
uint32 u32InitialSeed)

{
uint32 u32Seed, u32SeedTemp;
u32Seed = u32InitialSeed;
while(u32Length--)
{

u32SeedTemp = (u32Seed << 1)^*(pu32StartAddress++);
if(u32Seed & 0x80000000)
{

u32SeedTemp ^= 0x00400007; /* XOR the seed value with mask */
}
u32Seed = u32SeedTemp;

}
return u32Seed;

}

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU629

T
I
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

	TMS320F2837xD Flash API
	Table of Contents
	1 Introduction
	1.1 Reference Material
	1.2 Function Listing Format

	2 TMS320F2837xD Flash API Overview
	2.1 Introduction
	2.2 API Overview
	2.3 Using API
	2.3.1 Initialization Flow
	2.3.1.1 After Device Power Up
	2.3.1.2 Bank Setup
	2.3.1.3 On System Frequency Change

	2.3.2 Building With the API
	2.3.2.1 Object Library Files
	2.3.2.2 Distribution Files

	2.3.3 Quick Facts About API Usage

	3 API Functions
	3.1 Initialization Functions
	3.1.1 Fapi_initializeAPI()

	3.2 Flash State Machine Functions
	3.2.1 Fapi_getFsmStatus()
	3.2.2 Fapi_checkFsmForReady()
	3.2.3 Fapi_setActiveFlashBank()
	3.2.4 Fapi_issueFsmSuspendCommand()
	3.2.5 Fapi_flushPipeline()
	3.2.6 Fapi_remapEccAddress()
	3.2.7 Fapi_isAddressEcc()

	3.3 Asynchronous Functions
	3.3.1 Fapi_issueAsyncCommandWithAddress()
	3.3.2 Fapi_issueAsyncCommand()

	3.4 Program Functions
	3.4.1 Fapi_issueProgrammingCommand()

	3.5 Read Functions
	3.5.1 Fapi_doBlankCheck()
	3.5.2 Fapi_doVerify()
	3.5.3 Fapi_doPsaVerify()
	3.5.4 Fapi_calculatePsa()

	3.6 Informational Functions
	3.6.1 Fapi_getLibraryInfo()
	3.6.2 Fapi_getDeviceInfo()
	3.6.3 Fapi_getBankSectors()

	3.7 Utility Functions
	3.7.1 Fapi_calculateFletcherChecksum()
	3.7.2 Fapi_calculateEcc()

	3.8 User Definable Functions
	3.8.1 Fapi_serviceWatchdogTimer()
	3.8.2 Fapi_setupEepromSectorEnable()
	3.8.3 Fapi_setupBankSectorEnable()

	4 Recommended FSM Flows
	4.1 New devices from Factory
	4.2 Recommended Erase Flow
	4.3 Recommended Program Flow

	Appendix A Flash State Machine Commands
	A.1 Flash State Machine Commands

	Appendix B Object Library Function Information
	B.1 C28x Library

	Appendix C Typedefs, defines, enumerations and structures
	C.1 Type Definitions
	C.2 Defines
	C.3 Enumerations
	C.3.1 Fapi_CpuType
	C.3.2 Fapi_AddressMemoryType
	C.3.3 Fapi_FlashProgrammingCommandsType
	C.3.4 Fapi_FlashBankType
	C.3.5 Fapi_FlashBankTechType
	C.3.6 Fapi_FlashStateCommandsType
	C.3.7 Fapi_FlashReadMarginModeType
	C.3.8 Fapi_StatusType
	C.3.9 Fapi_ApiProductionStatusType

	C.4 Structures
	C.4.1 Fapi_EngineeringRowType
	C.4.2 Fapi_FlashStatusWordType
	C.4.3 Fapi_LibraryInfoType
	C.4.4 Fapi_DeviceInfoType
	C.4.5 Fapi_FlashBankSectorsType

	Appendix D Parallel Signature Analysis (PSA) Algorithm
	D.1 Function Details

	Important Notice

