//Dedicated pin on the board

//GPIO0 to GPIO11 - PWM output pins

//GPIO17 - switch SW2
//GPIO18, GPIO19 - uart communication

//GPIO22 - connected to slide switch
//GPIO20, GPIO21, GPIO23 - encoder connected to j2 or rotary switch connected to j7
//GPIO24, GPIO25, GPIO26 - encoder connected to J3
//GPIO27 - LED D8

//GPIO32, GPIO33 - i2c bus for dac

//GPIO76 - /load dac output, GPIO77 - RDY input

//parallel dac
//GPIO61, GPIO62- a0,a1 address selection
//GPIO63 - /wr
//GPIO64 to GPIO71 - 8BIT data to
//GPIO72 - /load dac

//ADCINB7 connected to 10K pot

// do not connect GPIO87, GPIO86, GPIO85 and GPIO84 to boot from Flash
//===

#include "DSP28x_Project.h"
#include "DSP2833x_Device.h"
#include "DSP2833x_Examples.h"
#include "math.h"

#define LED_D8 GpioDataRegs.GPADAT.bit.GPIO27
#define SW2 GpioDataRegs.GPADAT.bit.GPIO17
#define SW4 GpioDataRegs.GPADAT.bit.GPIO22

#define ADC_MODCLK 0x3
#define ADC_CKPS 0x1 //ADC module clock= HSPCLK/2*ADC_CKPS = 25MHz/(1*2)= 12.5MHz
#define ADC_SHCLK 0xf // S/H width in ADC module periods

// 2833x ADC requires a 5-ms delay after all of the circuits are powered up
#define ADC_usDELAY 5000L

#define N 5000 // integration of actual stator-flux
float Vas,Vbs,Vcs,Vds,Vqs;
float ias,ibs,ics;
float ids,iqs;
float pi=3.142857;
int i;
float D_ref=0.632;
double D_act;
float square;
float D_ds,D_qs;

float theta,theta_r,theta_m,wr,wm,Te,Tm,p,J;
float err_speed,err_t,err_flux;
float flux_ref=0.632;
float speed_ref=150;
float ramplowlimit=-1;
float ramphighlimit=1;
float ramp_count=0;
float ramp_final;
float T_load=1;

float Ht,Hd;
unsigned int sec,vec,out;
float Sa1,Sa2,Sb1,Sb2,Sc1,Sc2;
int temp[6];
int pulse[3];

float Lm,Ls,Rs;
float Rr=0;
float Lr=0;

float Kp=50;
float Ki=0.05;
float i_max=40;
float i_min=-40;
float prop,i_temp,integral,PI_out;

Uint16 ReceivedChar;

void clarke(void);
void inv_clarke(void);
void actual_flux(void);
void motor_torque(void);
void sector(void);
void Calc_SPEED(void);
void speed_reference(void);
void pi_controller(void);
void T_hysteresis(void);
void f_hysteresis(void);
void lookup_table(void);

void delay_loop_int(unsigned int dly_int);
void delay_loop(void);
void Gpio_select(void);
void Gpio_example1(void);
void Gpio_example2(void);
void Gpio_example3(void);

void init28335(void);
Uint16 update_MCP4728(void);
void update_AD7305(void);
Uint16 config_MCP4728(void);

void switch_led_example(void);
void I2CA_Init(void);
void Init_QEP(void);

void pwm_example(void);
void init_pwm(void);
interrupt void epwm1_isr(void);

void adc_example(void);
void init_adc(void);

void test_rs232(void);
void scib_echoback_init(void);
void scib_xmit(int a);
void scib_fifo_init(void);

unsigned int MCP4728_CH_A=0, MCP4728_CH_B=0, MCP4728_CH_C=0, MCP4728_CH_D=0;
unsigned int AD7305_CH_A=0, AD7305_CH_B=0, AD7305_CH_C=0, AD7305_CH_D=0;
unsigned int ADCINA0IA,ADCINA1N,ADCINA2,ADCINA3,ADCINA4,ADCINA5,ADCINA6,ADCINA7;
unsigned int ADCINB0IB, ADCINB1VDC, ADCINB2, ADC_POT;;
int ADCINB3, ADCINB4, ADCINB5, ADCINB6;

void main(void)
{
	init28335();
	//un-comment any one of the below examples and test

	//Gpio_example1();
	//parallel_dac_example();
	//i2c_dac_exapmle();
	//adc_example();
	//switch_led_example();
	//pwm_example();
 //QEP_example();
 //test_rs232();

	for(;;);
}
//===//
void delay_loop_int(unsigned int dly_int)
{
	unsigned int k2;
	unsigned int k1=10;

	for (; k1 >0; k1--);
	{
		k2=dly_int;
		for (; k2 >0; k2--);
	}
}
//===
void delay_loop()
{
 long i;
 for (i = 0; i < 1000000; i++) {}
}
//===
void switch_led_example(void)
{
	for(;;)
	{
		//if(SW2==1) LED_D8=1;		else LED_D8=0;
		if(SW4==1) LED_D8=1;		else LED_D8=0;
	}
}
//===
void Gpio_example1(void)
{
 // Example 1:
 // Toggle all output GPIO on using DATA registers

 for(;;)
 {
 GpioDataRegs.GPADAT.all =0xAAAAAAAA;
 GpioDataRegs.GPBDAT.all =0xAAAAAAAA;
 // GpioDataRegs.GPBDAT.all =0xAAAAAAAA; earlier code
 GpioDataRegs.GPCDAT.all =0xAAAAAAAA;

 delay_loop();

 GpioDataRegs.GPADAT.all =0x55555555;
 GpioDataRegs.GPBDAT.all =0x55555555;
 //GpioDataRegs.GPBDAT.all =0x55555555; earlier code
 GpioDataRegs.GPCDAT.all =0x55555555;

 delay_loop();
 }
}
//===
void Gpio_example2(void)
{
 // Example 2:
 // Toggle I/Os using SET/CLEAR registers
 for(;;)
 {

 GpioDataRegs.GPASET.all =0xAAAAAAAA;
 GpioDataRegs.GPACLEAR.all =0x55555555;

