C28x Flash Programming

Introduction

So far we have used the C28x internal volatile memory (HO — SARAM) to store the code of our
examples. Before we could execute the code we used Code Composer Studio to load it into HO-
SARAM (“File” = “Load Program™). This is fine for projects in a development and debug phase
with frequent changes to parts and components of the software. However, when it comes to
production versions with a standalone embedded control unit based on the C28x, we no longer
have the option to download our control code using Code Composer Studio. Imagine a control
unit for an automotive braking system, where you have to download the control code first when
you hit the brake pedal (“Do you really want to brake? ...”).

For standalone embedded control applications, we need to store our control code in NON-Volatile
memory. This way it will be available immediately after power-up of the system. The question is,
what type of non-volatile memory is available? There are several physically different memories
of this type: Read Only Memory (ROM), Electrically Programmable Read Only Memory
(EPROM), Electrically Programmable and Erasable Read Only Memory (EEPROM) and Flash-
Memory. In case of the F2812, we can add any of the memory to the control unit using the
external interface (XINTF).

The F2812 is also equipped with an internal Flash memory area of 128Kx16. This is quite a large
amount of memory and morc than sufficicnt for our lab cxcreiscs!

Before we can go to modify one of our existing lab solutions to start out of Flash we have to go
through a short explanation of how to use this memory. This module also covers the boot
sequence of the C28x - what happens when we power on the C28x?

Chapter 10 also covers the password feature of the C28x code security module. This module is
used to embed dedicated portions of the C28x memory in a secure section with a 128bit-
password. If the uscr docs not know thc correct combination that was programmed into the
password section any access to the secured areas will be denied! This is a security measure to
prevent reverse-engineering.

At the end of this lesson we will do a lab exercise to load one of our existing solutions into the
internal Flash memory.

CAUTION: Please do not upset your teacher by programming the password area! Be careful, if
you program the password by accident the device will be locked for ever! If you decide to make
your mark in your university by locking the device with your own password, be surc to have
already passed all exams.

DSP28 - Flash Programming 10-1

Module Topics

Module Topics

C28x Flash Programming 10-1

TREPOAUCTION ...

Module Topics.................... e
C28x Start-up SequUEnCescccuevverivvavvecnnes
C28x Flash Memory Sectors..................cccc.......

Flash Speed Initialization e
Flash Configuration Registersc.ccccecen....

Flash Programming Procedurec.ccc.ocuevnccnnnnn.
CCS Flash PIug-IN..........cccooooeverioieiiinnescncen
Code Security Mode...............ccccovvvevvcinannnni..

Lab Exercise I.........cccccooviiivieiioiiiiiiiieieeeee
ODJECHIVE .o
Procedure........cceveereriicnnnennirenan.

Open Files, Create Project File........

Project Build Optionsccccceveeiennene

Add Additional Source Code Files..........ccccceeueneenee.
Modity Source Code to Speed up Flash memory
Build projectcooeieiieiee e
Verify Linker Results — The map - File.....
Use CCS Flash Program TOOL......ccociiiiiiii ettt et st st e
Shut doWn CCS & RESLAIt ZASP c.veviriieiiiiiiiiiesiieneiee e erteseesresrerieesbestaeseesseessesssessesasesenessessassne

10-2

DSP28 - Flash Programming

C28x Start-up Sequences

C28x Start-up Sequences

There are 6 different options to start the C28x out of power-on. The options are hard-coded by 4
GP1O-Inputs of Port F (F4, F12, F3 and F2). The 4 pins arc sampled during powcr-on. Depending
on the status one of the following options is selected:

F4 F12 F3 F2

1 X X X . FLASH address 0x3F 7FF6 (scc slide 10-2)
0 0 1 0 : HO — SARAM address 0x3F 8000

0 0 0 1 : OTP address 0x3D 7800

0 1 X X . boot load from SPI

0 0 1 1 . boot load from SCI-A

0 0 0 0 . boot load from parallel GPIO — Port B

To switch from HO-SARAM mode to Flash mode we have to change F4 from 0 to 1. At the eZdsp
this is done using jumper JP7 (1-2 = Flash; 2-3 = HO-SARAM). Please note that the C28x must
also run in Microcomputer-Mode (JP1 = 2-3). The following slide shows the sequence that takes
place if we start from Flash.

