
Copyright © 2022 Texas Instruments Incorporated.

USER’S GUIDE

F2806x USB Bootloader

Copyright
Copyright © 2022 Texas Instruments Incorporated. All rights reserved. Other names and brands may be claimed as the property of others.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semicon-
ductor products and disclaimers thereto appears at the end of this document.

Texas Instruments
13905 University Boulevard
Sugar Land, TX 77479
http://www.ti.com/c2000

Revision Information
This is version 2.06.00.00 of this document, last updated on Thu Mar 3 16:39:52 IST 2022.

2 Thu Mar 3 16:39:52 IST 2022

Table of Contents

Table of Contents
Copyright . 2

Revision Information . 2

1 Introduction . 5

2 Startup Code . 9

3 USB Device (DFU) Update . 11
3.1 DFU Requests . 12
3.2 DFU States . 13
3.3 Typical Firmware Download Sequence . 14
3.4 Querying Command Support . 16
3.5 Download Command Definitions . 16

4 Customization . 25

5 Configuration . 27

6 Failsafe Mode . 31
6.1 Program and Data Allocation . 31
6.2 Memory Copies . 32

7 Source Details . 35
7.1 Decryption Functions . 35
7.2 Update Check Functions . 35
7.3 USB Device Functions . 37

IMPORTANT NOTICE . 44

Thu Mar 3 16:39:52 IST 2022 3

Table of Contents

4 Thu Mar 3 16:39:52 IST 2022

Introduction

1 Introduction
The Texas Instruments® boot loader is a small piece of code that can be programmed in flash
to act as an application loader as well as an update mechanism for applications running on a
C2000 microcontroller. The boot loader is designed to upgrade the application using the USB
Device Firmware Upgrade (DFU) mechanism. The boot loader is customizable via source code
modifications, or simply deciding at compile time which routines to include. Since full source code
is provided, the boot loader can be completely customized.

Source Code Overview

The following is an overview of the organization of the source code provided with the boot loader.

aes_config_opts.h Configuration header for aes encryption and decryptions
routines.

bl_entrytable.asm Bootloader and Application Entry points.

bl_check.c The code to check if a firmware update is required, or if a
firmware update is being requested by the user.

bl_check.h Prototypes for the update check code.

bl_commands.h The list of commands and return messages supported by
the boot loader.

bl_config.h A template for the boot loader configuration file. This con-
tains all of the possible configuration values.

bl_decrypt.c The code to perform an in-place decryption of the down-
loaded firmware image. No decryption is actually performed
in this file; this is simply a stub that can be expanded to per-
form the require decryption.

bl_decrypt.h Prototypes for the in-place decryption routines.

bl_hooks.h Provides hooks for user supplied functions.

bl_sym.h C prototypes for linker and assembly symbols.

bl_usb.c Main functions implementing the USB DFU protocol boot
loader.

bl_usbfuncs.c A cut-down version of the USB library containing support
for enumeration and the endpoint 0 transactions required to
implement the USB DFU device.

bl_usbfuncs.h Prototypes for the functions provided in bl_usbfuncs.c.

crc.h Prototypes CPU and VCU CRC routines.

Thu Mar 3 16:39:52 IST 2022 5

Introduction

F2806x_BL_MemCopy.c Memory copy functions for use in both normal and failsafe
boot modes.

F2806x_CodeStartBranch.asmSpecial Code start branch that supports two flash entry lo-
cations.

F2806x_CSMPasswords.asm Code Security passwords. ONLY MODIFY IF YOU WANT
TO LOCK THE DEVICE!

Flash2806x_API_Config.h Flash API configuration header.

Flash2806x_API_Library.h Flash API function prototypes.

usbdfu.h Type definitions, labels related to the USB Device Firmware
Upgrade class boot loader.

Practical Use

This bootloader is an example piece of software and should be treated as a guide on implementing
your own or used as a starting point for an end application bootloader. As with any embedded code
you should do your best to understand how each piece of the solution works. The bootloader may
be used unmodified with end application code that follows the same memory map and structure as
the bl_app example project.

To evaluate the DFU USB Bootloader example you should follow these steps:

Import the boot_loader and bl_app projects into CCS. The projects can be found in exam-
ples\/bl_app and MWare\/boot_loader.

Build each of the projects

Load the bootloader project into the flash of the target device and execute it.

Connect the target device’s USB port to the host PC.

When Windows asks about drivers, point it to the boot_usb.inf driver file found in
MWare\/windows_drivers. Two options will be presented: Select the first if you have a 32 bit system
and the second if you are using a 64 bit system.

Run dfuprog -e to enumerate the DFU enabled devices attached to the system. If your device
shows up everything is working correctly.

Run dfuprog -c to clear the flash of the target device.

Run dfuprog -f bl_app_i.hex to load the bl_app example application to the board. You may optionally
append the -r option to reset the target device and boot the bl_app application after programming
is complete.

The bootloader solution requires that the application to be loaded follow a predefined memory map,
have entry addresses and application signatures (CRC) at predefined locations that are known
by both the bootloader and the end application. The end application must also be passed to the

6 Thu Mar 3 16:39:52 IST 2022

Introduction

dfuprog utility in a special hex image file format. The bl_app example automatically does this
when the project is built using the bl_app_hex.cmd. Please refer to this file for the options one
must pass to the hex2000 utility to correctly generate a hex file for the dfuprog software. These
specially formatted hex files are the only supported file format for programming the device using
the bootloader.

Thu Mar 3 16:39:52 IST 2022 7

Introduction

8 Thu Mar 3 16:39:52 IST 2022

Startup Code

2 Startup Code
The start-up code contains the minimal set of code required to configure a vector table, initialize
memory, copy the boot loader from flash to SRAM, and execute from SRAM. The start-up code is
contained in rts2800_bl.lib, with F28069_bl.cmd containing the linker script used to place
the vector table, code segment, and data segments into the appropriate locations in memory.

At boot time one of two things can happen depending on how the bootloader is configured. During
a normal boot, the typical boot28 assembly code initializes the processor copies cinit and pinit and
jumps to the bootloader’s main function. There the bootloader checks for a valid application or a
forced update, and then jumps to the application or starts the bootloader. The bootloader can also
be built with a failsafe mode that minimizes chances that the bootloader could be corrupted. If this
mode is enabled and the failsafe condition occurs (discussed in greater detail later in this guide),
the bootloader will begin execution in the boot28_f file and perform the same initializations it would
during a normal boot. Instead of jumping to main though the bootloader will enter the FailsafeEntry
function (found in bl_usb.c). By definition there is no application present in the failsafe mode, so the
bootloader is immediately started in this case.