 GpioDataRegs.GPBSET.all =0x0000000A;
 GpioDataRegs.GPBCLEAR.all =0x00000005;

 delay_loop();

 GpioDataRegs.GPACLEAR.all =0xAAAAAAAA;
 GpioDataRegs.GPASET.all =0x55555555;

 GpioDataRegs.GPBCLEAR.all =0x0000000A;
 GpioDataRegs.GPBSET.all =0x00000005;

 delay_loop();

 }
}

//===
void Gpio_example3(void)
{
 // Example 2:
 // Toggle I/Os using TOGGLE registers

 // Set pins to a known state

 GpioDataRegs.GPASET.all =0xAAAAAAAA;
 GpioDataRegs.GPACLEAR.all =0x55555555;

 GpioDataRegs.GPBSET.all =0x0000000A;
 GpioDataRegs.GPBCLEAR.all =0x00000005;

 // Use TOGGLE registers to flip the state of
 // the pins.
 // Any bit set to a 1 will flip state (toggle)
 // Any bit set to a 0 will not toggle.

 for(;;)
 {
 GpioDataRegs.GPATOGGLE.all =0xFFFFFFFF;
 GpioDataRegs.GPBTOGGLE.all =0x0000000F;
 delay_loop();
 }
}
//===
void Gpio_select(void)
{
 EALLOW;
 GpioCtrlRegs.GPAMUX1.all = 0x00555555;
 GpioCtrlRegs.GPAMUX2.all = 0x002A55A0;

 GpioCtrlRegs.GPBMUX1.all = 0x00000005;
 GpioCtrlRegs.GPBMUX2.all = 0x00000000;
 GpioCtrlRegs.GPCMUX1.all = 0x00000000;
 GpioCtrlRegs.GPCMUX2.all = 0x00000000;

 GpioCtrlRegs.GPADIR.all = 0xFFBDFFFF;
 GpioCtrlRegs.GPBDIR.all = 0xFFFFFFFF;
 GpioCtrlRegs.GPCDIR.all = 0xFFFFDFFF;
 EDIS;
}
//===
void update_AD7305(void)
{
	unsigned int temp;

	//read existing data and mask 8 LSB bits
	temp=GpioDataRegs.GPCDAT.all;
	temp&=0xFFFFFF00;

	GpioDataRegs.GPBCLEAR.all =0x60000000;		//select channel A
	GpioDataRegs.GPCDAT.all=temp|AD7305_CH_A;	//output 8bit data
	GpioDataRegs.GPBCLEAR.bit.GPIO63=1;
	GpioDataRegs.GPBSET.bit.GPIO63=1;		//latch A register

	GpioDataRegs.GPBSET.bit.GPIO61=1;		//select channel B
	GpioDataRegs.GPCDAT.all=temp|AD7305_CH_B;	//output 8bit data
	GpioDataRegs.GPBCLEAR.bit.GPIO63=1;
	GpioDataRegs.GPBSET.bit.GPIO63=1;		//latch B register

	GpioDataRegs.GPBSET.bit.GPIO62=1;		//select channel D
	GpioDataRegs.GPCDAT.all=temp|AD7305_CH_D;	//output 8bit data
	GpioDataRegs.GPBCLEAR.bit.GPIO63=1;
	GpioDataRegs.GPBSET.bit.GPIO63=1;		//latch D register

	GpioDataRegs.GPBCLEAR.bit.GPIO61=1;		//select channel C
	GpioDataRegs.GPCDAT.all=temp|AD7305_CH_C;	//output 8bit data
	GpioDataRegs.GPBCLEAR.bit.GPIO63=1;
	GpioDataRegs.GPBSET.bit.GPIO63=1;		//latch C register

	//update output register simultaneously
	GpioDataRegs.GPCCLEAR.bit.GPIO72=1;
	GpioDataRegs.GPCSET.bit.GPIO72=1;
}
//===
void adc_example(void)
{
 //12-bit ADC core with built-in dual S/H
 //Continuously converts all 16 ADC channels
 //apply result from potentiometer to DAC channel - pin8, J6
 for(;;)
	{

		//for testing conversion speed - J30, pin1
		GpioDataRegs.GPCDAT.bit.GPIO75=1;
		GpioDataRegs.GPCDAT.bit.GPIO75=0;

 //if continuous conversion is not used, start conversion
 //ADC has two independent 8-state sequencers (SEQ1 and SEQ2)
		AdcRegs.ADCTRL2.bit.RST_SEQ1 = 1; // Reset SEQ1
		AdcRegs.ADCTRL2.bit.SOC_SEQ1=1;	 //start of conversion on SEQ1

		while (AdcRegs.ADCST.bit.INT_SEQ1== 0) {} // Wait for interrupt flag
		AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1;

 // result of S/H conversion is placed in the ADCRESULT register
 // lower 8-bit Digital result displayed using 8-bit dac
		ADCINA0IA=AdcRegs.ADCRESULT0>>4;
		ADCINB0IB=AdcRegs.ADCRESULT1>>4;
		ADCINA1N=AdcRegs.ADCRESULT2>>4;
		ADCINB1VDC=AdcRegs.ADCRESULT3>>4;
		ADCINA2=AdcRegs.ADCRESULT4>>4;
		ADCINB2=AdcRegs.ADCRESULT5>>4;
		ADCINA3=AdcRegs.ADCRESULT6>>4;
		ADCINB3=AdcRegs.ADCRESULT7>>4;
		ADCINA4=AdcRegs.ADCRESULT8>>4;
		ADCINB4=AdcRegs.ADCRESULT9>>4;
		ADCINA5=AdcRegs.ADCRESULT10>>4;
		ADCINB5=AdcRegs.ADCRESULT11>>4;
		ADCINA6=AdcRegs.ADCRESULT12>>4;
		ADCINB6=AdcRegs.ADCRESULT13>>4;
		ADCINA7=AdcRegs.ADCRESULT14>>4;

		ADC_POT=AdcRegs.ADCRESULT15>>4;

 AD7305_CH_D=ADC_POT&0xff;

 //display phase A on channel A and B current on channel B
 AD7305_CH_A=
 AD7305_CH_B=

