
F2833x - IQ-Math 17 - 1

Introduction
In Chapter 4 we discussed the differences between fixed-point and floating-point processors
and the influence of hardware support for the computing time of numerical mathematics. In
Lab 4 we also benchmarked the performance of the F2833x for fixed-point and floating-
point implementations.

The good thing with a Digital Signal Controller, such as the F2833x is that we can decide
whether to generate fixed-point code or floating-point machine code, because the hardware
of this device supports both worlds. There are not that many controllers in the market, which
give us such flexibility!

However, the C2000 family of Digital Signal Controller includes also some other members
without the additional support of a floating-point unit. There is one other member, the
TMS320F28035, which has an additional hardware "Control Law Accelerator" (CLA),
which is also based on floating-point hardware. But for all other members of the C2000 -
family, for example the F281x and the F280x groups, we cannot rely on a floating-point
hardware.

In Lab 4 we also realized, that the use of a floating-point library always leads to an extended
execution time for each mathematical instruction, which involves floating-point data type
variables. For a real-time control application, this extended calculation time is not very
welcome. And, to make it worse, real-time applications are quite often very cost sensitive, so
that a floating -point controller is out of the question.

The question is: Is there a better solution for mathematical tasks running on a controller
without hardware support for floating-point variables?

Probably, you can guess the answer. In the case of the Texas Instruments C2000 - family
there is.

The solution is called "IQ-Math" -library (IQ = "Integer - Quotient"). This library is based
purely on the F28x 32-bit fixed-point hardware unit. The "IQ-Math" solution takes advantage
of the internal 64-bit resolution of the F28x fixed-point hardware-module. The word
"library" might sound like a common C-compilers collection of supporting functions, but the
IQ-Math library is different. All "functions" of that library are not "called" like any other
library function. Instead, an optimized set of a few machine code lines is directly placed into
the translation sequence of the machine code. For such functions the term "intrinsic" is used.
The advantage is a very short execution time, because at execution time there is no function
call, no return, no context save and context restore. Of course, the code size will grow
slightly. However, all IQ-Math functions are optimized and consist of only a few words.

The current version (version 1.5a) of Texas Instruments “IQ-Math” - Library can be found in
literature number “SPRC087” at www.ti.com.

 IQ - Math Library

http://www.ti.com/�

Module Topics

17 - 2 F2833x - IQ-Math

Module Topics
IQ - Math Library ... 17-1

Introduction ... 17-1

Module Topics ... 17-2

The “IQ”-Format .. 17-3

Which IQ-Format is best? ... 17-5

How do use IQ-Math? ... 17-6
Standard ANSI - C 16-Bit Mathematics ... 17-7
Standard ANSI - C 32-Bit Mathematics ... 17-8
32-Bit IQ - Math Approach ... 17-9

IQ - Math Library Functions ... 17-13

IQ- Math Application: Field Orientated Control ... 17-14
Benchmark of IQ - formats ... 17-17
Benchmark Results ... 17-20

IQ - Math summary ... 17-20

Lab 17: IQ - Math based low - pass filter .. 17-21
Objective ... 17-21
Procedure .. 17-22
Install IQMath ... 17-22
Open Project ... 17-23
Build, Load and Run ... 17-23
Add code for ADC - Initialization .. 17-24
Build, Load and Run ... 17-25
Add a sampling buffer .. 17-26
Build, Load and Run ... 17-27
Add the low - pass filter code ... 17-28
MATLAB Filter Coefficient Calculation .. 17-30
Final Build, Load and Run .. 17-32
Benchmark IQ-Math and Floating-Point Filter code .. 17-33
Summary ... 17-35

 The “IQ”-Format

F2833x - IQ-Math 17 - 3

The “IQ”-Format
We have already discussed different number systems, such as floating-point, fixed-point and
binary fractions in Chapter 4. To continue with Chapter 17, you should review Chapter 4
first.

Let us start with the summary of binary fractions. In this number system we "split" a binary
number in an integer ('I') part and a fractional ('Q' - quotient) part. This split is an imaginary
one; we "read" a binary number just in a different way and we do all our mathematics based
on this interpretation of a pure binary number.

Note: The "binary point", shown in Slide 17-2, is just an interpretation; there is no hardware
unit, which will split the binary number in two parts.

Because we do not need a special hardware unit to support this number system, we can use
any fixed-point microcontroller to operate with this system (see Chapter 4). However, only
the F28x - family offers an optimized machine code set to operate on IQ - numbers. And,
even better, the CPU of this family is able to operate with a 64-bit internal resolution for 32-
bit numbers. This 64-bit resolution is based on a concatenation of two internal 32-bit
registers (ACC and P). It will reduce the size of truncation errors to the region of 2-32 and
less.

Based on this special F28x IQ - fixed point machine code set, we can qualify the IQ-Math
library to be comparable to a solution based on floating-point hardware. Therefore, Texas
Instruments calls this library rightly "a virtual floating-point library".

17 17 -- 22

Fractional RepresentationFractional Representation

S IIIIIIII fffffffffffffffffffffff
031

32 bit mantissa

Advantage Advantage ⇒⇒ Precision same for all numbers in an IQ formatPrecision same for all numbers in an IQ format
Disadvantage Disadvantage ⇒⇒ Limited dynamic range compared to floating pointLimited dynamic range compared to floating point

-2I + 2I-1 + … + 21 + 20 . 2-1 + 2-2 + … + 2-Q

““IQIQ”” –– FormatFormat
““II”” ⇒⇒ INTEGER INTEGER –– FractionFraction

““QQ”” ⇒⇒ QUOTIENT QUOTIENT –– Fraction Fraction

Now, if the separation in an integer and a fractional part of a binary number is just an inter-
pretation, we can easily shift this separation point to another location, left or right. What will
be the result? What is the advantage in shifting this binary point?

The “IQ”-Format

17 - 4 F2833x - IQ-Math

The answer is, we can adjust our number system to have a more dynamic range of the num-
bers, or we can optimize our number system to give a higher resolution. The term "higher
resolution" means that we can reduce the step size between two consecutive numbers in a
selected IQ-format. The term "dynamic range" refers to the difference between the most
negative and most positive member of a given IQ-scale.

The next slide (Slide 17-3) gives an example, how a 4-bit number can be used in four differ-
ent IQ-Formats:

17 17 -- 33

IQ IQ –– Range and ResolutionRange and Resolution
44--bit number:bit number:

0001
1

0111
+7

1000
-8

I4Q0

000.1
0.5

011.1
+3.5

100.0
-4

I3Q1

00.01
0.25

01.11
+1.75

10.00
-2

I2Q2

0.001
0.125

0.111
+0.875

1.000
-1

I1Q3

Resolution
(step size)

Most
Positive

Most
Negative

Format

• Trade - Off between Range and Resolution
• Note: Integer Format (I4Q0) is a subset of IQ-Math

Depending on the requirements of an application and its control code, we can optimize the
number system. If we need more dynamic range, we would prefer more integer bits. If we
should need more resolution, a format with more fractional bits would make sense. This de-
cision must be made by the software designer. In most cases it is a trade-off between range
and resolution, you cannot get both high dynamic range and high resolution!