The boot loader’s code and its corresponding linker script use a memory layout that exists entirely
in SRAM. This means that the load address of the code and read-only data are not the same as
the execution address. Once the boot loader calls the application, all SRAM becomes usable by
the application.

After a reset, the start-up code checks to see if an application update should be performed by
calling CheckForceUpdate(). If an update is not required, the bootloader then check for a valid
application. At a minimum the bootloader must find a valid address at the application entry pointer
pAppEntry. A secondary CRC check can also optionally be perfomed using linker generated CRC
tables. For more information on linker generated CRC tables please see SPRU513d Assembly
Language Tools User Guide. Assuming an update is required, it is at this point that the bootloader
kernel is copied from flash to SRAM. After the copy has completed the microcontroller is initialized
by calling ConfigureUSB() after which the function UpdaterUSB() configures the USB interface
for device mode.

The check for an application update (in CheckForceUpdate()) consists of checking the beginning
of the application area and optionally checking the state of a GPIO pin. The GPIO pin check
can be enabled with ENABLE_UPDATE_CHECK in the bl_config.h header file, in which case an
update can be forced by changing the state of a GPIO pin (for example, with a push button). If
the application is valid and the GPIO pin is not requesting an update, the application is called.
Otherwise, an update is started by entering the main loop of the boot loader.

Additionally, the application can call the boot loader in order to perform an application-directed up-
date. In this case, the boot loader assumes that the application has already configured the USB
peripheral. This allows the boot loader to use the peripheral as is to perform the update. The
boot loader also assumes that the interrupt to the core has been left enabled as well, which means
that that application should not call DINT before calling the boot loader. Once the application calls
the boot loader, the boot loader copies itself to SRAM, branches to the SRAM copy of the boot
loader, and starts the update by calling UpdaterUSB(). The application should enter the boot-
loader via the AppUpdaterUSB function whose address can be found via the pBootEntry pointer (in
bl_entrytable.asm).

Thu Mar 3 16:39:52 IST 2022 9

Startup Code

10 Thu Mar 3 16:39:52 IST 2022

USB Device (DFU) Update

3 USB Device (DFU) Update
When performing a USB update, the boot loader calls ConfigureUSB() to configure the USB
controller and prepare the boot loader to update the firmware. The USB update mechanism allows
the boot loader to be entered from a functioning application as well as from startup when no appli-
cation has been downloaded to the microcontroller. The boot loader provides the main routine for
performing the USB update in the UpdaterUSB() function which is used in both cases.

When the USB boot loader is invoked from a running application, the boot loader will reconfigure the
USB controller to publish the required descriptor set for a Device Firmware Upgrade (DFU) class
device. If the main application had previously been offering any USB device class, it must remove
the device from the bus by calling USBDevDisconnect() prior to entering the boot loader.

The USB boot loader also assumes that the main application is using the PLL as the source of the
system clock.

The USB boot loader allows a USB host to upgrade the firmware on a USB device. To make use of
it, therefore, the board running the boot loader must be capable of acting as a USB device.

The USB boot loader enumerates as a Device Firmware Upgrade (DFU) class device.
This standard device class specifies a set of class-specific requests and a state ma-
chine that can be used to download and flash firmware images to a device and, op-
tionally, upload the existing firmware image to the USB host. The full specification for
the device class can be downloaded from the USB Implementer’s Forum web site at
http://www.usb.org/developers/devclass_docs#approved.

All communication with the DFU device takes place using the USB control endpoint, endpoint 0.
The device publishes a standard device descriptor with vendor, product and device revisions as
specified in the bl_config.h header file used to build the boot loader binary. It also publishes a
single configuration descriptor and a single interface descriptor where the interface class of 0xFE
indicates an application-specific class and the subclass of 0x01 indicates "Device Firmware Up-
grade". Attached to the interface descriptor is a DFU Functional Descriptor which provides informa-
tion to the host on DFU-specific device capabilities such as whether the device can perform upload
operations and what the maximum transfer size for upload and download operations is.

DFU functions are initiated by means of a set of class-specific requests. Each request, which follows
the standard USB request format, performs some operation and moves the DFU device between
a series of well-defined states. Additional requests allow the host to query the current state of the
device to determine whether, for example, it is ready to receive the next block of download data.

A DFU device may operation in one of two modes - Run Time” mode orDFU” mode. In “Run
Time” mode, the device publishes the DFU interface and functional descriptors alongside any other
descriptors that the device requires for normal operation. It does not, however, need to respond to
any DFU class-specific requests other than DFU_DETACH which indicates that it should switch to
“DFU” mode.

In “DFU” mode, the device supports all DFU functionality and can perform upload and download
operations as specified in its DFU functional descriptor.

The USB boot loader supports only “DFU” mode operation. If an main application wishes to pub-
lish DFU descriptors and respond to the DFU_DETACH request, it can cause a switch to “DFU”
mode on receiving a DFU_DETACH request by removing itself from the USB bus using a call to
USBDevDisconnect() before transferring control to the USB boot loader by making a call to AppUp-
daterUSB().

Thu Mar 3 16:39:52 IST 2022 11

http://www.usb.org/developers/devclass_docs#approved

USB Device (DFU) Update

3.1 DFU Requests

Requests supported by the USB boot loader are as follow:

DFU_DNLOAD This OUT request is used to send a block of binary data to the
device. The DFU class specification does not define the con-
tent and format of the binary data but typically this will be either
binary data to be written to some position in the device’s flash
memory or a device-specific command. The request payload
size is constrained by the maximum packet size specified in the
DFU functional descriptor. In this implementation, that maximum
is set to 1024 bytes.
After sending a DFU_DNLOAD request, the host must poll the
device status and wait until the state reverts to DNLOAD_IDLE
before sending another request. If the host wishes to indi-
cate that it has finished sending download data, it sends a
DFU_DNLOAD request with a payload length of 0.

DFU_UPLOAD This IN request is used to request a block of binary data from
the device. The data returned is device-specific but will typi-
cally be the contents of a region of the device’s flash memory or
a device-specific response to a command previously sent via a
DFU_DNLOAD request. As with DFU_DNLOAD, the maximum
amount of data that can be requested is governed by the maxi-
mum packet size specified in the DFU functional descriptor, here
1024 bytes.

DFU_GETSTATUS This IN request allows the host to query the current status of the
DFU device. It is typically used during download operations to
determine when it is safe to send the next block of data. De-
pending upon the state of the DFU device, this request may
also trigger a state change. During download, for example, the
device enters DNLOAD_SYNC state after receiving a block of
data and remains there until the data has been processed and
a DFU_GETSTATUS request is received at which point the state
changes to DNLOAD_IDLE.