 // display speed on channel C and stator voltage Vs on channel D
 AD7305_CH_C=
 AD7305_CH_D=

 update_AD7305();
 //delay_loop_int(10000);
		//scib_xmit(AD7305_CH_A);

	 /*// check for serial data request
	 if(ScibRegs.SCIFFRX.bit.RXFFST ==1)
	 {
	 	 // Get character
	 	 ReceivedChar = ScibRegs.SCIRXBUF.all;
	 	 scib_xmit(AD7305_CH_A);
	 }
*/

 }
}
//===
void init_adc(void)
{
 EALLOW;
 // enable ADC clocks
		SysCtrlRegs.PCLKCR0.bit.ADCENCLK = 1;
		EDIS;

 // Call the ADC_cal function before using the ADC
		ADC_cal();

		// ADC Control Register 3
 // Powerup the ADC band gap and reference circuitry
 // Sequential sampling mode is selected
 AdcRegs.ADCTRL3.all = 0x00E0;

 // 2833x ADC requires a 5-ms delay after all the circuits are powered up
 DELAY_US(ADC_usDELAY);

 // Specific clock setting for this example:
	 EALLOW;
	 SysCtrlRegs.HISPCP.all = ADC_MODCLK;
 // HSPCLK = SYSCLKOUT/ADC_MODCLK
	 EDIS;

 // ADC External Reference Select Register is enabled
 //ADC can accept external reference =2.048 V on ADCREFIN pin
 AdcRegs.ADCREFSEL.bit.REF_SEL=1;

 //Acquisition window size ACQ_PS is set from 0 to 15
 // ACQ_PS controls the width of SOC pulse
 //ADC_SHCLK; 1- fast, 15-very less noise
	 AdcRegs.ADCTRL1.bit.ACQ_PS = 15;

	 // Sequential mode: Sample rate = 1/[(2+ACQ_PS)*ADC clock in ns]
	 // = 1/(3*40ns) =8.3MHz
 // If Simultaneous mode enabled: Sample rate = 1/[(3+ACQ_PS)*ADC clock in ns]

	 //ADC CLOCK PRESCALER
 // Core clock divider ADCCLKPS [0-fast, 1-very less noise]
	 AdcRegs.ADCTRL3.bit.ADCCLKPS = 1;

 // CONTINUOUS RUN BIT disabled
// If CONT_RUN is set, conversion sequence starts all over again automatically
// If CONT_RUN is not set, the sequencer stays in the last state
 AdcRegs.ADCTRL1.bit.CONT_RUN = 0;

	 // SIMULTANEOUS SAMPLING MODE
// one input is from ADCINA0-ADCINA7 and the other input is from ADCINB0-ADCINB7
 AdcRegs.ADCTRL3.bit.SMODE_SEL = 0x1;

	 // CASCADED SEQUENCER MODE
 AdcRegs.ADCTRL1.bit.SEQ_CASC = 0x1;

 // Maximum number of conversions executed in an autoconversion session
	 // 8 double conversions (16 total)
 AdcRegs.ADCMAXCONV.all = 0x0007;

	 // ADC INPUT CHANNEL SELECT SEQUENCING CONTROL REGISTERS 16-bit
 // Setup conversion from ADCINA0 & ADCINB0
 AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x0;

	 // Setup conv from ADCINA1 & ADCINB1
 AdcRegs.ADCCHSELSEQ1.bit.CONV01 = 0x1;

	 // Setup conv from ADCINA2 & ADCINB2
 AdcRegs.ADCCHSELSEQ1.bit.CONV02 = 0x2;

 // Setup conv from ADCINA3 & ADCINB3
 AdcRegs.ADCCHSELSEQ1.bit.CONV03 = 0x3;

	 // Setup conv from ADCINA4 & ADCINB4
 AdcRegs.ADCCHSELSEQ2.bit.CONV04 = 0x4;

	 // Setup conv from ADCINA5 & ADCINB5
 AdcRegs.ADCCHSELSEQ2.bit.CONV05 = 0x5;

	 // Setup conv from ADCINA6 & ADCINB6
 AdcRegs.ADCCHSELSEQ2.bit.CONV06 = 0x6;

	 // Setup conv from ADCINA7 & ADCINB7
 AdcRegs.ADCCHSELSEQ2.bit.CONV07 = 0x7;

 AdcRegs.ADCTRL2.bit.RST_SEQ1 = 1; // Reset SEQ1
	 AdcRegs.ADCTRL2.bit.SOC_SEQ1=1; //start of conversion on seq1
}
//===
void init28335(void)
{

	// Step 1. Initialize System Control:
	// PLL, WatchDog, enable Peripheral Clocks
	// This example function is found in the DSP2833x_SysCtrl.c file.
	 InitSysCtrl();

	// Step 2. Initalize GPIO:
	// This example function is found in the DSP2833x_Gpio.c file and
	// illustrates how to set the GPIO to it's default state.
	// InitGpio(); // Skipped for this example

	// For this example use the following configuration:
	 Gpio_select();

	// Step 3. Clear all interrupts and initialize PIE vector table:
	// Disable CPU interrupts
	 DINT;

	// Initialize PIE control registers to their default state.
	// The default state is all PIE interrupts disabled and flags
	// are cleared.
	// This function is found in the DSP2833x_PieCtrl.c file.
	 InitPieCtrl();

	// Disable CPU interrupts and clear all CPU interrupt flags:
	 IER = 0x0000;
	 IFR = 0x0000;

	// Initialize the PIE vector table with pointers to the shell Interrupt
	// Service Routines (ISR).
	// This will populate the entire table, even if the interrupt
	// is not used in this example. This is useful for debug purposes.
	// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
	// This function is found in DSP2833x_PieVect.c.
	 InitPieVectTable();

	// Step 4. Initialize all the Device Peripherals:
	// This function is found in DSP2833x_InitPeripherals.c
	// InitPeripherals(); // Not required for this example

	 Init_QEP();
	 I2CA_Init();
	 config_MCP4728();
	 init_adc();
	 scib_fifo_init();	 // Initialize the SCI FIFO
	 scib_echoback_init(); // Initalize SCI for echoback