The decision, which IQ-Format shall be used for a given task, is one of the most important
decisions, which must be made by the programmer of a control task. At the end of this chap-
ter, we will inspect a real-world application with a benchmark to select the proper IQ-format.

Note: The last line in Slide 17-3, which shows the I4Q0 - Format, is nothing more than the
standard signed integer format for a 4-bit number in 2's-complements. Therefore we can
state, that the format "signed integer" is just a subset of a more general IQ - number system!

Of course, in real-world, we do not operate on 4-bit numbers; the typical size for a control
application is either 16-bit or even 32-bit numbers. For simplification, we used a 4-bit exam-
ple in Slide 17-3.

 Which IQ-Format is best?

F2833x - IQ-Math 17 - 5

Which IQ-Format is best?
The IQ-number selection is not a static one. The software engineer can decide which part of
a code solution should be executed on IQ-Format 'A' and which one on format 'B'.

Example: A software - project might be based by default on I8Q24 - numbers, which gives
all numbers a dynamic range of -128…+127.999 and a resolution of 2-24. If, for some reason,
at a certain point in the control code this dynamic range is not sufficient, we can easily
change the number system to another system, for example into I12Q20. Of course, we have
to take into account the reduced resolution for that part of the code.

Texas Instruments offers a wide range of libraries, free to download, which are based on IQ-
Math. All libraries feature an interface to language C, e.g. you can call any of these IQ-
Functions like a common C - function. Please note that all these IQ-functions are "intrinsic"
as discussed at the beginning of this chapter. The prototypes of the functions expect input
data in a certain IQ-Format, such as "I1Q15" or "I8Q24" and so on. Return values are also
delivered in such a format. It is your responsibility to adjust your input- and output-variables
to the expected data format. With the help of the previous slides you should now be able to
understand these requirements.

The next slide (Slide 17-4) shows a set of libraries, offered by Texas - Instruments Libraries;
most of them are based on IQ-Math:

17 17 -- 44

F28x Signal Processing Libraries
Signal Processing Libraries & Applications SoftwareSignal Processing Libraries & Applications Software Literature #Literature #
ACI3ACI3--1: Control with Constant V/Hz1: Control with Constant V/Hz SPRC194SPRC194
ACI3ACI3--3: 3: SensoredSensored Indirect Flux Vector ControlIndirect Flux Vector Control SPRC207SPRC207
ACI3ACI3--3: 3: SensoredSensored Indirect Flux Vector Control (simulation)Indirect Flux Vector Control (simulation) SPRC208SPRC208
ACI3ACI3--4: 4: SensorlessSensorless Direct Flux Vector ControlDirect Flux Vector Control SPRC195SPRC195
ACI3ACI3--4: 4: SensorlessSensorless Direct Flux Vector Control (simulation)Direct Flux Vector Control (simulation) SPRC209SPRC209
PMSM3PMSM3--1: 1: SensoredSensored Field Oriented Control using QEPField Oriented Control using QEP SPRC210SPRC210
PMSM3PMSM3--2: 2: SensorlessSensorless Field Oriented ControlField Oriented Control SPRC197SPRC197
PMSM3PMSM3--3: 3: SensoredSensored Field Oriented Control using Field Oriented Control using ResolverResolver SPRC211SPRC211
PMSM3PMSM3--4: 4: SensoredSensored Position Control using QEPPosition Control using QEP SPRC212SPRC212
BLDC3BLDC3--1: 1: SensoredSensored Trapezoidal Control using Hall SensorsTrapezoidal Control using Hall Sensors SPRC213SPRC213
BLDC3BLDC3--2: 2: SensorlessSensorless Trapezoidal DriveTrapezoidal Drive SPRC196SPRC196
DCMOTOR: Speed & Position Control using QEP without IndexDCMOTOR: Speed & Position Control using QEP without Index SPRC214SPRC214
Digital Motor Control Library (F/C280x)Digital Motor Control Library (F/C280x) SPRC215SPRC215
Communications Driver LibraryCommunications Driver Library SPRC183SPRC183
DSP Fast Fourier Transform (FFT) LibraryDSP Fast Fourier Transform (FFT) Library SPRC081SPRC081
DSP Filter LibraryDSP Filter Library SPRC082SPRC082
DSP FixedDSP Fixed--Point Math LibraryPoint Math Library SPRC085SPRC085
DSP IQ Math LibraryDSP IQ Math Library SPRC087SPRC087
DSP Signal Generator LibraryDSP Signal Generator Library SPRC083SPRC083
DSP Software Test Bench (STB) LibraryDSP Software Test Bench (STB) Library SPRC084SPRC084
C28x FPU Fast RTS LibraryC28x FPU Fast RTS Library SPRC664SPRC664
C2833x C/C++ Header Files and Peripheral ExamplesC2833x C/C++ Header Files and Peripheral Examples SPRC530SPRC530

Available from TI Website Available from TI Website ⇒⇒ http://www.ti.comhttp://www.ti.com/c2000/c2000

How do use IQ-Math?

17 - 6 F2833x - IQ-Math

How do use IQ-Math?
Implementing complex digital control algorithms on a Digital Signal Controller (DSC), or
any other DSP capable processor, typically we come across the following issues:

• Algorithms are typically developed using floating-point math
• Floating-point devices are more expensive than fixed-point devices
• Converting floating-point algorithms to a fixed-point device is very time consuming
• Conversion process is one way and therefore backward simulation is not always

possible

The diagram below illustrates a typical development scenario in use today:

17 - 5

So how do we really use all this fraction stuff?

Takes many days/weeks
to convert (one way

process)

Fixed-Point
Algorithm

(ASM, C, C++)

Fixed-Point DSP

Can be easily ported
to floating-point

device

Floating-Point DSP

Floating-Point
Algorithm
(C or C++)

Natural development
starts with simulation in

floating-point

Simulation
Platform

(i.e. MatLab)

The Fixed-Point Development Dilemma

The design may initially start with a simulation (i.e. MATLAB) of a control algorithm,
which typically would be written in floating-point math (C or C++). This algorithm can be
easily ported to a floating-point device. However, because of the commercial reality of cost
constraints, most likely a 16-bit or 32-bit fixed-point device would be used in many target
systems.

The effort and skill involved in converting a floating-point algorithm to function using a 16-
bit or
32-bit fixed-point device is quite significant. A great deal of time (many days or weeks)
would be needed for reformatting, scaling and coding the problem. Additionally, the final
implementation typically has little resemblance to the original algorithm. Debugging is not
an easy task and the code is not easy to maintain or document.

