I3 TEXAS
INSTRUMENTS

C2000™ Piccolo™ Workshop

Workshop Guide and Lab Manual

F28xPmdw O
Revision 1.0

September 2009] o
Technical Training
Organization

Important Notice

Important Notice

Texas Instruments and its subsidiaries (T1) reserve the right to make changes to their products or to
discontinue any product or service without notice, and advise customers to obtain the latest version of
relevant information to verify, before placing orders, that information being relied on is current and
complete. All products are sold subject to the terms and conditions of sale supplied at the time of order
acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the
extent Tl deems necessary to support this warranty. Specific testing of all parameters of each device is not
necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using Tl components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

T1 assumes no liability for applications assistance or customer product design. T1 does not warrant or
represent that any license, either express or implied, is granted under any patent right, copyright, mask
work right, or other intellectual property right of TI covering or relating to any combination, machine, or
process in which such semiconductor products or services might be or are used. TI’s publication of
information regarding any third party’s products or services does not constitute T1’s approval, warranty or
endorsement thereof.

Copyright © 2009 Texas Instruments Incorporated

Revision History
September 2009 — Revision 1.0

Mailing Address

Texas Instruments

Training Technical Organization
7839 Churchill Way

M/S 3984

Dallas, Texas 75251-1903

C2000 Piccolo Workshop - Introduction

C2000™ Piccolo™ Warkshop

C2000™ Piccolo™ Workshop
C2000™ Piccolo™ Workshop

Texas Instruments
Technical Training

Techrical Train
Oganzaton

F4n® C2000 and Piccolo are trademarks of Texas Instruments. Copyright © 2009 Texas Instruments. All rights reserved.

Introductions

Introductions

Name

Company

Project Responsibilities

DSP / Microcontroller Experience
TMS320 Processor Experience

Hardware / Software - Assembly / C

® 6 6 6 O 0 o

Interests

C2000 Piccolo Workshop - Introduction iii

C2000™ Piccolo™ Workshop

C2000™ Piccolo™ Workshop Outline

N

8.

9.

C2000™ Piccolo™ Workshop Outline

1.
2.

Architecture Overview

Programming Development Environment
Lab: Linker command file

. Peripheral Register Header Files
. Reset and Interrupts
. System Initialization

Lab: Watchdog and interrupts

. Analog-to-Digital Converter

Lab: Build a data acquisition system

. Control Peripherals

Lab: Generate and graph a PWM waveform

Numerical Concepts and 1Q Math
Lab: Low-pass filter the PWM waveform

Control Law Accelerator (CLA)
Lab: Use CLA to filter PWM waveform

10. System Design

Lab: Run the code from flash memory

11. Communications
12. DSP/BIOS

Lab: Run DSP/BIOS code from flash memory

13. Support Resources

C2000™ Experimenter Kit

o
-]
o
o
0
0
{=
i*]

353

Piccolo™ Experimenter Kit

USB Docking Station

C2000 Piccolo Workshop - Introduction

Architecture Overview

Introduction

This architectural overview introduces the basic architecture of the C2000™ Piccolo™ series of
microcontrollers from Texas Instruments. The Piccolo™ series adds a new level of general
purpose processing ability unseen in any previous DSP/MCU chips. The C2000™ is ideal for
applications combining digital signal processing, microcontroller processing, efficient C code
execution, and operating system tasks.

Unless otherwise noted, the terms C28x, F28x and F2803x refer to TMS320F2803x devices
throughout the remainder of these notes. For specific details and differences please refer to the
device data sheet and user’s guide.

Learning Objectives

When this module is complete, you should have a basic understanding of the F28x architecture
and how all of its components work together to create a high-end, uniprocessor control system.

Learning Objectives

¢ Review the F28x block diagram
and device features

¢ Describe the F28x bus structure
and memory map

¢ lIdentify the various memory
blocks on the F28x

¢ Identify the peripherals available
on the F28x

C2000 Piccolo Workshop - Architecture Overview 1-1

Module Topics

Module Topics

ATCRITECTUNE OVEIVIBW ...ttt bbbt b et bbbt b e bt bt e e e n e e sbe st e beebeebeeneaneennen 1-1
Yoo U] T3 o1t OSSOSO 1-2
What is the TMS320C2000 ™ 2........ceeieieieesie st seeee ettt s e ee e stestesbesteaseas e e e bestestesbesreeneeseeeas 1-3

TMS320C2000™ INLEINAI BUSSING ...c.vevvvieeiiiiirteiieicnies sttt 1-4
S G = PP 1-5
SPECIAI INSEIUCTIONS. ...ttt ettt bbb bt bt e e b b e be bt b et et enee e tas 1-6
PIPEIINGE AGVANTAGE ... e ettt et bbbttt e b et e bt bt bbb e et e b e 1-7
IVIBIMIONY .ttt bbbt etk h e e eh e e bt e bt ea bt ek b e e b e e eb £ ekt e s ke e R b e nhe e s aneeRn e eanenbeenbeebeen 1-8
V1= g 0] VA AV - o PSPPSR TPRPIN 1-8
Code Security MOdUIE (CSM)ci ittt e st sre s besreene e e e neeneeseens 1-9
e 0] =T = 1SS 1-9
FaSt INTEITUDE RESPONSE ..ottt ettt ettt bbb et e et e st e et e e nbbeennee et 1-10
F28X IMIOUE ...ttt ettt bbb bbbt bt b e bt b e bbbt b et bt 1-11
=TT USSR 1-12
SUMIMIBIY ..ttt bbbt h e bbb bt h e s e et bR e R e bt bt h e e e bRt e Rt bt bt e e e e nenneanenns 1-13

C2000 Piccolo Workshop - Architecture Overview

What is the TMS320C2000™?

What is the TMS320C2000™7?

The TMS320C2000™ is a 32-bit fixed point microcontroller that specializes in high performance

control applications such as, robotics, industrial automation, mass storage devices, lighting,

optical networking, power supplies, and other control applications needing a single processor to
solve a high performance application.

Sectored
Flash

RAM

Bo

ROM

ot

CLA Bus

}

32-bit
Auxiliary
Registers

32x32 bit
Multiplier

R-M-W
Atomic| |CLA
ALU

PIE
Interrupt
Manager

Real-Time
JTAG
Emulation

]

]

CPU

Register Bus

Timers

1

i

! 1

. 12C >
1

1

1

Data Bus

The F2803x architecture can be divided into 3 functional blocks:

e CPU and busing

e Memory

e Peripherals

C2000 Piccolo Workshop - Architecture Overview

What is the TMS320C2000™?