}
//===
Uint16 update_MCP4728(void)
{

//NOTE
// Wait until the STP bit is cleared from any previous master communication.
// Clearing of this bit by the module is delayed until after the SCD bit is
// set. If this bit is not checked prior to initiating a new message, the
// I2C could get confused.
/*
 if (I2caRegs.I2CMDR.bit.STP == 1)
 {
 return I2C_STP_NOT_READY_ERROR;
 }

 // Check if bus busy
 if (I2caRegs.I2CSTR.bit.BB == 1)
 {
 return I2C_BUS_BUSY_ERROR;
 }*/

	//wait until bus is free - upto 6k updates per second is possible
 while(I2caRegs.I2CMDR.bit.STP == 1);
 while(I2caRegs.I2CSTR.bit.BB == 1);

 // Setup slave address
 I2caRegs.I2CSAR = 0x60;
 // Setup number of bytes to send
 I2caRegs.I2CCNT = 8;

 // Setup data to send
 // I2caRegs.I2CDXR = 0x50;
 I2caRegs.I2CDXR = (MCP4728_CH_A>>8)&0x0F;
 I2caRegs.I2CDXR = MCP4728_CH_A&0xff;

 I2caRegs.I2CDXR = (MCP4728_CH_B>>8)&0x0F;
 I2caRegs.I2CDXR = MCP4728_CH_B&0xff;

 I2caRegs.I2CDXR = (MCP4728_CH_C>>8)&0x0F;
 I2caRegs.I2CDXR = MCP4728_CH_C&0xff;

 I2caRegs.I2CDXR = ((MCP4728_CH_D>>8)&0x0F)|0x80;
 I2caRegs.I2CDXR = MCP4728_CH_D&0xff;

 // Send start as master transmitter
 I2caRegs.I2CMDR.all = 0x6E20;

 return I2C_SUCCESS;
}
//===
void parallel_dac_exapmle(void)
{

 for(;;)
 {

 update_AD7305();

 //update ramp data
 AD7305_CH_A =
 //AD7305_CH_A&=0xff;
 i++;
	if(i>1024)
		{
		 i=0;

		}

	AD7305_CH_B=

	AD7305_CH_C=

	AD7305_CH_D=

	//apply delay
	delay_loop_int(2);

	}

}

Uint16 config_MCP4728(void)
{
 //update some of the EEPRO locations to set gain, reference voltage etc
 //wait until bus is free
 while(I2caRegs.I2CMDR.bit.STP == 1);
 while(I2caRegs.I2CSTR.bit.BB == 1);

 // Setup slave address
 I2caRegs.I2CSAR = 0x60;
 // Setup number of bytes to send
 I2caRegs.I2CCNT = 9;

 // Setup data to send
 I2caRegs.I2CDXR = 0x50;

 //For setting internal reference with gain 1.
 I2caRegs.I2CDXR = 0x80;
 I2caRegs.I2CDXR = 0;
 I2caRegs.I2CDXR = 0x80;
 I2caRegs.I2CDXR = 0;
 I2caRegs.I2CDXR = 0x80;
 I2caRegs.I2CDXR = 0;
 I2caRegs.I2CDXR = 0x80;
 I2caRegs.I2CDXR = 0;

 // Send start as master transmitter
 I2caRegs.I2CMDR.all = 0x6E20;

 return I2C_SUCCESS;
}
//===
void I2CA_Init(void)
{
	EALLOW;
	/* Enable internal pull-up for the selected pins */
	// Pull-ups can be enabled or disabled disabled by the user.
	// This will enable the pullups for the specified pins.
	// Comment out other unwanted lines.

	GpioCtrlRegs.GPBPUD.bit.GPIO32 = 0; // Enable pull-up for GPIO32 (SDAA)
	GpioCtrlRegs.GPBPUD.bit.GPIO33 = 0; // Enable pull-up for GPIO33 (SCLA)

	GpioDataRegs.GPCCLEAR.bit.GPIO76=1;

	/* Set qualification for selected pins to asynch only */
	// This will select asynch (no qualification) for the selected pins.
	// Comment out other unwanted lines.

	GpioCtrlRegs.GPBQSEL1.bit.GPIO32 = 3; // Asynch input GPIO32 (SDAA)
	GpioCtrlRegs.GPBQSEL1.bit.GPIO33 = 3; // Asynch input GPIO33 (SCLA)

 /* Configure SCI pins using GPIO regs*/
 // This specifies which of the possible GPIO pins will be I2C functional pins.
 // Comment out other unwanted lines.

 GpioCtrlRegs.GPBMUX1.bit.GPIO32 = 1; // Configure GPIO32 for SDAA operation
 GpioCtrlRegs.GPBMUX1.bit.GPIO33 = 1; // Configure GPIO33 for SCLA operation

 EDIS;

 // Initialise I2C
 I2caRegs.I2CSAR = 0x60;		// Slave address - EEPROM control code

 I2caRegs.I2CPSC.all = 14; // Prescaler-need 7-12 MHz on module clk(150/15=10MHz)

 I2caRegs.I2CCLKL = 4;			// NOTE: must be non zero
 I2caRegs.I2CCLKH = 4;			// NOTE: must be non zero
 //I2caRegs.I2CIER.all = 0x24;		// Enable SCD & ARDY interrupts

 I2caRegs.I2CMDR.all = 0x0020;	// Take I2C out of reset
 // Stop I2C when suspended

 I2caRegs.I2CFFTX.all = 0x6000;	// Enable FIFO mode and TXFIFO
 I2caRegs.I2CFFRX.all = 0x2040;	// Enable RXFIFO, clear RXFFINT,

 return;
}
//===

void Init_QEP(void)
{
	//Encoder 1
	EQep1Regs.QDECCTL.bit.QSRC=00;		// QEP quadrature count mode

	EQep1Regs.QEPCTL.bit.FREE_SOFT=2;
	EQep1Regs.QEPCTL.bit.PCRM=00;// PCRM=00 mode - QPOSCNT reset on index event
	EQep1Regs.QEPCTL.bit.UTE=1; 		// Unit Timeout Enable
	EQep1Regs.QEPCTL.bit.QCLM=1; 		// Latch on unit time out