 How do use IQ-Math?

F2833x - IQ-Math 17 - 7

Standard ANSI - C 16-Bit Mathematics
If the processor of your choice is a 16-bit fixed-point and you do not want to include a lot of
library functions in your project, a typical usage of binary fractions is shown next. We
assume that the task is to solve the equation Y = MX + B. This type of equation can be found
in almost every mathematical approach for digital signal processing.

17 17 -- 66

Traditional 16-bit “Q” Math Approach
y = mx + b

s Q15
ss Q30

sssssssssssss Q15

s Q15

s Q15

s Q15

ss Q30

sI Q30

ssssssssssssI Q15

M

X

B

Y

<< 15 Align Binary
Point For Add

Y = ((i32) M * (i32) X + (i32) B << Q) >> Q;in C:

>> 15 Align Binary
Point For Store

The diagram shows the transformations, which are needed to adjust the binary point in
between the steps of this solution. We assume that the input numbers are in I1Q15-Format.
After M is multiplied by X, we have an intermediate product in I2Q30-format. Before we
can add variable B, we have to align the binary point by shifting b 15 times to the left. Of
course we need to typecast B to a 32-bit long first to keep all bits of B. The sum is still in
I2Q30-format. Before we can store back the final result into Y we have to right shift the
binary point 15 times.

The last line of the slide shows the equivalent syntax in ANSI-C. “i32” stands for a 32-bit
integer, usually called ‘long’. ‘Q’ is a global constant and gives the number of fractional bits;
in our example Q is equal to 15.

The disadvantage of this Q15 - approach is its limitation of only 16 bits. A lot of projects for
digital signal processing and digital control will not be able to achieve stable behavior due to
the lack of either resolution or dynamic range.

The F28x as a 32-bit processor can do better - we just have to expand the scheme to 32-bit
binary fractions!

How do use IQ-Math?

17 - 8 F2833x - IQ-Math

Standard ANSI - C 32-Bit Mathematics
The next diagram is an expansion of the previous scheme to 32-bit input values. Again, the
task is to solve equation Y = MX +B. In the following example the input numbers are in an
I8Q24-format.

17 17 -- 77

Traditional 32-bit “Q” Math Approach
y = mx + b

Y = ((i64) M * (i64) X + (i64) B << Q) >> Q;in C:

Note: Requires support for 64-bit integer data type in compiler

<< 24 Align Decimal
Point for Add

I8 Q24 M

X

B

Y

I8 Q24

I8 Q24

I16 Q48

ssssssssssssssssssI8 Q24

ssssI8 Q48

I16 Q48

sssssssssssssssssI16 Q24 I8 Q24

>> 24
Align Decimal
Point for Store

The big problem with the translation into ANSI-C code is that we do not have a 64-bit
integer data type! Although the last line of the slide looks pretty straight forward, we can’t
apply this line to a standard C-compiler!

What now?

The rescue is the internal hardware arithmetic (Arithmetic Logic Unit and 32-bit by 32-bit
Hardware Multiply Unit) of the F28x. These units are able to deal with 64-bit intermediate
results in a very efficient way. Dedicated assembly language instructions for multiply and
add operations are available to operate on the integer part and the fractional part of the 64-bit
number.

To be able to use these advanced instructions, we have to learn about the F28x assembly
language in detail. Eventually your professor offers an advanced course in F28x assembly
language programming -

OR, just use Texas Instruments “IQ-Math”-library, which is doing nothing more than using
these advanced assembly instructions!

 How do use IQ-Math?

F2833x - IQ-Math 17 - 9

32-Bit IQ - Math Approach
The first step to solve the 64-bit dilemma is to refine the last diagram for the 32-bit solution
of Y = MX + B. As you can see from the next slide, the number of shift operations is
reduced to 1. Again, the C-line includes a 64-bit ‘long’, which is not available in standard C.

17 17 -- 88

32-bit IQmath Approach
y = mx + b

I8 Q24
I16 Q48

M

X

B

Y

>> 24Align Decimal
Point Of Multiply

I8 Q24

I8 Q24

sssssssssssssssssI16 Q24

I8 Q24I8 Q24

Y = ((i64) M * (i64) X) >> Q + B;in C:

The “IQ”-Math approach ‘redefines’ the multiply operation to use the advantages of the
internal hardware of the C28x. As stated, the F28x is internally capable of handling 64-bit
fixed-point numbers with dedicated instruction sets. Texas Instruments provides a collection
of intrinsic functions, one of them to replace the standard multiply operation by an
_IQmpy(M,X) -line. Intrinsic means, we do not ‘call’ a function with a lot of context save
and restore; instead the machine code instructions are directly included in our source code.

As you can see from the next slide the final C-code looks much better now without the
cumbersome shift operations that we have seen in the standard C approach.

AND: The execution time of the final machine code for the whole equation Y = MX + B
takes only 7 cycles; with a 150MHz F2833x, this translates into 46 nanoseconds!

How do use IQ-Math?

17 - 10 F2833x - IQ-Math

17 17 -- 99

IQmath Approach
Multiply Operation

Y = ((i64) M * (i64) X) >> Q + B;

_IQmpy(M,X) == ((i64) M * (i64) X) >> Q

Redefine the multiply operation as follows:Redefine the multiply operation as follows:

Y = _IQmpy(M,X) + B;

This simplifies the equation as follows:This simplifies the equation as follows:

MOVL XT,@M
IMPYL P,XT,@X ; P = low 32-bits of M*X
QMPYL ACC,XT,@X ; ACC = high 32-bits of M*X
LSL64 ACC:P,#(32-Q) ; ACC = ACC:P << 32-Q

; (same as P = ACC:P >> Q)
ADDL ACC,@B ; Add B
MOVL @Y,ACC ; Result = Y = _IQmpy(M*X) + B
; 7 Cycles

C28x compiler supports “_IQmpy” intrinsic; assembly code generatC28x compiler supports “_IQmpy” intrinsic; assembly code generated:ed:

Let us have a closer look to the assembly instructions used in the example above.

The first instruction ‘MOVL XT,@M’ is a 32-bit load operation to fetch the value of M into
a temporary register ‘XT’.

Next, ‘XT’ is multiplied by another 32-bit number taken from variable X (‘IMPYL
P,XT,@X’). When multiplying two 32-bit numbers, the result is a 64-bit number. In the case
of this instruction, the lower 32-bit of the result are stored in a register ‘P’.

The upper 32 bits are stored with the next instruction (‘QMPYL ACC,XT,@X’) in the
‘ACC’ register. ‘QMPYL’ is doing the same multiplication once more but keeps the upper
half of the result only. At the end, we have stored all 64 bits of the multiplication in the
register combination ACC:P.