TMS320C2000™ Internal Bussing

As with many DSP-type devices, multiple busses are used to move data between the memories
and peripherals and the CPU. The F28x memory bus architecture contains:

e A program read bus (22-bit address line and 32-bit data line)
e A data read bus (32-bit address line and 32-bit data line)

e A data write bus (32-bit address line and 32-bit data line)

F28x CPU Internal Bus Structure
Program Program Address Bus (22) .
Program-read Data Bus (32) Program
Decoder | ¥
Memory
| ; I Data-read Address Bus (32) r
| Data-read Data Bus (32)
[| Data
Registers Execution P 1| | Debug Memory
SRl MPY 32x32 i ;
E R-M-W ! Real-Time
[DP [@X ALU Atomic| ! CLA | JTAG
XT ALU || i :
X'i‘cho) | 0 S Peripherals
XAR7 ACC
| Register Bus / Result Bus | External
| Data/Program-write Data Bus (32) Interface
3 I |
[Data-write Address Bus (32)

The 32-bit-wide data busses enable single cycle 32-bit operations. This multiple bus architecture,
known as a Harvard Bus Architecture enables the F28x to fetch an instruction, read a data value
and write a data value in a single cycle. All peripherals and memories are attached to the memory
bus and will prioritize memory accesses.

1-4 C2000 Piccolo Workshop - Architecture Overview

F28x CPU

F28x CPU

The F28x is a highly integrated, high performance solution for demanding control applications.
The F28x is a cross between a general purpose microcontroller and a digital signal processor,
balancing the code density of a RISC processor and the execution speed of a DSP with the
architecture, firmware, and development tools of a microcontroller.

The DSP features include a modified Harvard architecture and circular addressing. The RISC
features are single-cycle instruction execution, register-to-register operations, and a modified
Harvard architecture. The microcontroller features include ease of use through an intuitive
instruction set, byte packing and unpacking, and bit manipulation.

F28x and CLA

¢ MCU/DSP balancing code

Program Bus density & execution time
CLA Bus « 16-bit instructions for
improved code density
« 32-bit instructions for
improved execution time
l PIE & 32-bit fixed-point CPU
32-bit R-M-W Interrupt . .

7 1|32x32 bit : Manager & 32x32 fixed-point MAC,
Auxiliary ff | .o [Atomic| (CLA doubles as dual 16x16 MAC
Registers o ALU .

3 & Parallel processing Control

! { { "o0i e Law Accelerator (CLA) adds

Register Bus poe—— IEEE Single-precision 32-bit
orU Timers floating point math operations
¢ CLA algorithm execution is

independent of the main CPU
DataBus] . .
& Fastinterrupt service time

& Single cycle read-modify-write
instructions

¢ Unique real-time debugging
capabilities

The F28x design supports an efficient C engine with hardware that allows the C compiler to
generate compact code. Multiple busses and an internal register bus allow an efficient and
flexible way to operate on the data. The architecture is also supported by powerful addressing
modes, which allow the compiler as well as the assembly programmer to generate compact code
that is almost one to one corresponded to the C code.

The F28x is as efficient in DSP math tasks as it is in system control tasks. This efficiency
removes the need for a second processor in many systems. The 32 x 32-bit MAC capabilities of
the F28x and its 64-bit processing capabilities, enable the F28x to efficiently handle higher
numerical resolution problems that would otherwise demand a more expensive solution. Along
with this is the capability to perform two 16 x 16-bit multiply accumulate instructions
simultaneously or Dual MACs (DMAC). Also, some devices feature a floating-point unit.

The, F28x is source code compatible with the 24x/240x devices and previously written code can
be reassembled to run on a F28x device, allowing for migration of existing code onto the F28x.

C2000 Piccolo Workshop - Architecture Overview 1-5

F28x CPU

Special Instructions
F28x Atomic Read/Modify/Write

& Atomic Instructions Benefits:

J LOAD ¢ Simpler programming
READ
— ¢ Smaller, faster code
| Registers ALU/MPY | | Mem
L |W ¢ Uninterruptible (Atomic)
SL0RE :> & More efficient compiler
Standard Load/Store Atomic Read/Modify/Write
DINT

AND *XAR2,#1234h

MOV AL,*XAR2
AND AL,#1234h
MOV *XAR2,AL
EINT

6 words / 6 cycles

2words /1 cycles

Atomics are small common instructions that are non-interuptable. The atomic ALU capability
supports instructions and code that manages tasks and processes. These instructions usually
execute several cycles faster than traditional coding.

1-6 C2000 Piccolo Workshop - Architecture Overview

F28x CPU

Pipeline Advantage

F28x Pipeline
A [FiiF2|DiiD;| RiiR,| E|W 8-stage pipeline
B FiiF, |DiD, | RIIR | E
C FiiF DD, | R|R,| E
D FiriF, |DiiD| R|R | E| W __E &G Access
E o FiiFo | Di|DofRiiRy| E| W] same address
F FiiF DD RiiR, | E| W
G Fi|F, |D;:D,|R,] “[R,| E|W
H F. |F,|D;|D, R, R,| E |W
F1: Instruction Address
F2: Instruction Content Protected Pipeline
D1: Decode Instruction . .
D2: Resolve Operand Addr & Order of results are as written in
R1: Operand Address source code
R2: Get Operand
E: CPU doing “real” work ¢ Programmer need not worry about
W: store content to memory the pipeline

The F28x uses a special 8-stage protected pipeline to maximize the throughput. This protected
pipeline prevents a write to and a read from the same location from occurring out of order.

This pipelining also enables the F28x to execute at high speeds without resorting to expensive
high-speed memories. Special branch-look-ahead hardware minimizes the latency for conditional
discontinuities. Special store conditional operations further improve performance.

C2000 Piccolo Workshop - Architecture Overview 1-7

Memory

Memory

The memory space on the F28x is divided into program memory and data memory. There are
several different types of memory available that can be used as both program memory and data
memory. They include the flash memory, single access RAM (SARAM), OTP, and Boot ROM
which is factory programmed with boot software routines or standard tables used in math related
algorithms.

Memory Map

The F28x CPU contains no memory, but can access memory on chip. The F28x uses 32-bit data
addresses and 22-bit program addresses. This allows for a total address reach of 4G words (1
word = 16-bits) in data memory and 4M words in program memory. Memory blocks on all F28x
designs are uniformly mapped to both program and data space.

This memory map shows the different blocks of memory available to the program and data space.