	EQep1Regs.QPOSMAX=0xffffffff;
	EQep1Regs.QEPCTL.bit.QPEN=1; 		// QEP enable

	EQep1Regs.QCAPCTL.bit.UPPS=5; 	// 1/32 for unit position
	EQep1Regs.QCAPCTL.bit.CCPS=7;		// 1/128 for CAP clock
	EQep1Regs.QCAPCTL.bit.CEN=1; 		// QEP Capture Enable

	//Encoder 2
	EQep2Regs.QDECCTL.bit.QSRC=00;		// QEP quadrature count mode

	EQep2Regs.QEPCTL.bit.FREE_SOFT=2;
	EQep2Regs.QEPCTL.bit.PCRM=00; // PCRM=00 mode - QPOSCNT reset on index event
	EQep2Regs.QEPCTL.bit.UTE=1; 		// Unit Timeout Enable
	EQep2Regs.QEPCTL.bit.QCLM=1; 		// Latch on unit time out

	EQep2Regs.QPOSMAX=0xffffffff;
	EQep2Regs.QEPCTL.bit.QPEN=1; 		// QEP enable

	EQep2Regs.QCAPCTL.bit.UPPS=5; 	// 1/32 for unit position
	EQep2Regs.QCAPCTL.bit.CCPS=7;		// 1/128 for CAP clock
	EQep2Regs.QCAPCTL.bit.CEN=1; 		// QEP Capture Enable

}
//===

void pwm_example(void)
{
 // Enhanced PWM module
 // epwm1a, epwm1b, epwm2a, epwm2b… to epwm6a,epwm6b
 //suitable for the control of two three-phase induction motors
 //pwm frequency approximately equal to 4.577 KHz
 init_pwm();

 for(;;);	//pwm updated during interrupt service subroutine
}
//===
void init_pwm(void)
{
 // CONTROL OF 3-PHASE INVERTER -COMMONLY USED IN MOTOR CONTROL
 // Supports 16-bit Time-Base Counter with period & frequency control

 // ePWM MODULE 1 CONFIG
 // System Clock frequency = 150 MHz
 // Period = 1600 TBCLK counts
	EPwm1Regs.TBPRD = 0x1E8;

 // Time-base clock is a pre-scaled version of the system clock
 // TB clock is used by all sub-modules within the ePWM.
 // Determines the rate at which time-base counter increments or decrements

	EPwm1Regs.TBCTL.bit.HSPCLKDIV = TB_DIV4; // Clock ratio to SYSCLKOUT
	EPwm1Regs.TBCTL.bit.CLKDIV = TB_DIV4;

	EPwm1Regs.TBPHS.half.TBPHS = 0; // Set Phase register to zero

 // Symmetrical mode for Time Base counter
	EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN;

 // PHASE REGISTER ENABLE PHSEN
 // To set up a Master TB module
 // To ignore the synchronization input pulse
	EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE;

 // Time-base period register (TBPRD) has a shadow register
 // Shadow register provides a temporary holding location for the active register
	EPwm1Regs.TBCTL.bit.PRDLD = TB_SHADOW;

 // Synchronization Output Select SYNCOSEL
 // Time-base counter equal to zero (TB_CTR = 0x0000)
	EPwm1Regs.TBCTL.bit.SYNCOSEL = TB_CTR_ZERO; // Sync down-stream module

	EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;
	EPwm1Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
	EPwm1Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; // load on CTR=Zero
	EPwm1Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO; // load on CTR=Zero

	// force ePWMA output high (counter incrementing)
 EPwm1Regs.AQCTLA.bit.CAU = AQ_SET;
 // force ePWMB output low (counter decrementing)
	EPwm1Regs.AQCTLA.bit.CAD = AQ_CLEAR;

 // Dead-band generation with independent rising and falling edge delay control
	EPwm1Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE; // enable Dead-band module
	EPwm1Regs.DBCTL.bit.POLSEL = DB_ACTV_HIC; // Active Hi complementary
	EPwm1Regs.DBFED = 50; // FED = 50 TBCLKs
	EPwm1Regs.DBRED = 50; // RED = 50 TBCLKs

	// ePWM MODULE 2 CONFIGURE
	EPwm2Regs.TBPRD = 0xEA6; // Period = 1600 TBCLK counts

	EPwm2Regs.TBCTL.bit.HSPCLKDIV = TB_DIV4; // Clock ratio to SYSCLKOUT
	EPwm2Regs.TBCTL.bit.CLKDIV = TB_DIV4;

	EPwm2Regs.TBPHS.half.TBPHS = 0; // Set Phase register to zero
	EPwm2Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Symmetrical mode
	EPwm2Regs.TBCTL.bit.PHSEN = TB_ENABLE; // Slave module
	EPwm2Regs.TBCTL.bit.PRDLD = TB_SHADOW;

 // Synchronization Output Select SYNCOSEL
 // sync flow-through
	EPwm2Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_IN;
	EPwm2Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;
	EPwm2Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
	EPwm2Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; // load on CTR=Zero
	EPwm2Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO; // load on CTR=Zero
	EPwm2Regs.AQCTLA.bit.CAU = AQ_SET; // set actions for EPWM2A
	EPwm2Regs.AQCTLA.bit.CAD = AQ_CLEAR;
	EPwm2Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE; // enable Dead-band module
	EPwm2Regs.DBCTL.bit.POLSEL = DB_ACTV_HIC; // Active Hi complementary
	EPwm2Regs.DBFED = 50; // FED = 50 TBCLKs
	EPwm2Regs.DBRED = 50; // RED = 50 TBCLKs

	// EPWM Module 3 config
	EPwm3Regs.TBPRD = 0xEA6; // Period = 1600 TBCLK counts

	EPwm3Regs.TBCTL.bit.HSPCLKDIV = TB_DIV4; // Clock ratio to SYSCLKOUT
	EPwm3Regs.TBCTL.bit.CLKDIV = TB_DIV4;