What follows is the adjustment of the binary point. The 64-bit result in ACC:P is in I16Q48-
fractional format. Shifting it 32-24 times to the left, we derive an I8Q56-format. The
instruction ‘ADDL ACC,@B’ uses only the upper 32 Bits of the 64-bit, thus reducing our
fractional format from I8Q56 to I8Q24 - which is the same format as we use for B and all
our variables!

The whole procedure takes only 7 cycles!

 How do use IQ-Math?

F2833x - IQ-Math 17 - 11

The next slide compares the different approaches. The IQ-Math library also defines a new
data type ‘_iq’ to simplify the definition of fractional data. If you choose to use C++ the
floating-point equation and the C++ equation are identical! This is possible due to the
overload feature of C++. The floating-point multiply operation is overloaded with its IQ-
Math replacement - the code looks ‘natural’.

17 17 -- 1010

IQmath Approach
It looks like floating-point!

float Y, M, X, B;

Y = M * X + B;

Floating-Point

long Y, M, X, B;

Y = ((i64) M * (i64) X + (i64) B << Q)) >> Q;

Traditional
Fix-Point Q

_iq Y, M, X, B;

Y = _IQmpy(M, X) + B;

“IQmath”
In C

iq Y, M, X, B;

Y = M * X + B;

“IQmath”
In C++

“IQmath” code is easy to read!

This technique opens the way to generate a unified source code that can be compiled in a
floating-point representation as well as into a fixed-point output solution. No need to
translate a floating-point simulation code into a fixed-point implementation - the same source
code can serve both worlds.

How do use IQ-Math?

17 - 12 F2833x - IQ-Math

17 17 -- 1111

IQmath Approach
GLOBAL_Q simplification

#define GLOBAL_Q 18 // set in “IQmathLib.h” file

_iq Y, M, X, B;

Y = _IQmpy(M,X) + B; // all values are in Q = 18

GLOBAL_QGLOBAL_Q

User selects “Global Q” value for the whole applicationUser selects “Global Q” value for the whole application

based on the required dynamic range or resolution, for example:based on the required dynamic range or resolution, for example:

The user can also explicitly specify the Q value to use:The user can also explicitly specify the Q value to use:
_iq20 Y, M, X, B;

Y = _IQ20mpy(M,X) + B; // all values are in Q = 20

0.000 000 06-128.000 000 00127.999 999 9424
0.000 001-2048.000 0002047.999 99920

0.000 000 004-8.000 000 0007.999 999 99628
ResolutionMin ValMax ValGLOBAL_Q

17 17 -- 1212

IQmath Provides Compatibility Between Floating-
Point and Fixed-Point

All “IQmath” operations have an equivalent floating-point operation

Compile & Run
on Fixed-Point

F282xx

Y = _IQmpy(M, X) + B;

#if MATH_TYPE == IQ_MATH #if MATH_TYPE == FLOAT_MATH

Y = (float)M * (float)X + (float)B;

1) Develop any mathematical function

2) Select math type in IQmathLib.h

3) Compiler automatically converts to:

Floating-Point
Math Code

Fixed-Point
Math Code

Compile & Run
on Floating-Point

F283xx *

* Can also compile floating-point code on any floating-point compiler (e.g., PC, Matlab, fixed-point w/ RTS lib, etc.)

 IQ - Math Library Functions

F2833x - IQ-Math 17 - 13

IQ - Math Library Functions
The next two slides summarize the existing library functions of IQ-Math.

17 17 -- 1313

IQmath Library: Math & Trig Functions

Accuracy of functions/operations approx ~28 to ~31 bits

IQsin(A),IQcos(A)
IQsinPU(A),IQcosPU(A)

IQasin(A),IQacos(A)
IQatan(A),IQatan2(A,B)

IQatan2PU(A,B)
IQsqrt(A),IQisqrt(A)

IQmag(A,B)
IQexp(A)

_IQsin(A), _IQcos(A)
_IQsinPU(A), _IQcosPU(A)

_IQasin(A),_IQacos(A)
_IQatan(A), _IQatan2(A,B)

_IQatan2PU(A,B)
_IQsqrt(A), _IQisqrt(A)

_IQmag(A,B)
_IQexp(A)

sin(A),cos(A)
sin(A*2pi),cos(A*2pi)

asin(A),acos(A)
atan(A),atan2(A,B)

atan2(A,B)/2pi
sqrt(A),1/sqrt(A)
sqrt(A*A + B*B)

exp(A)

trig
and

power
functions

IQsat(A,Pos,Neg)_IQsat(A,Pos,Neg)if(A > Pos) A = Pos
if(A < Neg) A = Neg

saturation

A – BA - BA - Bsubstract
>, >=, <, <=, ==, |=, &&, || >, >=, <, <=, ==, |=, &&, ||>, >=, <, <=, ==, |=, &&, ||boolean

A + BA + BA + Badd
A / B_IQdiv (A , B)A / B divide
A * B_IQmpy(A , B)A * Bmultiply

A = IQ(1.2345)A = _IQ(1.2345)A = 1.2345constant
iq A, B;_iq A, B;float A, B;type

“IQmath” in C++“IQmath” in CFloating-PointOperation

17 17 -- 1414

IQmath Library: Conversion Functions

IQmath.lib > contains library of math functions
IQmathLib.h > C header file
IQmathCPP.h > C++ header file

atoIQ(char)_atoIQ(char)atof(char)string to iq
IQtoQN(A)_IQtoQN(A)Aiq to qN
QNtoIQ(A)_QNtoIQ(A)AqN to iq

IQmpyI32int(A,B)_IQmpyI32int(A,B)(long) (A * (float) B)integer(iq*long)
IQmpyI32frac(A,B)_IQmpyI32frac(A,B)A - (long) (A * (float) B)fraction(iq*long)

IQtoF(A)_IQtoF(A)AIQ to float

IQmpyI32(A,B)_IQmpyI32(A,B)A * (float) Biq = iq*long
IQfrac(A)_IQfrac(A)A – (long) Afraction(iq)
IQint(A)_IQint(A)(long) Ainteger(iq)

IQNtoIQ(A)_IQNtoIQ(A)AiqN to iq
IQtoIQN(A)_IQtoIQN(A)Aiq to iqN

“IQmath” in C++“IQmath” in CFloating-PointOperation

IQtoA(A,B,C)_IQtoA(A,B,C)sprintf(A,B,C)IQ to ASCII

IQ- Math Application: Field Orientated Control

17 - 14 F2833x - IQ-Math

IQ- Math Application: Field Orientated Control
The next slides are just to demonstrate the ability of “IQ-Math” to solve advanced numeric
calculations in real time. The example is taken from the area of digital motor control. We
will not go into the details of the control scheme and we will not discuss the various options
to control an electrical motor. If you are a student of an electrical engineering degree you
might be familiar with these control techniques. Eventually your university also offers
additional course modules with this topic. The field of motor and electrical drive control is
quite dynamic and offers a lot of job opportunities.

