
Copyright © 2022
Texas Instruments Incorporated

USER’S GUIDE

F2802x Firmware Development Package

Copyright
Copyright © 2022 Texas Instruments Incorporated. All rights reserved. Other names and brands may be claimed as the property of others.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semicon-
ductor products and disclaimers thereto appears at the end of this document.

Texas Instruments
13905 University Boulevard
Sugar Land, TX 77479
http://www.ti.com/c2000

Revision Information
This is version 3.05.00.00 of this document, last updated on Thu Mar 3 16:37:09 IST 2022.

2 Thu Mar 3 16:37:09 IST 2022

Table of Contents

Table of Contents
Copyright . 2

Revision Information . 2

1 Introduction . 5

2 Driver Library and Header File Quickstart . 7
2.1 Device Support . 7
2.2 Introduction . 7
2.3 Understanding The Peripheral Bit-Field Structure Approach . 10
2.4 Peripheral Example Projects . 10
2.5 Steps for Incorporating the Driver Library and/or Header Files . 20
2.6 Troubleshooting Tips and Frequently Asked Questions . 25
2.7 F2802x bit field headers API to F2802x driver library API code suggestions 28
2.8 Packet Contents . 30
2.9 Detailed Revision History . 36

3 Piccolo F2802x Example Applications . 41
3.1 ADC Start-Of-Conversion (SOC) . 42
3.2 ADC Temperature Sensor . 42
3.3 ADC Temperature Sensor Conversion . 42
3.4 LaunchPad Demo . 42
3.5 CPU Timer . 43
3.6 ECAP Asymmetric PWM . 43
3.7 ECAP Capture EPwm3 . 43
3.8 PWM Blanking Window . 43
3.9 PWM Digital Compare Event Trip Zone . 44
3.10 PWM Trip Zone Test with Comparator Inputs . 45
3.11 PWM deadband generation . 45
3.12 PWM Timer Interrupt . 46
3.13 PWM Trip Zone . 46
3.14 Action Qualifier Module Upcount mode . 47
3.15 Action Qualifier Module - Using up/down count . 47
3.16 External Interrupts . 48
3.17 EPwm interrupt from Flash . 48
3.18 GPIO Setup . 49
3.19 GPIO Toggle . 49
3.20 High Resolution PWM . 50
3.21 High Resolution PWM SFO Duty Cycle Control . 50
3.22 High Resolution PWM SFO Period Control . 51
3.23 High Resolution PWM SFO Period (Up Count) Control . 52
3.24 High Resolution PWM SFO Period (Up-Down Count) Control . 53
3.25 High Resolution PWM Slider . 54
3.26 LED BoosterPack Capacitive Touch Demo . 55
3.27 LED BoosterPack PC GUI Demo . 55
3.28 Device Halt Mode and Wakeup . 55
3.29 Device Idle Mode and Wakeup . 56
3.30 Standby Mode and Wakeup . 56
3.31 Internal Oscillator Compensation . 56
3.32 SCI Echoback . 57
3.33 SCI FIFO Digital Loop Back . 57
3.34 SCI Digital Loop Back with Interrupts . 57

Thu Mar 3 16:37:09 IST 2022 3

Table of Contents

3.35 SPI Digital Loop Back . 58
3.36 SPI Digital Loop Back with Interrupts . 58
3.37 Software Prioritized Interrupts . 59
3.38 LED Blink . 59
3.39 Watchdog Interrupt . 60

A Interrupt Service Routine Priorities . 61
A.1 Interrupt Hardware Priority Overview . 61
A.2 F2802x Interrupt Priorities . 62
A.3 Software Prioritization of Interrupts - The DSP28 Example . 63

B Internal Oscillator Compensation Functions . 67
B.1 Introduction . 67
B.2 Oscillator Compensation Functions Available in the Header Files and Peripheral Examples Package 69

IMPORTANT NOTICE . 72

4 Thu Mar 3 16:37:09 IST 2022

Introduction

1 Introduction
The Texas Instruments® F2802x Firmware Development Package is a collection of device header
files, common source files, helper libraries and example applications for the 2802x line of devices
in the Piccolo portfolio.

The package comes with a complete set of example projects that demonstrate the basics of getting
started with a Piccolo device and working with its different peripheral modules.

Chapter 2 talks about how the software package is structured, how the header files are organized
and used in the example applications. The peripheral bit-field structure approach is presented
in detail along with step-by-step instructions on how to use it in your code. A complete revision
history of the header files is provided at the end of the chapter.

Chapter 3 covers all the examples provided in the development package; what each example does,
its setup and observation procedures and, in a few cases, the mathematics involved in setting up
control values for peripherals.
The examples for Piccolo(2802x) can be found in the F2802x\examples directory. As users move
past evaluation, and get started developing their own application, TI recommends they maintain a
similar project directory structure to that used in the example projects.

The Appendix covers the following topics

1. Appendix A - describes the default hardware prioritizing of Interrupt Software Routines and
how it can be over-ridden in software.

2. Appendix B - Each factory programmed device from TI has compensation routines in OTP
memory for oscillator drift due to temperature fluctuations. These routines are described here.

Thu Mar 3 16:37:09 IST 2022 5

Introduction

6 Thu Mar 3 16:37:09 IST 2022

Driver Library and Header File Quickstart

2 Driver Library and Header File Quickstart
Device Support .7
Introduction . 7
Understanding The Peripheral Bit-Field Structure Approach . 10
Example Projects . 10
Steps for Incorporating the Header Files and Sample Code . 20
Troubleshooting Tips & Frequently Asked Questions . 25
F2802x bit field headers API to F2802x driver library API code suggestions . 28
Packet Contents . 30
Detailed Revision History . 36

2.1 Device Support

This software package supports 2802x devices. This includes the following: TMS320F28022,
TMS320F28023, TMS320F28026, and TMS320F28027. Throughout this document,
TMS320F28022, TMS320F28023, TMS320F28026, and TMS320F28027 are abbreviated as
F28022, F28023, F28026, and F28027 respectively.

2.2 Introduction

The 2802x C/C++ peripheral header files, driver library, and example projects facilitate writing in
C/C++ Code for the Texas Instruments TMS320x2802x devices. The code can be used as a learn-
ing tool or as the basis for a development platform depending on the current needs of the user.

1. Learning Tool
This download includes several example Code Composer StudioTM v 6.0+ 1 projects for a
2802x development platform.
These examples demonstrate the steps required to initialize the device and utilize the on-chip
peripherals. The provided examples can be copied and modified giving the user a platform to
quickly experiment with different peripheral configurations.
These projects can also be migrated to other devices by simply changing the memory alloca-
tion in the linker command file.

2. Development Platform
The peripheral header files can easily be incorporated into a new or existing project to provide
a platform for accessing the on-chip peripherals using C or C++ code. In addition, the user
can pick and choose functions from the provided code samples as needed and discard the
rest.

To get started this document provides the following information:

1. Overview of the bit-field structure approach used in the 2802x C/C++ peripheral header files.

2. Overview of the included peripheral example projects.

3. Steps for integrating the peripheral header files into a new or existing project.
1Code Composer Studio is a trademark of Texas Instruments (www.ti.com).

Thu Mar 3 16:37:09 IST 2022 7

Driver Library and Header File Quickstart

4. Troubleshooting tips and frequently asked questions.

5. Migration tips for users moving from the 2802x header files to the 2802x header files.

Finally, this document does not provide a tutorial on writing C code, using Code Composer Studio,
or the C28x Compiler and Assembler. It is assumed that the reader already has a 2802x hardware
platform setup and connected to a host with Code Composer Studio installed. The user should
have a basic understanding of how to use Code Composer Studio to download code through JTAG
and perform basic debug operations.

2.2.1 Revision History(Summary)

1. Version 3.02.00.00

This version contains header, source, and example file bug fixes.

2. Version 3.01.00.00

This version adds LaunchPad examples.

3. Version 3.00.00.00

This version contains header, source, and example file updates and bug fixes for
C2000Ware Package. Some files have been relocated in this revision.

4. Version 2.30

This version contains header, source, and example file bug fixes. Some files have been
relocated in this revision.

5. Version 2.22

This version contains header files and source file bug fixes. Also, cleans up CCS example
warnings.

6. Version 2.21

This version added a F28027 Flash Kernel Example.

7. Version 2.20

This version contains header files, source files, and examples bug fixes and minor en-
hancements.

8. Version 2.10

This version of the 2802x header files and examples contains bug fixes and minor en-
hancements.

2.2.2 Directory Structure

As installed, the 2802x C/C++ Header Files and Peripheral Examples is partitioned into a well-
defined directory structure(see figure 2.1).

Table 2.1 describes the contents of the main directories used by 2802x header files and peripheral
examples:

8 Thu Mar 3 16:37:09 IST 2022

Driver Library and Header File Quickstart

Figure 2.1: F2802x Main Directory Structure

Directory Description
<base> Base install directory
<base>docs Documentation including the revision history from the previous

release.
<base>headers Files required to incorporate the peripheral header files into a

project. The header files use the bit-field structure approach de-
scribed in Section 2.3. Integrating the header files into a new or
existing project is described in Section 2.5.

<base>examples\drivers Example Code Composer Studio v6 projects. These example
projects illustrate how to configure many of the on-chip periph-
erals using the driver libraries. An overview of the examples is
given in Section 2.4.

<base>examples\structs Example Code Composer Studio v6 projects. These example
projects illustrate how to configure many of the on-chip peripher-
als using the bit structured headers. An overview of the examples
is given in Section 2.4.

<base>common Drivers and common source files shared across example projects
to illustrate how to perform tasks using header file approach. Use
of these files is optional, but may be useful in new projects. A list
of these files is in Section 2.8.

Table 2.1: DSP2802x Main Directory Structure

Under the F2802x\headers and F2802x\common directories the source files are further broken
down into sub-directories each indicating the type of file. Table 2.2 lists the sub-directories and
describes the types of files found within each:

Thu Mar 3 16:37:09 IST 2022 9

Driver Library and Header File Quickstart

Sub-Directory Description
headers\cmd Linker command files that allocate the bit-field structures de-

scribed in Section 2.3.
headers\source Source files required to incorporate the header files into a new or

existing project.
headers\include Header files for each of the on-chip peripherals.
common\ccs Driver library (.lib) and project files for the driver library that is

used by the peripheral examples.
common\cmd Example memory command files that allocate memory on the

devices.
common\include Driver and common .h files that are used by the peripheral exam-

ples.
common\source Driver and common .c files that are used by the peripheral exam-

ples.
common\targetConfigs Target Configuration file for this device.

Table 2.2: F2802x Sub-Directory Structure

2.3 Understanding The Peripheral Bit-Field Structure Ap-
proach

The following application note includes useful information regarding the bit-field peripheral structure
approach used by the header files and examples. This method is compared to traditional #define
macros and topics of code efficiency and special case registers are also addressed. The informa-
tion in this application note is important to understand the impact using bit fields can have on your
application code.

Programming TMS320x28xx and 28xxx Peripherals in C/C++ (SPRAA85)

2.4 Peripheral Example Projects

This section describes how to get started with and configure the peripheral examples included in
the 2802x Driver Library, Header Files, and Peripheral Examples software package.

2.4.1 Getting Started in Code Composer Studio v6.0+

To get started, follow these steps to load the 32-bit CPU-Timer example. Other examples are set-up
in a similar manner.

1. Have a hardware platform connected to a host with Code Composer Studio installed
NOTE: As supplied, the 2802x example projects are built for the 28027 device. If you are
using another 2802x device, the memory definition in the linker command file (.cmd)
will need to be changed and the project rebuilt.

2. Open the example project Each example has its own project directory which is “im-
ported”/opened in Code Composer Studio v6. To open the 2802x CPU-Timer example project
directory, follow the following steps:

10 Thu Mar 3 16:37:09 IST 2022

Driver Library and Header File Quickstart

In Code Composer Studio v 6.x: Project->Import Existing CCS/CCE Eclipse Project.
Next to “Select Root Directory”, browse to the CPU Timer example directory: i.e.
f2802x\examples\structs\cpu_timer. Remember to unselect the "Copy projects into
workspace"" box. Select the Finish button. This will import/open the project in the CCStu-
dio v6 C/C++ Perspective project window.

3. Edit F2802x_Device.h Edit the F2802x_Device.h file and make sure the appropriate device
is selected. By default the 28027 is selected.

//
// F2802x_Device.h
//

//
// Defines
//
#define TARGET 1

//
// User To Select Target Device:
//
#define DSP28_28022PT 0
#define DSP28_28022DA 0

#define DSP28_28023PT 0
#define DSP28_28023DA 0

#define DSP28_28026PT 0
#define DSP28_28026DA 0

#define DSP28_28027PT TARGET
#define DSP28_28027DA 0

4. Edit F2802x_Examples.h Edit F2802x_Examples.h and specify the clock rate, the PLL control
register value (PLLCR and DIVSEL). These values will be used by the examples to initialize
the PLLCR register and DIVSEL bits.
The default values will result in a 50MHz SYSCLKOUT frequency.

//
// common\include\F2802x_Examples.h
//

//
// Specify the PLL control register (PLLCR) and divide
// select (DIVSEL) value.
//

//#define DSP28_DIVSEL 0 // Enable /4 for SYSCLKOUT
//#define DSP28_DIVSEL 1 // Disable /4 for SYSCKOUT
#define DSP28_DIVSEL 2 // Enable /2 for SYSCLKOUT
//#define DSP28_DIVSEL 3 // Enable /1 for SYSCLKOUT

//
// Uncomment for 50 Mhz devices [50 Mhz = (10MHz * 10)/2]

Thu Mar 3 16:37:09 IST 2022 11

Driver Library and Header File Quickstart

//
#define DSP28_PLLCR 10

//#define DSP28_PLLCR 9

//
// Uncomment for 40 MHz devices [40 MHz = (10MHz * 8)/2]
//
//#define DSP28_PLLCR 8
//#define DSP28_PLLCR 7
//#define DSP28_PLLCR 6
//#define DSP28_PLLCR 5
//#define DSP28_PLLCR 4
//#define DSP28_PLLCR 3
//#define DSP28_PLLCR 2
//#define DSP28_PLLCR 1
//#define DSP28_PLLCR 0 // PLL is bypassed in this mode
//

In F2802x_Examples.h, also specify the SYSCLKOUT rate. This value is used to scale a delay
loop used by the examples. The default value is for a 50 MHz SYSCLKOUT.

//
// common\include\F2802x_Examples.h
//
...
#define CPU_RATE 12.500L // for a 80MHz CPU clock speed (SYSCLKOUT)
//#define CPU_RATE 16.667L // for a 60MHz CPU clock speed (SYSCLKOUT)
//#define CPU_RATE 20.000L // for a 50MHz CPU clock speed (SYSCLKOUT)
//#define CPU_RATE 25.000L // for a 40MHz CPU clock speed (SYSCLKOUT)
...

5. Review the comments at the top of the main source file: Example_2802xCpuTimer.c A
brief description of the example and any assumptions that are made and any external hard-
ware requirements are listed in the comments at the top of the main source file of each exam-
ple. In some cases you may be required to make external connections for the example to work
properly.