BIOS Startup Sequence from Flash Memory

,,,,,,,, C — start routine

0x3D 8000 _c_int00| Boot.asm
x FLASH (128K) =
“1ts2800_ml.lib”
— Ox3F7FF6 [LB
_c_int00 —

(X X]

Passwords (8)
0x3F 8000 | o SARAM (8K)

@

‘user” code sections

main ()
0x3F F000 | Boot ROM (4K) {
Boot Code
0x3F FC00 \\ turn:
{SCAN GPIO} |y returm;
\,
BROM vector (32) AN

0x3F FFCO 0x3F FC00 ——

RESET

DSP28 - Flash Programming 10-3

C28x Flash Memory Sectors

RESET-address is always 0x3F FFCO. This is part of T1’s internal BOOT-ROM.

BOOT-ROM executes a jump to address 0x3F FCO0 (Boot Code). Here basic
initialization tasks are performed and the type of the boot sequence is selected.

If GPIO-F4 = =1, a jump to address 0x3F 7FF6 is performed. This is the Flash-Entry-
Point. It is only a 2 word memory space and this space is not filled yet. One of our tasks
to use the Flash is to add a jump instruction into this two-word-space. If we use a project
based on C language we have to jump to the C-start-up function “c_int00”, which is part
of the runtime library “rts2800 ml.lib”.

CAUTION: Do never exceed the two word memory space for this step. Addresses
0x3F 7FF8 to 0x3F 7FFF are reserved for the password area!!

Function “c_int00” performs initialization routines for the C-environment and global
variables. For this module we will have to place this function into a specific Flash
section.

At the very end “c_int00” branches to a function called “main”, which also must be
loaded into a flash section.

C28x Flash Memory Sectors

TMS320F2812 Flash Memory Map
Address Range Data & Program Space
0x3D 8000 — 0x3D 9FFF SectorJ ; 8K x 16
0x3D A000 — 0x3D BFFF Sector | ; 8K x 16
0x3D C000 — 0x3D FFFF Sector H: 16K x 16
0x3E 0000 — 0x3E 3FFF Sector G ; 16K x 16
0x3E 4000 — 0x3E 7FFF Sector F ; 16K x 16
0x3E 8000 — 0x3E BFFF Sector E ; 16K x 16
0x3E C000 — 0x3E FFFF Sector D; 16K x 16
0x3F 0000 — 0x3F 3FFF Sector C ; 16K x 16
0x3F 4000 — 0x3F 5FFF Sector B ; 8K x16
0x3F 6000 — 0x3F 7F7F Sector A ; (8K-128) x16
0x3F 7F80 — 0x3F 7FF5 Eloniamital a0 epiuelng
0x3F 7FF6 — 0x3F 7FF7 Flash Entry Point ; 2 x 16
0x3F 7FF8 — 0x3F 7FFF Security Password ; 8 x 16
10-3

The 128k x 16 Flash is divided into 10 portions called “sectors”. Each sector can be programmed
independently from the others. Please note that the highest 128 addresses of sector A (0x3F7F80
to 0x3F 7FFF) are not available for general purpose. Lab 11 will use sections A and D.

10-4

DSP28 - Flash Programming

Flash Speed Initialization

Flash Speed Initialization

To derive the highest possible speed for the execution of our code we have to initialize the
number of wait statcs that is addcd when the Flash arca is accessed. When we start the C28x out
of RESET the number of wait states defaults to 16. For our tiny lab exercises this is of no
significance, but when you think about real projects, where computing power is so important, it
would be a shame not to make best use of these wait states. So let’s assume that our lab examples
are ‘real’ projects and that we want to use the maximum frequency for the Flash. So why not
initialize the wait states to zero? According to the data-sheet of the C28x there is a limit for the
minimum numbcr of wait statcs. For silicon revision C this limit is sct to S for a 150MHz C28x.

Basic Flash Operation
& Flash is arranged in pages of 128 addresses

& Wait states are specified for consecutive accesses within a page,
and random accesses across pages

¢ OTP has random access only

& Must specify the number of SYSCLKOUT wait-states
& Reset defaults are maximum values !

¢ Flash configuration code must not run from Flash memory !

FBANKWAIT 15 12 11 8 7 4 3 0
@ 0x00 0A86 reserved PAGEWAIT reserved RANDWAIT
FOTPWAIT 15 4 3 0
@ 0x00 0A87 reserved OTPWAIT

*** Refer to the F281x datasheet for detailed numbers ***
For 150 MHz, PAGEWAIT = 5, RANDWAIT =5, OTPWAIT =8
For 135 MHz, PAGEWAIT = 4, RANDWAIT =4, OTPWAIT =8

There are two bit fields of register “FBANKWAIT” that are used to specify the number of wait
states — PAGEWAIT and RANDWAIT. Consecutive page accesses are done within an area of
128 addresses whereas a sequence of random accesses is performed in any order of addresses. So
how fast is the C28x running out of Flash or, in computer language: How many millions of
instructions (MIPS) is the C28x doing?