	EPwm3Regs.TBPHS.half.TBPHS = 0; // Set Phase register to zero
	EPwm3Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Symmetrical mode
	EPwm3Regs.TBCTL.bit.PHSEN = TB_ENABLE; // Slave module
	EPwm3Regs.TBCTL.bit.PRDLD = TB_SHADOW;
	EPwm3Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_IN; // sync flow-through
	EPwm3Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;
	EPwm3Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
	EPwm3Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; // load on CTR=Zero
	EPwm3Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO; // load on CTR=Zero
	EPwm3Regs.AQCTLA.bit.CAU = AQ_SET; // set actions for EPWM3A
	EPwm3Regs.AQCTLA.bit.CAD = AQ_CLEAR;
	EPwm3Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE; // enable Dead-band module
	EPwm3Regs.DBCTL.bit.POLSEL = DB_ACTV_HIC; // Active Hi complementary
	EPwm3Regs.DBFED = 50; // FED = 50 TBCLKs
	EPwm3Regs.DBRED = 50; // RED = 50 TBCLKs

	// EPWM Module 4 config
	EPwm4Regs.TBPRD = 0x1E8; // Period = 1600 TBCLK counts

	EPwm4Regs.TBCTL.bit.HSPCLKDIV = TB_DIV4; // Clock ratio to SYSCLKOUT
	EPwm4Regs.TBCTL.bit.CLKDIV = TB_DIV4;

	EPwm4Regs.TBPHS.half.TBPHS = 0; // Set Phase register to zero
	EPwm4Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Symmetrical mode
	EPwm4Regs.TBCTL.bit.PHSEN = TB_ENABLE; // Slave module
	EPwm4Regs.TBCTL.bit.PRDLD = TB_SHADOW;
	EPwm4Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_IN; // sync flow-through
	EPwm4Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;
	EPwm4Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
	EPwm4Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; // load on CTR=Zero
	EPwm4Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO; // load on CTR=Zero
	EPwm4Regs.AQCTLA.bit.CAU = AQ_SET; // set actions for EPWM4A
	EPwm4Regs.AQCTLA.bit.CAD = AQ_CLEAR;
	EPwm4Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE; // enable Dead-band module
	EPwm4Regs.DBCTL.bit.POLSEL = DB_ACTV_HIC; // Active Hi complementary
	EPwm4Regs.DBFED = 50; // FED = 50 TBCLKs
	EPwm4Regs.DBRED = 50; // RED = 50 TBCLKs

	// EPWM Module 5 config
	EPwm5Regs.TBPRD = 0x1E8; // Period = 1600 TBCLK counts

	EPwm5Regs.TBCTL.bit.HSPCLKDIV = TB_DIV4; // Clock ratio to SYSCLKOUT
	EPwm5Regs.TBCTL.bit.CLKDIV = TB_DIV4;

	EPwm5Regs.TBPHS.half.TBPHS = 0; // Set Phase register to zero
	EPwm5Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Symmetrical mode
	EPwm5Regs.TBCTL.bit.PHSEN = TB_ENABLE; // Slave module
	EPwm5Regs.TBCTL.bit.PRDLD = TB_SHADOW;
	EPwm5Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_IN; // sync flow-through
	EPwm5Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;
	EPwm5Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
	EPwm5Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; // load on CTR=Zero
	EPwm5Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO; // load on CTR=Zero
	EPwm5Regs.AQCTLA.bit.CAU = AQ_SET; // set actions for EPWM4A
	EPwm5Regs.AQCTLA.bit.CAD = AQ_CLEAR;
	EPwm5Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE; // enable Dead-band module
	EPwm5Regs.DBCTL.bit.POLSEL = DB_ACTV_HIC; // Active Hi complementary
	EPwm5Regs.DBFED = 50; // FED = 50 TBCLKs
	EPwm5Regs.DBRED = 50; // RED = 50 TBCLKs

	// EPWM Module 6 config
	EPwm6Regs.TBPRD = 0x1E8; // Period = 1600 TBCLK counts

	EPwm6Regs.TBCTL.bit.HSPCLKDIV = TB_DIV4; // Clock ratio to SYSCLKOUT
	EPwm6Regs.TBCTL.bit.CLKDIV = TB_DIV4;

	EPwm6Regs.TBPHS.half.TBPHS = 0; // Set Phase register to zero
	EPwm6Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Symmetrical mode
	EPwm6Regs.TBCTL.bit.PHSEN = TB_ENABLE; // Slave module
	EPwm6Regs.TBCTL.bit.PRDLD = TB_SHADOW;
	EPwm6Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_IN; // sync flow-through
	EPwm6Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;
	EPwm6Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
	EPwm6Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; // load on CTR=Zero
	EPwm6Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO; // load on CTR=Zero
	EPwm6Regs.AQCTLA.bit.CAU = AQ_SET; // set actions for EPWM4A
	EPwm6Regs.AQCTLA.bit.CAD = AQ_CLEAR;
	EPwm6Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE; // enable Dead-band module
	EPwm6Regs.DBCTL.bit.POLSEL = DB_ACTV_HIC; // Active Hi complementary
	EPwm6Regs.DBFED = 50; // FED = 50 TBCLKs
	EPwm6Regs.DBRED = 50; // RED = 50 TBCLKs

 // initializing the CMPA register
	EPwm1Regs.CMPA.half.CMPA = 10; // adjust duty for output EPWM1A
	EPwm2Regs.CMPA.half.CMPA = 10; // adjust duty for output EPWM2A
	EPwm3Regs.CMPA.half.CMPA = 10; // adjust duty for output EPWM3A
	//EPwm4Regs.CMPA.half.CMPA = 10;
	//EPwm5Regs.CMPA.half.CMPA = 10;
	//EPwm6Regs.CMPA.half.CMPA = 10;

	//configure interrupt from the pwm module
	EPwm1Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO; // Select INT on Zero event
	EPwm1Regs.ETSEL.bit.INTEN = 1; // Enable INT
	EPwm1Regs.ETPS.bit.INTPRD = ET_1ST; // Generate INT on 1st event

	// Interrupts that are used in this example are re-mapped to
	// ISR functions found within this file.
	EALLOW; // This is needed to write to EALLOW protected registers
	PieVectTable.EPWM1_INT = &epwm1_isr();
	EDIS; // This is needed to disable write to EALLOW protected registers

	// Enable CPU INT3 which is connected to EPWM1-3 INT:
	 IER |= M_INT3;
	// Enable EPWM INTn in the PIE: Group 3 interrupt 1-3
	 PieCtrlRegs.PIEIER3.bit.INTx1 = 1;
	// PieCtrlRegs.PIEIER3.bit.INTx2 = 1;
	// PieCtrlRegs.PIEIER3.bit.INTx3 = 1;