-
0X000000 T "G o iy :
0x000400 0x3D7C80

ADC/ OSC cal. data
0X000800 +marnn e GKW) 0x3D8000 =
0x000D00 75, '(52})’8%53”; 0Ox3E8000:
OXOOOEOO-“IS-F-B“G-SI(-": reserved FLASH (64Kw)
0x002000 }or 2. CKW OX3F7FF8
0x006000 SF T) 0x3E8000 PASSWORDS (8w)
0x007000 Nty OX3F8800 L0 SARAM (2Kw)
0x008000 OX3FE000 reserved
0x008800 1L SARAM (2Kw) Boot ROM (BKw)

L1 DPSARAM (1Kw) 0x3FFFCO
0x008C00 L2 DPSARAM (1Kw) Ox3FFEEE BROM Vectors (64w)
0x009000 = Data | Program
OX00A000 Shw
reserved
0x3D7800
0x3D7C00 User OTP (1Kw) Dual Mapped: LO
reserved
0x3D7C80 .
H CSM Protected:
LO, L1, L2, L3, OTP
Dual-Port RAM: L1, L2 &L3 FLASH, ADC CAL,
(accessible by CPU & CLA) Flash Regs in PFO

1-8 C2000 Piccolo Workshop - Architecture Overview

Memory

Code Security Module (CSM)

0x008000

¢ Prevents reverse engineerin
protects valuable intellectual property

0x008800

L0 SARAM (2Kw)

N

L1 DPSARAM (1Kw)

0x008C00
0x009000

L2 DPSARAM (1Kw)

L3 DPSARAM (4Kw)

0x00A000

reserved

0x3D7800
0x3D7C00

User OTP (1Kw)

0x3D7C80

reserved

0x3D8000

ADC/ OSC cal. data

0x3E8000

reserved

Ox3F7FF8

FLASH (64Kw)

0x3F8000

PASSWORDS (8w)

L0 SARAM (2Kw)

0x3F8800

¢ o

Code Security Module

and

Dual
Mapped

128-bit user defined password is stored in Flash
128-bits = 2128 = 3.4 x 1038 possible passwords

¢ Totry 1 password every 8 cycles at 60 MHz, it
would take at least 1.4 x 1024 years to try all
possible combinations!

Peripherals

The F28x comes with many built in peripherals optimized to support control applications. These
peripherals vary depending on which F28x device you choose.

ePWM

eCAP

eQEP

Analog-to-Digital Converter
Watchdog Timer

CLA

SPI

SCI

12C

LIN

CAN

GPIO

C2000 Piccolo Workshop - Architecture Overview

Fast Interrupt Response

Fast Interrupt Response

The fast interrupt response, with automatic context save of critical registers, resulting in a device
that is capable of servicing many asynchronous events with minimal latency. F28x implements a
zero cycle penalty to do 14 registers context saved and restored during an interrupt. This feature
helps reduces the interrupt service routine overheads.

F28x Fast Interrupt Response Manager

¢ 96 dedicated PIE
vectors
& No software decision

PIE module
For 96

=96

28x CPU Interrupt logic

making required © RS | .
. § INTL to
& Direct access to RAM —_—
) INT12
S 28x
Xeito;ls dat 5%) e 12interrupts M| 1R || 1ER || iINTM || cPU
¢ Auto flags update E)
- Register
& Concurrent auto g Map
context save 5
[«%

Auto Context Save

T STO —
AH AL

PH PL

AR1 (L) | ARO (L)

DP ST1

DBSTAT| IER

PC(msw)| PC(Isw)

1-10 C2000 Piccolo Workshop - Architecture Overview

F28x Mode

F28x Mode

The F28x is one of several members of the TMS320 microcontroller family. The F28x is source
code compatable with the 24x/240x devices and previously written code can be reassembled to
run on a F28x device. This allows for migration of existing code onto the F28x.

F28x Operating Modes

Mode Type Mode Bits Compiler Option
OBJMODE AMODE
C28x Native Mode 1 0 -v28
C24x Compatible Mode 1 1 -v28 -m20
Test Mode (default) 0 0
Reserved 0 1

older processor family

¢ Almost all uses will run in C28x Native Mode
¢ The bootloader will automatically select C28x Native Mode after reset
¢ C24x compatible mode is mostly for backwards compatibility with an

C2000 Piccolo Workshop - Architecture Overview

Reset

Reset Reset vector
OBJMODE =0 febtched from Bootloader sets
= oot ROM OBJMODE =1
“EXpiE S0 Ox3F FFCO S
INTM = 1 X
YES Emulator
TRsT =1 | Connected?
The “wait” boot mode is used
t and the boot mode is
Emulation Boot determined by the debugger
Boot determined by Boot Mode
2 RAM locations: Wait
EMU_KEY and EMU_BMODE
Note: TRST = JTAG Test Reset
Details of the various boot options will be EMU_KEY & EMU_BMODE located in
discussed in the Reset and Interrupts module PIE at 0x0DO00 & 0x0DO01, respectively

1-12 C2000 Piccolo Workshop - Architecture Overview

Summary

Summary

L 2R JBR R R 2B IR 2R R K IR R 2

Summary

High performance 32-bit CPU

32x32 bit or dual 16x16 bit MAC
Hardware Control Law Accelerator (CLA)
Atomic read-modify-write instructions
Fast interrupt response manager
64Kw on-chip flash memory

Code security module (CSM)

Control peripherals

12-bit ADC module

Comparators

Up to 44 shared GPIO pins
Communications peripherals

C2000 Piccolo Workshop - Architecture Overview

Summary

1-14 C2000 Piccolo Workshop - Architecture Overview

Programming Development Environment

Introduction

This module will explain how to use Code Composer Studio (CCS) integrated development
environment (IDE) tools to develop a program. Creating projects and setting building options
will be covered. Use and the purpose of the linker command file will be described.