DFU_CLRSTATUS This request is used to reset any error condition reported by
the DFU device. If an error is reported via the response to a
DFU_GETSTATUS request, that error condition is cleared when
this request is received and the device returns to IDLE state.

DFU_GETSTATE This IN request is used to query the current state of the device
without triggering any state change. The single byte of data re-
turned indicates the current state of the DFU device.

DFU_ABORT This request is used cancel any partially complete upload or
download operation and return the device to IDLE state in prepa-
ration for some other request.

12 Thu Mar 3 16:39:52 IST 2022

USB Device (DFU) Update

3.2 DFU States

During operation, the DFU device transitions between a set of class-defined states. The host must
query the current state to determine when a new operation can be performed or to determine the
cause of any errors reported. These states are:

IDLE The IDLE state indicates to the host that the DFU device is ready
to start an upload or download operation.

DNLOAD_SYNC After each DFU_DNLOAD request is received, DNLOAD_SYNC
state is entered. This state remains in effect until the host issues
a DFU_GETSTATUS request at which point the state will change
to DNLOAD_IDLE if the last download operation has completed
or DNBUSY otherwise.

DNLOAD_IDLE This state indicates that a download operation is in progress and
that the device is ready to receive another DFU_DNLOAD re-
quest with the next block of data.

DNBUSY This state is reported if a DFU_GETSTATUS request is re-
ceived while a block of downloaded data is still being processed.
The host must refrain from issuing another DFU_GETSTATUS
request for a time specified in the structure returned follow-
ing the request. After this time, the device state reverts to
DNLOAD_SYNC.
To reduce the USB boot loader image size, this state is not
supported. Instead of reporting DNBUSY, the USB boot loader
remains in state DNLOAD_SYNC until the previous data has
been processed then transitions to DNLOAD_IDLE on receipt of
the first DFU_GETSTATUS request following completion of block
programming.

MANIFEST_SYNC The end of a download operation is signaled by the host send-
ing a DFU_DNLOAD request with a 0 length payload. When
this request is received, the DFU device transitions from state
DNLOAD_IDLE to MANIFEST_SYNC. This state indicates that
the complete firmware image has been received and the device
is waiting for a DFU_GETSTATUS request before finalizing pro-
gramming of the image.
The USB boot loader programs downloaded blocks as they are
received so does not need to perform any additional processing
after all blocks have been received. It also reports that it is “man-
ifest tolerant”, indicating to the host that it will still respond to re-
quests after a download has completed. As a result, the device
will transition from this state to IDLE once the DFU_GETSTATUS
request is received.

Thu Mar 3 16:39:52 IST 2022 13

USB Device (DFU) Update

MANIFEST This state indicates to the host that the device is programming a
previously- received firmware image and is entered on receipt of
a DFU_GETSTATUS request while a device that is not manifest
tolerant is in MANIFEST_SYNC state.
This state is not used by the USB boot loader since it is manifest
tolerant and reverts to IDLE state after completion of a download.

MANIFEST_WAIT_RESET This state indicates that a device which is not manifest tolerant
has finished writing a downloaded image and is waiting for a
USB reset to signal it to boot the new firmware.
This state is not used by the USB boot loader since it is manifest
tolerant and reverts to IDLE state after completion of a download.

UPLOAD_IDLE Following receipt of a DFU_UPLOAD request, the device re-
mains in this state until it receives another DFU_UPLOAD re-
quest asking for less than the maximum transfer size of data.
This indicates that the upload is complete and the device will
transition back to IDLE state.

ERROR The ERROR state is entered when some error occurs.
The device remains in this state until the host sends a
DFU_CLRSTATUS request at which point the state reverts to
IDLE and that error code, which is reported in the data returned
in response to DFU_GETSTATUS, is cleared.

3.3 Typical Firmware Download Sequence

The following flow chart illustrates a typical firmware image download sequence from the perspec-
tive of the host application.

14 Thu Mar 3 16:39:52 IST 2022

USB Device (DFU) Update

DFU Device Enumerated

Exit

Send DFU_GETSTATUS

No

Send DFU_DNLOAD with
a block of firmware

image data.

State is
ERROR?

Yes

State is
DNLOAD_SYNC

or DNBUSY?
State is

DNLOAD_IDLE?

More data
to send?

No

No

YesYes

Send DFU_DNLOAD with
a zero-length payload.

Report the error condition

Send DFU_GETSTATUS

Yes

No

State is
ERROR?

Yes

No

The DFU class specification provides the framework necessary to download and upload firmware
files to the USB device but does not specify the actual format of the binary data that is transferred.
As a result, different device implementations have used different methods to perform operations
which are not defined in the standard such as:

Thu Mar 3 16:39:52 IST 2022 15

USB Device (DFU) Update

Setting the address that a downloaded binary should be flashed to.

Setting the address and size of the area of flash whose contents are to be uploaded.

Erasing sections of the flash.

Querying the size of flash and writeable area addresses. The USB boot loader implementation
employs a small set of commands which can be sent to the DFU device via a DFU_DNLOAD
request when the device is in IDLE state. Each command takes the form of an 8 byte structure
which defines the operation to carry out and provides any required additional parameters.

To ensure that a host application which does not have explicit support for TI-specific commands can
still be used to download binary firmware images to the device, the protocol is defined such that only
a single 8 byte header structure need be placed at the start of the binary image being downloaded.
This header and the DFU-defined suffix structure can both be added using the supplied “dfuwrap”
command-line application, hence providing a single binary that can be sent to a device running the
TI USB boot loader using a standard sequence of DFU_DNLOAD requests with no other embedded
commands or device-specific operations required. An application which does understand the TI-
specific commands may make use of them to offer additional functionality that would not otherwise
be available.

3.4 Querying Command Support

Since the device-specific commands defined here are sent to the DFU device in DFU_DNLOAD
requests, the possibility exists that sending them to a device which does not understand the protocol
could result in corruption of that device’s firmware. To guard against this possibility, the TI USB boot
loader supports an additional USB request which is used to query the device capabilities and allow
a host to determine whether or not the device supports the TI commands. A device which does not
support the commands will either stall the request or return unexpected data.

To determine whether a target DFU device supports the TI-specific DFU commands, send the
following IN request to the DFU interface:

bmRequest-
Type

bRequest wValue wIndex wLength Data

10100001b 0x42 0x23 Interface 4 Protocol Info

where the protocol information returned is a 4 byte structure, the first two bytes of which are 0x4D,
0x4C and where the second group of two bytes indicates the protocol version supported, currently
0x01 and 0x20 respectively.