The next slide is a block diagram of a control scheme for an alternating current (AC)
induction motor. These types of motors are based on a three-phase voltage system. Modern
control schemes are introduced these days to improve the efficiency of the motor. One
principle, called “Field Orientated Control”, incorporates “Space Vector Modulation”, a
voltage modulation technique to drive an inverter, which is quite popular today. In fact this
theory is almost 70 years old now, but in the past it was impossible to realize a real time
control due to the lack of computing power. Now with a controller like the F2833x, it can be
implemented!

17 17 -- 1515

AC Induction Motor Example
One of the more complex motor control algorithms

 Sensorless, ACI induction machine direct rotor flux control
 Goal: motor speed estimation & alpha-axis stator current estimation

The core control system consists of three digital PID-controllers, one for the speed control of
the motor (“PID_REG3 SPD”), one to control the torque (“PID_REG3 IQ”) and one for the
flux (“PID_REG3 ID”). Between the control loops and the motor two co-ordinate
transforms are performed (“PARK” and “I_PARK”).

Let us have a look into a standard C implementation of the PARK transform, which converts
a 3-D vector to a 2-D vector. For now, it is not necessary to fully understand this transform,
just have a look into the mathematical operations involved.

 IQ- Math Application: Field Orientated Control

F2833x - IQ-Math 17 - 15

All variables are data type “float” and the functions included are:

• Six multiply operations,

• Two trigonometric function calls,

• An addition and

• A subtraction.

This code can easily be compiled by any standard C compiler and downloaded into a
simulation or into any processor, for example the F2833x. It will work, but it will not be the
most efficient way to use the F2833x because it will involve floating-point library function
calls that will consume a considerable amount of computing time.

17 17 -- 1616

AC Induction Motor Example
Park Transform – floating-point C code

#include “math.h”

#define TWO_PI 6.28318530717959

void park_calc(PARK *v)

{

float cos_ang , sin_ang;

sin_ang = sin(TWO_PI * v->ang);

cos_ang = cos(TWO_PI * v->ang);

v->de = (v->ds * cos_ang) + (v->qs * sin_ang);

v->qe = (v->qs * cos_ang) - (v->ds * sin_ang);

}

With the “IQ-Math” library we can improve the code for the C28x, as shown at the next
slide. Of course, we have to replace all float function calls by “IQ-Math” intrinsic functions.

IQ- Math Application: Field Orientated Control

17 - 16 F2833x - IQ-Math

All variables are now of data type “_iq”, the sine and cosine function calls are replaced by
their intrinsic replacements as well as the six multiply operations.

The constant “TWO_PI” will be converted into the standard IQ-format with the conversion
function “_IQ()”. This way the number 6.28 will be translated into the correct fixed-point
scale before it is used during compilation.

The resulting code will be compiled into a much denser and faster code for the C28x. Of
course, a little bit of coding is still needed to convert an existing floating-point code into the
“IQ-Math” C- code.

Fortunately, the structure of the two program versions is identical, which helps to keep a
development project consistent and maintainable, for both the floating-point and the fixed-
point implementations.

17 17 -- 1717

AC Induction Motor Example
Park Transform - converting to “IQmath” C code

#include “math.h”

#define TWO_PI 6.28318530717959

void park_calc(PARK *v)

{

float cos_ang , sin_ang;

sin_ang = sin(TWO_PI * v->ang);

cos_ang = cos(TWO_PI * v->ang);

v->de = (v->ds * cos_ang) + (v->qs * sin_ang);

v->qe = (v->qs * cos_ang) - (v->ds * sin_ang);

}

#include “IQmathLib.h”

_IQ(6.28318530717959)

_iq

_IQsin(_IQmpy(TWO_PI , v->ang));

_IQcos(_IQmpy(TWO_PI , v->ang));

_IQmpy(v->ds , cos_ang) + _IQmpy(v->qs , sin_ang);

_IQmpy(v->qs , cos_ang) - _IQmpy(v->ds , sin_ang);

 IQ- Math Application: Field Orientated Control

F2833x - IQ-Math 17 - 17

Benchmark of IQ - formats
The complete AC-induction motor system was coded using "IQ-Math". Based on analysis of
coefficients in the system, the largest coefficient had a value of 33.3333. This indicated that a
minimum dynamic range of 7bits (+/-64 range) was required. Therefore, this translated to a
GLOBAL_Q value of 32-7 = 25(Q25). Just to be safe, the initial simulation runs were
conducted with GLOBAL_Q = 24 (Q24) value.

17 17 -- 1818

AC Induction Motor Example
GLOBAL_Q = 24, system stable

IQmath: speed IQmath: current

Floating-Point: speed Floating-Point: current

Slide 17-18 compares the results for a floating-point code and an I8Q24-code. The left hand
side diagrams show the speed response of the motor to reach a set point. The left hand side
diagrams are the measurement results in one of the three phase currents each.

We can say that the results are almost identical; there is no difference in the control loop for
a floating-point controller and an I8Q24 fixed-point device. The reason for this similarity is
shown at the next slide (Slide 17-19).

In the computation region of numbers, which are used in this first test, the resolution (or
precision) of fixed-point and floating-point is equal - and so are the results!

IQ- Math Application: Field Orientated Control

17 - 18 F2833x - IQ-Math

17 17 -- 1919

I8Q24 Fractions:

0+∞ -∞

What’s Happening Here?
Equal Precision in the Computation Region

In the region where these particular computations occur, the
precision of single-precision floating-point just happens to equal
the precision of the I8Q24 format.

So, both produce similar results!

Floating-Point:

0+∞ -∞

Same precision as I8Q24

Next, the whole AC induction motor solution was investigated for stability and dynamic
behavior by changing the global Q value. With a 32-bit fixed-point data type we can modify
the fractional part between 0 bit (“Q0”) and 31 bits (“Q31”). The following slide shows the
results for an I5Q27 - math system:

17 17 -- 2020

AC Induction Motor Example
GLOBAL_Q = 27, system unstable

IQmath: speed

IQmath: current

The system becomes unstable with spikes in the speed response, because of the reduced
dynamic range and resulting overflows in the numbering scale.

 IQ- Math Application: Field Orientated Control

F2833x - IQ-Math 17 - 19

The next slide (Slide 17-21) shows the results for an I16Q16 - solution. Here the system
becomes unstable, because of the limited resolution of a step size of the numbers.