Answer:

The C28x executes one instruction (a 16 bit word) in 1 cycle. Adding the 5 wait states we end up
with

1 instruction / 6 cycles * 150MHz = 25 MHz.

DSP28 - Flash Programming 10-5

Flash Speed Initialization

For a one-cycle instruction machine like the C28x, the 25 MHz translate into 25MIPS. This is
pretty slow compared to the original system frequency of 150 MHz! Is this all we can expect
from Texas Instruments? No! The hardware solution is called “pipeline”, see next slide!

Instead of reading only one 16 bit instruction out of Flash code memory TI has implemented a 64
bit access — reading up to 4 instructions in 1+5 cycles. This leads to the final estimation for the

speed of internal Flash:

4 instructions / 6 cycles * 150 MHz =100 MHz.

Using the Flash Pipeline the real Flash speed is 100 MIPS!

To use the Flash pipelining code fetch method we have to set bit “ENPIPE” to 1. By default after
RESET, this feature is disabled.

le— 16—

64

Speeding Up Code Execution in Flash:

Flash Pipelining (for code fetch only)

le—— 64——! yispatched

decoder unit

}

Aligned
64-bit
fetch

2-level deep
fetch buffer

16 or 32

Flash Pipeline Enable
0 = disable (default)

1 = enable
FOPT @ 0x00 0A80
15 1 0
reserved ENPIPE

10-6

DSP28 - Flash Programming

Flash Configuration Registers

Flash Configuration Registers

There are some more registers to control the timing and operation modes of the C28x internal
Flash memory. For our lab cxercisc and most of the ‘rcal” C28x applications it is sufficient to usc
the default values after RESET.

Texas Instruments provides an initialization function for the internal Flash, called “InitFlash()”.
This function is part of the Peripheral Register Header Files, Version 1.00 that we already used in
our previous labs. The source code of this function is part of file “DSP281x_SysCtrl.c”. All we

have to do to use this function in our coming lab is to add this source code file to our project.

Other Flash Configuration Registers

Address | Name Description

0x00 0A80 | FOPT Flash option register

0x00 0A82 | FPWR Flash power modes registers

0x00 0A83 | FSTATUS Flash status register

0x00 0A84 | FSTDBYWAIT | Flash sleep to standby wait register

0x00 0A85| FACTIVEWAIT | Flash standby to active wait register
0x00 0A86 | FBANKWAIT Flash read access wait state register
0x00 0A87 | FOTPWAIT OTP read access wait state register

¢ FPWR: Save power by putting Flash/OTP to ‘Sleep’ or ‘Standby’
mode; Flash will automatically enter active mode if a Flash/OTP
access is made

¢ FSTATUS: Various status bits (e.g. PWR mode)

¢ FSTDBYWAIT: Specify number of cycles to wait during wake-up
from sleep to standby

¢ FACTIVEWAIT: Specify number of cycles to wait during wake-up
from standby to active

Defaults for these registers are often sufficient — See “TMS320F28x DSP
System Control and Interrupts Reference Guide,” SPRUO78, for more informatiog0

-6

DSP28 - Flash Programming

10-7

Flash Programming Procedure

Flash Programming Procedure

The procedure to load a portion of code into the Flash is not as simple as loading a program into
the intcrnal RAM. Rccall that Flash is non-volatilc memory. Flash is bascd on a floating gatc
technology. To store a binary 1 or O this gate must load / unload electrons. Floating gate means
this is an isolated gate with no electrical connections. Two effects are used to force electrons into
this gate: ‘Hot electron injection’ or ‘electron tunnelling’ done by a charge pump on board of the

C28x.

How do we get the code into the internal Flash?

The C28x itself will take care of the Flash programming procedure. Texas Instruments provides
the code to execute the sequence of actions. The Flash Utility code can be applied in two basic

options:

1. Code Composer Studio Plug-in Tool

=> Tools =» F28xx On Chip Flash Programmer

2. Download both the Flash Utility code and the Flash Data via one of the 3 boot load

options SCI-A, SPI or GPIO-B.

For our lab we will use the CCS-Tool.