6. Perform any hardware setup required by the example Perform any hardware setup indi-
cated by the comments in the main source. The CPU-Timer example only requires that the
hardware be setup for “Boot to SARAM” mode. Other examples may require additional hard-
ware configuration such as connecting pins together or pulling a pin high or low. Table 2.3
shows a listing of the boot mode pin settings for your reference. Table 2.4 and Table 2.5 list
the EMU boot modes (when emulator is connected) and the Get Mode boot mode options
(mode is programmed into OTP) respectively. Refer to the documentation for your hardware
platform for information on configuring the boot mode pins. For more information on the 2802x
boot modes refer to the device specific Boot ROM chapter in the Technical Reference Manual.
When the emulator is connected for debugging: TRSTn = 1, and therefore the device is in
EMU boot mode. In this situation, the user must write the key value of 0x55AA to EMU_KEY
at address 0x0D00 and desired EMU boot mode value to EMU_BMODE at 0x0D01 via the
debugger window according to Table 2.4.
When the emulator is not connected for debugging: SCI or Parallel I/O boot mode can be
selected directly via the GPIO pins, or OTP_KEY at address 0x3D7BFB and OTP_BMODE at
address 0x3D7BFE can be programmed for the desired boot mode per Table 2.5.

12 Thu Mar 3 16:37:09 IST 2022

Driver Library and Header File Quickstart

GPIO37 GPIO34 TRSTn Mode
TDO CMP2OUT

X X 1 EMU Mode
0 0 0 Parallel I/O
0 1 0 SCI
1 0 0 Wait
1 1 0 “Get Mode”

Table 2.3: 2802x Boot Mode Settings

EMU_KEY EMU_BMODE Boot Mode Selected
0x0D00 0x0D01

!= 0x55AA x Wait

0x55AA

0x0000 Parallel I/O
0x0001 SCI
0x0002 Wait
0x0003 Get Mode
0x0004 SPI
0x0005 I2C
0x0006 OTP
0x000A Boot to RAM
0x000B Boot to FLASH
Other Wait

Table 2.4: 2802x EMU Boot Modes (Emulator Connected)

7. Build and Load the code
Once any hardware configuration has been completed, in Code Composer Studio v6, go to
Target->Debug Active Project.
This will open the “Debug Perspective” in CCSv6, build the project, load the .out file into the 28x
device, reset the part, and execute code to the start of the main function. By default, in Code
Composer Studio v6, every time Debug Active Project is selected, the code is automatically
built and the .out file loaded into the 28x device.

8. Run the example, add variables to the watch window or examine the memory contents
At the top of the code in the comments section, there should be a list of “Watch variables”.
To add these to the watch window, highlight them and right-click. Then select Add Watch
expression. Now variables of interest are added to the watch window.

9. Experiment, modify, re-build the example If you wish to modify the examples it is suggested
that you make a copy of the entire header file packet to modify or at least create a backup of
the original files first. New examples provided by TI will assume that the base files are as
supplied.
Sections 2.4.2 and 2.4.3 describe the structure and flow of the examples in more detail.

10. When done, delete the project from the Code Composer Studio v6 workspace
Go to View->C/C++ Projects to open up your project view. To remove/delete the project from
the workspace, right click on the project’s name and select delete. Make sure the Do not
delete contents button is selected, then select Yes. This does not delete the project itself. It
merely removes the project from the workspace until you wish to open/import it again.
The examples use the header files in the F2802x\headers directory and shared source in the
F2802x\common directory. Only example files specific to a particular example are located
within the example directory.

Thu Mar 3 16:37:09 IST 2022 13

Driver Library and Header File Quickstart

OTP_KEY OTP_BMODE Boot Mode Selected
0x3D7BFB 0x3D7BFE
!= 0x55AA x Get Mode - Flash

0x55AA

0x0001 Get Mode - SCI
0x000B Get Mode - Flash
0x0004 Get Mode - SPI
0x0005 Get Mode - I2C
0x0006 Get Mode - OTP
Other Get Mode - Flash

Table 2.5: 2802x GET Boot Modes (Emulator Disconnected)

NOTE: Most of the example code included uses the driver library, but shows the equiv-
alent bit field approach in the comments. This is done to help the user learn how to use
the peripheral and device. In addition, the example projects have the compiler optimizer
turned off to aid in debugging. The user can change the compiler settings to turn on
the optimizer if desired.

2.4.2 Example Program Structure

Figure 2.2: Example Program Structure

Each of the example programs has a very similar structure. This structure includes unique source
code, shared driver library, and linker command files.

//
// examples\cpu_timer\Example_2802xCpuTimer.c
//
#include "DSP28x_Project.h" // Device Headerfile and Examples Include File

DSP28x_Project.h
This header file includes F2802x_Device.h and F2802x_Examples.h. Because the name is
device-generic, example/custom projects can be easily ported between different device header
files. This file is found in the <base>common\include directory.

F2802x_Device.h
This header file is required to use the header files. This file includes all of the required periph-
eral specific header files and includes device specific macros and typedef statements. This
file can also be used to include all of the driver library header files by simply defining IN-
CLUDE_ALL before this files is included (or in the case that DSP28x_Project.h is used, before
that file is included). This file is found in the <base>headers\include directory.

14 Thu Mar 3 16:37:09 IST 2022

Driver Library and Header File Quickstart

F2802x_Examples.h
This header file defines parameters that are used by the example code. This file is not required
to use just the F2802x peripheral header files but is required by some of the common source
files. This file is found in the <base>common\include directory.

2.4.2.1 Source Code

Each of the example projects consists of source code that is unique to the example as well as
source code that is common or shared across examples.

F2802x_GlobalVariableDefs.c
Any project that uses the F2802x peripheral header files must include this source file IF
THEY ARE NOT USING THE DRIVER LIBRARY. In this file are the declarations for the pe-
ripheral register structure variables and data section assignments. This file is found in the
<base>headers\source directory.

Example specific source code
Files that are specific to a particular example have the prefix Example_2802x in their filename.
For example Example_2802xCpuTimer.c is specific to the CPU Timer example and not used
for any other example. Example specific files are located in the <base>\examples\<example>
directory.

driverlib.lib
This file contains the objects for all of the driver library functions. This file must be linked into
the project if the project uses the driver library.

2.4.2.2 Linker Command Files

Each example uses two linker command files. These files specify the memory where the linker will
place code and data sections. One linker file is used for assigning compiler generated sections
to the memory blocks on the device while the other is used to assign the data sections of the
peripheral register structures used by the F2802x peripheral header files.

Memory block linker allocation
The linker files shown in Table 2.6 are used to assign sections to memory blocks on the device.
These linker files are located in the <base>\common\cmd directory. Each example will use one
of the following files depending on the memory used by the example.

Thu Mar 3 16:37:09 IST 2022 15

Driver Library and Header File Quickstart

Memory Linker Command Location Description
File Examples
28022_RAM_lnk.cmd F2802x\common\cmd 28022 SARAM memory linker com-

mand file.
28023_RAM_lnk.cmd F2802x\common\cmd 28023 SARAM memory linker com-

mand file.
28026_RAM_lnk.cmd F2802x\common\cmd 28026 SARAM memory linker com-

mand file.
28027_RAM_lnk.cmd F2802x\common\cmd 28027 SARAM memory linker com-

mand file.
F2802x_generic_ram.cmd F2802x\common\cmd Generic SARAM memory linker com-

mand file.
F28022.cmd F2802x\common\cmd F28022 memory linker command file.

Includes all Flash, OTP and CSM
password protected memory locations.

F28023.cmd F2802x\common\cmd F28023 memory linker command file.
F28026.cmd F2802x\common\cmd F28026 memory linker command file.
F28027.cmd F2802x\common\cmd F28027 memory linker command file.
F2802x_generic_flash.cmd F2802x\common\cmd Generic flash memory linker command

file.

Table 2.6: Included Memory Linker Command Files

Header file structure data section allocation
Any project that uses the header file peripheral structures must include a linker command file
that assigns the peripheral register structure data sections to the proper memory location.
These files are described in Table 2.7.

Header File Linker Location Description
Command File
F2802x_Headers_BIOS.cmd F2802x\headers\cmd Linker .cmd file to assign the header

file variables in a BIOS project. This file
must be included in any BIOS project
that uses the header files. Refer to sec-
tion 2.5.2.

F2802x_Headers_nonBIOS.cmd F2802x\headers\cmd Linker .cmd file to assign the header
file variables in a non-BIOS project.
This file must be included in any non-
BIOS project that uses the header files.
Refer to section 2.5.2.

Table 2.7: F2802x Peripheral Header Linker Command File

2.4.3 Example Program Flow

All of the example programs follow a similar recommended flow for setting up a 2802x device.

16 Thu Mar 3 16:37:09 IST 2022

Driver Library and Header File Quickstart

Figure 2.3: Flow for Example Programs

2.4.4 Included Examples

See Chapter 3 for a complete listing and description of available examples

Thu Mar 3 16:37:09 IST 2022 17

Driver Library and Header File Quickstart

2.4.5 Executing the Examples From Flash

Most of the F2802x examples execute from SARAM in “boot to SARAM” mode. One example,
F2802x\examples\flash_f28027, executes from flash memory in “boot to flash” mode. This example
is the PWM timer interrupt example with the following changes made to execute out of flash:

1. Change the linker command file to link the code to flash
Remove 28027_RAM_lnk.cmd from the project and link one of the flash based linker files (ex:
F28027.cmd). These files are located in the <base>\common\cmd directory.

2. Link the F2802x\common\source\F2802x_CSMPasswords.asm to the project
This file contains the passwords that will be programmed into the Code Security Module (CSM)
password locations. Leaving the passwords set to 0xFFFF during development is recom-
mended as the device can easily be unlocked. For more information on the CSM refer to the
appropriate System Control and Interrupts chapter of the Technical Reference Manual.

3. Modify the source code to copy all functions that must be executed out of SARAM from
their load address in flash to their run address in SARAM
In particular, the flash wait state initialization routine must be executed out of SARAM. In the
F2802x, functions that are to be executed from SARAM have been assigned to the ramfuncs
section by compiler CODE_SECTION #pragma statements as shown in the example below.

//
// common\source\F2802x_SysCtrl.c
//
#pragma CODE_SECTION(InitFlash, "ramfuncs");

The ramfuncs section is then assigned to a load address in flash and a run address in SARAM
by the memory linker command file as shown below:

//
// common\include\F28027.cmd
//
SECTIONS
{

ramfuncs : LOAD = FLASHA,
RUN = RAML0,
LOAD_START(_RamfuncsLoadStart),
LOAD_END(_RamfuncsLoadEnd),
RUN_START(_RamfuncsRunStart),
LOAD_SIZE(_RamfuncsLoadSize),
PAGE = 0

}

The linker will create symbols for the block “ramfuncs”. These are described in the Table 2.8.

Address Symbol
Load start address RamfuncsLoadStart
Load end address RamfuncsLoadEnd
Run start address RamfuncsRunStart
Load Size RamfuncsLoadSize

Table 2.8: Linker Symbol assignment

18 Thu Mar 3 16:37:09 IST 2022

Driver Library and Header File Quickstart

These symbols can then be used to copy the functions from the Flash to SARAM using the C
library standard memcpy() function.
To perform this copy from flash to SARAM using the included example memcpy function:

(a) Include string.h at the top of the file.
NOTE: IF RUNNING FROM FLASH, PLEASE COPY OVER THE SECTION “ramfuncs”
FROM FLASH TO RAM PRIOR TO CALLING InitSysCtrl() or InitAdc(). THIS PRE-
VENTS THE MCU FROM THROWING AN EXCEPTION WHEN A CALL TO DELAY_US()
IS MADE.

(b) Add the following variable declaration to your source code to tell the compiler that these
variables exist. The linker command file will assign the address of each of these variables
as specified in the linker command file as shown in step 3. For the F2802x example code
this has is already done in F2802x_GlobalPrototypes.h.
//
// common\include\F2802x_GlobalPrototypes.h
//
extern Uint16 RamfuncsLoadStart;
extern Uint16 RamfuncsLoadEnd;
extern Uint16 RamfuncsRunStart;
extern Uint16 RamfuncsLoadSize;

(c) Modify the code to call the example memcpy function for each section that needs to be
copied from flash to SARAM.
//
// examples\Flash source file
//
memcpy(&RamfuncsRunStart, &RamfuncsLoadStart, (Uint32)&RamfuncsLoadSize);

4. Modify the code to call the flash initialization routine
This function will initialize the wait states for the flash and enable the Flash Pipeline mode.

//
// F2802x peripheral example .c file
//
InitFlash();

5. Set the required jumpers for “boot to Flash” mode The required jumper settings for each
boot mode are shown in Table 2.3, Table 2.4, and Table 2.5.

6. Program the device with the built code
In Code Composer Studio v6, when code is loaded into the device during debug, it automati-
cally programs to flash memory.
This can also be done using SDFlash available from Spectrum Digital’s website (Spectrum
Digital).
These tools will be updated to support new devices as they become available. Please check
for updates.

Thu Mar 3 16:37:09 IST 2022 19

http://www.spectrumdigital.com
http://www.spectrumdigital.com

Driver Library and Header File Quickstart

2.5 Steps for Incorporating the Driver Library and/or
Header Files

Follow these steps to incorporate the driver library into your own projects.

2.5.1 Before you begin

Before you include the driver library or header files into your own project, it is recommended that
you perform the following:

1. Load and step through an example project
Load and step through an example project to get familiar with the driver library. This is de-
scribed in Section 2.4.

2. Create a copy of the example files you want to use
F2802x\examples: 2802x fixed-point compiled example projects that use the driver files. Cre-
ate a copy of any of the example directories in this folder and work on the copied folder to
ensure the original is still there for reference purposes.

2.5.2 Including the F2802x Driver Library and Header Files

Including the F2802x driver library in your project will allow you to use the drivers for every peripheral
on the device, substantially decreasing the learning curve of this device. This guide also shows how
to include the header files in a project, but their use is discouraged in end application software.

To incorporate the drivers and or headers in a new or existing project perform the following steps:

1. Include the necessary driver header files
The F2802x_Device.h include file by default only includes the neccessary files to make use
of the peripheral bitfield structures. Include statements for all the driver header files may be
conditionally compiled in by defining the variable INCLUDE_ALL.

//
// User’s source file
//
#ifndef INCLUDE_ALL
#define INCLUDE_ALL
#endif

#include "F2802x_Device.h"

Another option is to #include “DSP28x_Project.h” in your source files, which in-turn includes
“F2802x_Device.h” and “F2802x_Examples.h”. Keep in mind that INCLUDE_ALL must still be
defined in order for F2802x_Device.h to bring in the driver headers. Due to the device-generic
nature of the file name, user code is easily ported between different device header files.

//
// User’s source file
//

20 Thu Mar 3 16:37:09 IST 2022

Driver Library and Header File Quickstart

#ifndef INCLUDE_ALL
#define INCLUDE_ALL
#endif

#include "DSP28x_Project.h"

Finally if the user doesn’t wish to include all of the driver headers in a particular source file
they may include each needed file individually.

//
// User’s source file
//
#include "common/include/adc.h"
#include "common/include/cpu.h"
#include "common/include/clk.h"

2. Edit F2802x_Device.h and select the target you are building for
In the below example, the file is configured to build for the 28027 device.