3.5 Download Command Definitions

The following commands may be sent to the USB boot loader as the first 8 bytes of the payload to
a DFU_DNLOAD request. The boot loader will expect any DFU_DNLOAD request received while
in IDLE state to contain a command header but will not look for command unless the state is IDLE.
This allows an application which is unaware of the command header to download a DFU-wrapped
binary image using a standard sequence of multiple DFU_DNLOAD and DFU_GETSTATUS re-
quests without the need to insert additional command headers during the download.

16 Thu Mar 3 16:39:52 IST 2022

USB Device (DFU) Update

The commands defined here and their parameter block structures can be found in header file
usbdfu.h. In all cases where multi-byte numbers are specified, the numbers are stored in little-
endian format with the least significant byte in the lowest addressed location. The following defini-
tions specify the command byte ordering unambiguously but care must be taken to ensure correct
byte swapping if using the command structure types defined in usbdfu.h on big-endian systems.

DFU_CMD_PROG This command is used to provide the USB boot loader with the address at
which the next download should be written and the total length of the firmware
image which is to follow. This structure forms the header that is written to the
DFU-wrapped file generated by the dfuwrap tool.
The start address is provided in terms of 1024 word flash blocks. To convert a
word address to a block address, merely divide by 1024. The start address must
always be on a 1024 word boundary. For example if you wanted to program data
at address 0x3D8000 (start of flash) the block number sent would be 0xF60.
This command may be followed by up to 1016 bytes of firmware image data,
this number being the maximum transfer size minus the 8 bytes of the command
structure. Keep in mind that while data is transferred over USB in bytes it is
programmed into the device flash as words (2 bytes). The image size field
should contain the number of bytes to be programmed (not words).
Data following this command in the following format 0xXX, 0xYY will be pro-
grammed into flash as 0xXXYY (i.e. the most significant byte of a word should
be transmitted first).

The format of the command is as follows:

unsigned char ucData[8];

ucData[0] = DFU_CMD_PROG (0x01)
ucData[1] = Reserved - set to 0x00
ucData[2] = Start Block Number [7:0];
ucData[3] = Start Block Number [15:8];
ucData[4] = Image Size [7:0];
ucData[5] = Image Size [15:8];
ucData[6] = Image Size [23:16];
ucData[7] = Image Size [31:24];

Thu Mar 3 16:39:52 IST 2022 17

USB Device (DFU) Update

DFU_CMD_READ This command is used to set the address range whose content will be returned
on subsequent DFU_UPLOAD requests from the host.
The start address is provided in terms of 1024 words flash blocks. To convert
a word address to a block address, merely divide by 1024. The start address
must always be on a 1024 byte boundary.
To read back a the contents of a region of flash, the host should send a
DFU_DNLOAD request with command DFU_CMD_READ, start address set to
the 1KW block start address and length set to the number of bytes to read. The
host should then send one or more DFU_UPLOAD requests to receive the cur-
rent flash contents from the configured addresses. Data returned will include an
8 byte DFU_CMD_PROG prefix structure unless the prefix has been disabled
by sending a DFU_CMD_BIN command with the bBinary parameter set to 1.
The host should, therefore, be prepared to read 8 bytes more than the length
specified in the READ command if the prefix is enabled.
By default, the 8 byte prefix is enabled for all upload operations. This is required
by the DFU class specification which states that uploaded images must be for-
matted to allow them to be directly downloaded back to the device at a later
time.

The format of the command is as follows:

unsigned char ucData[8];

ucData[0] = DFU_CMD_READ (0x02)
ucData[1] = Reserved - set to 0x00
ucData[2] = Start Block Number [7:0];
ucData[3] = Start Block Number [15:8];
ucData[4] = Image Size [7:0];
ucData[5] = Image Size [15:8];
ucData[6] = Image Size [23:16];
ucData[7] = Image Size [31:24];

18 Thu Mar 3 16:39:52 IST 2022

USB Device (DFU) Update

DFU_CMD_CHECK This command is used to check a region of flash to ensure that it is completely
erased.
The start address is provided in terms of 1024 word flash blocks. To convert
a word address to a block address, merely divide by 1024. The start address
must always be on a 1024 word boundary. The region size is transmitted in
words.
To check that a region of flash is erased, the DFU_CMD_CHECK command
should be sent with the required start address and region length set then the
host should issue a DFU_GETSTATUS request. If the erase check was suc-
cessful, the returned bStatus value will be OK (0x00), otherwise it will be er-
rCheckErased (0x05).

The format of the command is as follows:

unsigned char ucData[8];

ucData[0] = DFU_CMD_CHECK (0x03)
ucData[1] = Reserved - set to 0x00
ucData[2] = Start Block Number [7:0];
ucData[3] = Start Block Number [15:8];
ucData[4] = Region Size [7:0];
ucData[5] = Region Size [15:8];
ucData[6] = Region Size [23:16];
ucData[7] = Region Size [31:24];

DFU_CMD_ERASE This command is used to erase a region of flash.
The start address is provided in terms of 1024 word flash blocks. To convert
a word address to a block address, merely divide by 1024. The start address
must always be on a 1024 word boundary.
The size of the region to erase is expressed in terms of 1024 word flash blocks.

The format of the command is as follows:

unsigned char ucData[8];

ucData[0] = DFU_CMD_ERASE (0x04)
ucData[1] = Reserved - set to 0x00
ucData[2] = Start Block Number [7:0];
ucData[3] = Start Block Number [15:8];
ucData[4] = Number of Blocks [7:0];
ucData[5] = Number of Blocks [15:8];
ucData[6] = Reserved - set to 0x00
ucData[7] = Reserved - set to 0x00

Thu Mar 3 16:39:52 IST 2022 19

USB Device (DFU) Update

DFU_CMD_INFO This command is used to query information relating to the target device and
programmable region of flash. The device information structure, tDFUDevice-
Info, is returned on the next DFU_UPLOAD request following this command.