Please note that the Flash Utility code must be executed from a SARAM portion of the C28x.

and writes it into the Flash

Flash Programming Basics
¢ The DSP CPU itself performs the flash programming
¢ The CPU executes Flash utility code from RAM that reads the Flash data

¢ We need to get the Flash utility code and the Flash data into RAM

-——— ->| Emulator |-->

>| RS232 |— >

F28x DSP
FLASH [¢ CPU
———————— >
JTAG | RAN
scl -~ 3 .
= © ,
SPI ---»0 2 L --~-
© 3
GPIO |--—" o

10-8

DSP28 - Flash Programming

Flash Programming Procedure

The steps “Erase” and “Program” to program the Flash are mandatory; “Verify” is an option but
is highly recommended.

2

Flash Programming Basics

Sequence of steps for Flash programming:

Algorithm Function i
1. Erase - Set all bits to zero, then to one
2. Program - Program selected bits with zero
3. Verify - Verify flash contents

Minimum Erase size is a sector
Minimum Program size is a bit!

mR/(l)rtant not to lose power during erase step: If
passwords hal(()pen to be all zeros, the SM will
be permanently locked!

Chance of this ha;l))pemng is quite small! (Erase step is
performed sector by sector)

10 -

8

Flash Programming Utilities

& Code Composer Studio Plug-in (uses JTAG) *
Serial Flash loader from TI (uses SCI boot) *
¢ Gang Programmers (use GPIO boot)

+ BP Micro programmer

*

+ Data I/O programmer

¢ Build your own custom utility
+ Use a different ROM bootloader method than SCI
+ Embed flash programming into your application
+ Flash API algorithms provided by T1

* Available from Tl web at www.ti.com

DSP28 - Flash Programming

10-9

CCS Flash Plug-In

CCS Flash Plug-in

The Code Composer Studio Flash Plug-in is called by:
=> Tools =» F28xx On Chip Flash Programmer

and opens with the following window:

Code Composer Studio Flash Plug-I

On-Chip Flash Programmer i X g |

~ Erase Sector Selection =

~ Clock Configuration

[V Sector & (3FE000-3F7FFF) IV Sector F: (3E4000-3E7FFF)
OSCCLK (Mhz): 30.000
el [V SectorB: (3F4000-3F5FFF) ¥ Sector G [3E0000-3E 3FFF)
PLLCR Value 10 - IV Sector C. (3FO000-3F3FFF) ¥ Seclor H: (3DCO00-3DFFFF)
___________ [V SectorD: (3ECOD0-3EFFFF) W Sectorl: (3DA000-3DEFFF)
[

SYSCLKOUT (MHzE 1500000 || (& Gorio . (36B000-3EBFFF) W SectorJ: (3D8000-3DSFFF)

~Code Security Password ~ Operation
Kev? (WAETY [FEFE Pleass specify the COFF fle ta ProgramAfsiify
Key B (0x4E6) [FFFF C:C26x\LABS\Lab10\D ebugiLab.out w
Key 5 (O4AES) IW @ Erase, Program, Verify ¢~ Load RAM Only
Key 4 (0xAE4) ,W : Erase Only " Frequency Test
Key 3 (HAE3) 'W Program, Yerify Register
Key2(mE2) [FFFE Sl Pir
Keyl (D) [FFFF Loy € Calculate Checksums
Key 0 0wEQ) [FrFE Flash Random Wait State: |15 T i
Flash Page Wait State: m TP —
| [OTP Wi State LA BT
MJ Execute Dperation Help.

Flash Programmer Settings...

=l

10-10

First verify that the OSCCLK is set to 30MHz and the PLLCR to 10 which gives a SYSCLKOUT
frequency of 150MHz. This is equivalent to the physical set up of the eZdsp2812.

NEVER use the buttons “Program Password” or “LOCK”!

Lcave all 8 cntrics for Key 0 to Key 7 filled with “FFFF”.

On the top of the right hand side, we can exclude some of the sectors from being erased.

The lower right side is the command window. First we have to specify the name of the projects
out-file. The Plug-In extracts all the information needed to program the Flash out of this COFF-
File.

Before you start the programming procedure it is highly recommended to inspect the linker map-
file (*.map) in the “Debug”-Subfolder. This file covers a statistical view about the usage of the

different Flash sections by your project. Verify that all sections are used as expected.

Start the programming sequence by clicking on “Execute Operation”.

DSP28 - Flash Programming

Code Security Mode

Code Security Mode

Before we go into our next lab let’s discuss the Code Security feature of the C28x. As mentioned
carlicr in this module, dedicated arcas of mcemory arc password protccted. This is valid for
memory LO, L1, OTP and Flash.