//
// headers\include\F2802x_Device.h
//
#define TARGET 1

//
// User To Select Target Device:
//
#define DSP28_28022PT 0
#define DSP28_28022DA 0

#define DSP28_28023PT 0
#define DSP28_28023DA 0

#define DSP28_28026PT 0
#define DSP28_28026DA 0

#define DSP28_28027PT TARGET
#define DSP28_28027DA 0

By default, the 28027 device is selected.

3. If you are not using the driver library, add the source file F2802x_GlobalVariableDefs.c
to the project. If you are using the driver library, the driver library includes the objects
from this source file.
This file is found in the f2802x\headers\source directory and includes:

Declarations for the variables that are used to access the peripheral registers.
Data section #pragma assignments that are used by the linker to place the variables in
the proper locations in memory.

4. Add the appropriate F2802x header linker command file to the project. As described in
Section 2.4, when using the F2802x header file approach, the data sections of the peripheral
register structures are assigned to the memory locations of the peripheral registers by the
linker.

Thu Mar 3 16:37:09 IST 2022 21

Driver Library and Header File Quickstart

To perform this memory allocation in your project, one of the following linker command files
located in f2802x\headers\cmd must be included in your project:

For non-DSP/BIOS2 projects: F2802x_Headers_nonBIOS.cmd
For DSP/BIOS projects: F2802x_Headers_BIOS.cmd

The method for adding the header linker file to the project depends on preference
Method #1:

Right-click on the project in the project window of the C/C++ Projects perspective.
Select Link Files to Project...
Navigate to the f2802x\headers\cmd directory on your system and select the desired .cmd
file.

Note: The limitation with Method #1 is that the path to <install direc-
tory>\headers\cmd\<cmd file>.cmd is fixed on your PC. If you move the installation
directory to another location on your PC, the project will “break” because it still expects
the .cmd file to be in the original location. Use Method #2 if you are using “linked
variables” in your project to ensure your project/installation directory is portable
across computers and different locations on the same PC. For more information, see:
Portable_Projects_in_CCSv6_for_C2000

Method #2:

Right-click on the project in the project window of the C/C++ Projects perspective.
Select New->File.
Click on the Advanced» button to expand the window.
Check the Link to file in the file system check-box.
Select the Variables... button. From the list, pick the linked variable associated with your
installation directory. (e.g. INSTALLROOT_2802X). For more information on linked vari-
ables and the macros.ini file, see: Portable_Projects_in_CCSv6_for_C2000
Click on the Extend... button. Navigate to the desired .cmd file and select OK.

5. If you intend to use the driver library, add the library file to your project. If you
would like to use the driver library you will need to add it to the project in much the
same way as you added a linker file in the previous step. The library file can be found
in f2802x/common/ccs/Debug and is called driverlib.lib. Note: Debug and Release con-
figurations of the driver library are available in its associated CCS project (found
in f2802x/common/ccs), but the two build configurations output their library file to
the same location. By default C2000Ware includes the debug configuration, but if the
library is rebuilt all of the example projects will use the driver library build configuration
that was last built.

6. Add the directory path to the F2802x device support files to your project
Code Composer Studio 6.x:
To specify the directory where the header files are located:

Open the menu: Project->Properties.
In the menu on the left, select “C/C++ Build”.
In the “Tool Settings” tab, Select “C2000 Compiler -> Include Options:”
In the “Add dir to #include search path (–include_path, -I)” window, select the “Add” icon
in the top right corner.

2DSP/BIOS is a trademark of Texas Instruments

22 Thu Mar 3 16:37:09 IST 2022

http://processors.wiki.ti.com/index.php/Portable_Projects#Portable_Projects_in_CCSv6
http://processors.wiki.ti.com/index.php/Portable_Projects#To_create_a_Linked_Resource_Path_variable_at_workspace_level_in_CCS_6.0.x:

Driver Library and Header File Quickstart

Select the “File system...” button and navigate to the directory path of
C2000Ware_version\device_support\f2802x\ on your system.

Figure 2.4: Adding device header file directories to the include search path

7. Additional suggested build options The following are additional compiler and linker options.
The options can all be set via the Project-> Properties->Tool Settings sub-menus.

C2000 Compiler
• -ml Select Runtime Model Options and check -ml Build for large memory model.

This setting allows data sections to reside anywhere within the 4M-memory reach of
the 28x devices.

• -pdr Select Diagnostic Options and check -pdr Issue non-serious warnings. The
compiler uses a warning to indicate code that is valid but questionable. In many
cases, these warnings issued by enabling -pdr can alert you to code that may cause
problems later on.

C2000 Linker
• -w Select Diagnostics and check -w Warn about output sections. This option will

alert you if any unassigned memory sections exist in your code. By default the linker
will attempt to place any unassigned code or data section to an available memory
location without alerting the user. This can cause problems, however, when the section
is placed in an unexpected location.

• -e Select Symbol Management and enter Program Entry Point -e Defines a
global symbol that specifies the primary entry point for the output module. For the
F2802x examples, this is the symbol “code_start”. This symbol is defined in the
f2802x\common\source\F2802x_CodeStartBranch.asm file. When you load the code
in Code Composer Studio, the debugger will set the PC to the address of this symbol.
If you do not define an entry point using the -e option, then the linker will use _c_int00
by default.

2.5.3 Including Common Example Code

Thu Mar 3 16:37:09 IST 2022 23

Driver Library and Header File Quickstart

Note: This section describes files which are no longer being maintained. We suggest you
use the true driver library instead of these older sample source files.

Including the common source code in your project will allow you to leverage code that is already
written for the device. To incorporate the shared source code into a new or existing project, perform
the following steps:

1. #include “common\include\F2802x_Examples.h” (or “DSP28x_Project.h”) in your
source files.
The “F2802x_Examples.h” include file will include common definitions and declarations used
by the example code.

//
// User’s source file
//
#include "common\include\F2802x_Examples.h"

Another option is to #include “DSP28x_Project.h” in your source files, which in-turn includes
“F2802x_Device.h” and “F2802x_Examples.h”. Due to the device-agnostic nature of the file
name, user code is easily ported between different device header files.

//
// User’s source file
//
#include "DSP28x_Project.h"

2. Link a linker command file to your project.
The following memory linker .cmd files are provided as examples in the f2802x\common\cmd
directory. For getting started the basic 28027_RAM_lnk.cmd file is suggested and used by
most of the examples.

Memory Linker Command Location Description
File Examples

28022_RAM_lnk.cmd F2802x/common/cmd 28022 SARAM memory linker com-
mand file.

28023_RAM_lnk.cmd F2802x/common/cmd 28023 SARAM memory linker com-
mand file.

28026_RAM_lnk.cmd F2802x/common/cmd 28026 SARAM memory linker com-
mand file.

28027_RAM_lnk.cmd F2802x/common/cmd 28027 SARAM memory linker com-
mand file.

F28022.cmd F2802x/common/cmd F28022 memory linker command file.
Includes all Flash, OTP and CSM
password protected memory locations.

F28023.cmd F2802x/common/cmd F28023 memory linker command file.
F28026.cmd F2802x/common/cmd F28026 memory linker command file.
F28027.cmd F2802x/common/cmd F28027 memory linker command file.

Table 2.9: Included Main Linker Command Files

24 Thu Mar 3 16:37:09 IST 2022

Driver Library and Header File Quickstart

3. Set the CPU Frequency In the common\include\F2802x_Examples.h file specify the proper
CPU frequency. Some examples are included in the file.

//
// common\include\F2802x_Examples.h
//
...
#define CPU_RATE 20.000L // for a 50MHz CPU clock speed (SYSCLKOUT)
//#define CPU_RATE 25.000L // for a 40MHz CPU clock speed (SYSCLKOUT)
//#define CPU_RATE 33.333L // for a 30MHz CPU clock speed (SYSCLKOUT)
//#define CPU_RATE 41.667L // for a 24MHz CPU clock speed (SYSCLKOUT)
//#define CPU_RATE 50.000L // for a 20MHz CPU clock speed (SYSCLKOUT)
//#define CPU_RATE 66.667L // for a 15MHz CPU clock speed (SYSCLKOUT)
//#define CPU_RATE 100.000L // for a 10MHz CPU clock speed (SYSCLKOUT)
...

4. Link desired common source files to the project The common source files are found in the
f2802x\common\source directory.

5. Include .c files for the PIE Since all catalog 2802x applications make use of the PIE interrupt
block, you will want to include the PIE support .c files to help with initializing the PIE. The shell
ISR functions can be used directly or you can re-map your own function into the PIE vector
table provided. A list of these files can be found in section 2.8.2.1

2.6 Troubleshooting Tips and Frequently Asked Ques-
tions

In the examples, what do “EALLOW;” and “EDIS;” do?
EALLOW; is a macro defined in F2802x_Device.h for the assembly instruction EALLOW and
likewise EDIS is a macro for the EDIS instruction. That is EALLOW; is the same as embedding
the assembly instruction asm(“ EALLOW”);
Several control registers on the 28x devices are protected from spurious CPU writes by the
EALLOW protection mechanism. The EALLOW bit in status register 1 indicates if the protec-
tion is enabled or disabled. While protected, all CPU writes to the register are ignored and only
CPU reads, JTAG reads and JTAG writes are allowed. If this bit has been set by execution of
the EALLOW instruction, then the CPU is allowed to freely write to the protected registers. Af-
ter modifying the registers, they can once again be protected by executing the EDIS assembly
instruction to clear the EALLOW bit.
The driver library defines new names for these two statements in order to make the code
more readable. The new names are: ”ENABLE_PROTECTED_REGISTER_WRITE_MODE;”
and ”DISABLE_PROTECTED_REGISTER_WRITE_MODE;”. The definitions for these new
macros can be found in cpu.h.
For a complete list of protected registers, refer to System Control and Interrupts chapter of the
Technical Reference Manual
Peripheral registers read back 0x0000 and/or cannot be written to
There are a few things to check:

• Peripheral registers cannot be modified or unless the clock to the specific peripheral is en-
abled. The function InitPeripheralClocks() in the f2802x\common\source directory shows
an example of enabling the peripheral clocks.

• The driver library also includes functions to enable the clocks for a given peripheral. Take
a look at clk.c in f2802x\common\source.

Thu Mar 3 16:37:09 IST 2022 25

Driver Library and Header File Quickstart

• Some peripherals are not present on all 2802x family derivatives. Refer to the device
datasheet for information on which peripherals are available.

• The EALLOW bit protects some registers from spurious writes by the CPU. If your program
seems unable to write to a register, then check to see if it is EALLOW protected. If it
is, then enable access using the EALLOW assembly instruction. See System Control
and Interrupts chapter in the Technical Reference Manual for a complete list of EALLOW
protected registers.

Memory block L0, L1 read back all 0x0000
In this case most likely the code security module is locked and thus the protected memory
locations are reading back all 0x0000. Refer to the System Control and Interrupts chapter in
the Technical Reference Manual for information on the code security module.

Code cannot write to L0 or L1 memory blocks
In this case most likely the code security module is locked and thus the protected memory
locations are reading back all 0x0000. Code that is executing from outside of the protected
cannot read or write to protected memory while the CSM is locked. Refer to the System
Control and Interrupts chapter in the Technical Reference Manual for information on the code
security module

A peripheral register reads back ok, but cannot be written to
The EALLOW bit protects some registers from spurious writes by the CPU. If your program
seems unable to write to a register, then check to see if it is EALLOW protected. If it is, then
enable access using the EALLOW assembly instruction. See System Control and Interrupts
chapter in the Technical Reference Manual for a complete list of EALLOW protected registers.

I re-built one of the projects to run from Flash and now it doesn’t work. What could be
wrong?
Make sure all initialized sections have been moved to flash such as .econst and .switch. If you
are using SDFlash, make sure that all initialized sections, including .econst, are allocated to
page 0 in the linker command file (.cmd). SDFlash will only program sections in the .out file
that are allocated to page 0.

Why do the examples populate the PIE vector table and then re-assign some of the
function pointers to other ISRs?
The examples share a common default ISR file. This file is used to populate the PIE vector
table with pointers to default interrupt service routines. Any ISR used within the example is
then remapped to a function within the same source file. This is done for the following reasons:

• The entire PIE vector table is enabled, even if the ISR is not used within the example. This
can be very useful for debug purposes.

• The default ISR file is left unmodified for use with other examples or your own project as
you see fit.

• It illustrates how the PIE table can be updated at a later time.

When I build the examples, the linker outputs the following: warning: entry point other
than _c_int00 specified. What does this mean?
This warning is given when a symbol other then _c_int00 is defined as the code entry point
of the project. For these examples, the symbol code_start is the first code that is executed
after exiting the boot ROM code and thus is defined as the entry point via the -e linker option.
This symbol is defined in the F2802x_CodeStartBranch.asm file. The entry point symbol is
used by the debugger and by the hex utility. When you load the code, CCS will set the PC to
the entry point symbol. By default, this is the _c_int00 symbol which marks the start of the C
initialization routine. For the F2802x examples, the code_start symbol is used instead. Refer
to the source code for more information.

When I build many of the examples, the compiler outputs the following: remark: con-
trolling expression is constant. What does this mean?

26 Thu Mar 3 16:37:09 IST 2022

Driver Library and Header File Quickstart

Some of the examples run forever until the user stops execution by using a while(1) loop. The
remark refers to the while loop using a constant and thus the loop will never be exited.

When I build some of the examples, the compiler outputs the following: warning: state-
ment is unreachable. What does this mean?
Some of the examples run forever until the user stops execution by using a while(1) loop. If
there is code after this while(1) loop then it will never be reached.

I changed the build configuration of one of the projects from “Debug” to “Release” and
now the project will not build. What could be wrong?
When you switch to a new build configuration (Project->Active Build Configuration) the com-
piler and linker options changed for the project. The user must enter other options such as
include search path and the library search path. Open the build options menu (Project-> Op-
tions) and enter the following information:

• C2000 Compiler, Include Options: Include search path
• C2000 Linker, File Search Path: Library search path
• C2000 Linker, File Search Path: Include libraries(i.e. rts2800_ml.lib)

Refer to section 2.5.3 for more details.

In the flash example I loaded the symbols and ran to main. I then set a breakpoint but
the breakpoint is never hit. What could be wrong?
In the Flash example, the InitFlash function and several of the ISR functions are copied out
of flash into SARAM. When you set a breakpoint in one of these functions, Code Composer
will insert an ESTOP0 instruction into the SARAM location. When the ESTOP0 instruction is
hit, program execution is halted. CCS will then remove the ESTOP0 and replace it with the
original opcode. In the case of the flash program, when one of these functions is copied from
Flash into SARAM, the ESTOP0 instruction is overwritten by code. This is why the breakpoint
is never hit. To avoid this, set the breakpoint after the SARAM functions have been copied to
SARAM.

2.6.1 Effects of read-modify-write instructions

When writing any code, whether it be C or assembly, keep in mind the effects of read-modify-write
instructions.
The 28x DSP will write to registers or memory locations 16 or 32-bits at a time. Any instruction
that seems to write to a single bit is actually reading the register, modifying the single bit, and then
writing back the results. This is referred to as a read-modify-write instruction. For most registers
this operation does not pose a problem. A notable exception is:

1. Registers with multiple flag bits in which writing a 1 clears that flag
For example, consider the PIEACK register. Bits within this register are cleared when writing
a 1 to that bit. If more then one bit is set, performing a read-modify-write on the register may
clear more bits then intended.
The below solution is incorrect. It will write a 1 to any bit set and thus clear all of them:

//
// User’s source file
//
PieCtrl.PIEACK.bit.Ack1 = 1; // INCORRECT! May clear more bits.