Learning Objectives

Learning Objectives

¢ Use Code Composer Studio to:
+ Create a Project
+ Set Build Options

¢ Create a user linker command file which:
+ Describes a system’s available memory

+ Indicates where sections will be placed
in memory

C2000 Piccolo Workshop - Programming Development Environment 2-1

Module Topics

Module Topics

Programming Development ENVIFONMENToiiiiiiiie e e 2-1
T LU T=TN o ot PSS 2-2
COode COMPOSEEN STULIOevivietirieiete ettt b ettt et bbb bt 2-3

Software Development and COFF CONCEPLS........oveviririiiiirieiisiirieiesie et 2-3
e (o] TTox SO PO PPT OSSR PPTORPRPRTPRPON 2-5
S T0T] (o I @] o1 o] TSRS 2-6
Creating a Linker Command File ... e 2-9
SBOLIONS ..ttt bbb bR R R R R R Rt R bRt 2-9
Linker Command FileS (- CMA)cviiiiiiiiiiiee b 2-12
MEMOTY-Map DESCIIPLIONo.veuiiviiieiiitiiee ettt bbbt sb bbbt 2-12
SECLION PIACEIMENL. ...ttt ettt b bbbt r et ben e 2-14
EXBICISE 2.ttt ettt bR R R R bRt b Rt r et r e 2-15
Summary: Linker COmMmMAN FIlEcoiiiiiiiee e e 2-16
Lab 2: Linker CommMAaNG Fle.........coviiiiiiiieienee e 2-17
SOIULIONS. ...ttt e bt E bR b R R R bR et b e r e 2-22

C2000 Piccolo Workshop - Programming Development Environment

Code Composer Studio

Code Composer Studio

Software Development and COFF Concepts

In an effort to standardize the software development process, T1 uses the Common Object File
Format (COFF). COFF has several features which make it a powerful software development
system. It is most useful when the development task is split between several programmers.

Each file of code, called a module, may be written independently, including the specification of
all resources necessary for the proper operation of the module. Modules can be written using
Code Composer Studio (CCS) or any text editor capable of providing a simple ASCII file output.
The expected extension of a source file is . ASM for assembly and . C for C programs.

Code Composer Studio

Code

—] eZdsp™
Asm Link Debug

External
Profiling i
MCU
Board

¢ Code Composer Studio includes:
« Integrated Edit/Debug GUI
« Code Generation Tools
+ DSP/BIOS

Code Composer Studio includes a built-in editor, compiler, assembler, linker, and an automatic
build process. Additionally, tools to connect file input and output, as well as built-in graph
displays for output are available. Other features can be added using the plug-ins capability

Numerous modules are joined to form a complete program by using the linker. The linker
efficiently allocates the resources available on the device to each module in the system. The
linker uses a command (. CMD) file to identify the memory resources and placement of where the
various sections within each module are to go. Outputs of the linking process includes the linked
object file (. OUT), which runs on the device, and can include a . MAP file which identifies where
each linked section is located.

The high level of modularity and portability resulting from this system simplifies the processes of
verification, debug and maintenance. The process of COFF development is presented in greater
detail in the following paragraphs.

C2000 Piccolo Workshop - Programming Development Environment 2-3

Code Composer Studio

The concept of COFF tools is to allow modular development of software independent of
hardware concerns. An individual assembly language file is written to perform a single task and
may be linked with several other tasks to achieve a more complex total system.

Writing code in modular form permits code to be developed by several people working in parallel
so the development cycle is shortened. Debugging and upgrading code is faster, since
components of the system, rather than the entire system, is being operated upon. Also, new
systems may be developed more rapidly if previously developed modules can be used in them.

Code developed independently of hardware concerns increases the benefits of modularity by
allowing the programmer to focus on the code and not waste time managing memory and moving
code as other code components grow or shrink. A linker is invoked to allocate systems hardware
to the modules desired to build a system. Changes in any or all modules, when re-linked, create a
new hardware allocation, avoiding the possibility of memory resource conflicts.

Code Composer Studio: IDE

File Edit Wiew Project Debug GEL Option Profile Tools DSPEIOS Window Help
8= ‘ - S k?
[E xample.pit ~|[pebug

He 0EFBEHERL &

L]
B
i

+1-[_] GEL files
B eleok (Do) ¢ Integrates: edit, code generation,
™ ggzgﬁﬂzwﬂl% and debug
5‘"’ (22 psPyBIOS Config
(22 Generated Files . . .
» Qe & Single-click access using buttons
Libraries
=123 Source
&] adcc . -
%an & Powerful graphing/profiling tools
*] ClaTasks.asm
E-3 #] CodeStartEranch.ssm . .
E v ¢ Automated tasks using GEL scripts
g %g::j;:;ézirg\uha|Var.ah\aDefs.[and CCS sc ripting
@ Do o _
& Ao ¢ Built-in access to BIOS functions
@ 2] main.c
[#] Piectr.c d .
%gfggﬁ;g & Supports Tland 3 party plug-ins
2] watchdoa.c
[#] DSP2803x_Headers_nonBIOS, cmd
[#] F2a035.emd

C2000 Piccolo Workshop - Programming Development Environment

Code Composer Studio

Projects

Code Composer works with a project paradigm. Essentially, within CCS you create a project for
each executable program you wish to create. Projects store all the information required to build
the executable. For example, it lists things like: the source files, the header files, the target
system’s memory-map, and program build options.

The CCS Project

File Edt View Projsct Debug GEL Option Profls Ti

é = - - - - .
2 Project (.pjt) files contain:
‘Examp\e.ml j‘Debug j
Hiéer | GEHEIEEAE %
¢ List of files:
-] GEL files
O ek ok et + Source (C, assembly)
™ (L] Dependent Projects
m 8 gg;‘;l;;znstsConﬁg . Ll bl’al’ |es
(L1 Generated Files . i i
e + DSP/BIOS configuration file
2 =4 Source .)

2 e + Linker command files
% ﬁ C\a“ras)s‘asm A i

%;;ﬁ:ﬁ?ﬁam“sm 2 PrOjeCt settin gs:
E] DelayUs.asm A) X
O | Eg:i.Bfax_GlobaIVariableDefs.c - B ui I d 0 p tions (C om p || er ,
g e Linker, assembler, and
= o DSP/BIOS)

] PieCtl.c . . .

(5] revect.c + Build configurations

ﬁ SysChrl.c

ﬁ Watchdag.c
[#] DsP2803x_Headers_nonB10s.cmd
F28035.cmd

The project information is stored in a .PJT file, which is created and maintained by CCS. To
create a new project, you need to select the Project:New... menu item.

Along with the main Project menu, you can also manage open projects using the right-click
popup menu. Either of these menus allows you to Add Files... to a project. Of course, you can
also drag-n-drop files onto the project from Windows Explorer.

C2000 Piccolo Workshop - Programming Development Environment 2-5

Code Composer Studio

Build Options

Project options direct

the code generation tools (i.e. compiler, assembler, linker) to create code

according to your system’s needs. When you create a new project, CCS creates two sets of build
options — called Configurations: one called Debug, the other Release (you might think of as

Optimize).

To make it easier to choose build options, CCS provides a graphical user interface (GUI) for the
various compiler options. Here’s a sample of the Debug configuration options.

e, ..
Open,..