Code Security Module (CSM)

¢ Access to the following on-chip memory is
restricted:

0x00 80001 5 SARAM (4K)

0x00 9000 | 1 SARAM (4K)

0x00 A000 reserved
0x3D 7C00 reserved
0x3D 8000

FLASH (128K)

¢ Data reads and writes from restricted memory are
only allowed for code running from restricted
memory

¢ All other data read/write accesses are blocked:

JTAG emulator/debugger, ROM bootloader, code running in external
memory or unrestricted internal memory

10-11

Once a password is applied, a data read or write operation from/to restricted memory locations is
only allowed from code in restricted memory. All other accesses, including accesses from code
running from external or unrestricted internal memories as well as JTAG access attempts are
denied.

As mentioned earlier the password is located at address space 0x3F 7FF8 to Ox3F 7FFF and
covers a 128-bit field. The 8 key registers (Key0 to Key7) are used to allow an access to a locked
device. All you need to do is to write the correct password sequence in Key 0 -7 (address space
0x00 0AEO0 —0x00 0AE7).

The password area filled with OxFFFF in all 8 words is equivalent to an unsecured device.

The password area filled with 0x0000 in all 8 words locks the device FOREVER!

DSP28 - Flash Programming 10- 11

Code Security Mode

CSM Password
0x00 8000y & SARAM (4K)
0x00 9000/} 4 SARAM (4K)
0x00 AG00 reserved
0x3D 7800
0x3D 7C00 ?S:IS-_:D(L:_:) CSM Password
0x3D 8000 Locations (PWL)

FLASH (128K)

128-Bit Password

O0x3F 7FF8 - 0x3F 7FFF

¢ 128-bit user defined password is stored in Flash

¢ 128-bit Key Register used to lock and unlock the device

+ Mapped in memory space 0x00 0AE0 — 0x00 0AE7
+ Register “EALLOW?” protected

10-12

CSM Registers
Key Registers — accessible by user; EALLOW protected
Address Name Reset Value Description
0x00 0AEQ| KEYO OxFFFF Low word of 128-bit Key register
0x00 0AE1| KEY1 OxFFFF 2 word of 128-bit Key register
0x00 0AE2| KEY2 O0xFFFF 3rd word of 128-bit Key register
0x00 0AE3| KEY3 OxFFFF 4t word of 128-bit Key register
0x00 0AE4| KEY4 OxFFFF 5th word of 128-bit Key register
0x00 0AE5| KEY5 0xFFFF 6t word of 128-bit Key register
0x00 0AE6| KEY6 O0xFFFF 7t word of 128-bit Key register
0x00 0AE7 | KEY7 OxFFFF High word of 128-bit Key register
0x00 0AEF| CSMSCR | OxFFFF CSM status and control register
PWL in memory — reserved for passwords only
Address | Name Reset Value Description
0x3F 7FF8| PWLO user defined Low word of 128-bit password
0x3F 7FF9 | PWL1 user defined 2nd word of 128-bit password
0x3F 7FFA| PWL2 user defined 3rd word of 128-bit password
0x3F 7FFB| PWL3 user defined 4th word of 128-bit password
0x3F 7FFC| PWL4 user defined 5th word of 128-bit password
0x3F 7FFD| PWL5 user defined 6t word of 128-bit password
0x3F 7FFE| PWL6 user defined 7t word of 128-bit password
0x3F 7FFF | PWL7 user defined High word of 128-bit password

10-13

10-12

DSP28 - Flash Programming

Code Security Mode

Locking and Unlocking the CSM

¢ The CSM is locked at power-up and reset
¢ To unlock the CSM:

+ Perform a dummy read of each password in the
Flash

+ Write the correct passwords to the key registers
¢ New Flash Devices (PWL are all 0xFFFF):

+ When all passwords are 0xXFFFF — only a read of
the PWL is required to bring the device into
unlocked mode

10- 14

CSM Caveats

¢ Never program all the PWL’s as 0x0000
+ Doing so will permanently lock the CSM
¢ Flash addresses 0x3F7F80 to 0x3F7FFS5, inclusive,

must be programmed to 0x0000 to securely lock the
CSM

¢ Remember that code running in unsecured RAM
cannot access data in secured memory

« Don’t link the stack to secured RAM if you have any
code that runs from unsecured RAM

¢ Do not embed the passwords in your code!
+ Generally, the CSM is unlocked only for debug
+ Code Composer Studio can do the unlocking

10-15

DSP28 - Flash Programming 10- 13

Code Security Mode

CSM Password Match Flow

Device permanently locked

CPU access is limited —
device cannot be debugged
or reprogrammed

Start

Flash device
secure after
reset or runtime

Do dummy read of PWL Write password to KEY registers
0x3F 7FF8 — 0x3F 7FFF — 0x00 OAEO — 0x00 OAE7
| (EALLOW) protected