The correct solution is to write a mask value to the register in which only the intended bit will
have a 1 written to it:

Thu Mar 3 16:37:09 IST 2022 27

Driver Library and Header File Quickstart

//
// User’s source file
//
#define PIEACK_GROUP1 0x0001

...
PieCtrl.PIEACK.all = PIEACK_GROUP1; // CORRECT!

2. Registers with Volatile Bits
Some registers have volatile bits that can be set by external hardware.
Consider the PIEIFRx registers. An atomic read-modify-write instruction will read the 16-bit
register, modify the value and then write it back. During the modify portion of the operation a
bit in the PIEIFRx register could change due to an external hardware event and thus the value
may get corrupted during the write.
The rule for registers of this nature is to never modify them during runtime. Let the CPU take
the interrupt and clear the IFR flag.

2.7 F2802x bit field headers API to F2802x driver library
API code suggestions

1. Initialize System Control
Headers:

InitSysCtrl();

Drivers:

//
// Perform basic system initialization
//
WDOG_disable(myWDog);
CLK_enableAdcClock(myClk);
(*Device_cal)();

//
// Select the internal oscillator 1 as the clock source
//
CLK_setOscSrc(myClk, CLK_OscSrc_Internal);

//
// Setup the PLL for x10 /2 which will yield 50Mhz = 10Mhz * 10 / 2
//
PLL_setup(myPll, PLL_Multiplier_10, PLL_DivideSelect_ClkIn_by_2);

//
// Disable the PIE and all interrupts
//
PIE_disable(myPie);
PIE_disableAllInts(myPie);
CPU_disableGlobalInts(myCpu);
CPU_clearIntFlags(myCpu);

28 Thu Mar 3 16:37:09 IST 2022

Driver Library and Header File Quickstart

2. Initialize PIE
Headers:

DINT;
InitPieCtrl();
IER = 0x0000;
IFR = 0x0000;
InitPieVectTable();

Drivers:

PIE_setDebugIntVectorTable(myPie);
PIE_enable(myPie);

3. Register an Interrupt Handler
Headers:

EALLOW;
PieVectTable.ADCINT1 = &adc_isr;
EDIS;

Drivers:

PIE_registerPieIntHandler(myPie, PIE_GroupNumber_10, PIE_SubGroupNumber_1,
(intVec_t)&adc_isr);

4. Initialize the ADC
Headers:

InitAdc();

Drivers:

ADC_enableBandGap(myAdc);
ADC_enableRefBuffers(myAdc);
ADC_powerUp(myAdc);
ADC_enable(myAdc);
ADC_setVoltRefSrc(myAdc, ADC_VoltageRefSrc_Int);

5. Initialize GPIO
Headers:

InitEPwm1Gpio();

Drivers:

GPIO_setPullUp(myGpio, GPIO_Number_0, GPIO_PullUp_Disable);
GPIO_setPullUp(myGpio, GPIO_Number_1, GPIO_PullUp_Disable);
GPIO_setMode(myGpio, GPIO_Number_0, GPIO_0_Mode_EPWM1A);
GPIO_setMode(myGpio, GPIO_Number_1, GPIO_1_Mode_EPWM1B);

6. Acknowledge a PIE interrupt
Headers:

PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;

Drivers:

PIE_clearInt(myPie, PIE_GroupNumber_3);

Thu Mar 3 16:37:09 IST 2022 29

Driver Library and Header File Quickstart

2.8 Packet Contents

This section lists all of the files included in the release.

2.8.1 Header File Support - f2802x\headers

The F2802x header files are located in the <base>\headers directory.

2.8.1.1 F2802x Header Files - Main Files

The files listed in Table 2.10 must be added to any project that uses the F2802x header files. Refer
to section 2.5 for information on incorporating the header files into a new or existing project.

File Location Description
F2802x_Device.h f2802x\headers\include Main include file. Include this

one file in any of your .c source
files. This file in-turn includes
all of the peripheral specific .h
files listed below. In addition the
file includes typedef statements
and commonly used mask val-
ues. Refer to section 2.5.

F2802x_GlobalVariableDefs.c f2802x\headers\source Defines the variables that
are used to access the pe-
ripheral structures and data
section #pragma assignment
statements. This file must be
included in any project that uses
the header files. If a project
includes the driverlib.lib file
F2802x_GlobalVariableDefs.c
need not be included because
it is already a part of the driver
library. Refer to section 2.5.

F2802x_Headers_nonBIOS.cmd f2802x\headers\cmd Linker .cmd file to assign the
header file variables in a non-
BIOS project. This file must
be included in any non-BIOS
project that uses the header
files. Refer to section 2.5.

Table 2.10: F2802x Header Files - Main Files

2.8.1.2 F2802x Header Files - Peripheral Bit-Field and Register Structure Definition Files

The files listed in Table 2.11 define the bit-fields and register structures for each of the periph-
erals on the 2802x devices. These files are automatically included in the project by including

30 Thu Mar 3 16:37:09 IST 2022

Driver Library and Header File Quickstart

F2802x_Device.h. Refer to section 2.4.2 for more information on incorporating the header files
into a new or existing project.

File Description
F2802x_Adc.h ADC register structure and bit-field definitions.

F2802x_BootVars.h External boot variable definitions.
F2802x_Comp.h Comparator register structure and bit-field definitions.

F2802x_CpuTimers.h CPU-Timer register structure and bit-field definitions.
F2802x_DevEmu.h Emulation register definitions

F2802x_ECap.h eCAP register structures and bit-field definitions.
F2802x_EPwm.h ePWM register structures and bit-field definitions.
F2802x_EQep.h eQEP register structures and bit-field definitions.
F2802x_Gpio.h General Purpose I/O (GPIO) register structures and bit-field def-

initions.
F2802x_I2c.h I2C register structure and bit-field definitions.

F2802x_NmiIntrupt.h NMI interrupt register structure and bit-field definitions
F2802x_PieCtrl.h PIE control register structure and bit-field definitions.
F2802x_PieVect.h Structure definition for the entire PIE vector table.

F2802x_Sci.h SCI register structure and bit-field definitions.
F2802x_Spi.h SPI register structure and bit-field definitions.

F2802x_SysCtrl.h System register definitions. Includes Watchdog, PLL, CSM,
Flash/OTP, Clock registers.

F2802x_XIntrupt.h External interrupt register structure and bit-field definitions.

Table 2.11: F2802x Header File Bit-Field Register Structure Definition Files(f2802x\headers\include)

2.8.1.3 Variable Names and Data Sections

This section is a summary of the variable names and data sections allocated by the
f2802x\headers\source\F2802x_GlobalVariableDefs.c file as shown in Table 2.12. Note that all
peripherals may not be available on a particular 2802x device. Refer to the device datasheet for the
peripheral mix available on each 2802x family derivative.

Thu Mar 3 16:37:09 IST 2022 31

Driver Library and Header File Quickstart

Peripheral Starting Address Structure Variable Name
ADC 0x007100 AdcRegs
ADC Mirrored Result Registers 0x000B00 AdcMirror
Code Security Module 0x000AE0 CsmRegs
Code Security Module Password Locations 0x3F7FF8-0x3F7FFF CsmPwl
COMP1 0x006400 Comp1Regs
COMP2 0x006420 Comp2Regs
CPU Timer 0 0x000C00 CpuTimer0Regs
CPU Timer 1 0x000C08 CpuTimer1Regs
CPU Timer 2 0x000C10 CpuTimer2Regs
Device and Emulation Registers 0x000880 DevEmuRegs
System Power Control Registers 0x00985 SysPwrCtrlRegs
ePWM1 0x006800 EPwm1Regs
ePWM2 0x006840 EPwm2Regs
ePWM3 0x006880 EPwm3Regs
eCAP1 0x006A00 ECap1Regs
External Interrupt Registers 0x007070 XIntruptRegs
Flash OTP Configuration Registers 0x000A80 FlashRegs
General Purpose I/O Data Registers 0x006fC0 GpioDataRegs
General Purpose Control Registers 0x006F80 GpioCtrlRegs
General Purpose Interrupt Registers 0x006fE0 GpioIntRegs
I2C 0x007900 I2caRegs
NMI Interrupt 0x7060 NmiIntruptRegs
PIE Control 0x000CE0 PieCtrlRegs
SCI-A 0x007050 SciaRegs
SPI-A 0x007040 SpiaRegs

Table 2.12: F2802x Variable Names and Data Sections

2.8.2 Common Example Code - f2802x\common

2.8.2.1 Peripheral Interrupt Expansion (PIE) Block Support

In addition to the register definitions defined in F2802x_PieCtrl.h, this packet provides the basic
ISR structure for the PIE block. These files are shown in Table 2.13.

32 Thu Mar 3 16:37:09 IST 2022

Driver Library and Header File Quickstart

File Location Description
F2802x_DefaultIsr.c f2802x\common\source Shell interrupt service routines

(ISRs) for the entire PIE vector
table. You can choose to popu-
late one of functions or re-map
your own ISR to the PIE vector
table. Note: This file is not used
for DSP/BIOS projects.

F2802x_DefaultIsr.h f2802x\common\include Function prototype state-
ments for the ISRs in
F2802x_DefaultIsr.c. Note: This
file is not used for DSP/BIOS
projects.

F2802x_PieVect.c f2802x\common\source Creates an instance of the PIE
vector table structure initialized
with pointers to the ISR func-
tions in F2802x_DefaultIsr.c.
This instance can be copied to
the PIE vector table in order to
initialize it with the default ISR
locations.

Table 2.13: Basic PIE Block Specific Support Files

In addition, the files in Table 2.14 are included for software prioritizing of interrupts. These files
are used in place of those above when additional software prioritizing of the interrupts is required.
Refer to the example and documentation in f2802x\examples\sw_prioritized_interrupts for more
information.

Thu Mar 3 16:37:09 IST 2022 33

Driver Library and Header File Quickstart

File Location Description
F2802x_SWPrioritizedDefaultIsr.c f2802x\common\source Default shell interrupt service

routines (ISRs). These are shell
ISRs for all of the PIE interrupts.
You can choose to populate one
of functions or re-map your own
interrupt service routine to the
PIE vector table. Note: This
file is not used for DSP/BIOS
projects.

F2802x_SWPrioritizedIsrLevels.h f2802x\common\include Function prototype state-
ments for the ISRs in
F2802x_DefaultIsr.c. Note: This
file is not used for DSP/BIOS
projects.

F2802x_SWPrioritizedPieVect.c f2802x\common\source Creates an instance of the PIE
vector table structure initialized
with pointers to the default ISR
functions that are included in
F2802x_DefaultIsr.c. This in-
stance can be copied to the PIE
vector table in order to initialize
it with the default ISR locations.

Table 2.14: Software Prioritized Interrupt PIE Block Specific Support Files

2.8.2.2 Peripheral Specific Files

Several peripheral specific initialization routines and support functions are included in the peripheral
.c source files in the f2802x\common\source directory. These files are shown in Table 2.15.

34 Thu Mar 3 16:37:09 IST 2022

Driver Library and Header File Quickstart

File Description
F2802x_GlobalPrototypes.h Function prototypes for the peripheral

specific functions included in these
files.

F2802x_Adc.c ADC specific functions and macros.
F2802x_Comp.c Comparator specific functions and

macros
F2802x_CpuTimers.c CPU-Timer specific functions and

macros.
F2802x_ECap.c eCAP module specific functions and

macros.
F2802x_EPwm.c ePWM module specific functions and

macros.
F2802x_EPwm_defines.h define macros that are used for the

ePWM examples
F2802x_Gpio.c General-purpose IO (GPIO) specific

functions and macros.
F2802x_I2C.c I2C specific functions and macros.
F2802x_I2c_defines.h define macros that are used for the I2C

examples
F2802x_PieCtrl.c PIE control specific functions and

macros.
F2802x_Sci.c SCI specific functions and macros.
F2802x_Spi.c SPI specific functions and macros.
F2802x_SysCtrl.c System control (watchdog, clock, PLL

etc) specific functions and macros.

Table 2.15: Included Peripheral Specific Files

NOTE: The specific routines are under development and may not all be available as of this
release. They will be added and distributed as more examples are developed.

Thu Mar 3 16:37:09 IST 2022 35

Driver Library and Header File Quickstart

2.8.2.3 Utility Function Source Files

File Description
F2802x_CodeStartBranch.asm Branch to the start of code execution.

This is used to re-direct code execu-
tion when booting to Flash, OTP or M0
SARAM memory. An option to disable
the watchdog before the C init routine
is included.

F2802x_DBGIER.asm Assembly function to manipulate the
DEBIER register from C.

F2802x_DisInt.asm Disable interrupt and restore interrupt
functions. These functions allow you
to disable INTM and DBGM and then
later restore their state.

F2802x_usDelay.asm Assembly function to insert a delay
time in microseconds. This func-
tion is cycle dependent and must
be executed from zero wait-stated
RAM to be accurate. Refer to
f2802x\examples\adc_soc for an ex-
ample of its use.

F2802x_CSMPasswords.asm Include in a project to program the
code security module passwords and
reserved locations.

Table 2.16: Included Utility Function Source Files

2.8.2.4 Example Linker .cmd files

Example memory linker command files are located in the F2802x\common\cmd directory. For get-
ting started the basic 28027_RAM_lnk.cmd file is suggested and used by many of the included
examples.

The L0 SARAM block is mirrored on these devices. For simplicity these memory maps only include
one instance of these memory blocks(Table 2.9).

2.8.2.5 Example Library .lib Files

Please refer to the C28x IQMath Library - A Virtual Floating Point Engine (SPRC087) for more
information on IQMath and the most recent IQMath library.

2.9 Detailed Revision History

V3.03.00.00

Migrated all examples to use compiler v20.2.l.LTS

36 Thu Mar 3 16:37:09 IST 2022

Driver Library and Header File Quickstart

V3.02.00.00

Modified various driver library struct handles (GPIO_Obj to _GPIO_Obj_)

Cleaned up SPI examples and set to use common init SPI in f2802x_spi.c

adc.h - Corrected various enum definitions

F2802x_sysctrl.c - Corrected order of switching to INTOSC2 in IntOsc2Sel()

Flash.c - Fixed Flash_setup() OTP wait state value

Added missing DAC and RAMP registers to F2802x_Comp.h

Updated all examples and removed deprecated compiler options

V3.01.00.00

Updated user documentation file names

Added Launchpad example and LED Boost examples

V3.00.00.00

Updated directories and naming for C2000Ware Package

Cleaned up and reformatted source, header, and example code

Libraries moved into C2000Ware libraries directory

Added InstaSPIN devices to F2802x_Device.h

SCI.h - Fixed even party shift value

F2802x_SWPrioritizedDefaultIsr.c - Corrected I2C interrupt group to 8

User Guide - Added note to make sure examples aren’t copied into workspace

GPIO.h and GPIO.c - Corrected GPIO qualification configuration functions

GPIO.h and GPIO.c - Corrected for GPIO_getPortData and GPIO_setPortData to handle 32bit
changes

V2.30

Moved F2802x_Device.h into F2802x_headers/include

Moved DSP28x_Project.h into F2802x_common/include

Corrected memory map for SARAM L0 in GEL files

Fixed watchdog driver from erroneously overwriting bits

Removed references to DSP2802x

Corrected rsvd register in _I2C_OBJ_ in i2c.h

Removed IQmath.lib and iqmathlib.h

Cleaned up all examples comments and whitespace. Updated compiler version.