Sawe
Close

Source Contral

Build
Rebuild Al
Build Clean

Configurations,
Build Options. ..

S100USB/TMS320C2800_0 - TMS3

Project Debug GEL Option Profie T

Use External Makefile. ..
Export to Makefils,
Add Files to Project...

Project Dependencies. ..

h denc .
e & Controls many aspects of the build process,

Show File Dependencies
Scan All Fle Dependencies sSuc h as.:
Recent Project Files 3 L X
+ Optimization level

Build Options GUI - Compiler

Build Options for, Example. pjt (Debug)

General Compiler]Lmker} DspBlosBulIder} Link Ellder]

-g -pdsw225 fr$Prol_dir\Debug" " \D5P2803x_headershinclude”
4" MOmathtinclude” -d"_DEBUG" -d"LARGE_MODEL" -ml -+28

~cla_support=clal

Category: Basic
m Target Version: C28u [w28) =

L4 Advanced "
Advanced (2] | Generats Debuglnfor |Full Spmbolic Debug (-g)
Feedback P .
- Filos Optimize for Speed [-mf} |No «
Aszembly Opt Level: Mone -
Parser
Program Level Opt, |None j

Pr_eprnce_ssol
Diagnastice Specity CLA Suppart: clall [Fram Device Type 0]

¢ GUI has 8 pages of categories for code
generation tools

+ Target device
+« Compiler/assembly/link options

There is a one-to-one relationship between the items in the text box and the GUI check and drop-
down box selections. Once you have mastered the various options, you can probably find

yourself just typing in the options.

C2000 Piccolo Workshop - Programming Development Environment

Code Composer Studio

Build Options GUI - Linker

Build Options for, Example. pjt (Debug) E]g| .
_ e ¢ GUI has 3 categories
Genara\l Compiler Linker IDspEmsEullderl Link. Drdar] . .
for linking
- -m" MDebughE xample.map' -0" \DebughE xample. aut' -stack 0200 -w -5
A MG mathlib" rts2800_mllib" -1 Qmath. ik - Sp eley Val'l ous II n k
options
Categary: Basic
i [~ Suppress Banner [-q) ’ . \D eb u g]
dnarced ([&l means the directory
VanGs utput Filename [-a]: - e =AMPIe. oul
B] | called Debug one
ap Filename [-m SDebughEsample. map | | b | th t
Autainit kodel Fiun-Time Autoinitialization -« eve . e OW e " pj
Heap Size [-heap]: flle dl reCtO ry
Far Heap Stack [-farheap): . .
Stack Size [-stack): Ox200 ’ $(P r OJ _d I r)\D eb u g
FilVabe 1 |7 is an equivalent
Code Entry Point (-2} eX p r es S | O n

There are many linker options but these four handle all of the basic needs.

e -0 <Filename> specifies the output (executable) filename.

o -m <Filename> creates a map file. This file reports the linker’s results.
o —c tells the compiler to autoinitialize your global and static variables.

e X tells the compiler to exhaustively read the libraries. Without this option libraries are
searched only once, and therefore backwards references may not be resolved.

C2000 Piccolo Workshop - Programming Development Environment 2-7

Code Composer Studio

Default Build Configurations

' fF 28035 XDS100USB/TMS320C2800_0 - TMS320C

File Edit ‘iew Project Debug GEL Option Profile Tools ’ For new proL Cts CCS aUtomatlca”y
o — creates two build configurations:

« Debug (unoptimized)
+ Release (optimized)

e —
FH ‘ I ¢ Usethe drop-down menu to quickly

|Examp|e pit JlDebug j

o L fies select the build configuration
= aPro]ects

= @ Example.pjt {Debug)

¢ Add/Remove your own custom
build configurations using
Configuraions of Examgle pi Dane Project Configurations

i ¢ Edit a configuration:

1. Setit active

2. Modify build options
3. Save project

Project Configurations

Debug
Relzase

MH@

Help

To help make sense of the many compiler options, TI provides two default sets of options
(configurations) in each new project you create. The Release (optimized) configuration invokes
the optimizer with —03 and disables source-level, symbolic debugging by omitting —g (which
disables some optimizations to enable debug).

2-8 C2000 Piccolo Workshop - Programming Development Environment

Creating a Linker Command File

Creating a Linker Command File

Sections

Looking at a C program, you'll notice it contains both code and different kinds of data (global,

local, etc.).

Sections

Global vars (.ebss) Init values (.cinit)

&
5

void main(void)

{

«long z;

Sz =Xt Y.

""-;‘

K

All code consists of
different parts called
sections

All default section
names begin with “.”

The compiler has
default section
names for initialized
and uninitialized
sections

KY

Local vars (.stack) Code (.text)

In the TI code-generation tools (as with any toolset based on the COFF — Common Obiject File
Format), these various parts of a program are called Sections. Breaking the program code and
data into various sections provides flexibility since it allows you to place code sections in ROM
and variables in RAM. The preceding diagram illustrated four sections:

e Global Variables

o Initial Values for global variables
o Local Variables (i.e. the stack)

o Code (the actual instructions)

C2000 Piccolo Workshop - Programming Development Environment

Creating a Linker Command File

Following is a list of the sections that are created by the compiler. Along with their description,
we provide the Section Name defined by the compiler.

Compiler Section Names

Initialized Sections

Name Description Link Location
text code FLASH
.cinit initialization values for FLASH

global and static variables

.econst constants (e.g. constint k =3;) FLASH

.switch tables for switch statements FLASH

pinit tables for global constructors (C++) | FLASH
Uninitialized Sections

Name Description Link Location
.ebss global and static variables RAM

.Sstack stack space low 64Kw RAM
.esysmem | memory for far malloc functions RAM

Note: During development initialized sections could be linked to RAM since
the emulator can be used to load the RAM

Sections of a C program must be located in different memories in your target system. This is the
big advantage of creating the separate sections for code, constants, and variables. In this way,
they can all be linked (located) into their proper memory locations in your target embedded
system. Generally, they’re located as follows:

Program Code (.text)

Program code consists of the sequence of instructions used to manipulate data, initialize system
settings, etc. Program code must be defined upon system reset (power turn-on). Due to this basic
system constraint it is usually necessary to place program code into non-volatile memory, such as
FLASH or EPROM.

Constants (.cinit —initialized data)

Initialized data are those data memory locations defined at reset.It contains constants or initial
values for variables. Similar to program code, constant data is expected to be valid upon reset of
the system. It is often found in FLASH or EPROM (non-volatile memory).