Device unlocked

Correct Yes

password?, User can access on-

chip secure memory

10-16

CSM C-Code Examples

Unlocking the CSM:

volatile int *PWL = &CsmPwl.PSWDO; //Pointer to PWL register file
volatile int 1, tmp;

for (i = 0; i<8; i++) tmp = *PWL++; //Dummy reads of PWL locatiocns

asm (” EALLOW”); //KEY regs are EALLOW protected
CsmRegs .KEY0 = PASSWORDO; //Wrile Lhe passwords
CsmRegs.KEY1 = PASSWORDO; //to the Key registers
CsmRegs.KEY2 = PASSWORD2;

CsmRegs .KEY3 = PASSWORD3;

CsmRegs.KEY4 = PASSWORD4;

CsmRegs.KEY5> = PASSWORDS5;

CsmRegs.KEY6 = PASSWORDG6;

CsmRegs .KEY7 = PASSWORD7;

asm (” EDIS”);

Locking the CSM:

asm(” EALLOW”) ; //CSMSCR reqg is EALLOW protected
CsmRegs.CSMSCR.bit.FORCESEC = 1; //Set FORCESEC bit
asm (”“EDIS”);

10-17

10- 14 DSP28 - Flash Programming

Lab Exercise 11

Lab Exercise 11

Lab 11: Load an application into Flash

+ Use Solution for Lab4 to begin with
+ Modify the project to use internal Flash for code

+ Add “DSP281x_CodeStartBranch.asm” to branch
from Flash entry point (0x3F 7FF6) to C - library
function “_c_int00”

+ Add TI - code to set up the speed of Flash

+ Add a function to move the speed-up code from
Flash to SARAM Adjust Linker Command File

+ Use CCS plug-in tool to perform the Flash
download

+ Disconnect emulator, set eZdsp into MC-mode
(JP1) and re-power the board!

+ Code should be executed out of Flash
+ For details see procedure in textbook!

10-18

Objective

The objective of this laboratory exercise is to practice with the C28x internal Flash Memory. Let
us assume your task is to prepare one of your previous laboratory solutions to run as a stand alone
solution direct from Flash memory after power on of the C28x. You can select any of your
existing solutions but to keep it easier for your supervisor to assist you during the debug phase let
us take the ‘knight rider’ (Lab 4) as the starting point.

What do we have to modify?

In Lab 4 the code was loaded by CCS via the JTAG-Emulator into HO-SARAM after a successful
build operation. The linker command file “F2812 EzDSP RAM Ink.cmd” took care of the
correct connection of the code sections to physical memory addresses of HOSARAM. Obviously,
we will have to modify this part. Instead of editing the command file we will use another one
(“F2812.cmd”), also provided by TT’s header file package.

Furthermore we will have to fill in the Flash entry point address with a connection to the C
environment start function (“c_int00”). Out of RESET the Flash memory itself operates with the
maximum number of wait states — our code should reduce this wait states to gain the highest
possible speed for Flash operations. Unfortunately we can’t call this speed up function when it is
still located in Flash — we will have to copy this function temporarily into any code SARAM
before we can call it.

DSP28 - Flash Programming 10- 15

Lab Exercise 11

Finally we will use Code Composer Studio’s Flash Programming plug in tool to load our code

into Flash.

Please recall the explanations about the Code Security Module in this
lesson, be aware of the password feature all the time in this lab session
and do NOT program the password area!

A couple of things to take into account in this lab session, as usual let us use a procedure to
prepare the project.

Procedure

Open Files, Create Project File

L.

2.

Create a new project, called Lab11 .pjt in EA\C281x\Labs.

Open the file Lab4.c from E:\C281x\Labs\Lab4 and save it as Labl1.c in
E:\C281x\Labs\Labl1 1.

Add the source code file to your project:

« Lab11.c
From C:\tides\c28\dsp281x\v100\DSP281x_headers\source add:

e DSP281x_GlobalVariableDefs.c
From C:\tides\c28\dsp281x\v100\DSP281x_common\source add:
o DSP281x_PieCtrl.c
e DSP281x_PieVect.c
e DSP281x_Defaultlsr.c
e DSP281x_CpuTimers.c
From C:\tides\c28\dsp281x\vl100\DSP281x_headers\cmd add:
e F2812_Headers_nonBIOS.cmd
From C:\tides\c28\dsp281x\v100\DSP281x_common\cmd add:
e F2812.cmd
From C:\ti\c2000\cgtoolslib add:

e 1ts2800_ml.lib

10-16

DSP28 - Flash Programming

Lab Exercise 11

Project Build Options

5. Setup the search path to include the peripheral register header files. Click:
Project > Build Options

Select the Compiler tab. In the preprocessor Category, find the Include Search
Path (-i) box and enter:

C:\tidcs\C28\dsp281x\v100\DSP281x_headers\include;
.\include

6. Setup the stack size: Inside Build Options select the Linker tab and enter in the Stack
Size (-stack) box:

400

Close the Build Options Menu by Clicking <OK>.