Added PWMSYNCSEL bit to HRPCTL_BITS struct in F2802x_EPwm.h

Corrected spelling typo in adc.h

V2.22

Cleaned up example issues and CCS warnings

Added 1ms delay to XtalOscSel function

Updated ACQPS value and added SOC wait loops in ADC source

Thu Mar 3 16:37:09 IST 2022 37

Driver Library and Header File Quickstart

Updated ADC examples with AdcOffsetSelfCal() function

V2.21

F28027 Flash Kernel Example added

V2.20

ADC acquisition window enumeration no longer contains invalid values

Flash example now sets up flash wait states correctly

PieVect Table is now volatile

Added 2802x0 value line devices

Added new internal and external oscillator functions

Added comments to warn against calling some functions before memcopy to RAM

Added HRPWM example using symmetrical mode PWM

Added JTAGDEBUG register and JTAGDIS bit

Cleaned up Memcopy documentation

DSP28xxx_Examples.h - Fixed text match case issue

Updated headers for comparator and DAC ramp modules

HRPWM Example - Fixed Error in Function Prototype

Ecap_awpm example now sets apwm period correctly

Example_2802xSWPrioritizedInterrupts.c compile issue fixed

2802xSWPrioritizedInterrupts set to clear correct interrupt group

GPIOsetup fixed issue trying to set up peripheral on incorrect GPIO

DSP2802x_Adc.h - COMPHYSTCTL_BITS is no longer incorrectly defined as 17 bits

Driverlib CLK_setLowSpdPreScaler now sets prescalar correctly

F28020.cmd file - FLASHC corrected to length 0x1000

function ConfigCpuTimer() - fixed error when setting CPU Timer period register

Corrected F28027.cmd period issue

Flash.c - EALLOW added to write to power mode register

Added missing Ramp generator register definitions

clk.h osc2src enum corrected

TIMER_reload function corrected

TIMER_setPreScalar() now sets correct bit fields

cleaned up 2802x example comment typos and bugs

Added missing NOP to SW Prioritized Interrupt example

Fixed sci.c register name issue

Fixed SCI_Echoback example issues

IQmath.lib removed from the common folder

Added comments to spi_echoback_interrupts example

Removed delay_loop() from spia_loopback example

V2.10

38 Thu Mar 3 16:37:09 IST 2022

Driver Library and Header File Quickstart

Minor bugs were fixed in example applications.

V2.00

A driver library was added and major changes made to many of the examples and support
files. This is a major release.

V1.29

Additional cleanup of the CCS 4 projects in controlSUITE, and GEL files have been updated.

V1.28

Improvements and additions to the CCS 4 projects in controlSUITE.

V1.27

Improvements to the CCS 4 projects in controlSUITE.

V1.26

This version includes minor corrections to the header files and examples.

V1.25

This version includes minor corrections to the header files and examples. The most notable
change is that gel files and cmd linker files for the 280200 devices now include 1K additional
L0 RAM.

V1.21b

This version update only updates the V1.21 Quick Start Readme to adjust wording for the
controlSUITE software package. No changes to the header file and peripheral example code
were made.

V1.21

This version includes minor corrections and comment fixes to the header files and examples.

V1.20

This version includes corrections and comment fixes to the header files and examples. It
adds examples pertaining to the ADC temperature sensor and compensation of the oscillator
frequency over temperature, and it also fixes an error in the SFO_TI_Build_V6.lib library in the
new SFO_TI_Build_V6b.lib library.

V1.10

This version is the second release of the F2802x header files and examples. Minor changes
were made to the drivers and a header file to driver migration guide is included in the docu-
mentation.

V1.00

This version is the first release (packaged with development tools and customer trainings) of
the F2802x header files and examples.

Thu Mar 3 16:37:09 IST 2022 39

Driver Library and Header File Quickstart

40 Thu Mar 3 16:37:09 IST 2022

Piccolo F2802x Example Applications

3 Piccolo F2802x Example Applications
These example applications show the user how to make use of various peripherals present on the
Piccolo device. They are intended for demonstration purposes only and a good starting point for
building new applications.

Notes

All examples require the F2802x header files

All examples set up the PLL in x10/2 mode which gives a system clock of 50MHz. This is the
default setting assuming the input clock is derived from the 10MHz internal clock.

Some examples like those related to HRPWM require the use of an external scope to see
the results, while other examples may require external connections between headers on the
baseboard (e.g. adc_soc). Each example will describe the setup procedure that is required to
properly execute it.

As supplied, almost all projects are supplied with both RAM and Flash build configurations.
The 2802x Boot Mode table is shown below.

• While an emulator is connected to your device, the TRSTn pin = 1, which sets the device
into EMU_BOOT boot mode. In this mode, the peripheral boot modes are shown in the
table below.

• Write EMU_KEY to 0xD00 and EMU_BMODE to 0xD01 via the debugger with the values
from the table

• Build/Load project, reset the device, and run the example

Boot Mode EMU_KEY EMU_BMODE
(0xD00) (0xD01)

Wait !=0x55AA X
I/O 0x55AA 0x0000
SCI 0x55AA 0x0001
Wait 0x55AA 0x0002
Get_Mode 0x55AA 0x0003
SPI 0x55AA 0x0004
I2C 0x55AA 0x0005
OTP 0x55AA 0x0006
SARAM 0x55AA 0x000A

(Boot to SARAM)
Flash 0x55AA 0x000B
Wait 0x55AA Other

Table 3.1: Boot Modes for Piccolo 2802x

We have provided scripts to automate setting up watch variables and associated graphs called
’SetupDebugEnv.js’ in several example folders. Once you have established a connection to the
target device in debug mode go to View->Scripting Console. Within the console click the Open
Command file icon in the far right corner of the console window and select the javascript file.

All of these examples reside in the f2802x\examples subdirectory of the C2000Ware package.

Thu Mar 3 16:37:09 IST 2022 41

Piccolo F2802x Example Applications

3.1 ADC Start-Of-Conversion (SOC)

Interrupts are enabled and the ePWM1 is setup to generate a periodic ADC SOC - ADCINT1. Two
channels are converted, ADCINA4 and ADCINA2.

Watch Variables:

Voltage1[10] - Last 10 ADCRESULT0 values

Voltage2[10] - Last 10 ADCRESULT1 values

ConversionCount - Current result number 0-9

LoopCount - Idle loop counter

3.2 ADC Temperature Sensor

Interrupts are enabled and the ePWM1 is set up to generate a periodic ADC SOC interrupt - AD-
CINT1. One channel is converted - ADCINA5, which is internally connected to the temperature
sensor.

Watch Variables:

TempSensorVoltage[10] Last 10 ADCRESULT0 values

ConversionCount Current result number 0-9

LoopCount Idle loop counter

3.3 ADC Temperature Sensor Conversion

This program shows how to convert a raw ADC temperature sensor reading into deg. C or deg. K.

Watch Variables:

temp

degC

degK

3.4 LaunchPad Demo

This program is the demo program that comes pre-loaded on the LaunchPad development kit. The
program starts by flashing the 4 bit binary display. When the user pushes S3 (GPIO12) the demo
then stops flashing the display and samples the device’s internal temperature sensor to establish a
reference. After this, the board displays a value of 0x08 and displays any increase or decrease in
temperature as a delta on the display. So for instance if the temperature was initially 20C and now
it is 22C, the value on the display would be 22C - 20C + 8 = 10 = 0x0A = 0b1010. Additionally, the
reference temperature may be reset to the current value by pressing and holding S3.

Watch Variables:

42 Thu Mar 3 16:37:09 IST 2022

Piccolo F2802x Example Applications

referenceTemp
currentTemp

3.5 CPU Timer

This example configures CPU Timer0, 1, & 2 and increments a counter each time the timer asserts
an interrupt.

Watch Variables:

timer0IntCount
timer1IntCount
timer2IntCount

3.6 ECAP Asymmetric PWM

This program sets up the eCAP pins in the APWM mode. This program runs at 50 MHz or 40
MHz SYSCLKOUT assuming a 10 MHz OSCCLK depending on the max frequency allowed by a
particular device.

eCAP1 will come out on the GPIO5 pin. This pin is configured to vary between 3 Hz and 6 Hz (at
50 MHz SYSCLKOUT) or 2 Hz and 4 Hz (at 40 MHz SYSCLKOUT) using the shadow registers to
load the next period/compare values.

Monitor eCAP1 pin on GPIO5 for PWM frequency

3.7 ECAP Capture EPwm3

This example configures EPWM3A for:

Up count
Period starts at 2 and goes up to 1000
Toggle output on PRD

eCAP1 is configured to capture the time between rising and falling edge of the PWM3A output.
Connect eCAP1 (GPIO5) to ePWM3A (GPIO4).

3.8 PWM Blanking Window

This example configures ePWM1 and ePWM2

2 Examples are included:

ePWM1: DCAEVT1 forces EPWM1A high, a blanking window is used EPWM1B toggles on
zero as a reference.

Thu Mar 3 16:37:09 IST 2022 43

Piccolo F2802x Example Applications

ePWM2: DCAEVT1 forces EPWM2A high, no blanking window is used EPWM2B toggles on
zero as a reference.

During the test, monitor ePWM1 or ePWM2 outputs on a scope. Create DCAEVT1 by pulling TZ1
low and TZ2 high to see the effect.

EPWM1A is on GPIO0

EPWM1B is on GPIO1

EPWM2A is on GPIO2

EPWM2B is on GPIO3

EPWM1A is set to normally stay low. DCAEVT1 is true when TZ1 is low and TZ2 is high. When an
event is true (DCAEVT1) EPWM1A is configured to be forced high. A blanking window is applied
to keep the event from taking effect around the zero point. In other words, when the event is taken,
EPWM1A will be forced high, but if there is no event, EPWM1A will remain low. EPWM1B is togged
at zero for a reference. Notice the blanking window keeps the event from forcing EPWM1A high
around the zero point.

ePWM2 is configured the same as ePWM1 except no blanking window is applied.

View the EPWM1A/B, EPWM2A/B waveforms via an oscilloscope to see the effect of DCAEVT1

3.9 PWM Digital Compare Event Trip Zone

This example configures ePWM1 and ePWM2

2 Examples are included:

ePWM1 has DCAEVT1 as a one shot trip source

ePWM2 has DCAEVT2 as a cycle by cycle trip source

ePWM3 reacts to DCAEVT2 and DCBEVT1 events

During the test, monitor ePWM1, ePWM2, or ePWM3 outputs on a scope pull TZ1 low and leave
TZ2 high to create a DCAEVT1, DCAEVT2, DCBEVT1 and DCBEVT2.

EPWM1A is on GPIO0

EPWM1B is on GPIO1

EPWM2A is on GPIO2

EPWM2B is on GPIO3

EPWM3A is on GPIO4

EPWM3B is on GPIO5

DCAEVT1, DCAEVT2, DCBEVT1 and DCBEVT2 are all defined as true when TZ1 is low and TZ2
is high

ePWM1 will react to DCAEVT1 as a 1-shot trip.
The trip event will pull EPWM1A high.
The trip event will pull EPWM1B low.

44 Thu Mar 3 16:37:09 IST 2022

Piccolo F2802x Example Applications

ePWM2 will react to DCAEVT2 as a cycle-by-cycle trip.
The trip event will pull EPWM2A high.
The trip event will pull EPWM2B low.

ePWM3 will react to DCAEVT2 and DCBEVT1 events.
The DCAEVT2 event will pull EPWM3A high.
The DCBEVT1 event will pull EPWM3B low.

3.10 PWM Trip Zone Test with Comparator Inputs

This example configures ePWM1 and its associated trip zone.

Initially make voltage on pin COMP1A greater than COMP1B if using dual pin compare; else make
internal DAC output lower than V on COMP1A.

During the test, monitor ePWM1 outputs on a scope. Increase the voltage on inverting side of com-
parator(either through COMP1B pin or internal DAC setting) to trigger a DCAEVT1, and DCBEVT1.

EPWM1A is on GPIO0

EPWM1B is on GPIO1

DCAEVT1, DCBEVT1 a are all defined as true when COMP1OUT is low.

ePWM1 will react to DCAEVT1 and DCBEVT1 as a 1 shot trip.

DCAEVT1 will pull EPWM1A high.

DCBEVT1 will pull EPWM1B low .

3.11 PWM deadband generation

This example configures ePWM1, ePWM2 and ePWM3 for:

Count up/down

Deadband

3 Examples are included:

ePWM1: Active low PWMs

ePWM2: Active low complementary PWMs

ePWM3: Active high complementary PWMs

Each ePWM is configured to interrupt on the 3rd zero event/ When this happens, the deadband is
modified such that 0 <= DB <= DB_MAX. That is, the deadband will move up and down between
0 and the maximum value.

View the EPWM1A/B, EPWM2A/B and EPWM3A/B waveforms via an oscilloscope:

EPWM1A is on GPIO0

EPWM1B is on GPIO1

Thu Mar 3 16:37:09 IST 2022 45

Piccolo F2802x Example Applications

EPWM2A is on GPIO2

EPWM2B is on GPIO3

EPWM3A is on GPIO4

EPWM3B is on GPIO5

3.12 PWM Timer Interrupt

This example configures the ePWM Timers and increments a counter each time an interrupt is
taken.

As supplied:

All ePWM’s are initialized.

All timers have the same period.

The timers are started sync’ed.

An interrupt is taken on a zero event for each ePWM timer.

ePWM1: takes an interrupt every event

ePWM2: takes an interrupt every 2nd event

ePWM3: takes an interrupt every 3rd event

Thus the Interrupt count for ePWM1 and ePWM4 should be equal. The interrupt count for ePWM2
should be about half that of ePWM1, and the interrupt count for ePWM3 should be about 1/3 that
of ePWM1

Watch Variables:

EPwm1TimerIntCount

EPwm2TimerIntCount

EPwm3TimerIntCount

3.13 PWM Trip Zone

This example configures ePWM1 and ePWM2

2 Examples are included:

ePWM1 has TZ1 and TZ2 as one shot trip sources

ePWM2 has TZ1 and TZ2 as cycle by cycle trip sources

Each ePWM is configured to interrupt on the 3rd zero event. When this happens, the deadband is
modified such that 0 <= DB <= DB_MAX. That is, the deadband will move up and down between
0 and the maximum value.

View the EPWM1A/B, EPWM2A/B waveforms via an oscilloscope to see the effect of TZ1 and TZ2

Initially tie TZ1 (GPIO12) and TZ2 (GPIO16) high.

46 Thu Mar 3 16:37:09 IST 2022

Piccolo F2802x Example Applications

During the test, monitor ePWM1 or ePWM2 outputs on a scope Pull TZ1 or TZ2 low to see the
effect.

