//
#include "F28x_Project.h"

//
// Defines
//
#define GPIO 50

void ConfigureADC(void);
void ConfigureEPWM(void);
void SetupADCEpwm(Uint16 channel);
interrupt void adca1_isr(void);
float32 sensorSample;
float32 analogval1;
float32 resistanceval;
float32 analogval;
int16 analogval2;
int16 Pulse;

void main(void)
{

//
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the F2837xD_SysCtrl.c file.
//
 InitSysCtrl();

//
// Step 2. Initialize GPIO:
// This example function is found in the F2837xD_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
//
 InitGpio();
 GPIO_SetupPinMux(GPIO, GPIO_MUX_CPU1, 0);
 GPIO_SetupPinOptions(GPIO, GPIO_OUTPUT, GPIO_PUSHPULL);

//
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
//
 DINT;

//
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the F2837xD_PieCtrl.c file.
//
 InitPieCtrl();

//
// Disable CPU interrupts and clear all CPU interrupt flags:
//
 IER = 0x0000;
 IFR = 0x0000;

//
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in F2837xD_DefaultIsr.c.
// This function is found in F2837xD_PieVect.c.
//
 InitPieVectTable();

//
// Enable global Interrupts and higher priority real-time debug events:
//
 EINT; // Enable Global interrupt INTM
 ERTM; // Enable Global realtime interrupt DBGM

//
// Step 6. IDLE loop. Just sit and loop forever (optional):
//
 for(;;)
 {
 //
 // Turn on
 //
 void main11();
 GPIO_WritePin(GPIO, 0);

 DELAY_US(1000*500);

 //
 // Turn off
 //
 GPIO_WritePin(GPIO, 1);
 //
 DELAY_US(1000*500);
 main11();
 }

//
// End of PWM file
//

}

void main11(void)
{

 EALLOW;
 PieVectTable.ADCA1_INT = &adca1_isr; //function for ADCA interrupt 1
 EDIS;

//
// Configure the ADC and power it up
//
 ConfigureADC();

//
// Initialize the temperature sensor
// Note: The argument needs to change if using a VREFHI voltage other than 3.0V
//

//
// Configure the ePWM
//
 ConfigureEPWM();

//
// Setup the ADC for ePWM triggered conversions on temperature sensor
//
 SetupADCEpwm(0);

//
// Enable global Interrupts and higher priority real-time debug events:
//
 IER |= M_INT1; //Enable group 1 interrupts
 EINT; // Enable Global interrupt INTM
 ERTM; // Enable Global realtime interrupt DBGM

//
// enable PIE interrupt
//
 PieCtrlRegs.PIEIER1.bit.INTx1 = 1;

//
// sync ePWM
//
 EALLOW;
 CpuSysRegs.PCLKCR0.bit.TBCLKSYNC = 1;

//
// start ePWM
//
 EPwm1Regs.ETSEL.bit.SOCAEN = 1; //enable SOCA
 EPwm1Regs.TBCTL.bit.CTRMODE = 0; //unfreeze, and enter up count mode

//
// take conversions indefinitely in loop
//

}

//
// ConfigureADC - Write ADC configurations and power up the ADC for both
// ADC A and ADC B
//
void ConfigureADC(void)
{
 EALLOW;

 //
 //write configurations
 //
 AdcaRegs.ADCCTL2.bit.PRESCALE = 6; //set ADCCLK divider to /4
 AdcSetMode(ADC_ADCA, ADC_RESOLUTION_12BIT, ADC_SIGNALMODE_SINGLE);

 //
 //Set pulse positions to late
 //
 AdcaRegs.ADCCTL1.bit.INTPULSEPOS = 1;

 //
 //power up the ADC
 //
 AdcaRegs.ADCCTL1.bit.ADCPWDNZ = 1;

 //
 //delay for 1ms to allow ADC time to power up
 //
 DELAY_US(1000);

 EDIS;
}

//
// ConfigureEPWM - Configure EPWM SOC and compare values
//
void ConfigureEPWM(void)
{
 EALLOW;
 //
 // Assumes ePWM clock is already enabled
 //
 EPwm1Regs.ETSEL.bit.SOCAEN = 0; // Disable SOC on A group
 EPwm1Regs.ETSEL.bit.SOCASEL = 4; // Select SOC on up-count
 EPwm1Regs.ETPS.bit.SOCAPRD = 1; // Generate pulse on 1st event
 EPwm1Regs.CMPA.bit.CMPA = 0x0800; // Set compare A value to 2048 counts
 EPwm1Regs.TBPRD = 0x1000; // Set period to 4096 counts
 EPwm1Regs.TBCTL.bit.CTRMODE = 3; // freeze counter
 EDIS;
}

//
// SetupADCEpwm - Configure ADC EPWM acquisition window and trigger
//
void SetupADCEpwm(Uint16 channel)
{
 Uint16 acqps;

 //
 //determine minimum acquisition window (in SYSCLKS) based on resolution
 //
 if(ADC_RESOLUTION_12BIT == AdcaRegs.ADCCTL2.bit.RESOLUTION)
 {
 acqps = 14; //75ns
 }
 else //resolution is 16-bit
 {
 acqps = 63; //320ns
 }

 //.
 //Select the channels to convert and end of conversion flag
 //

 EALLOW;
 AdcaRegs.ADCSOC0CTL.bit.CHSEL = channel; //SOC0 will convert pin A0
 AdcaRegs.ADCSOC0CTL.bit.ACQPS = acqps; //sample window is 100 SYSCLK cycles
 AdcaRegs.ADCSOC0CTL.bit.TRIGSEL = 5; //trigger on ePWM1 SOCA/C
 AdcaRegs.ADCINTSEL1N2.bit.INT1SEL = 0; //end of SOC0 will set INT1 flag
 AdcaRegs.ADCINTSEL1N2.bit.INT1E = 1; //enable INT1 flag
 AdcaRegs.ADCINTFLGCLR.bit.ADCINT1 = 1; //make sure INT1 flag is cleared
 EDIS;
}

//
// adca1_isr - Read sensor sample and ADC values ISR
//
interrupt void adca1_isr(void)
{
 sensorSample = (AdcaResultRegs.ADCRESULT0);
 analogval1 = ((sensorSample*3.3)/4095);
 analogval2 = (int16)(analogval1*10+0.5);
 analogval = (float32)(analogval2/10)+0.1;
 resistanceval = analogval/0.000011;
 AdcaRegs.ADCINTFLGCLR.bit.ADCINT1 = 1; //clear INT1 flag
 PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;

if
(resistanceval == 100000)
{
	 Pulse = 1;
}
else
{
	Pulse = 0;
}
}
[bookmark: _GoBack]