	// Enable global Interrupts and higher priority real-time debug events:
	 EINT; // Enable Global interrupt INTM
	 ERTM; // Enable Global realtime interrupt DBGM

}
//===

interrupt void epwm1_isr(void)
{

 //interrupt generated at the zero event of the pwm counter
 // Clear INT flag for this timer
 EPwm1Regs.ETCLR.bit.INT = 1;
 //Position & Speed calculation from rotary encoder
 Calc_SPEED();

 // To generate reference speed
 ramp_final=speed_ref;
 speed_reference();

 //acquire phase A and B currents and phase voltages
 adc_example();

 //do clarke transformation
 clarke();
 // actual stator flux calculation
 actual_flux();
 // Electromagnetic torque produced is calculated
 motor_torque();
 // Sector segregation
 sector();

[bookmark: _GoBack] //pi controller for speed
 pi_controller();

 // Three level hysteresis controller for Torque error
 T_hysteresis();

 // Two level hysteresis controller for flux error
 f_hysteresis();

 // Switching Table for inverter voltage vectors
 lookup_table();

 // Acknowledge this interrupt to receive more interrupts from group 3
 PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;

 EPwm1Regs.CMPA.half.CMPA =
 EPwm2Regs.CMPA.half.CMPA =
 EPwm3Regs.CMPA.half.CMPA =
 EPwm4Regs.CMPA.half.CMPA =
 EPwm5Regs.CMPA.half.CMPA =
 EPwm6Regs.CMPA.half.CMPA =
}
//===
void clarke(void)
{
 // abc to dq transformation
 ids=ias-(0.5*ibs)-(0.5*ics);
 iqs=0.5*sqrt(3)*(ibs-ics);

 Vds=Vas-(0.5*Vbs)-(0.5*Vcs);
 Vqs=0.5*sqrt(3)*(Vbs-Vcs);
}
//===
void inv_clarke(void)
{
 //dc to abc transformation
 ias=(2/3)*ids;
 ibs=(-1/3)*ids+(1/sqrt(3))*iqs;
 ics=(-1/3)*ids-(1/sqrt(3))*iqs;
}
//===
void actual_flux(void)
{
 // integrating (Vs-is*Rs) to obtain stator flux
 float i,j,low,up,d_flux,q_flux;
 float d_sum=0;
 float q_sum=0;
 up=0.632; // upper limit of integration
 if(low>up)
 {
 i=low;
 low=up;
 up=i;
 }

 for(i=low;i<up;i=i+(up-low)/N)
 {
 d_flux=Vds-ids*Rs;
 d_sum=d_sum+d_flux*(up-low)/N;
 }
 D_ds=d_sum; // Direct component of stator flux

 for(j=low;j<up;i=j+(up-low)/N)
 {
 q_flux=Vqs-iqs*Rs;
 q_sum=q_sum+q_flux*(up-low)/N;
 }
 D_qs=q_sum; // Quadrature component of stator flux
 square=pow(D_ds,2)+pow(D_qs,2);
 D_act=sqrt(square); // Actual stator flux

 theta=atan2(D_qs,D_ds);

}
//===
void motor_torque(void)
{
 // Tm= (2/3)*(p/2)*(iqs*D_ds-ids*D_qs) but D_qs=0 for stator flux orientation
 Tm= (2/3)*(p/2)*iqs*D_ds;
 Te=Tm-T_load;
}
//===
void sector(void)
{
 theta=theta*(180/pi);
 if((theta>-30)&&(theta<30))
 sec = 1;
 else if((theta>30)&&(theta<90))
 sec = 2;
 else if((theta>90)&&(theta<150))
 sec = 3;
 else if((theta>150)&&(theta<=180)||(theta<-150)&&(theta>=-180))
 sec = 4;
 else if((theta>-150)&&(theta<-90))
 sec = 5;
 else if((theta>-90)&&(theta<-30))
 sec = 6;
}
//===
void Calc_SPEED(void)
{
 // Read from the on board rotary encoder (short J9, J10)
 // Or external rotary encoder connected to J2 (open J9, J10)
 // For forward or clockwise rotation, QEPA signal leads QEPB signal
 // QEPA pin provides the clock input
 // QEPB pin provides the direction input
}
void speed_reference(void)
{
 int i=0;
 for(i=0;i<ramp_final;i++)
 {
 ramp_count++;
 }
}
//===
void pi_controller(void)
{
 err_speed=speed_ref-wr;
 prop=Kp*err_speed;
 i_temp=i_temp+err_speed;

 // if-else statements are used to limit the accumulated integral term by setting upper and lower thresholds
 if(i_temp>i_max)
 i_temp=i_max;
 else if(i_temp<i_min)
 i_temp=i_min;
 // Integral term is then calculated by multiplying the Ki constant with the accumulated integral value
 integral=Ki*i_temp;
 PI_out=prop+integral;
}
//===
void T_hysteresis(void)
{
 err_t=PI_out-Te;
 if(err_t>0.1)
 Ht=1;
 else if(err_t<-0.1)
 Ht=-1;
 else if((Ht==1)&&(0<err_t)&&(err_t<0.1))
 Ht=1;
 else if((Ht==-1)&&(0<err_t)&&(err_t<0.1))
 Ht=0;
 else if((Ht==-1)&&(-0.1<err_t)&&(err_t<0))
 Ht=-1;
 else if((Ht==1)&&(-0.1<err_t)&&(err_t<0))
 Ht=0;
}
//===
void f_hysteresis(void)
{
 err_flux=D_ref-D_act;

 if(err_flux>0.000316)
 Hd=1;
 else if(err_flux<-0.000316)
 Hd=-1;
}
//===
void lookup_table(void)
{
 out=0;
 // Switching of 9 voltage vectors V0,V1,V2,V3,V4,V5,V6,V7

 if ((Hd==1) && (Ht==1))
 {
	 temp[0]=2;
	 temp[1]=3;
	 temp[2]=4;
	 temp[3]=5;
	 temp[4]=6;
	 temp[5]=1;
 }
 // active voltage vectors = {V2,V3,V4,V5,V6,V1};