17 17 -- 2121

AC Induction Motor Example
GLOBAL_Q = 16, system unstable

IQmath: speed

IQmath: current

All the results are summarized below. As you can see, there is an area, in which all tests led
to a stable operating mode of the motor. The two other areas showed an increasing degree of
instability, caused by either not enough dynamic range in the integer part or not enough
fractional resolution of the numbering system.

17 17 -- 2222

AC Induction Motor Example
Q stability range

The developer must pick the right GLOBAL_Q value!

Unstable
(not enough resolution, quantization problems)Q18 to Q0

StableQ26 to Q19

Unstable
(not enough dynamic range)Q31 to Q27

Stability RangeQ range

IQ - Math summary

17 - 20 F2833x - IQ-Math

Benchmark Results
Here is a summary of the results for the control code of a "field orientated control" (FOC) of
an AC - induction motor:

17 17 -- 2323

AC Induction Motor Example
Performance comparisons

Benchmark C28x C C28x C C28x C
floating-point floating-point IQmath
std. RTS lib fast RTS lib v1.4d
(150 MHz) (150 MHz) (150 MHz)

B1: ACI module cycles 401 401 625
B2: Feedforward control cycles 421 371 403
B3: Feedback control cycles 2336 792 1011
Total control cycles (B2+B3) 2757 1163 1414
% of available MHz used 36.8% 15.5% 18.9%
(20 kHz control loop)

Notes: C28x compiled on codegen tools v5.0.0, -g (debug enabled), -o3 (max. optimization)
fast RTS lib v1.0beta1
IQmath lib v1.4d

IQ - Math summary

17 17 -- 2424

IQmath Approach Summary

 Seamless portability of code between fixed and floating-
point devices
 User selects target math type in “IQmathLib.h” file

 #if MATH_TYPE == IQ_MATH
 #if MATH_TYPE == FLOAT_MATH

 One source code set for simulation vs. target device
 Numerical resolution adjustability based on application

requirement
 Set in “IQmathLib.h” file

 #define GLOBAL_Q 18
 Explicitly specify Q value

 _iq20 X, Y, Z;

 Numerical accuracy without sacrificing time and cycles
 Rapid conversion/porting and implementation of algorithms

IQmathIQmath library is freeware library is freeware -- available from TI DSP websiteavailable from TI DSP website
http://www.ti.comhttp://www.ti.com/c2000/c2000

““IQmathIQmath” + fixed” + fixed--point processor with 32point processor with 32--bit capabilities =bit capabilities =

 Lab 17: IQ - Math based low - pass filter

F2833x - IQ-Math 17 - 21

Lab 17: IQ - Math based low - pass filter
Before we start this lab exercise, you should inspect your solution from Lab 7-9 “Sine Wave
PWM signal at ePWM1A” (see Chapter 7). In this exercise we already used some IQ-Math
functions. Based on the discussion in Chapter 17 you should be able to better understand the
details of the calculations, performed in Lab 7-9.

Objective
The objective of this laboratory exercise is to practice using the F2833x and its IQ-Math
library.

The hardware diagram of this exercise is shown below (Slide 17-25). We will write code to
calculate an FIR-Filter with low-pass characteristics, send our samples through the filter and
compare the results in graphical form.

17 17 -- 2525

Lab17: IQ Lab17: IQ –– Math FIR Math FIR -- FilterFilter

CPU copies
result to
buffer during
ADC ISR

ADC
RESULT0

ePWM2

connector
wire

ADCINA0

...

data
memory

po
in

te
r r

ew
in

d

Display Display
using CCSusing CCS

FIR FilterFIR Filter
TB Counter
Compare

Action Qualifier

ePWM1

ePWM2 triggering ADC on period
match using SOC A trigger every
20µs (50 kHz)

The procedure steps of the exercise are listed in Slide 17-26:

Lab 17: IQ - Math based low - pass filter

17 - 22 F2833x - IQ-Math

17 17 -- 2626

Objective:
1. Generate a symmetrical 2 kHz PWM signal with 25%

duty cycle
2. Measure the signal with ADC at a 50 kHz sample rate
3. Store the ADC results in a circular result buffer
4. Compute the ADC results in a digital finite impulse

response (FIR) filter with low-pass characteristics. The
Filter is calculated by IQ-Math functions

5. Plot the graphs of the filtered and unfiltered signal with
Code Composer Studios graph tool

6. Compare the results

Lab17: IQ Lab17: IQ –– Math FIR Math FIR -- FilterFilter

Procedure

Install IQMath
If not already installed on your PC, you will have to install the IQMath library now. The
default installation path is "C:\tidcs\c28\IQmath":

If this library is not available on your PC, you will have to install it first. If you are in a
classroom and you do not have administrator installation rights, ask your teacher for
assistance. You can find the installation file under number "sprc087.zip" in the utility part of
this CD-ROM or at the Texas Instruments Website (www.ti.com).

 Lab 17: IQ - Math based low - pass filter

F2833x - IQ-Math 17 - 23

Open Project
1. For convenience, open the provided project “Lab17.pjt” from

C:\DSP2833x_V4\Labs\Lab17.

2. Open the file “Lab17.c” to edit. In the function “Setup_ePWM1A()”, change the
frequency of the square wave signal at ePWM1A from 1 kHz to 2 kHz and set the
pulse width (duty cycle) to 25%.

3. In function “cpu_timer0_isr()”, delete the code to change the duty cycle (register
CMPA). For Lab17 we will use a static or permanent pulse width of 25%.

Build, Load and Run
4. Click the “Rebuild Active Project ” button or perform:

 Project  Rebuild All (Alt +B)

5. Load the output file in the debugger session:

 Target  Debug Active Project

and switch into the “Debug” perspective.

6. Verify that in the debug perspective the window of the source code “Lab17.c” is high-

lighted and that the blue arrow for the current Program Counter position is placed un-
der the line “void main(void)”.

7. Perform a real time run.

Target  Run

8. Use an oscilloscope to measure and verify the 2 kHz-output signal at ePWM1A. Con-
nect your oscilloscope to the Peripheral Explorer Board Header J6-1.

Lab 17: IQ - Math based low - pass filter

17 - 24 F2833x - IQ-Math

Add code for ADC - Initialization

9. At the end of file “Lab17.c”, add the new function “void Setup_ADC(void)”. Also,
define a function prototype at the beginning of “Lab17.c”. In the function “main()”,
add a call to “Setup_ADC()”, immediately after the call to “Setup_ePWM1A()”.

In function “Setup_ADC()”, add the following initialization sequence:
• Call function “InitAdc()”. Because this function is defined in the file

“DSP2833x_Adc.c”, we also have to add an external function prototype at the
beginning of “Lab17.c”.