The format of the command is as follows:

unsigned char ucData[8];

ucData[0] = DFU_CMD_INFO (0x05)
ucData[1] = Reserved - set to 0x00
ucData[2] = Reserved - set to 0x00
ucData[3] = Reserved - set to 0x00
ucData[4] = Reserved - set to 0x00
ucData[5] = Reserved - set to 0x00
ucData[6] = Reserved - set to 0x00
ucData[7] = Reserved - set to 0x00

20 Thu Mar 3 16:39:52 IST 2022

USB Device (DFU) Update

//***
//
// Payload returned in response to the DFU_CMD_INFO command.
//
// This is structure is returned in response to the first DFU_UPLOAD
// request following a DFU_CMD_INFO command. Note that byte ordering
// of multi-byte fields is little-endian.
//
//***
typedef struct
{

//
// The size of a flash block in bytes.
//
unsigned short usFlashBlockSize;

//
// The number of blocks of flash in the device. Total
// flash size is usNumFlashBlocks * usFlashBlockSize.
//
unsigned short usNumFlashBlocks;

//
// Information on the part number, family, version and
// package as read from the PARTID register
//
unsigned long ulPartInfo;

//
// Information on the part class and revision as read
// from the CLASSID
//
unsigned long ulClassInfo;

//
// Address 1 byte above the highest location the boot
// loader can access.
//
unsigned long ulFlashTop;

//
// Lowest address the boot loader can write or erase.
//
unsigned long ulAppStartAddr;

//
// Features supported by the bootloader
//
tLong ulFeatures;

//
// If true the device is locked and flash reads/writes are disallowed
//
unsigned char ucLocked;

}
PACKED tDFUDeviceInfo;

Thu Mar 3 16:39:52 IST 2022 21

USB Device (DFU) Update

DFU_CMD_BIN By default, data returned in response to a DFU_UPLOAD request includes
an 8 byte DFU_CMD_PROG prefix structure. This ensures that an uploaded
image can be directly downloaded again without the need to further wrap
it but, in cases where pure binary data is required, can be awkward. The
DFU_CMD_BIN command allows the upload prefix to be disabled or enabled
under host control.

The format of the command is as follows:

unsigned char ucData[8];

ucData[0] = DFU_CMD_BIN (0x06)
ucData[1] = 0x01 to disable upload prefix, 0x00 to enable
ucData[2] = Reserved - set to 0x00
ucData[3] = Reserved - set to 0x00
ucData[4] = Reserved - set to 0x00
ucData[5] = Reserved - set to 0x00
ucData[6] = Reserved - set to 0x00
ucData[7] = Reserved - set to 0x00

DFU_CMD_RESET This command may be sent to the USB boot loader to cause it to perform a
soft reset of the board. This will reboot the system and, assuming that the main
application image is present, run the main application. Note that a reboot will
also take place if a firmware download operation completes and the host issues
a USB reset to the DFU device.

The format of the command is as follows:

unsigned char ucData[8];

ucData[0] = DFU_CMD_RESET (0x07)
ucData[1] = Reserved - set to 0x00
ucData[2] = Reserved - set to 0x00
ucData[3] = Reserved - set to 0x00
ucData[4] = Reserved - set to 0x00
ucData[5] = Reserved - set to 0x00
ucData[6] = Reserved - set to 0x00
ucData[7] = Reserved - set to 0x00

22 Thu Mar 3 16:39:52 IST 2022

USB Device (DFU) Update

DFU_CMD_CSM This command may be sent to the USB boot loader to cause it to lock or unlock
the device’s code security module. Unlocking the device is accomplished
by first sending the CSM command with all fields set to 0. When the device
receives this command it will generate a seed which can be retreived by
performing a DFU Upload. The host should then perfom encryption on this
seed using a pre-negotiated key. To finish authentication and unlock the
device the host should again send a CSM command but with the key size field
populated and the encrypted seed following the command. Success can be
checked by using the info command. The device will automatically lock when
reset if the CSM locations aren’t all 0xFF, but the device can also be manually
locked by sending the CSM command with the lock field a non-zero value.

The public release of the bootloader does not contain this feature.

The format of the command is as follows:

unsigned char ucData[8];

ucData[0] = DFU_CMD_RESET (0x08)
ucData[1] = Reserved - set to 0x00
ucData[2] = Lock device if true
ucData[3] = Key size following this command
ucData[4] = Reserved - set to 0x00
ucData[5] = Reserved - set to 0x00
ucData[6] = Reserved - set to 0x00
ucData[7] = Reserved - set to 0x00

Thu Mar 3 16:39:52 IST 2022 23

USB Device (DFU) Update

24 Thu Mar 3 16:39:52 IST 2022

Customization

4 Customization
This bootloader contains many advanced features that are on par with many professionally sup-
ported 3rd party bootloaders. All of the features can be turned on or off by configuring #defines in
bl_config.h.

ENABLE_WATCHDOG

If defined the watchdog will be enabled and kicked in the main update loop.

ENABLE_CSM_CONTROL

If defined the bootloader will include mechanisms to lock and unlock the code security module. AES
encryption libraries are used to do a seed key exchange to authenticate the host. The passwords
to be programmed into flash can be found immediately below this #define. Please note that the
public release of the bootloader doesn’t contain the encryption library neccessary to implement this
feature due to export restrictions. Please contact TI if you are interested in this feature.

ENABLE_READ

Enables the upload of flash memory contents. Applications that want their code to be secure should
not define this, but keep in mind the programmed code cannot then be verified.

ENABLE_CRC_CHECK

If defined, before booting the application the bootloader will examine the ulAppSig location for a
pointer to a linker generated CRC table in the application. The bootloader will then iterate though
this table checking each CRC record. If all records pass then the application is booted.

ENABLE_FAILSAFE

If defined the bootloader will generate two flash entry points and relocate itself in flash during erase
operations. This minimizes the critical time where if power is pulled the device becomes bricked.
This is an EXTREMELY advanced feature and should only be used by those with a great deal of
embedded programming experience.

ENABLE_DECRYPTION

Enables a call to DecryptData in bl_decrypt.c whenever data to be programmed is recieved. The
DecryptData function is a stub that can be populated with the users own decryption routine.

ENABLE_UPDATE_CHECK

If defined before checking for a valid application, the bootloader will check a GPIO pin for a given
state. If the state matches the defined state in bl_config.h the bootloader will start and wait for an
update to be performed.

Thu Mar 3 16:39:52 IST 2022 25

Customization

26 Thu Mar 3 16:39:52 IST 2022

Configuration

5 Configuration
There are a number of defines that are used to configure the operation of the boot loader. These
defines are located in the bl_config.h header file.

The configuration options are:

CRYSTAL_FREQ This defines the crystal frequency used by the microcon-
troller running the boot loader. This frequency is used to
properlly setup PLL2 for operation with the USB controller.
The user should ensure that 120MHz divided by the crystal
frequency is an integer.

APP_START_ADDRESS The starting address of the application.

This value must be defined.

APP_END_ADDRESS The ending address of the application.

This value must be defined.