Add Additional Source Code Files

7. To add the machine code for the Flash entry point at address 0x3F 7FF6 we have to
add an assembly instruction “LB _c_int00” and to link this instruction exactly to the
given physical address. Instead of writing our own assembly code we can make use
of another of TI’s predefined functions (“code_start”) which is part of the source
code file “DSP218x_CodeStartBranch.asm”.

From C:\tidcs\c28\dsp281x\v100\DSP281x_common\source add:

e DSP281x_CodeStartBranch.asm

If you open the file “F2812.cmd” you will see that label “code start” is linked to
“BEGIN” which is defined at address Ox3F 7FF6 in code memory page 0.

8. The function to speed up the internal Flash (“InitFlash()”) is also available from TI as
part of the source code file “DSP281x_SysCtrl.c”.

From C:\tidcs\c28\dsp281x\v100\DSP281x_common\source add:

e DSP281x_SysCtrl.c

DSP28 - Flash Programming 10-17

Lab Exercise 11

Modify Source Code to Speed up Flash memory

9.

Open Labl1.c to edit.

In main, after the function call “InitSystem()” we have to add code to speed up the
Flash memory.

This will be done by function “InitFlash”. But, as already mentioned, this code must
run out of SARAM. When we finally run the program out of Flash and the C28x
reaches this line all code is still located in Flash. That means, before we can call
“InitFlash” the C28x has to copy it into SARAM. Standard ANSI-C provides a
memory copy function “memcpy(*dest,*source, number)” for this purpose.

What do we use for “dest”, “source” and “number”?

Again, the solution can be found in file “DSP281x_SysCtrl.c”. Open it and look at
the beginning of this file. You will find a “#pragma CODE _SECTION” — line that
defines a dedicated code section “ramfuncs” and connects the function “InitFlash()”
to it. Symbol “ramfuncs” is used in file “F2812.cmd” to connect it to physical
memory “FLASHD” as load-address and to memory “RAMLO” as execution address.
The task of the linker command file “F2812.cmd” is it to provide the physical
addresses to the rest of the project. The symbols “LOAD_START”, “LOAD END”
and “RUN_START” are used to define these addresses symbolically as
“ RamfuncsLoadStart”, “ RamfuncsLoadEnd” and “ RamfuncsRunStart™.

Add the following line to your code:

memcpy(&RamfuncsRunStart, &RamfuncsLoadStart,
&RamfuncsLoadEnd - &RamfuncsLoadStart);

Add a call of function “InitFlash()”, now available in RAMLO:
InitFlash();

At the beginning of Lab11.c declare the symbols used as parameters for memepy as
externals:

extern unsigned int RamfuncsLoadStart;
extern unsigned int RamfuncsLoadEnd;

extern unsigned int RamfuncsRunStart;

10-18

DSP28 - Flash Programming

Lab Exercise 11

Build project

10. Our code will be compiled to be located in Flash. In our previous lab exercises you
probably used the option to download the program after successful build” in CCS =
Option =» Customize = Load Program After Build. We can’t use this feature for this
exercise because the destination is Flash.

Please make sure, that this option is disabled now!

x

Debug F'ru:uperti33| Direu:tu:uriesl Colar I Editar F'ru:upertiesl Kepboard Fragram Load Options l‘ I bI

¥ {Perform werfication duing Proaram Load

™ Load Program &fter Build

¥ Open Dependent Projects When Loading Projects
[Do Mot Sean Dependencies When Loading Projects
[T Do Mot Set CIO Breakpaint &t Load

[Do Mot Set End OF Pragram Breakpaint &t Load

[~ Clear &l Breakpaints when Loading Mew Programs

(1] I Abbrechen Hbemehmet Hilfe

11. Click the “Rebuild All” button or perform:

Project > Build

If build was successful you’ll get:
Build Complete,

0 Errors, 0 Warnings, 0 Remarks.

DSP28 - Flash Programming 10-19

Lab Exercise 11

Verify Linker Results — The map - File

12. Before we actually start the Flash programming it is always good practice to verify

13.

the used sections of the project. This is done by inspecting the linker output file
‘labl 1.map’

Open file ‘lab11.map’ out of subdirectory ..\Debug

In ‘MEMORY CONFIGURATION’ column ‘used © you will find the amount of
physical memory that is used by your project.