Variables (.ebss — uninitialized data)

Uninitialized data memory locations can be changed and manipulated by the program code during
runtime execution. Unlike program code or constants, uninitialized data or variables must reside
in volatile memory, such as RAM. These memories can be modified and updated, supporting the
way variables are used in math formulas, high-level languages, etc. Each variable must be
declared with a directive to reserve memory to contain its value. By their nature, no value is
assigned, instead they are loaded at runtime by the program

C2000 Piccolo Workshop - Programming Development Environment

Creating a Linker Command File

Placing Sections in Memory

Memor)
y Sections
0x00 0000 MOSARAM
———-
(0x400) | TTTTmm=-S ebss
0x00 0400 M1SARAM
< o
(0x400) Rk
=9 .stack
0x3E 8000 FLASH B .cinit
(0x10000) - _
By text

Linking code is a three step process:
1. Defining the various regions of memory (on-chip SARAM vs. FLASH vs. External Memory).
2. Describing what sections go into which memory regions

3. Running the linker with “build” or “rebuild”

C2000 Piccolo Workshop - Programming Development Environment 2-11

Creating a Linker Command File

Linker Command Files (.cmd)

The linker concatenates each section from all input files, allocating memory to each section based
on its length and location as specified by the MEMORY and SECTIONS commands in the linker
command file.

Linking

e Memory description
e How to place s/w into h/w

Link.cmd

.0bj —| Linker |—— .out

.map

Memory-Map Description

The MEMORY section describes the memory configuration of the target system to the linker.
The format is: Name: origin = 0x????, length = 0x????
For example, if you placed a 64Kw FLASH starting at memory location 0x3E8000, it would read:

MEMORY

FLASH: origin = Ox3E8000 , length = 0x010000
}

Each memory segment is defined using the above format. If you added MOSARAM and
M1SARAM, it would look like:

MEMORY
MOSARAM: origin = 0x000000 , length = 0x0400
M1SARAM: origin = 0x000400 , length = 0x0400
}

C2000 Piccolo Workshop - Programming Development Environment

Creating a Linker Command File

Remember that the DSP has two memory maps: Program, and Data. Therefore, the MEMORY
description must describe each of these separately. The loader uses the following syntax to

delineate each of these:

Linker Page TI Definition

Page 0 Program

Page 1 Data

Linker Command File

origin
origin

M1SARAM: 0x000400, length

}

MEMORY
PAGE O: /* Program Memory */
FLASH: origin = Ox3E8000, length =
PAGE 1: /* Data Memory */
MOSARAM: 0x000000, length

0x10000

0x400
0x400

C2000 Piccolo Workshop - Programming Development Environment

-13

Creating a Linker Command File

Section Placement

The SECTIONS section will specify how you want the sections to be distributed through
memory. The following code is used to link the sections into the memory specified in the
previous example:

SECTIONS

{
.text:> FLASH PAGE O
.ebss:> MOSARAM PAGE 1
.cinit:> FLASH PAGE O
.stack:> M1SARAM PAGE 1

}

The linker will gather all the code sections from all the files being linked together. Similarly, it
will combine all ‘like’ sections.

Beginning with the first section listed, the linker will place it into the specified memory segment.

Linker Command File

MEMORY
PAGE O: /* Program Memory */
FLASH: origin = 0x3E8000, length = 0x10000
PAGE 1: /* Data Memory */
MOSARAM: origin = 0x000000, length = 0x400
M1SARAM: origin = 0x000400, length = 0x400
}
SECTIONS
{
.text:> FLASH PAGE = O
.ebss:> MOSARAM PAGE = 1
.cinit:> FLASH PAGE = O
.stack:> M1SARAM PAGE = 1
}

2-14 C2000 Piccolo Workshop - Programming Development Environment

Exercise 2

Exercise 2

Looking at the following block diagram, and create a linker command file.

Exercise 2

0x00 0000

0x00 8000

MOSARAM
(0x400)

LOSARAM
(0x800)

0x00 0400

O0x3E 8000

Generic F28x device

M1SARAM
(0x400)

FLASH
(0x10000)

Create the linker command file for the given memory
map by filling in the blanks on the following slide

Fill in the blanks:

Exercise 2 - Command File
MEMORY
{
PAGE__ : /* Program Memory */
origin = ., length
/* Data Memory */
origin = _ length
origin = ., length
origin = ., length
}
SECTIONS
{
-text: > FLASH PAGE = O
.ebss: > MOSARAM PAGE = 1
.cinit: > FLASH PAGE = 0O
.stack: > M1SARAM PAGE = 1
}

C2000 Piccolo Workshop - Programming Development Environment

Exercise 2

Summary: Linker Command File

The linker command file (.cmd) contains the inputs — commands — for the linker. This
information is summarized below:

Linker Command File Summary

¢ Memory Map Description
+ Name
+ Location
+ Size

¢ Sections Description

+ Directs software sections into named
memory regions

+ Allows per-file discrimination
+ Allows separate load/run locations

2-16 C2000 Piccolo Workshop - Programming Development Environment

Lab 2: Linker Command File

Lab 2: Linker Command File
» Objective

Create a linker command file and link the C program file (Lab2.c) into the system described
below.

Lab 2: Linker Command File

Memory 0x000000(MOSARAM | 0x00 8800 |L1DPSARAM
(0x400) (0x400)

r%r;ﬂ(‘)'r‘; 0X00 0400 [M1SARAM | O0X00 8CO0[| 2DPSARAM
(0x400) (0x400)

£28035 0x008000| | 0SARAM | 0x00 9000 || 3DPSARAM
(0x800) (0x1000)

System Description:
* TMS320F28035

« All internal RAM
blocks allocated

Placement of Sections:

« .text into RAM Block LOSARAM on PAGE 0 (program memory)
¢ .cinitinto RAM Block LOSARAM on PAGE 0 (program memory)
¢ .ebss into RAM Block MOSARAM on PAGE 1 (data memory)

« .stack into RAM Block M1SARAM on PAGE 1 (data memory)

System Description
e TMS320F28035

e All internal RAM blocks allocated

Placement of Sections:
e .textinto RAM Block LOSARAM on PAGE 0 (program memory)

e _cinitinto RAM Block LOSARAM on PAGE 0 (program memory)
e .ebss into RAM Block MOSARAM on PAGE 1 (data memory)
e stack into RAM Block M1SARAM on PAGE 1 (data memory)

» Procedure

Create a New Project

1. Double click on the Code Composer Studio icon on the desktop. Maximize Code
Composer Studio to fill your screen. Code Composer Studio has a Connect/Disconnect
feature which allows the target to be dynamically connected and disconnected. This will
reset the JTAG link and also enable “hot swapping” a target board.