FLASH_PAGE_SIZE The size of a single, erasable page in the flash. This must
be a power of 2. The default value of 32KB (16K Words)
represents the page size for the internal flash on all C2000
MCUs.

This value must be defined.

FLASH_END_ADDR The starting address of flash.

FLASH_END_ADDR The ending address of flash.

USB_VENDOR_ID The USB vendor ID published by the DFU device. This value
is the TI vendor ID. Change this to the vendor ID you have
been assigned by the USB-IF.

USB_PRODUCT_ID The USB device ID published by the DFU device. If you are
using your own vendor ID, chose a device ID that is different
from the ID you use in non-update operation. If you have
sublicensed TI’s vendor ID, you must use an assigned prod-
uct ID here.

USB_DEVICE_ID Selects the BCD USB device release number published in
the device descriptor.

USB_MAX_POWER Sets the maximum power consumption that the DFU device
will report to the USB host in the configuration descriptor.
Units are milliamps.

USB_BUS_POWERED Specifies whether the DFU device reports to the host that it
is self-powered (defined as 0) or bus-powered (defined as
1).

Thu Mar 3 16:39:52 IST 2022 27

Configuration

USB_HAS_MUX Specifies whether the target board uses a multiplexer to se-
lect between USB host and device modes.

USB_MUX_PIN Specifies the GPIO pin number used to select between USB
host and device modes. Valid values are 0 through 64.

This value must be defined if USB_HAS_MUX is defined.

USB_MUX_DEVICE Specifies the state of the GPIO pin required to select USB
device-mode operation. Valid values are 0 (low) or 1 (high).

This value must be defined if USB_HAS_MUX is defined.

BL_HW_INIT_FN_HOOK Performs application-specific low level hardware initialization
on system reset. If hooked, this function will be called imme-
diately after the boot loader code relocation completes. An
application may perform any required low-level hardware ini-
tialization during this function. Note that the system clock
has not been set when this function is called. Initialization
that assumes the system clock is set may be performed in
the BL_INIT_FN_HOOK function instead.

BL_INIT_FN_HOOK Performs application-specific initialization on system reset.
If hooked, this function will be called during boot loader ini-
tialization to perform any board- or application-specific ini-
tialization which is required. The function is called following
a reset immediately after the selected boot loader peripheral
has been configured and the system clock has been set.

BL_REINIT_FN_HOOK Performs application-specific reinitialization on boot loader
entry via SVC. If hooked, this function will be called dur-
ing boot loader reinitialization to perform any board- or
application-specific initialization which is required. The func-
tion is called following boot loader entry from an application,
after any system clock rate adjustments have been made.

BL_START_FN_HOOK Informs an application that a download is starting. If hooked,
this function will be called when a firmware download is
about to begin. The function is called after the first data
packet of the download is received but before it has been
written to flash.

28 Thu Mar 3 16:39:52 IST 2022

Configuration

BL_PROGRESS_FN_HOOK Informs an application of download progress. If hooked, this
function will be called periodically during a firmware down-
load to provide progress information. The function is called
after each data packet is received from the host. Parameters
provide the number of bytes of data received and, in cases
other than Ethernet update, the expected total number of
bytes in the download (the TFTP protocol used by the Eth-
ernet boot loader does not send the final image size before
the download starts so in this case the ulTotal parameter is
set to 0 to indicate that the size is unknown).

BL_END_FN_HOOK Informs an application that a download has completed. If
hooked, this function will be called when a firmware down-
load has just completed. The function is called after the final
data packet of the download has been written to flash.

BL_DECRYPT_FN_HOOK Allows an application to perform in-place data decryption
during download. If hooked, this function will be called to
perform in-place decryption of each data packet received
during a firmware download.

This value takes precedence over
ENABLE_DECRYPTION. If both are defined, the
hook function defined using BL_DECRYPT_FN_HOOK
is called rather than the previously-defined
DecryptData() stub function.

BL_CHECK_UPDATE_FN_HOOK Allows an application to force a new firmware download. If
hooked, this function will be called during boot loader initial-
ization to determine whether a firmware update should be
performed regardless of whether a valid main code image is
already present. If the function returns 0, the existing main
code image is booted (if present), otherwise the boot loader
will wait for a new firmware image to be downloaded.

This value takes precedence over
ENABLE_UPDATE_CHECK if both are defined. If
you wish to perform a GPIO check in addition to any
other update check processing required, the GPIO
code must be included within the hook function itself.

Thu Mar 3 16:39:52 IST 2022 29

Configuration

30 Thu Mar 3 16:39:52 IST 2022

Failsafe Mode

6 Failsafe Mode
The purpose of the failsafe bootloader mode is twofold. Because the flash sector size is 0x4000kw
and the bootloader is only ∼0x1500kw large a tradition bootloader which protects the sector it re-
sides in would waste a sizable piece of otherwise usable flash memory. To overcome this limitation
the bootloader must copy itself into another flash sector such that its original flash sector can be
erased and reused for the user application. This is the first reason for the failsafe mode.

During any bootloading scenario there exists a time during erase where the device can potentially
be corrupted and caused to not boot correctly. This can happen if power if removed during an
erase or program operation of Sector A (the location of the BootROM boot vector). To minimize the
chances of this occuring the erase and program of sector are ordered such that an erase of Sector
A is immediately followed by a reprogramming of the reset vector. This is the second reason for the
failsafe mode.

To better understand the failsafe mode, lets walk through a typical erase operation. Keep in mind
that while in failsafe mode the erase command’s address and size arguments are ignored and the
entire flash is always erased.

Erase Sectors B-G. This erases most of the application leaving only the bootloader and reset vector
in flash. Device will boot normally if power is removed at this point.

Copy the bootloader into Sector G.

Erase Sector A and program reset vector to point to the failsafe entry point in flash Sector G. During
this operation if power is removed the device may not boot on the next powerup. If power is removed
after this operation completes successfully but before the bootloader is copied back into Sector H,
then the device will boot into the failsafe mode which requires an application update.

Erase Sector H, the original location of the bootloader.

Copy the bootloader back into Sector H.

Erase Sector A and program reset vector to point to the normal entry point in flash Sector H. During
this operation if power is removed the device may not boot on the next powerup. If power is removed
after this operation completes successfully, then the device will boot into the normal mode and will
require and application update because the pAppEntry vector will be null.

After these operations complete the flash will be completely erased (except for the area ocupied by
the bootloader) and ready for the application to be programmed.

6.1 Program and Data Allocation

To accomplish the above functionality the bootloader has been carefully partitioned to ensure that
it is as robust as possible. There are 3 main allocations of program code:

Program code that runs from flash in Sector H (normal boot, application check, normal memory
copy).