EPWM1A is on GPIO0

EPWM1B is on GPIO1

EPWM2A is on GPIO2

EPWM2B is on GPIO3

ePWM1 will react as a 1 shot trip.

ePWM2 will react as a cycle by cycle trip and will be cleared if TZ1 and TZ2 are both pulled back
high.

3.14 Action Qualifier Module Upcount mode

This example configures ePWM1, ePWM2, ePWM3 to produce a waveform with independent mod-
ulation on EPWMxA and EPWMxB.

The compare values CMPA and CMPB are modified within the ePWM’s ISR.

The TB counter is in upmode for this example.

View the EPWM1A/B, EPWM2A/B and EPWM3A/B waveforms via an oscilloscope:

EPWM1A is on GPIO0

EPWM1B is on GPIO1

EPWM2A is on GPIO2

EPWM2B is on GPIO3

EPWM3A is on GPIO4

EPWM3B is on GPIO5

3.15 Action Qualifier Module - Using up/down count

This example configures ePWM1, ePWM2, ePWM3 to produce a waveform with independent mod-
ulation on EPWMxA and EPWMxB.

The compare values CMPA and CMPB are modified within the ePWM’s ISR.

The TB counter is in up/down count mode for this example.

View the EPWM1A/B, EPWM2A/B and EPWM3A/B waveforms via an oscilloscope:

EPWM1A is on GPIO0

EPWM1B is on GPIO1

EPWM2A is on GPIO2

EPWM2B is on GPIO3

EPWM3A is on GPIO4

EPWM3B is on GPIO5

Thu Mar 3 16:37:09 IST 2022 47

Piccolo F2802x Example Applications

3.16 External Interrupts

This program sets up GPIO0 as XINT1 and GPIO1 as XINT2. Two other GPIO signals are used to
trigger the interrupt (GPIO28 triggers XINT1 and GPIO29 triggers XINT2). The user is required to
externally connect these signals for the program to work properly.

XINT1 input is synched to SYSCLKOUT. XINT2 has a long qualification - 6 samples at
510∗SYSCLKOUT each.

GPIO34 will go high outside of the interrupts and low within the interrupts. This signal can be
monitored on a scope.

Each interrupt is fired in sequence - XINT1 first and then XINT2

Watch Variables:

Xint1Count for the number of times through XINT1 interrupt

Xint2Count for the number of times through XINT2 interrupt

LoopCount for the number of times through the idle loop

3.17 EPwm interrupt from Flash

This example runs the EPwm interrupt example from flash.

1. Build the project

2. Flash the .out file into the device.

3. Set the hardware jumpers to boot to Flash

4. Use the included GEL file to load the project, symbols defined within the project and the
variables into the watch window.

Steps that were taken to convert the EPwm example from RAM to Flash execution:

1. Change the linker cmd file to reflect the flash memory map.

2. Make sure any initialized sections are mapped to Flash. In SDFlash utility this can be checked
by the View->Coff/Hex status utility. Any section marked as "load" should be allocated to
Flash.

3. Make sure there is a branch instruction from the entry to Flash at 0x3F7FF6 to the beginning
of code execution. This example uses the F2802x_CodeStartBranch.asm file to accomplish
this.

4. Set boot mode Jumpers to "boot to Flash"

5. For best performance from the flash, modify the waitstates and enable the flash pipeline as
shown in this example. Note: any code that manipulates the flash waitstate and pipeline
control must be run from RAM. Thus these functions are located in their own memory section
called ramfuncs.

EPwm1 Interrupt will run from RAM and puts the flash into sleep mode. EPwm2 Interrupt will run
from RAM and puts the flash into standby mode. EPwm3 Interrupt will run from FLASH.

As supplied:

48 Thu Mar 3 16:37:09 IST 2022

Piccolo F2802x Example Applications

All timers have the same period. The timers are started sync’ed. An interrupt is taken on a zero
event for each EPwm timer.

EPwm1: takes an interrupt every event. EPwm2: takes an interrupt every 2nd event. EPwm3:
takes an interrupt every 3rd event.

Thus the Interrupt count for EPwm1, EPwm4-EPwm6 should be equal The interrupt count for
EPwm2 should be about half that of EPwm1 and the interrupt count for EPwm3 should be about
1/3 that of EPwm1

Watch Variables:

EPwm1TimerIntCount

EPwm2TimerIntCount

EPwm3TimerIntCount

Toggle GPIO34 while in the background loop.

3.18 GPIO Setup

Configures the 2802x GPIO into two different configurations This code is verbose to illustrate how
the GPIO could be setup. In a real application, lines of code can be combined for improved code
size and efficiency.

This example only sets-up the GPIO. Nothing is actually done with the pins after setup.

In general:

All pullup resistors are enabled. For EPwms this may not be desired.

Input qual for communication ports (eCAN, SPI, SCI, I2C) is asynchronous

Input qual for Trip pins (TZ) is asynchronous

Input qual for eCAP is synch to SYSCLKOUT

Input qual for some I/O’s and interrupts may have a sampling window

3.19 GPIO Toggle

Three different examples are included. Select the example (data, set/clear or toggle) to execute
before compiling using the define statements found at the top of the code.

Warning:

ALL OF THE I/O’S TOGGLE IN THIS PROGRAM. MAKE SURE THIS WILL NOT DAMAGE
YOUR HARDWARE BEFORE RUNNING THIS EXAMPLE.

The pins can be observed using Oscilloscope.

Thu Mar 3 16:37:09 IST 2022 49

Piccolo F2802x Example Applications

3.20 High Resolution PWM

This example modifies the MEP control registers to show edge displacement due to the HRPWM
control extension of the respective EPwm module All EPwm1A,2A,3A,4A channels (GPIO0, GPIO2,
GPIO4, GPIO6) will have fine edge movement due to HRPWM logic

1. PWM Freq = SYSCLK/(period=10), ePWM1A toggle low/high with MEP control on rising edge
PWM Freq = SYSCLK/(period=10), ePWM1B toggle low/high with NO HRPWM control

1. PWM Freq = SYSCLK/(period=20), ePWM2A toggle low/high with MEP control on rising edge
PWM Freq = SYSCLK/(period=20), ePWM2B toggle low/high with NO HRPWM control

1. PWM Freq = SYSCLK/(period=10), ePWM3A toggle as high/low with MEP control on falling
edge PWM Freq = SYSCLK/(period=10), ePWM3B toggle low/high with NO HRPWM control

1. PWM Freq = SYSCLK/(period=20), ePWM4A toggle as high/low with MEP control on falling
edge PWM Freq = SYSCLK/(period=20), ePWM4B toggle low/high with NO HRPWM control

Monitor ePWM1-ePWM4 pins on an oscilloscope.

ePWM1A is on GPIO0

ePWM1B is on GPIO1

ePWM2A is on GPIO2

ePWM2B is on GPIO3

ePWM3A is on GPIO4

ePWM3B is on GPIO5

ePWM4A is on GPIO6

ePWM4B is on GPIO7

3.21 High Resolution PWM SFO Duty Cycle Control

This example modifies the MEP control registers to show edge displacement due to the HRPWM
control extension of the respective ePWM module.

This example calls the following TI’s MEP Scale Factor Optimizer (SFO) software library V6 func-
tions:

int SFO();

updates MEP_ScaleFactor dynamically when HRPWM is in use

updates HRMSTEP register (exists only in EPwm1Regs register space but valid for all chan-
nels) with MEP_ScaleFactor value

returns 2 if error: MEP_ScaleFactor is greater than maximum value of 255 (Auto-conversion
may not function properly under this condition)

returns 1 when complete for the specified channel

50 Thu Mar 3 16:37:09 IST 2022

Piccolo F2802x Example Applications

returns 0 if not complete for the specified channel

This example is intended to explain the HRPWM capabilities. The code can be optimized for code
efficiency. Refer to TI’s Digital power application examples and TI Digital Power Supply software
libraries for details.

All ePWM1A-4A channels (GPIO0 through GPI07) will have fine edge movement due to the
HRPWM logic

===
NOTE: For more information on using the SFO software library, see the
2802x High-Resolution Pulse Width Modulator (HRPWM) Reference Guide
===

To load and run this example:

1. ∗∗!!IMPORTANT!!∗∗ - in sfo_v6.h, set PWM_CH to the max number of HRPWM channels plus
one. For example, for the F2802x, the maximum number of HRPWM channels is 4. 4+1=5, so
set define PWM_CH 5 in sfo_v6.h. (Default is 5)

2. In this file, set define AUTOCONVERT to 1 to enable MEP step auto-conversion logic. Other-
wise, to manually perform MEP calculations in software, clear to 0.

3. Run this example at maximum SYSCLKOUT (60 or 40 MHz)

4. Load the Example_2802xHRPWM_Duty_sfo_v6.gel and observe variables in the watch win-
dow

5. Activate Real time mode

6. Run the code

7. Watch ePWM1-4 waveforms on a Oscilloscope

8. In the watch window: Set the variable UpdateFine = 1 to observe the ePWMxA output with
HRPWM capabilities (default) Observe the duty cycle of the waveform change in fine MEP
steps

9. In the watch window: Change the variable UpdateFine to 0, to observe the ePWMxA out-
put without HRPWM capabilities Observe the duty cycle of the waveform change in coarse
SYSCLKOUT cycle steps.

3.22 High Resolution PWM SFO Period Control

This example modifies the MEP control registers to show edge displacement for high-resolution
period/frequency on multiple synchronized ePWM channels in Up-Down count mode due to the
HRPWM control extension of the respective ePWM module.

Notice that all period and compare register updates occur in an ISR which interrupts at ePWM1
TBCTR = 0. This ensures that period and compare register updates across all ePWM modules
occur within the same period.

This example calls the following TI’s MEP Scale Factor Optimizer (SFO) software library V6 func-
tions:

int SFO();

updates MEP_ScaleFactor dynamically when HRPWM is in use

Thu Mar 3 16:37:09 IST 2022 51

Piccolo F2802x Example Applications

updates HRMSTEP register (exists only in EPwm1Regs register space) with
MEP_ScaleFactor value

returns 2 if error: MEP_ScaleFactor is greater than maximum value of 255 (Auto-conversion
may not function properly under this condition)

returns 1 when complete for the specified channel

returns 0 if not complete for the specified channel

All ePWM1A-4A channels will be synchronized to each other (with ePWM1 sync’d to the SWF-
SYNC) and have fine edge period movement due to the HRPWM logic.

This example can be used as a primitive building block for applications which require high resolution
frequency control with synchronized ePWM modules (i.e. resonant converter applications)

===
NOTE: For more information on using the SFO software library, see the
2802x High-Resolution Pulse Width Modulator (HRPWM) Reference Guide
===

To load and run this example:

1. ∗∗!!IMPORTANT!!∗∗ - in sfo_v6.h, set PWM_CH to the max number of HRPWM channels plus
one. For example, for the F2802x, the maximum number of HRPWM channels is 4. 4+1=5, so
set define PWM_CH 5 in sfo_v6.h. (Default is 5)

2. Run this example at maximum SYSCLKOUT (60 MHz or 40 MHz)

3. Add "UpdateFine" and "UpdateCourse" variables to the watch window.

4. Activate Real time mode

5. Run the code

6. Watch ePWM A channel waveforms on a Oscilloscope

7. In the watch window: Set the variable UpdateFine = 1 to observe the ePWMxA output with
HRPWM capabilities (default) Observe the period/frequency of the waveform changes in fine
MEP steps

8. In the watch window: Change the variable UpdateFine to 0, to observe the ePWMxA output
without HRPWM capabilities To change the period/frequency in coarse steps, uncomment the
relevant code, re-build and re-run with UpdateCoarse = 1. Observe the period/frequency of
the waveform changes in coarse SYSCLKOUT cycle steps.

3.23 High Resolution PWM SFO Period (Up Count) Control

This example modifies the MEP control registers to show edge displacement for high-resolution
period with ePWM in Up count mode due to the HRPWM control extension of the respective ePWM
module.

This example calls the following TI’s MEP Scale Factor Optimizer (SFO) software library V6 func-
tions:

int SFO();

updates MEP_ScaleFactor dynamically when HRPWM is in use

updates HRMSTEP register (exists only in EPwm1Regs register space) with
MEP_ScaleFactor value

52 Thu Mar 3 16:37:09 IST 2022

Piccolo F2802x Example Applications

returns 2 if error: MEP_ScaleFactor is greater than maximum value of 255 (Auto-conversion
may not function properly under this condition)
returns 1 when complete for the specified channel
returns 0 if not complete for the specified channel

This example is intended to explain the HRPWM capabilities. The code can be optimized for code
efficiency. Refer to TI’s Digital power application examples and TI Digital Power Supply software
libraries for details.

All ePWM1A-4A channels (GPIO0 through GPI07) will have fine edge movement due to the
HRPWM logic.

===
NOTE: For more information on using the SFO software library, see the
2802x High-Resolution Pulse Width Modulator (HRPWM) Reference Guide
===

To load and run this example:

1. ∗∗!!IMPORTANT!!∗∗ - in sfo_v6.h, set PWM_CH to the max number of HRPWM channels plus
one. For example, for the F2802x, the maximum number of HRPWM channels is 4. 4+1=5, so
set define PWM_CH 5 in sfo_v6.h. (Default is 5)

2. Run this example at maximum SYSCLKOUT (60 or 40 MHz)
3. Load the Example_2802xHRPWM_PrdUpDown_sfo_v6.gel and observe variables in the

watch window
4. Activate Real time mode
5. Run the code
6. Watch ePWM1-4 waveforms on a Oscilloscope
7. In the watch window: Set the variable UpdateFine = 1 to observe the ePWMxA output with

HRPWM capabilities (default) Observe the period/frequency of the waveform changes in fine
MEP steps

8. In the watch window: Change the variable UpdateFine to 0, to observe the ePWMxA output
without HRPWM capabilities Observe the period/frequency of the waveform changes in coarse
SYSCLKOUT cycle steps.

3.24 High Resolution PWM SFO Period (Up-Down Count)
Control

This example modifies the MEP control registers to show edge displacement for high-resolution
period with ePWM in Up-Down count mode due to the HRPWM control extension of the respective
ePWM module.

This example calls the following TI’s MEP Scale Factor Optimizer (SFO) software library V6 func-
tions:

int SFO();

updates MEP_ScaleFactor dynamically when HRPWM is in use
updates HRMSTEP register (exists only in EPwm1Regs register space) with
MEP_ScaleFactor value

Thu Mar 3 16:37:09 IST 2022 53

Piccolo F2802x Example Applications

returns 2 if error: MEP_ScaleFactor is greater than maximum value of 255 (Auto-conversion
may not function properly under this condition)
returns 1 when complete for the specified channel
returns 0 if not complete for the specified channel

This example is intended to explain the HRPWM configuration for high resolution period/frequency.
The code can be optimized for code efficiency. Refer to TI’s Digital power application examples and
TI Digital Power Supply software libraries for details.

ePWM1A (GPIO0) will have fine edge movement due to the HRPWM logic

===
NOTE: For more information on using the SFO software library, see the
2802x High-Resolution Pulse Width Modulator (HRPWM) Reference Guide
===

To load and run this example:

1. ∗∗!!IMPORTANT!!∗∗ - in sfo_v6.h, set PWM_CH to the max used HRPWM channel # plus one.
For example, for the F2802x, the maximum number of HRPWM channels is 4. 4+1=5, so set
define PWM_CH 5 in sfo_v6.h. (Default is 5)

Note for this specific example, you could set define PWM_CH 2 (because it only uses
ePWM1), but to cover all examples, PWM_CH is currently set to the maximum possible
for the device.