C2000 Piccolo Workshop - Programming Development Environment 2-17

Lab 2: Linker Command File

2.

Connect to the target.
Click: Debug - Connect

The menu bar (at the top) lists File ... Help. Note the horizontal tool bar below the menu
bar and the vertical tool bar on the left-hand side. The window on the left is the project
window and the large right-hand window is your workspace.

A project contains all the files you will need to develop an executable output file (. out)
which can be run on the MCU hardware. Let’s create a new project for this lab. On the
menu bar click:

Project > New

type Lab2 in the project name field and make sure the save in location is:
C:\C28x\Labs\Lab2, then click Finish. This will create a .pjt file which will
invoke all the necessary tools (compiler, assembler, linker) to build your project. It will
also create a debug folder that will hold immediate output files.

Add the C file to the new project. Click:

Project - Add Files to Project..

and make sure you’re looking in C:\C28x\Labs\Lab2. Change the “files of type” to
view C source files (*.c) and select Lab2 . c and click OPEN. This will add the file
Lab2 . c to your newly created project.

Add Lab2 . cmd to the project using the same procedure. This file will be edited during
the lab exercise.

In the project window on the left, click the plus sign (+) to the left of Project. Now,
click on the plus sign next to Lab2.pjt. Notice that the Lab2.cmd file is listed.
Click on the plus sign next to Source to see the current source file list (i.e. Lab2.c).

Project Build Options

7.

10.

There are numerous build options in the project. The default option settings are sufficient
for getting started. We will inspect a couple of the default linker options at this time.

Click: Project -> Build Options..

Select the Linker tab. Notice that .out and .map files are being created. The .out file is
the executable code that will be loaded into the MCU. The .map file will contain a linker
report showing memory usage and section addresses in memory.

Set the Stack Size to 0x200.

Next, setup the compiler run-time support library. In the Libraries Category, find the
Include Libraries (-1) boxandenter: rts2800_ml_lib. Select OK and the
Build Options window will close.

Edit the Linker Command File - Lab2a.cmd

11.

To open and edit Lab2 . cmd, double click on the filename in the project window.

C2000 Piccolo Workshop - Programming Development Environment

Lab 2: Linker Command File

12. Edit the Memory{} declaration by describing the system memory shown on the “Lab2:
Linker Command File” slide in the objective section of this lab exercise. Place the
LOSARAM and L3DPSARAM memory blocks into program memory on page 0. Place
the other memory blocks into data memory on page 1.

13. In the Sections{} area, notice that a section called .reset has already been allocated.
The .reset section is part of the rts2800_ml.lib, and is not needed. By putting the TYPE =
DSECT modifier after its allocation, the linker will ignore this section and not allocate it.

14. Place the sections defined on the slide into the appropriate memories via the
Sections{} area. Save your work and close the file.

Build and Load the Project

15. The top four buttons on the horizontal toolbar control code generation. Hover your
mouse over each button as you read the following descriptions:

Button Name Description
1 Compile File Compile, assemble the current open file
2 Incremental Build Compile, assemble only changed files, then link
3 Rebuild All Compile, assemble all files, then link
4 Stop Build Stop code generation

16. Code Composer Studio can automatically load the output file after a successful build. On
the menu bar click: Option - Customize.. and select the
“Program/Project/CI10” tab, then check “Load Program After Build”.

Also, Code Composer Studio can automatically connect to the target when started. Select
the “Debug Properties” tab, check “Connect to the target at
startup”, then click OK.

17. Click the ““Bui 1d”” button and watch the tools run in the build window. Check for
errors (we have deliberately put an error in Lab2.c). When you get an error, scroll the
build window at the bottom of the Code Composer Studio screen until you see the error
message (in red), and simply double-click the error message. The editor will
automatically open the source file containing the error, and position the mouse cursor at
the correct code line.

18. Fix the error by adding a semicolon at the end of the "'z = x + y'' statement. For
future knowlege, realize that a single code error can sometimes generate multiple error
messages at build time. This was not the case here.

19. Rebuild the project (there should be no errors this time). The output file should
automatically load. The Program Counter should be pointingto _c_1nt0O0 in the
Disassembly Window.

20. Under Debug on the menu bar click “Go Main’. This will run through the
C-environment initialization routine in the r£ts2800_ml . 1 1b and stop at main() in
Lab2.c.

C2000 Piccolo Workshop - Programming Development Environment 2-19

Lab 2: Linker Command File

Debug Enviroment Windows

It is standard debug practice to watch local and global variables while debugging code. There
are various methods for doing this in Code Composer Studio. We will examine two of them
here: memory windows, and watch windows.

21.

22.

23.

24.

Open a memory window to view the global variable ““z”.
Click: View > Memory on the menu bar.

Type “&z” into the address field and then enter. Note that you must use the ampersand
(meaning "address of'") when using a symbol in a memory window address box. Also
note that Code Composer Studio is case sensitive.

Set the properties format to “Hex 16 Bit — Tl style” at the bottom of the window. This
will give you more viewable data in the window. You can change the contents of any
address in the memory window by double-clicking on its value. This is useful during

debug.

Open the watch window to view the local variables X and y.
Click: View > Watch Window on the menu bar.

Click the “Watch Locals” tab and notice that the local variables x and y are already
present. The watch window will always contain the local variables for the code function
currently being executed.

(Note that local variables actually live on the stack. You can also view local variables in
a memory window by setting the address to “SP” after the code function has been
entered).

We can also add global variables to the watch window if desired. Let's add the global
variable “z”.

Click the “Watch 1” tab at the bottom of the watch window. In the empty box in the
“Name” column, type “z” and then enter. An ampersand is not used here. The watch
window knows you are specifying a symbol.

Check that the watch window and memory window both report the same value for “z”.
Trying changing the value in one window, and notice that the value also changes in the
other window.

Single-stepping the Code

Click the “Watch Locals” tab at the bottom of the watch window. Single-step through
main() by using the <F11> key (or you can use the Single Step button on the
vertical toolbar). Check to see if the program is working as expected. What is the value
for “z” when you get to the end of the program?