Program code that runs from flash in Sector G (failsafe boot, failsafe memory copy).

Program code that runs from SRAM and is copied from Sector G or H depending on whether the
device is in failsafe mode at the time or not.

Thu Mar 3 16:39:52 IST 2022 31

Failsafe Mode

Please refer to figure 5.1 for a graphic representation of the memory with failsafe mode enabled.

Figure 6.1: Failsafe Bootloader Mode Memory Allocation

6.2 Memory Copies

Care must be taken when modifing the bootloader to ensure everything lines up in memory where it
should. Several of the copies performed are based on the normal and failsafe copies of code being
spaced 0x4000 apart. During the copy of bootloader image from Sector H to Sector G the entire
bootloader image is copied up in the address space by 0x4000. The failsafe initilization functions in
the rts2800_bl library expect the cinit and pinit tables to be at a location 0x4000 higher than where
the original ones were linked to. When the failsafe flash entry functions are copied they are copied
to 0x3DE000. If modifications are made to the bootloader that increase its size, care should be
taken to ensure that the bootloader when copied to Sector G doesn’t overlap the failsafe flash entry
functions at 0x3DE000. Please refer to figure 5.2 for a graphical represenation of the copies that
occur.

32 Thu Mar 3 16:39:52 IST 2022

Failsafe Mode

Figure 6.2: Failsafe Bootloader Memory Copies

Thu Mar 3 16:39:52 IST 2022 33

Failsafe Mode

34 Thu Mar 3 16:39:52 IST 2022

Source Details

7 Source Details
Decryption Functions . 35
Update Check Functions . 35
USB Device Functions . 37

7.1 Decryption Functions

Functions

void DecryptData (unsigned char ∗pucBuffer, unsigned long ulSize)

7.1.1 Detailed Description

The following functions are provided in bl_decrypt.c and are used to optionally decrypt the
firmware data as it is received.

7.1.2 Function Documentation

7.1.2.1

unsigned char ∗ pucBuffer,

unsigned long ulSize) Performs an in-place decryption of downloaded data.

Parameters pucBuffer is the buffer that holds the data to decrypt.

ulSize is the size, in bytes, of the buffer that was passed in via the pucBuffer parameter.

This function is a stub that could provide in-place decryption of the data that is being downloaded
to the device.

Prototype:
DecryptData void DecryptData(

Returns None.

7.2 Update Check Functions

Functions

unsigned char CheckCRCTable (volatile CRC_TABLE ∗pCRCTable)

Thu Mar 3 16:39:52 IST 2022 35

Source Details

unsigned long CheckForceUpdate (void)

unsigned long CheckGPIOForceUpdate (void)

7.2.1 Detailed Description

The following functions are provided in bl_check.c and are used to check if a firmware update is
required.

7.2.2 Function Documentation

7.2.2.1

volatile CRC_TABLE ∗ pCRCTable) Checks a Linker Generated CRC table against memory

Parameters pCRCTable CRC Table to be checked

This function iterates through a CRC table performing the checks specified against the memory
map.

Prototype:
CheckCRCTable unsigned char CheckCRCTable(

Returns Returns 1 on failure, 0 on success

Referenced by AppCheck().

7.2.2.2 unsigned long CheckForceUpdate (

)

Checks if an update is needed or is being requested.

This function detects if an update is being requested or if there is no valid code presently located
on the microcontroller. This is used to tell whether or not to enter update mode.

Returns Returns a non-zero value if an update is needed or is being requested and zero otherwise.

References CheckGPIOForceUpdate().

Referenced by AppCheck().

7.2.2.3 unsigned long CheckGPIOForceUpdate (

)

Checks a GPIO for a forced update.

This function checks the state of a GPIO to determine if a update is being requested.

Returns Returns a non-zero value if an update is being requested and zero otherwise.

36 Thu Mar 3 16:39:52 IST 2022

Source Details

Referenced by CheckForceUpdate().

7.3 USB Device Functions

Data Structures

voidvoid tConfigDescriptor

tLong

tShort

tString0Descriptor

tStringDescriptor

tUSBRequest

Macros

readLong(ptr)

readShort(ptr)

writeLong(ptr, value)

writeShort(ptr, value)

Functions

void AppCheck (void)

void AppUpdaterUSB (void)

void CompactBuffer (unsigned char ∗pucBuffer, unsigned long ulBufferSize)

void ConfigureUSB (void)

void ConfigureUSBInterface (void)

void CopyBLGtoH (void)

void CopyBLHtoG (void)

void FailsafeEntry (void)

void FlashAPICallback (void)

unsigned long FlashAPIIndex (unsigned long ulAddress, unsigned long ulSize)

Thu Mar 3 16:39:52 IST 2022 37

Source Details

void FlashAPIInit (void)

tBoolean FlashRangeCheck (unsigned long ulStart, unsigned long ulLength)

void HandleConfigChange (unsigned long ulInfo)

void HandleDisconnect (void)

void HandleEP0Data (unsigned long ulSize)

void HandleRequestDnloadIdle (tUSBRequest ∗pUSBRequest)

void HandleRequestDnloadSync (tUSBRequest ∗pUSBRequest)

void HandleRequestError (tUSBRequest ∗pUSBRequest)

void HandleRequestIdle (tUSBRequest ∗pUSBRequest)

void HandleRequestManifestSync (tUSBRequest ∗pUSBRequest)

void HandleRequests (tUSBRequest ∗pUSBRequest)

void HandleRequestUploadIdle (tUSBRequest ∗pUSBRequest)

void HandleReset (void)

void HandleSetAddress (void)

void main (void)

tBoolean ProcessDFUDnloadCommand (tDFUDownloadHeader ∗pcCmd, unsigned long ulSize)

void ProgramBLFailsafeVector (void)

void ProgramBLNormalVector (void)

void SendDFUState (void)

void SendDFUStatus (void)

tBoolean SendUploadData (unsigned short usLength, tBoolean bAppendHeader)

void UpdaterUSB (void)

__interrupt void USB0DeviceIntHandler (void)

void USBBLInit (void)

void USBBLSendDataEP0 (unsigned char ∗pucData, unsigned long ulSize)

void USBBLStallEP0 (void)

void WatchdogEnable (void)

38 Thu Mar 3 16:39:52 IST 2022

Source Details

7.3.1 Detailed Description

The following functions are provided in bl_usb.c and bl_usbfuncs.c and are used to commu-
nicate over the USB interface.

7.3.2 Macro Definition Documentation

7.3.2.1

ptr) This define is used to read data from a tLong variable. This is a is a workaround specific to
C2000 devices.