1. Load the code and add the following watch variables to the watch window:
UpdateFine
PeriodFine
EPwm1Regs.TBPRD
EPwm1Regs.TBPRDHR

2. Run this example at maximum SYSCLKOUT (60 or 40 MHz)
3. Activate Real time mode
4. Run the code
5. Watch ePWM1A waveform on a Oscilloscope
6. In the watch window: Set the variable UpdateFine = 1 to observe the ePWMxA output with

HRPWM capabilities (default) Observe the period/frequency of the waveform changes in fine
MEP steps

7. In the watch window: Change the variable UpdateFine to 0, to observe the ePWMxA output
without HRPWM capabilities

3.25 High Resolution PWM Slider

This example modifies the MEP control registers to show edge displacement due to HRPWM
control blocks of the respective EPwm module, EPwm1A, 2A, 3A, and 4A channels (GPIO0,
GPIO2, GPIO4, and GPIO6) will have fine edge movement due to HRPWM logic. Load the Ex-
ample_2802xHRPWM_slider.gel file. Select the HRPWM_eval from the GEL menu. A FineDuty
slider graphics will show up in CCS. Load the program and run. Use the Slider to and observe
the EPwm edge displacement for each slider step change. This explains the MEP control on the
EPwmxA channels

54 Thu Mar 3 16:37:09 IST 2022

Piccolo F2802x Example Applications

1. PWM Freq = SYSCLK/(period=10), ePWM1A toggle low/high with MEP control on rising edge
PWM Freq = SYSCLK/(period=10), ePWM1B toggle low/high with NO HRPWM control

1. PWM Freq = SYSCLK/(period=20), ePWM2A toggle low/high with MEP control on rising edge
PWM Freq = SYSCLK/(period=20), ePWM2B toggle low/high with NO HRPWM control

1. PWM Freq = SYSCLK/(period=10), ePWM3A toggle as high/low with MEP control on falling
edge PWM Freq = SYSCLK/(period=10), ePWM3B toggle low/high with NO HRPWM control

1. PWM Freq = SYSCLK/(period=20), ePWM4A toggle as high/low with MEP control on falling
edge PWM Freq = SYSCLK/(period=20), ePWM4B toggle low/high with NO HRPWM control

3.26 LED BoosterPack Capacitive Touch Demo

This example allows the user to control the LED Boosterpack’s color by spinning their finger on the
capacitive touch boosterpack when plugged into the LED boosterpack.

For this example to work S4 on the C2000 LaunchPad should be in the down position, while S1 on
the LED Boosterpack should be in the up position.

This example uses the same control techniques used in the other LED BoosterPack examples, but
uses the MSP430 present on the LED BoosterPack as a sensor hub. The MSP430 interfaces with
the Capacitive Touch BoosterPack directly and reports actions to the Piccolo device on the C2000
LaunchPad via an asynchronous serial interface.

After loading and running this example, press the center section of the capacitive touch Booster-
Pack twice to turn on the LEDs. Moving ones finger around the outer sections of the touchpad will
change the LED color. Touching the center section again will turn off the LEDs.

3.27 LED BoosterPack PC GUI Demo

This example allows the user to control the LED Boosterpack’s color and intensity via a GUI appli-
cation on a host PC.

For this example to work S4 on the C2000 LaunchPad should be in the up position, while S1 on the
LED Boosterpack should be in the down position.

This example uses the same control techniques used in the other LED BoosterPack examples and
uses a serial communications link to communicate with a PC Gui application to allow for control of
the BoosterPack’s LEDs.

After loading and running this example, open up the PC GUI application and connect to the
XDS100’s USB/Serial Port. Move the slides to turn on and off the LEDs and adjust the color.

3.28 Device Halt Mode and Wakeup

This example puts the device into HALT mode. If the lowest possible current consumption in HALT
mode is desired, the JTAG connector must be removed from the device board while the device is in
HALT mode.

Thu Mar 3 16:37:09 IST 2022 55

Piccolo F2802x Example Applications

The example then wakes up the device from HALT using GPIO0. GPIO0 wakes the device from
HALT mode when a high-to-low signal is detected on the pin. This pin must be pulsed by an external
agent for wakeup.

The wakeup process begins as soon as GPIO0 is held low for the time indicated in the device
datasheet. After the device wakes up, GPIO1 can be observed to go high.

GPIO0 is configured as the LPM wakeup pin to trigger a WAKEINT interrupt upon detection of a
low pulse. Initially, pull GPIO0 high externally. To wake device from halt mode, pull GPIO0 low for
at least the crystal startup time + 2 OSCLKS, then pull it high again.

To observe when device wakes from HALT mode, monitor GPIO1 with an oscilloscope (toggled in
WAKEINT ISR)

3.29 Device Idle Mode and Wakeup

This example puts the device into IDLE mode.

The example then wakes up the device from IDLE using XINT1 which triggers on a falling edge
from GPIO0. This pin must be pulled from high to low by an external agent for wakeup.

To observe the device wakeup from IDLE mode, monitor GPIO1 with an oscilloscope, which toggles
in the XINT_1_ISR.

3.30 Standby Mode and Wakeup

This example puts the device into STANDBY mode. If the lowest possible current consumption in
STANDBY mode is desired, the JTAG connector must be removed from the device board while the
device is in STANDBY mode.

The example then wakes up the device from STANDBY using GPIO0. GPIO0 wakes the device
from STANDBY mode when a low pulse (signal goes high->low->high)is detected on the pin. This
pin must be pulsed by an external agent for wakeup.

As soon as GPIO0 goes high again after the pulse, the device should wake up, and GPIO1 can be
observed to toggle.

3.31 Internal Oscillator Compensation

This program shows how to use the internal oscillator compensation functions in osc.c or
F2802x_OscComp.c. The temperature sensor is sampled and the raw temp sensor value is passed
to the oscillator compensation function, which uses this parameter to compensate for frequency drift
of the internal oscillator over temperature.

Watch Variables:

temp

SysCtrlRegs.INTOSC1TRIM

SysCtrlRegs.INTOSC2TRIM

56 Thu Mar 3 16:37:09 IST 2022

Piccolo F2802x Example Applications

3.32 SCI Echoback

This test receives and echo-backs data through the SCI-A port.

1. Configure hyperterminal: Use the included hyperterminal configuration file SCI_96.ht. To load
this configuration in hyperterminal: file->open and then select the SCI_96.ht file.

2. Check the COM port. The configuration file is currently setup for COM1. If this is not correct,
disconnect Call->Disconnect Open the File-Properties dialog and select the correct COM port.

3. Connect hyperterminal Call->Call and then start the 2802x SCI echoback program execution.
4. The program will print out a greeting and then ask you to enter a character which it will echo

back to hyperterminal.

Watch Variables:

LoopCount for the number of characters sent
ErrorCount

3.33 SCI FIFO Digital Loop Back

This test uses the loopback test mode of the SCI module to send characters starting with 0x00
through 0xFF. The test will send a character and then check the receive buffer for a correct match.

Watch Variables:

LoopCount - Number of characters sent
ErrorCount - Number of errors detected
SendChar - Character sent
ReceivedChar - Character received

3.34 SCI Digital Loop Back with Interrupts

This program is a SCI example that uses the internal loopback of the peripheral. Both interrupts
and the SCI FIFOs are used.

A stream of data is sent and then compared to the received stream.

The SCI-A sent data looks like this:

00 01

01 02

02 03

....

FE FF

FF 00

etc..

Thu Mar 3 16:37:09 IST 2022 57

Piccolo F2802x Example Applications

The pattern is repeated forever.

Watch Variables:

sdataA - Data being sent

rdataA - Data received

rdata_pointA - Keep track of where we are in the datastream. This is used to check the
incoming data

3.35 SPI Digital Loop Back

This program is a SPI example that uses the internal loopback of the peripheral. Interrupts are not
used.

A stream of data is sent and then compared to the received stream.

The sent data looks like this: 0000 0001 0002 0003 0004 0005 0006 0007 FFFE FFFF

This pattern is repeated forever.

Watch Variables:

sdata - sent data

rdata - received data

3.36 SPI Digital Loop Back with Interrupts

This program is a SPI-A example that uses the internal loopback of the peripheral. Both interrupts
and the SPI FIFOs are used.

A stream of data is sent and then compared to the received stream.

The sent data looks like this: 0000 0001

0001 0002

0002 0003

....

FFFE FFFF

FFFF 0000

etc..

This pattern is repeated forever.

Watch Variables:

sdata[2] - Data to send

rdata[2] - Received data

rdata_point - Used to keep track of the last position in the receive stream for error checking.

58 Thu Mar 3 16:37:09 IST 2022

Piccolo F2802x Example Applications

3.37 Software Prioritized Interrupts

For most applications, the hardware prioritization of the the PIE module is sufficient. For applica-
tions that need custom prioritization, this example illustrates an example of how this can be done
through software.

For more information on F2802x interrupt priorities, refer to the Software ISR Priorities section of
the firmware examples guide document included with the F2802x/doc directory.

This program simulates interrupt conflicts by writing to the PIEIFR registers. This will simulate
multiple interrupts coming into the PIE block at the same time.

The interrupt service routine routines are software prioritized by the table found in the
F2802x_SWPrioritizedIsrLevels.h file.

1. Before compiling you must set the Global and Group interrupt priorities in the
F2802x_SWPrioritizedIsrLevels.h file.

2. Set the define CASE directive at the top of the code in this file to determine which test case to
run

3. Compile the code, load, and run

4. At the end of each test there is a hard coded breakpoint (ESTOP0). When code stops at the
breakpoint, examine the ISRTrace buffer to see the order in which the ISR’s completed. All
PIE interrupts will add to the ISRTrace.

5. If desired, set a new set of Global and Group interrupt priorities and repeat the test to see the
change.

Watch Variables:

ISRTrace[50] - Trace of ISR’s in the order they complete After each test, examine this buffer to
determine if the ISR’s completed in the order desired. The ISRTrace will consist of a list of hex
values as shown:
0x00wx <- PIE Group w interrupt x finished first
0x00yz <- PIE Group y interrupt z finished next

3.38 LED Blink

This example configures CPU Timer0 for a 500 msec period, and toggles the GPIO0-4 LEDs once
per interrupt. For testing purposes, this example also increments a counter each time the timer
asserts an interrupt.

Watch Variables:

interruptCount

Monitor the GPIO0-4 LEDs blink on (for 500 msec) and off (for 500 msec) on the 2802x control
card.

Thu Mar 3 16:37:09 IST 2022 59

Piccolo F2802x Example Applications

3.39 Watchdog Interrupt

This program exercises the watchdog.

First the watchdog is connected to the WAKEINT interrupt of the PIE block. The code is then put
into an infinite loop.

The user can select to feed the watchdog key register or not by commenting one line of code in the
infinite loop.

If the watchdog key register is fed by the WDOG_clearCounter function then the WAKEINT interrupt
is not taken. If the key register is not fed by the WDOG_clearCounter function then WAKEINT will
be taken.

Watch Variables:

LoopCount for the number of times through the infinite loop

WakeCount for the number of times through WAKEINT

60 Thu Mar 3 16:37:09 IST 2022

Interrupt Service Routine Priorities

A Interrupt Service Routine Priorities
Interrupt Hardware Priority Overview . 61
F2802x Interrupt Priorities .62
Software Prioritization of Interrupts - The DSP28 Example .63

A.1 Interrupt Hardware Priority Overview

With the PIE block enabled, the interrupts are prioritized in hardware by default as follows:
Global Priority (CPU Interrupt level):

CPU Interrupt Hardware Priority
Reset 1(Highest)
INT1 5
INT2 6
INT3 7
INT4 8
INT5 9
INT6 10
INT7 11
... ...
INT12 16
INT13 17
INT14 18
DLOGINT 19(Lowest)
RTOSINT 20
reserved 2
NMI 3
ILLEGAL -
USER1 -(Software Interrupts)
USER2 -
... ...

CPU Interrupts INT1 - INT14, DLOGINT and RTOSINT are maskable interrupts. These interrupts
can be enabled or disabled by the CPU Interrupt enable register (IER).

Group Priority (PIE Level):
If the Peripheral Interrupt Expansion (PIE) block is enabled, then CPU interrupts INT1 to INT12 are
connected to the PIE. This peripheral expands each of these 12 CPU interrupt into 8 interrupts.
Thus the total possible number of available interrupts in the PIE is 96. Note, not all of the 96 are
used on a 2802x device.

Each of the PIE groups has its own interrupt enable register (PIEIERx) to control which of the 8
interrupts (INTx.1 - INTx.8) are enabled and permitted to issue an interrupt.

Thu Mar 3 16:37:09 IST 2022 61

Interrupt Service Routine Priorities

CPU PIE
Interrupt Group PIE Interrupts

Highest————–Hardware Priority Within the Group—————-Lowest
INT1 1 INT1.1 INT1.2 INT1.3 INT1.4 INT1.5 INT1.6 INT1.7 INT1.8
INT2 2 INT2.1 INT2.2 INT2.3 INT2.4 INT2.5 INT2.6 INT2.7 INT2.8
INT3 3 INT3.1 INT3.2 INT3.3 INT3.4 INT3.5 INT3.6 INT3.7 INT3.8

... etc ...

... etc ...
INT12 12 INT12.1 INT12.2 INT12.3 INT12.4 INT12.5 INT12.6 INT12.7 INT4.8

Table A.1: PIE Group Hardware Priority

A.2 F2802x Interrupt Priorities

The PIE block is organized such that the interrupts are in a logical order. Interrupts that typically
require higher priority, are organized higher up in the table and will thus be serviced with a higher
priority by default.

The interrupts in a 2802x system can be categorized as follows (ordered highest to lowest priority):

1. Non-Periodic, Fast Response
These are interrupts that can happen at any time and when they occur, they must be serviced
as quickly as possible. Typically these interrupts monitor an external event.

On the 2802x, such interrupts are allocated to the first few interrupts within PIE Group 1 and
PIE Group 2. This position gives them the highest priority within the PIE group. In addition,
Group 1 is multiplexed into the CPU interrupt INT1. CPU INT1 has the highest hardware
priority. PIE Group 2 is multiplexed into the CPU INT2 which is the 2nd highest hardware
priority.

2. Periodic, Fast Response
These interrupts occur at a known period, and when they do occur, they must be serviced as
quickly as possible to minimize latency. The A/D converter is one good example of this. The
A/D sample must be processed with minimum latency.

On the 2802x, such interrupts are allocated to the group 1 in the PIE table. Group 1 is
multiplexed into the CPU INT1. CPU INT1 has the highest hardware priority

3. Periodic
These interrupts occur at a known period and must be serviced before the next interrupt.
Some of the PWM interrupts are an example of this. Many of the registers are shadowed, so
the user has the full period to update the register values.

In the 2802x PIE module, such interrupts are mapped to group 2 - group 5. These groups
are multiplexed into CPU INT3 to INT5 (the ePWM and eCAP), which are the next lowest
hardware priority.