• In register “ADCTRL1”:
o Select “Cascaded Sequencer Mode”
o Select “No continuous Run”
o Set prescaler “CPS” to zero

• In register “ADCTRL2”:
o disable the ePWM_SOCA_SEQ1 start-option (we will use software

start)
o disable the ePWM_SOCB_SEQ start-option
o disable the ePWM_SOCB_SEQ2 start option
o Enable SEQ1 interrupts with every end of sequence (EOS)
o Set the ADC-clock to HSPCLK / 6. Note: HSPCLK has been initialized

in function “InitSysCtrl()” to SYSCLK/2. For a 150 MHz device the re-
sulting ADC clock will be 12.5 MHz.

• In register “ADCMAXCONV”:
o Set the number of conversions to “1 conversion per start”

• In register “ADCCHSELSEQ1”:
o set field “CONV00” to convert channel ADCINA2

10. In Step 9 we have enabled the ADC to request an interrupt at the end of a conversion.

To get this interrupt into the CPU, we also must enable the PIE - unit switch for the
ADC and we must provide an interrupt-service routine.

• In function “main()”, locate the line, in which we enabled bit 7 of register

PIEIER1. Add a second line to enable also bit 6 of register PIEIER1, which con-
trols the ADC interrupt line:

 PieCtrlRegs.PIEIER1.bit.INTx6 = 1;

• Locate the line, in which we loaded variable “PieVectTable” with the address of

function “cpu_timer0_isr()”. Now add a second line to load the address of an in-
terrupt service routine (e.g. “adc_isr()”) for the ADC:

PieVectTable.ADCINT = &adc_isr;

• At the beginning of file “Lab17.c”, add a function prototype for the new func-

tion:

interrupt void adc_isr(void);

• At the end of file “Lab17.c”, add the new interrupt service function:

 Lab 17: IQ - Math based low - pass filter

F2833x - IQ-Math 17 - 25

interrupt void adc_isr(void)
{
}

We will fill in the code lines in “adc_isr()” in procedure Step 9.

11. To start the ADC we will use our time-base, the CPU-Timer 0. In file “Lab17.c” this
timer is still initialized to 100 microseconds from an earlier lab. For the new exercise,
we would like to use a sample frequency of 50 kHz or a period of 20 microseconds.
Change the line to initialize the CPU-timer 0 to:

ConfigCpuTimer(&CpuTimer0,150,20);

In the function “cpu_timer0_isr()”, which is triggered by Timer 0 once every 20 mi-
croseconds, add a line to start the ADC by software:

AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 1;

12. In the function “adc_isr()”, which will be triggered at the end of each conversion, add
the following 3 lines to re-initialize the ADC for the next conversion:

AdcRegs.ADCTRL2.bit.RST_SEQ1 = 1; // Reset SEQ1
AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1; // Clear INT SEQ1 bit
PieCtrlRegs.PIEACK.all = 1; // Acknowledge interrupt to PIE

Now we should have completed the framework, which consists of a 2 kHz - signal at
ePWM1A, a sampling time base of 50 kHz, generated by CPU-Timer 0 and an ADC,
which is triggered by CPU-Timer0 to sample channel ADCINA2. The end of conver-
sion will trigger the interrupt service routine “adc_isr()”. Before we go on to read and
store the ADC results in a buffer, let us perform a test, to verify that this framework
actually works:

Build, Load and Run
13. Click the “Rebuild Active Project ” button or perform:

 Project  Rebuild All (Alt +B)
and watch the tools run in the build window. If you get errors or warnings debug as
necessary.

14. Load the output file in the debugger session:

 Target  Debug Active Project

and switch into the “Debug” perspective.

15. Verify that in the debug perspective the window of the source code “Lab11_1.c” is

high-lighted and that the blue arrow for the current Program Counter position is placed
under the line “void main(void)”.

Lab 17: IQ - Math based low - pass filter

17 - 26 F2833x - IQ-Math

13. Set a breakpoint in the function “adc_isr()” and run the program (F8). If everything
works as expected, the breakpoint should be hit:

Resume a few times the run of the code (F8). The breakpoint should be hit periodical-
ly. This proves that our framework is functional.

Remove the breakpoint and run the code. If your oscilloscope is still connected to
ePWM1A, it should still show the 2 kHz - signal from procedure step 5. Finally, halt
the code ( Target  Halt).

Add a sampling buffer

14. Because our computation will be done based on IQ-Math, we need to include the IQ -
Math function prototypes. At the beginning of file “Lab17.c”, add a line to include the
IQ-Math header file:

#include "IQmathLib.h"

15. Also at the beginning of file “Lab17.c”, add a macro to define the size of our data buf-
fer, a macro to define the value of 3.0 in default IQ-format, and the data buffer itself
as a global variable:

#define AdcBufLen 50
#define AdcFsVoltage _IQ(3.0) // ADC full scale voltage
_iq AdcBuf[AdcBufLen]; // ADC results buffer

16. In interrupt service function “adc_isr()”:

• Add a static unsigned integer variable “index” and initialize it with zero.
• Read the current sample and store it in array “AdcBuf”:

AdcBuf[ibuf] = _IQmpy(AdcFsVoltage, _IQ16toIQ((_iq)AdcRegs.ADCRESULT0));

This line needs an explanation (from right to left). First we read the latest sample from
the ADC. The result register format is 16 bit, but the result data are in bits 15 to 4 (left
justified). We “interpret” these numbers as an unsigned value between +1 and 0; the
term is “binary fractions” or “per-unit”. Next, we convert this I16Q16 - number into
the default IQ - format (function “_IQ16toIQ()”). Finally this percentage number is
multiplied by the full scale value of 3.0.

• Increment variable “index” and reset it to 0, if it exceeds AdcBufLen.

 Lab 17: IQ - Math based low - pass filter

F2833x - IQ-Math 17 - 27

The whole ISR should now look like this:

17. From location C:\tidcs\c28\IQmath\v15a\lib link the IQ-Math library to your project:

 IQmath.lib

Now it is time to perform a test, whether our sampling system is able to fill the result
buffer. Using a wire, connect the Peripheral Explorer Board Header J6-1 (ePWM1A)
to Header J13-4 (ADCINA2).

Build, Load and Run
18. Click the “Rebuild Active Project ” button or perform:

 Project  Rebuild All (Alt +B)

19. Load the output file in the debugger session:

 Target  Debug Active Project

and switch into the “Debug” perspective.

20. Verify that in the debug perspective the window of the source code “Lab17.c” is high-

lighted and that the blue arrow for the current Program Counter position is placed un-
der the line “void main(void)”.

21. Perform a real time run.

Target  Run

22. Open a Graph - Window (Tools  Graph  Single Time) and enter the following
properties:

Lab 17: IQ - Math based low - pass filter

17 - 28 F2833x - IQ-Math

The graph should display the sampled data, e.g. the waveform of the 2 kHz signal with
25% pulse width:

Add the low - pass filter code
23. At this point it is time to add the low pass filter code. For convenience, the source

code file “Filter.c” has been provided. Include this file into the project (right click on
the file and unmark the option “Exclude from Build”).