Referenced by FlashRangeCheck(), HandleRequestDnloadIdle(), HandleRequestUploadIdle(),
HandleSetAddress(), and ProcessDFUDnloadCommand().

7.3.2.2

ptr) This define is used to read data from a tShort variable. This is a is a workaround specific to
C2000 devices.

Referenced by HandleRequestDnloadIdle(), HandleRequestIdle(), HandleRequests(), Han-
dleRequestUploadIdle(), and ProcessDFUDnloadCommand().

7.3.2.3

ptr,

value) This define is used to write data to a tLong variable. This is a is a workaround specific to
C2000 devices.

Referenced by ConfigureUSBInterface().

7.3.2.4

ptr,

value) This define is used to write data to a tShort variable. This is a is a workaround specific to
C2000 devices.

Referenced by ConfigureUSBInterface(), and SendUploadData().

7.3.3 Data Structure Documentation

7.3.3.1 tConfigDescriptor

Definition:
typedef struct
{

Thu Mar 3 16:39:52 IST 2022 39

Source Details

unsigned char bLength;
unsigned char bDescriptorType;
tShort wTotalLength;
unsigned char bNumInterfaces;
unsigned char bConfigurationValue;
unsigned char iConfiguration;
unsigned char bmAttributes;
unsigned char bMaxPower;

}
tConfigDescriptor

Members:
bLength The length of this descriptor in bytes. All configuration descriptors are 9 bytes long.
bDescriptorType The type of the descriptor. For a configuration descriptor, this will be

USB_DTYPE_CONFIGURATION (2).
wTotalLength The total length of data returned for this configuration. This includes the com-

bined length of all descriptors (configuration, interface, endpoint and class- or vendor-
specific) returned for this configuration.

bNumInterfaces The number of interface supported by this configuration.
bConfigurationValue The value used as an argument to the SetConfiguration standard re-

quest to select this configuration.
iConfiguration The index of a string descriptor describing this configuration.
bmAttributes Attributes of this configuration.
bMaxPower The maximum power consumption of the USB device from the bus in this con-

figuration when the device is fully operational. This is expressed in units of 2mA so, for
example, 100 represents 200mA.

Description:
This structure describes the USB configuration descriptor as defined in USB 2.0 specification
section 9.6.3. This structure also applies to the USB other speed configuration descriptor
defined in section 9.6.4.

7.3.3.2 tLong

Definition:
typedef struct
{

tShort LSW;
tShort MSW;

}
tLong

Members:
LSW
MSW

Description:
This struct is used to ensure that data passed up from the driver layer is interpretted correctly
by the protocol stack. This is a workaround specifically for C2000 devices.

40 Thu Mar 3 16:39:52 IST 2022

Source Details

7.3.3.3 tShort

Definition:
typedef struct
{

unsigned short LSB;
unsigned short MSB;

}
tShort

Members:
LSB
MSB

Description:
This struct is used to ensure that data passed up from the driver layer is interpretted correctly
by the protocol stack. This is a workaround specifically for C2000 devices.

7.3.3.4 tString0Descriptor

Definition:
typedef struct
{

unsigned char bLength;
unsigned char bDescriptorType;
tShort wLANGID[1];

}
tString0Descriptor

Members:
bLength The length of this descriptor in bytes. This value will vary depending upon the number

of language codes provided in the descriptor.
bDescriptorType The type of the descriptor. For a string descriptor, this will be

USB_DTYPE_STRING (3).
wLANGID The language code (LANGID) for the first supported language. Note that this de-

scriptor may support multiple languages, in which case, the number of elements in the
wLANGID array will increase and bLength will be updated accordingly.

Description:
This structure describes the USB string descriptor for index 0 as defined in USB 2.0 specifi-
cation section 9.6.7. Note that the number of language IDs is variable and can be determined
by examining bLength. The number of language IDs present in the descriptor is given by
((bLength - 2) / 2).

7.3.3.5 tStringDescriptor

Definition:
typedef struct
{

unsigned char bLength;
unsigned char bDescriptorType;

Thu Mar 3 16:39:52 IST 2022 41

Source Details

unsigned char bString;
}
tStringDescriptor

Members:
bLength The length of this descriptor in bytes. This value will be 2 greater than the number of

bytes comprising the UNICODE string that the descriptor contains.
bDescriptorType The type of the descriptor. For a string descriptor, this will be

USB_DTYPE_STRING (3).
bString The first byte of the UNICODE string. This string is not NULL terminated. Its length

(in bytes) can be computed by subtracting 2 from the value in the bLength field.

Description:
This structure describes the USB string descriptor for all string indexes other than 0 as defined
in USB 2.0 specification section 9.6.7.

7.3.3.6 tUSBRequest

Definition:
typedef struct
{

unsigned char bmRequestType;
unsigned char bRequest;
tShort wValue;
tShort wIndex;
tShort wLength;

}
tUSBRequest

Members:
bmRequestType Determines the type and direction of the request.
bRequest Identifies the specific request being made.
wValue Word-sized field that varies according to the request.
wIndex Word-sized field that varies according to the request; typically used to pass an index

or offset.
wLength The number of bytes to transfer if there is a data stage to the request.

Description:
The standard USB request header as defined in section 9.3 of the USB 2.0 specification.

42 Thu Mar 3 16:39:52 IST 2022

Thu Mar 3 16:39:52 IST 2022 43

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications
using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design
and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work
right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used.
Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services
or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids
all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifi-
cally designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications.
Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer’s risk,
and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products
Amplifiers
Data Converters
DLP® Products
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
RF/IF and ZigBee® Solutions

amplifier.ti.com
dataconverter.ti.com
www.dlp.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprf

Applications
Audio
Automotive
Broadband
Digital Control
Medical
Military
Optical Networking
Security
Telephony
Video & Imaging
Wireless

www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

44 Thu Mar 3 16:39:52 IST 2022

amplifier.ti.com
dataconverter.ti.com
www.dlp.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprf
www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless

	Copyright
	Revision Information
	1 Introduction
	2 Startup Code
	3 USB Device (DFU) Update
	3.1 DFU Requests
	3.2 DFU States
	3.3 Typical Firmware Download Sequence
	3.4 Querying Command Support
	3.5 Download Command Definitions

	4 Customization
	5 Configuration
	6 Failsafe Mode
	6.1 Program and Data Allocation
	6.2 Memory Copies

	7 Source Details
	7.1 Decryption Functions
	7.2 Update Check Functions
	7.3 USB Device Functions

	IMPORTANT NOTICE