4. Periodic, Buffered
These interrupts occur at periodic events, but are buffered and hence the processor need
only service such interrupts when the buffers are ready to filled/emptied. All of the serial ports

62 Thu Mar 3 16:37:09 IST 2022

Interrupt Service Routine Priorities

(SCI/ SPI/ I2C/ CAN/ McBSP) either have FIFOs or multiple mailboxes such that the CPU has
plenty of time to respond to the events without fear of losing data.

In the 2802x, such interrupts are mapped to INT6, INT8, and INT9, which are the next lowest
hardware priority.

A.3 Software Prioritization of Interrupts - The DSP28 Ex-
ample

The user will probably find that the PIE interrupts are organized where they should be for most
applications. However, some software prioritization may still be required for some applications.

Recall that the basic software priority scheme on the C28x works as follows:

Global Priority
This priority can be managed by manipulating the CPU IER register. This register controls the
16 maskable CPU interrupts (INT1 - INT16).

Group Priority
This can be managed by manipulating the PIE block interrupt enable registers (PIEIERx).
There is one PIEIERx per group and each control the 8-interrupts multiplexed within that group.

The DSP28 software prioritization of interrupt example demonstrates how to configure the Global
priority (via IER) and group priority (via PIEIERx) within an ISR in order to change the interrupt
service priority based on user assigned levels. The steps required to do this are:

1. Set the global priority
Modify the IER register to allow CPU interrupts with a higher user priority to be serviced.

2. Set the Group priority
Modify the appropriate PIEIERx register to allow group interrupts with a higher user set priority
to be serviced.

3. Enable interrupts

The DSP28 software prioritized interrupts example provides a method using mask values that are
configured during compile time to allow you to manage this easily.

To setup software prioritization for the DSP28 example, the user must first assign the desired global
priority levels and group priority levels.

This is done in the F2802x_SWPrioritizedIsrLevels.h file as follows:

1. User assigns global priority levels
INT1PL - INT16PL
These values are used to assign a priority level to each of the 16 interrupts controlled by the
CPU IER register. A value of 1 is the highest priority while a value of 16 is the lowest. More
then one interrupt can be assigned the same priority level. In this case the default hardware
priority would determine which would be serviced first. A priority of 0 is used to indicate that

Thu Mar 3 16:37:09 IST 2022 63

Interrupt Service Routine Priorities

the interrupt is not used.

2. User assigns PIE group priority levels
GxyPL (where x = PIE group number 1 - 12 and y = interrupt number 1 - 8)

These values are used to assign a priority level to each of the 8 interrupts within a PIE group.
A value of 1 is the highest priority while a value of 8 is the lowest. More then one interrupt can
be assigned the same priority level. In this case the default hardware priority would determine
which would be serviced first. A priority of 0 is used to indicate that the interrupt is not used.

Once the user has defined the global and group priority levels, the compiler will generate mask
values that can be used to change the IER and PIEIERx registers within each ISR. In this manner
the interrupt software prioritization will be changed. The masks that are generated at compile time
are:

IER mask values
MINT1 - MINT16

The user assigned INT1PL - INT16PL values are used at compile time to calculate an IER
mask for each CPU interrupt. This mask value will be used within an ISR to allow CPU inter-
rupts with a higher priority to interrupt the current ISR and thus be serviced at a higher priority
level.

PIEIERxy mask values
MGxy (where x = PIE group number 1 - 12 and y = interrupt number 1 - 8)

The assigned group priority levels (GxyPL) are used at compile time to calculate PIEIERx
masks for each PIE group. This mask value will be used within an ISR to allow interrupts
within the same group that have a higher assigned priority to interrupt the current ISR and
thus be serviced at a higher priority level.

A.3.1 Using the IER/PIEIER Mask Values

Within an interrupt service routine, the global and group priority can be changed by software to
allow other interrupts to be serviced. The procedure for setting an interrupt priority using the mask
values created in the F2802x_SWPrioritizedIsrLevels.h is the following:

1. Set the global priority
Modify IER to allow CPU interrupts from the same PIE group as the current ISR.
Modify IER to allow CPU interrupts with a higher user defined priority to be serviced.

2. Set the group priority
Save the current PIEIERx value to a temporary register.
The PIEIER register is then set to allow interrupts with a higher priority within a PIE group
to be serviced.

3. Enable interrupts
Enable all PIE interrupt groups by writing all 1’s to the PIEACK register
Enable global interrupts by clearing INTM

4. Execute ISR. Interrupts that were enabled in steps 1-3 (those with a higher software priority)
will be allowed to interrupt the current ISR and thus be serviced first.

64 Thu Mar 3 16:37:09 IST 2022

Interrupt Service Routine Priorities

5. Restore the PIEIERx register
6. Exit

A.3.2 Example Code

The sample C code below shows an EV-A Comparator 1 Interrupt service routine software
prioritization written in C. This interrupt is connected to PIE group 2 interrupt 1.

//
// Connected to PIEIER2_1 (use MINT2 and MG21 masks):
//
#if (G21PL != 0)
interrupt void
EPWM1_TZINT_ISR(void) // EPWM1 Trip Zone
{

//
// Set interrupt priority
//
volatile Uint16 TempPIEIER = PieCtrlRegs.PIEIER2.all;
IER |= M_INT2;
IER &= MINT2; // Set "global" priority
PieCtrlRegs.PIEIER2.all &= MG21; // Set "group" priority
PieCtrlRegs.PIEACK.all = 0xFFFF; // Enable PIE interrupts
EINT;

//
// Insert ISR Code here
// for now just insert a delay
//
for(i = 1; i <= 10; i++)
{

}

//
// Restore registers saved
//
DINT;
PieCtrlRegs.PIEIER2.all = TempPIEIER;

//
// Add ISR to Trace
//
ISRTrace[ISRTraceIndex] = 0x0021;
ISRTraceIndex++;

}
#endif

CMP1INT_ISR:
ASP

Thu Mar 3 16:37:09 IST 2022 65

Interrupt Service Routine Priorities

ADDB SP,#1
CLRC OVM,PAGE0
MOVW DP,#0x0033
MOV AL,@36
MOV *-SP[1],AL
OR IER,#0x0002
AND IER,#0x0002
AND @36,#0x000E
MOV @33,#0xFFFF
CLRC INTM

User code goes here...

SETC INTM
MOV AL,*-SP[1]
MOV @36,AL
SUBB SP,#1
NASP
IRET

The interrupt latency is approx 22 cycles.

/∗!

66 Thu Mar 3 16:37:09 IST 2022

Internal Oscillator Compensation Functions

B Internal Oscillator Compensation Functions
Introduction . 67
Oscillator Compensation Functions Available in the Header Files and Peripheral Examples Package 69

B.1 Introduction

To compensate the internal oscillator, the Texas Instruments factory takes measurements of the
internal oscillator and temperature sensor. It then calculates a reference point for the temperature
sensor and oscillator trim and calculates an oscillator trim slope. The trim slope can be used
to adjust the oscillator fine trim as the temperature sensor reading moves away from that of the
reference point.

The reference point for the internal oscillator consists of two pieces of data. The first is the temper-
ature sensor reading at that point. The second is the oscillator trim values to get 10.0MHz at that
temperature. This trim itself is composed of two parts: the fine trim and the coarse trim. Only the
fine trim will be adjusted by the compensation procedure. The coarse trim remains the same no
matter what temperature the device is at.

The oscillator compensation slope contains the information needed to adjust the oscillator fine trim
from the reference fine trim as the temperature moves away from the reference temperature. This
slope has the units of oscillator fine trim steps / ADC codes (temperature sensor output).

If X is considered to be the temperature sensor reading and Y is considered to be the oscillator fine
trim, then the basic oscillator compensation equation is

Y1 = m ∗ (X1 −X0) + Y0 (B.1)

where,
Y1 is the oscillator fine trim at the current temperature
Y0 is the oscillator fine trim at the reference temperature
X1 is the temperature sensor reading at the current temperature
X0 is the temperature sensor reading at the reference temperature
m is the oscillator compensation slope, which is change in oscillator fine trim

change in temperature sensor reading

This is equivalent to a line with equation Y = mX + b:

Thu Mar 3 16:37:09 IST 2022 67

Internal Oscillator Compensation Functions

Figure B.1: Oscillator Reference

Figure B.2: Oscillator Fine Trim Compensation for change in Temperature

68 Thu Mar 3 16:37:09 IST 2022

Internal Oscillator Compensation Functions

B.2 Oscillator Compensation Functions Available in the
Header Files and Peripheral Examples Package

B.2.1 OTP Functions

The following functions in F2802x_OscComp.c are programmed in OTP and return variables stored
in OTP used for oscillator compensation.

Similar functions following the new conventions of the driver library model can be found in com-
mon/include/osc.h. These functions are functionally identical but are named with an OSC_ prefix.
For instance instead of getOsc1FineTrimOffset the function is called OSC_getFineTrimOffset1.

Function Call: getRefTempOffset()
OTP address: 0x3D7EA2
Returns: Reference Temperature Offset
This is the temperature sensor reading of the reference point for oscillator compensation.

Function Call: getOsc1FineTrimOffset()
OTP address: 0x3D7E93
Returns: Oscillator 1 Fine Trim Offset
This is the fine trim of the reference point for oscillator 1. This is the fine trim required to get
10.0MHz when the temperature sensor reads the value of “High Temperature Offset”.

Function Call: getRefTempOffset()
OTP address: 0x3D7EA2
Returns: Reference Temperature Offset

Function Call: getOsc2FineTrimOffset ()
OTP address: 0x3D7E9C
Returns: Oscillator 2 Fine Trim Offset
This is the fine trim of the reference point for oscillator 2. This is the fine trim required to get
10.0MHz when the temperature sensor reads the value of “High Temperature Offset”.

Function Call: getOsc1FineTrimSlope()
OTP address: 0x3D7E90
Returns: Oscillator 1 Fine Trim Slope
This is the slope of the oscillator temperature characteristic determined by the factory for internal
oscillator 1. Units are oscillator fine trim steps / ADC codes (temperature sensor output). This
variable is stored as a Q0.15 fixed point number - e.g. if the slope = -0.04, then this value is stored
as -0.04*(215) = -1311. Note that this will require us to use fixed point math to compensate the
oscillator.

Function Call: getOsc2FineTrimSlope()
OTP address: 0x3D7E99
Returns: Oscillator 2 Fine Trim Slope
This is the slope of the oscillator temperature characteristic determined by the factory for internal
oscillator 2. Units are oscillator fine trim steps / ADC codes (temperature sensor output). This

Thu Mar 3 16:37:09 IST 2022 69

Internal Oscillator Compensation Functions

variable is stored as a Q0.15 fixed point number - e.g. if the slope = -0.04, then this value is stored
as -0.04*(215) = -1311. Note that this will require us to use fixed point math to compensate the
oscillator.

Function Call: getOsc1CoarseTrim()
OTP address: 0x3D7E96
Returns: Oscillator 1 Coarse Trim
This is the coarse trim to always use for oscillator 1 when doing oscillator compensation.

Function Call: getOsc2CoarseTrim()
OTP address: 0x3D7E9F
Returns: Oscillator 2 Coarse Trim
This is the coarse trim to always use for oscillator 2 when doing oscillator compensation.

B.2.2 Oscillator Compensation User Functions

The following functions use the ADC temperature sensor sample as a parameter and update the
internal oscillator coarse and fine trim value while compensating for temperature. These functions
can be called directly via user application code.

Function Call: Osc1Comp(int16 sensorSample)
This function uses the temperature sensor sample reading to perform internal oscillator 1 compen-
sation with reference values stored in OTP.

Function Call: Osc2Comp(int16 sensorSample)
This function uses the temperature sensor sample reading to perform internal oscillator 2 compen-
sation with reference values stored in OTP.

70 Thu Mar 3 16:37:09 IST 2022

Thu Mar 3 16:37:09 IST 2022 71

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications
using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design
and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work
right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used.
Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services
or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids
all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifi-
cally designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications.
Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer’s risk,
and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products
Amplifiers
Data Converters
DLP® Products
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
RF/IF and ZigBee® Solutions

amplifier.ti.com
dataconverter.ti.com
www.dlp.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprf

Applications
Audio
Automotive
Broadband
Digital Control
Medical
Military
Optical Networking
Security
Telephony
Video & Imaging
Wireless

www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

72 Thu Mar 3 16:37:09 IST 2022

amplifier.ti.com
dataconverter.ti.com
www.dlp.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprf
www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless

	Copyright
	Revision Information
	1 Introduction
	2 Driver Library and Header File Quickstart
	2.1 Device Support
	2.2 Introduction
	2.3 Understanding The Peripheral Bit-Field Structure Approach
	2.4 Peripheral Example Projects
	2.5 Steps for Incorporating the Driver Library and/or Header Files
	2.6 Troubleshooting Tips and Frequently Asked Questions
	2.7 F2802x bit field headers API to F2802x driver library API code suggestions
	2.8 Packet Contents
	2.9 Detailed Revision History

	3 Piccolo F2802x Example Applications
	3.1 ADC Start-Of-Conversion (SOC)
	3.2 ADC Temperature Sensor
	3.3 ADC Temperature Sensor Conversion
	3.4 LaunchPad Demo
	3.5 CPU Timer
	3.6 ECAP Asymmetric PWM
	3.7 ECAP Capture EPwm3
	3.8 PWM Blanking Window
	3.9 PWM Digital Compare Event Trip Zone
	3.10 PWM Trip Zone Test with Comparator Inputs
	3.11 PWM deadband generation
	3.12 PWM Timer Interrupt
	3.13 PWM Trip Zone
	3.14 Action Qualifier Module Upcount mode
	3.15 Action Qualifier Module - Using up/down count
	3.16 External Interrupts
	3.17 EPwm interrupt from Flash
	3.18 GPIO Setup
	3.19 GPIO Toggle
	3.20 High Resolution PWM
	3.21 High Resolution PWM SFO Duty Cycle Control
	3.22 High Resolution PWM SFO Period Control
	3.23 High Resolution PWM SFO Period (Up Count) Control
	3.24 High Resolution PWM SFO Period (Up-Down Count) Control
	3.25 High Resolution PWM Slider
	3.26 LED BoosterPack Capacitive Touch Demo
	3.27 LED BoosterPack PC GUI Demo
	3.28 Device Halt Mode and Wakeup
	3.29 Device Idle Mode and Wakeup
	3.30 Standby Mode and Wakeup
	3.31 Internal Oscillator Compensation
	3.32 SCI Echoback
	3.33 SCI FIFO Digital Loop Back
	3.34 SCI Digital Loop Back with Interrupts
	3.35 SPI Digital Loop Back
	3.36 SPI Digital Loop Back with Interrupts
	3.37 Software Prioritized Interrupts
	3.38 LED Blink
	3.39 Watchdog Interrupt

	A Interrupt Service Routine Priorities
	A.1 Interrupt Hardware Priority Overview
	A.2 F2802x Interrupt Priorities
	A.3 Software Prioritization of Interrupts - The DSP28 Example

	B Internal Oscillator Compensation Functions
	B.1 Introduction
	B.2 Oscillator Compensation Functions Available in the Header Files and Peripheral Examples Package

	IMPORTANT NOTICE