Verify that only the following four parts of PAGE 0 are used:

RAMLO 00008000 00001000 00000016 RWIX
FLASHD 003ec000 00004000 00000016 RWIX
FLASHA 003£6000 00001£80 0000056b RWIX
BEGIN 003f7£f£6 00000002 00000002 RWIX

The number of addresses used in FLASHA might be different in your lab session.
Depending on how efficient your code was programmed by you, you will end up with
more or less words in this section.

Verify also that in PAGE] the memory RAMHO is not used.

In the SECTION ALLOCATION MAP you can see how the different portions of our
projects code files are distributed into the physical memory sections. For example,
the .text-entry shows all the objects that were concatenated into FLASHA.

Entry ‘codestart’ connects the object ‘CodeStartBranch.obj’ to physical address 0x3F
7FF6 and occupies two words.

10 - 20

DSP28 - Flash Programming

Lab Exercise 11

Use CCS Flash Program Tool

13. Next step is to program the machine code into the internal Flash. As mentioned in
this lesson there are different ways to accomplish this step. The easiest way is to use
the Code Composer Studio plug-in tool:

Tools > F28xx On-Chip Flash Programmer

A
— Clock Configuration———— —Eraze Sector Selection =
OSCCLK (Mhz) 20,000 IV Sectord: [3FG000-3F7FFF) ¥ Sector F: [3E4000-3E 7FFF)

¥ SectorB: (FA0003FSFFF) @ Sector G (3E0000-3E3FFF)
PLLCRVae: [0 =] | ¥ SectorC: (FO00OSFSFFF) ¥ SectorH: (3DCOOD-3DFFFF)

| ¥ SectorD; (ECON03EFFFF] W Sectorl: (3DAD0-3DBFFF)
SYSCLKOUT (MHzp 1500000 | & 5oy (3EA0O0GEBFFF] [Sectord: (3DA000-309FFF)

- Code Security Password — Operation
Fleaze zpecify the COFF file to Program s erify:
Kep 7 [0AE 7). IFFFF
exho281whvsolutionstlabl 1hDebughlabl1.out b
Key G (0wESL [FreF L ? Browse. |
+ Eraze. P erfy
Key 5 (044E5) [FFEF raze, Pragram, Yerfy Load Béakd Only
Kewd O4E4): [FFFF ; Erase Only " Frequency Test
P . Werif rer -
Key 3 [0=5E3) [FFFF - s Register: [GFebu #i
P Onl : : =
Key 2 (0+4E2) [FFFF -~ oA Fin: [Pl (0)]
Key1(OwoET) [FFFF LT " Calculate Checksums
Flazh Batndonn Wit State: |15 'I
Foep 0 [OxAE Q) IFFFF Flazh:
Flazh Page W ait State: I 15 | i aTp: I—
Urlet I Lom | OTP % ait State:) Flash+OTE: l— —

Frogram Fazzword

Execute Operation | Help. .. I

Flazh Programmer Settings. .. ;I

e Please make sure that OSCCLK is set to 30MHz and PLLCR to 10.

e Do NOT change the Key 7 to Key 0 entries! They should all show “FFFF”!
e Select the current COFF — out file: ..\Debug\labl1.out

e Select the operation “Frase, Program, Verify

e Hit button “Execute Operation”

DSP28 - Flash Programming 10 - 21

Lab Exercise 11

If everything went as expected you should get these status messages:

*kk

**** Begin Erase/Program/Verify Operation.
Erase/Program/Verify Operation in progress...
Erase operation in progress...

Erase operation was successful.

Program operation in progress...

Program operation was successful.

Verify operation in progress...

Verify operation successful.

Erase/Program/Verify Operation succeeded

**** Fnd Erase/Program/Verify Operation. ***

Now the code is stored in Flash!

Shut down CCS & Restart eZdsp

14. Close your CCS session.

15. Disconnect the eZdsp from power.

16. Verify that eZdsp Jumper JP1 is in position 2-3 (Microcomputer Mode).
17. Verify that eZdsp Jumper JP7 is in position 1-2 (Boot from Flash)

18. Reconnect eZdsp to power.

Your code should be executed immediately out of Flash, showing the
LED-sequence at GPIO-port B.

10- 22 DSP28 - Flash Programming