 Lab 17: IQ - Math based low - pass filter

F2833x - IQ-Math 17 - 29

24. Open and inspect file “Filter.c”. This file contains an IQ-Math N-tap single-sample
FIR filter function (“IQssfir()”). It calculates:

𝑦𝑦(𝑘𝑘) = �𝑎𝑎(𝑛𝑛) ∗ 𝑥𝑥(𝑘𝑘 − 𝑛𝑛)
𝑁𝑁−1

𝑛𝑛=0

The code of function “IQssfir()” is based on some basic IQ-Math functions. It is just a
simple filter example, and completely un-optimized. The goal with the code was clarity
and simplicity, not efficiency. The filtering is done from last tap to first tap. This allows
more efficient delay chain updating. The array ‘x’ contains the latest N samples, which
are used in the next calculation of y(k). The array ‘a’ contains the filter coefficients and
defines the transfer function of the filter.

25. At the beginning of “Lab17.c”, add a function prototype:

extern _iq IQssfir(_iq*, _iq*, Uint16);

26. Also at the beginning of “Lab17.c”, add 3 new global variables:

_iq AdcBufFiltered[AdcBufLen]; // filtered ADC results buffer

_iq xBuffer[5] = {0,0,0,0,0}; // filter sample buffer

_iq coeffs[5] = {_IQ(0.0357), _IQ(0.2411), _IQ(0.4465), _IQ(0.2411),
_IQ(0.0357)};

All variables are of type “_iq”, which is a signed 32-bit number with default IQ-format.
To inspect or change this default IQ-format, open the file “IQmathLib.h” and search for
the definition of constant “GLOBAL_Q”:

Lab 17: IQ - Math based low - pass filter

17 - 30 F2833x - IQ-Math

MATLAB Filter Coefficient Calculation
The filter coefficient values, shown above as initialization values for variable “coeffs”,
are derived from a MATLAB - filter design tool called “fdatool”. The Filter parameters
are:

• FIR - Low pass - Filter 4th order

• Sampling Frequency: 50 kHz

• Corner Frequency: 300 Hz

• Window: Hamming

The resulting filter coefficients are shown next:

 Lab 17: IQ - Math based low - pass filter

F2833x - IQ-Math 17 - 31

27. In the function “adc_isr()”, immediately after the store instruction for the latest ADC-
result, add code to update the filter sample buffer and call the filter function “IQssfir()”:

 xBuffer[0] = AdcBuf[index];

 AdcBufFiltered[index] = IQssfir(xBuffer, coeffs, 5);

The whole interrupt service routine “adc_isr()” should now look like:

Also, at the beginning of “Lab17.c”, add an external prototype for the function
“IQssfir()”:

extern _iq IQssfir(_iq*, _iq*, Uint16);

Lab 17: IQ - Math based low - pass filter

17 - 32 F2833x - IQ-Math

Final Build, Load and Run
28. Click the “Rebuild Active Project ” button or perform:

 Project  Rebuild All (Alt +B)

29. Load the output file in the debugger session:

 Target  Debug Active Project

and switch into the “Debug” perspective.

30. Verify that in the debug perspective the window of the source code “Lab17.c” is high-

lighted and that the blue arrow for the current Program Counter position is placed un-
der the line “void main(void)”.

31. Run the code:

Target  Run

Then stop the execution (Target  Halt).

32. Open a Graph - Window (Tools  Graph  Dual Time) and enter the following
properties:

 Lab 17: IQ - Math based low - pass filter

F2833x - IQ-Math 17 - 33

The top graph should display the sampled 2 kHz - signal and the bottom graph shows the
output of the low-pass filter, stored in buffer “AdcBufFiltered”.

Benchmark IQ-Math and Floating-Point Filter code
Since the F2833x is able to run floating-point code and fixed-point code, we can test the
filter code of this exercise, based on floating-point machine code or fixed-point code. The
fixed-point code will be done in IQ-Math.

33. Open the file “IQmathLib.h” and verify that the macro “MATH_TYPE” is set to
“IQ_MATH”:

This macro will tell the compiler to use IQ-Math instructions for the compilation of
function “IQssfir()”.

34. Rebuild, reload and run the project.

Open the graph window shown in procedure Step 32 and verify that it still shows the
same two graphs.

Set a breakpoint at the instruction “y = y + _IQmpy(*a--, *x);” in the file “Filter.c”,
open the disassembly window, right mouse click into it and select “Show Source”:

Lab 17: IQ - Math based low - pass filter

17 - 34 F2833x - IQ-Math

Verify that the compiler has actually used IQ - machine code instructions. Look for the
instructions “IMPYL”, “QMPYL” and “LSL64”. This code will run on any C2000
family member without floating-point hardware, e.g. F280x, F281x or F2823x devices.

35. Now change the macro “MATH_TYPE” in file “IQmathLib.h” from “IQ_MATH” to
“FLOAT_MATH”.

36. Rebuild, reload and run the project.

Open the graph window shown in procedure Step 32 and verify that it still shows the
same two graphs.

Run the code until it hits the breakpoint in the file “Filter.c” and inspect again the
“Disassembly Window”:

Now the compiler has generated floating-point machine code! Instructions “MOV32”
and “MPYF32” are using the floating-point hardware unit of the F28335.

 Lab 17: IQ - Math based low - pass filter

F2833x - IQ-Math 17 - 35

Summary
Code written in IQ-Math can be compiled for a fixed-point target (MATH_TYPE =
IQ_MATH) or for a floating-point target (MATH_TYPE = FLOAT_MATH). All we
have to do is to change one single line in the header-file!

This is an exciting feature of the C2000 - family, because we don’t have to modify a
single line of code, when we move from a floating-point device to a fixed-point device
or vice versa.

Lab 17: IQ - Math based low - pass filter

17 - 36 F2833x - IQ-Math

blank page

	IQ - Math Library
	Introduction
	Module Topics
	The “IQ”-Format
	Which IQ-Format is best?
	How do use IQ-Math?
	Standard ANSI - C 16-Bit Mathematics
	Standard ANSI - C 32-Bit Mathematics
	32-Bit IQ - Math Approach

	IQ - Math Library Functions
	IQ- Math Application: Field Orientated Control
	Benchmark of IQ - formats
	Benchmark Results

	IQ - Math summary
	Lab 17: IQ - Math based low - pass filter
	Objective
	Procedure
	Install IQMath
	Open Project
	Build, Load and Run
	Add code for ADC - Initialization
	Build, Load and Run
	Add a sampling buffer
	Build, Load and Run
	Add the low - pass filter code
	MATLAB Filter Coefficient Calculation
	Final Build, Load and Run
	Benchmark IQ-Math and Floating-Point Filter code
	Summary