 else if ((Hd==1) && (Ht==0))
 {
	 temp[0]=7;
	 temp[1]=0;
	 temp[2]=7;
	 temp[3]=0;
	 temp[4]=7;
	 temp[5]=0;
 }
 // zero voltage vectors = {V7,V0,V7,V0,V7,V0};

 else if ((Hd==1) && (Ht==-1))
 {
	 temp[0]=6;
	 temp[1]=1;
	 temp[2]=2;
	 temp[3]=3;
	 temp[4]=4;
	 temp[5]=5;
 }
 // active voltage vectors = {V6,V1,V2,V3,V4,V5};

 else if ((Hd==-1) && (Ht==1))
 {
	 temp[0]=3;
	 temp[1]=4;
	 temp[2]=5;
	 temp[3]=6;
	 temp[4]=1;
	 temp[5]=2;
 }
 // active voltage vectors = {V3,V4,V5,V6,V1,V2};

 else if ((Hd==-1) && (Ht==0))
 {
 	 temp[0]=0;
 	 temp[1]=7;
 	 temp[2]=0;
 	 temp[3]=7;
 	 temp[4]=0;
 	 temp[5]=7;
 }
 // zero voltage vectors = {V0,V7,V0,V7,V0,V7};

 else if ((Hd==-1) && (Ht==-1))
 {
 	 temp[0]=5;
 	 temp[1]=6;
 	 temp[2]=1;
 	 temp[3]=2;
 	 temp[4]=3;
 	 temp[5]=4;
 }
 // active voltage vectors = {V5,V6,V1,V2,V3,V4};

 else
 {
 	 temp[0]=7;
 	 temp[1]=0;
 	 temp[2]=7;
 	 temp[3]=0;
 	 temp[4]=7;
 	 temp[5]=0;
 }
 // zero voltage vectors = {V7,V0,V7,V0,V7,V0};

 // According to the sector, the voltage vector is selected using look-up table
 // The selected voltage vector is given to variable 'out'
 switch (sec)
 {
 case 1:
 { out=temp[0];
 break;
 }
 case 2:
 { out=temp[1];
 break;
 }
 case 3:
 { out=temp[2];
 break;
 }
 case 4:
 { out=temp[3];
 break;
 }
 case 5:
 { out=temp[4];
 break;
 }
 default:
 out=temp[5];

 }

 // 'out' is a variable storing each element of array 'temp'.
 switch(out)
 {
 case 1:
 { // pulses for phases A,B,C = {1,0,0};
 	pulse[0]=1;
 pulse[1]=0;
 	pulse[2]=0;
 break;
 }
 case 2:
 { // pulses for phases A,B,C = {1,1,0};
 	pulse[0]=1;
 	pulse[1]=1;
 	pulse[2]=0;
 break;
 }
 case 3:
 { // pulses for phases A,B,C = {0,1,0};
 pulse[0]=0;
 pulse[1]=1;
 pulse[2]=0;
 break;
 }
 case 4:
 { // pulses for phases A,B,C = {0,1,1};
 	pulse[0]=0;
 	pulse[1]=1;
 	pulse[2]=1;
 break;
 }
 case 5:
 { // pulses for phases A,B,C = {0,0,1};
 	pulse[0]=0;
 	pulse[1]=0;
 	pulse[2]=1;
 break;
 }
 case 6:
 { // pulses for phases A,B,C = {1,0,1};
 	 pulse[0]=1;
 	 pulse[1]=0;
 	 pulse[2]=1;
 break;
 }
 case 7:
 { // pulses for all the phases = {1,1,1};
 	 pulse[0]=1;
 	 pulse[1]=1;
 	 pulse[2]=1;
 break;
 }
 default:
 { // no pulse given
 	 pulse[0]=0;
 	 pulse[1]=0;
 	 pulse[2]=0;
 }
 }
 // Switching pulses for phase-A
 Sa1=pulse[0];
 Sa2=1-Sa1;

 // Switching pulses for phase-B
 Sb1=pulse[1];
 Sb2=1-Sb1;

 // Switching pulses for phase-C
 Sc1=pulse[2];
 Sc2=1-Sc1;
}
//===
// Initalize the SCI FIFO
void scib_fifo_init(void)
{
 ScibRegs.SCIFFTX.all=0xE040;
 ScibRegs.SCIFFRX.all=0x204f;
 ScibRegs.SCIFFCT.all=0x0;

}
//===
// Transmit a character from the SCI
void scib_xmit(int a)
{
 while (ScibRegs.SCIFFTX.bit.TXFFST != 0) {}
 ScibRegs.SCITXBUF=a;

}
//===
void scib_echoback_init(void)
{
 //Note: Clocks were turned on to the SCIA peripheral
 //in the InitSysCtrl() function

 ScibRegs.SCICCR.all =0x0007; // 1 stop bit, No loopback
 // No parity,8 char bits,
 // async mode, idle-line protocol
 ScibRegs.SCICTL1.all =0x0003; // enable TX, RX, internal SCICLK,
 // Disable RX ERR, SLEEP, TXWAKE
 ScibRegs.SCICTL2.all =0x0003;
 ScibRegs.SCICTL2.bit.TXINTENA =1;
 ScibRegs.SCICTL2.bit.RXBKINTENA =1;
 /*
 ScibRegs.SCIHBAUD =0x0001; // 9600 baud @LSPCLK = 37.5MHz.
 ScibRegs.SCILBAUD =0x00E7;*/

 ScibRegs.SCIHBAUD =0; // 38700 baud @LSPCLK = 37.5MHz.
 ScibRegs.SCILBAUD =121;
 ScibRegs.SCICTL1.all =0x0023; // Relinquish SCI from Reset
}
//===
void test_rs232(void)
{
 //add 1 to the received data and send back

 for(;;)
 {
 // Wait forinput data
 while(ScibRegs.SCIFFRX.bit.RXFFST !=1) { }// wait for XRDY =1 for empty state

 // Get character
 ReceivedChar = ScibRegs.SCIRXBUF.all;
 //add 1 and send back
 scib_xmit(ReceivedChar+1);
 }
}
//===