End of Exercise

C2000 Piccolo Workshop - Programming Development Environment

Lab 2: Linker Command File

C2000 Piccolo Workshop - Programming Development Environment 2-21

Solutions

Solutions
Exercise 2 - Solution
MEMORY
{
PAGE_O: /* Program Memory */
FLASH: origin = Ox3E8000, length = 0x10000
PAGE 1: /* Data Memory */
MOSARAM: origin = 0x000000, length = 0x400
M1SARAM: origin = 0x000400, length = 0x400
LOSARAM: origin = 0x008000, length = 0x800
}
SECTIONS
{
.text: > FLASH PAGE = O
-ebss: > MOSARAM PAGE = 1
.cinit: > FLASH PAGE = O
.stack: > M1SARAM PAGE = 1
}
Lab 2: Solution - lab2.cmd
MEMORY
{
PAGE O: /* Program Memory */
LOSARAM: origin = 0x008000, length = 0x0800
L3DPSARAM: origin = 0x009000, UlIength = 0x1000
PAGE 1: /* Data Memory */
MOSARAM: origin = 0x000000, [lIength = 0x0400
M1SARAM: origin = 0x000400, [lIength = 0x0400
L1DPSARAM: origin = 0x008800, Ulength = 0x0400
L2DPSARAM: origin = 0x008C00, UlIength = 0x0400
}
SECTIONS
{
.text: > LOSARAM PAGE = 0O
.ebss: > MOSARAM PAGE = 1
.cinit: > LOSARAM PAGE = 0O
.stack: > M1SARAM PAGE = 1
.reset: > LOSARAM PAGE = 0, TYPE = DSECT
}
2-22 C2000 Piccolo Workshop - Programming Development Environment

Peripherial Registers Header Files

Introduction

The purpose of the DSP2803x C-code header files is to simplify the programming of the many
peripherals on the F28x device. Typically, to program a peripheral the programmer needs to
write the appropriate values to the different fields within a control register. In its simplest form,
the process consists of writing a hex value (or masking a bit field) to the correct address in
memory. But, since this can be a burdensome and repetitive task, the C-code header files were
created to make this a less complicated task.

The DSP2803x C-code header files are part of a library consisting of C functions, macros,
peripheral structures, and variable definitions. Together, this set of files is known as the ‘header
files.’

Registers and the bit-fields are represented by structures. C functions and macros are used to
initialize or modify the structures (registers).

In this module, you will learn how to use the header files and C programs to facilitate
programming the peripherals.

Learning Objectives

Learning Objectives

¢ Understand the usage of the F2803x
C-Code Header Files

¢ Be able to program peripheral
registers

¢ Understand how the structures are
mapped with the linker command file

C2000 Piccolo Workshop - Peripheral Registers Header Files 3-1

Module Topics

Module Topics

Peripherial RegiSters Header FIleS ..o e 3-1
T LU T=TN o ot PSS 3-2
Traditional and Structure Approach t0 C COUINGccviirieiiirieiie et 3-3
NAMING CONVENTIONS ...ttt sttt etk bbbt b et et b et n et 3-6
F2803X C-Coa8 HEAUEE FIlESoviiiiiee ettt st sttt st nae e 3-7

Peripheral StruCtUre N FIlEoouo i b 3-7
Global Variable Definitions Filcooiiiiiii e e 3-9
MappPiNg SErUCTUIES 10 IMEBMOIY ...ttt bbb ettt se b bbb nae e 3-10
LiNKer COMMANG FlB.......cviiiiiiiiieiie ettt sttt ntenes 3-10
Peripheral SPECITIC ROULINES.......cciciiiiic et be e e e e besreare s 3-11
RS04 YOS 3-12

3-2 C2000 Piccolo Workshop - Peripheral Registers Header Files

Traditional and Structure Approach to C Coding

Traditional and Structure Approach to C Coding

Traditional Approach to C Coding

#define ADCCTL1 (volatile unsigned int *)0x00007100

void main(void)

{
*ADCCTL1 = 0x1234; //write entire register
*ADCCTL1 |= 0x4000; //enable ADC module
3
Advantages - Simple, fast and easy to type

- Variable names exactly match register names (easy
to remember)

Requires individual masks to be generated to
manipulate individual bits

- Cannot easily display bit fields in Watch window
- Will generate less efficient code in many cases

Disadvantages

Structure Approach to C Coding

void main(void)

{
AdcRegs.ADCCTL1.all = 0x1234; //write entire register
AdcRegs.ADCCTL1.bit.ADCENABLE = 1; //enable ADC module

}

Advantages - Easy to manipulate individual bits.

Watch window is amazing! (next slide)
Generates most efficient code (on C28x)

Can be difficult to remember the structure names
(Editor Auto Complete feature to the rescue!)

- More to type (again, Editor Auto Complete feature
to the rescue)

Disadvantages

C2000 Piccolo Workshop - Peripheral Registers Header Files

Traditional and Structure Approach to C Coding

The CCS Watch Window using #define

Fle Edt Yew Popdt Debog FL Cpton frofle Tock DSPEIOS wWindow el x
D&k Bp @ o oo Feest Dodation Contrel . P
Tnitiskien Memnory Map B
[Enaroie e T R ;
Code Seourty Modue .
e QEBEEEE st . Howr: Voo [Typm | Rk &)
ot PLL Rt B @ ADLCTLY B0 o fen a
Y| [FFe Cloch Source Setection » ADCINTFLG [-
B | Coeetie Dirvce Calteation » % ADCINTFLGELA [
= A Progects EML Bock Mode Select " @ ADCINTOVF 000 n [
» © ADCINTOVFELR 0D000 ot |t
™ ¥ INTSELINZ B0 b
@ watch Clocking and Lowe5omes Rigiiters 0 LA it G000 [t | e
= m“z;‘:‘:‘“ Watsh Cixde Sexuriy Mo Bngedmr b ADCRESAT O to T : ::::Et:: L m
0 s B W Creparsler Fygtary b T ks o INTSELNIG 0000 m |hen
] S CPU Thast Sngits 3 2 © socPRCTL B0 e
Wakch Derico Emilation Reghters » @ ADCEAMPLEMOCE | 00000 " T
Wakch EM) Boot Mode Variables |3 © ADCINTSOCSELT 00000 i | hew
4] clae wakch AN Regrters ' % ADCINTSOCSELZ OMOO0D ™
(2] Clatasts sen Walch ePWML-cPUIH Regiers v % ADCSOCFLGT BOOD b
[£] Codestutiny Wakch s WIS AIT Registons B @ ADCSOCFRLI OO0 e
(5] etastze waichocer ’ % ADCSOCOVF OO o he
(5] Delayi.asm Wakch External Intermige Regssters v © ADCSOCOVFLLAD OO0t | bee
(5] e 6 ke GPIO Regutens 1 i % ADCSOCOCTL BOOD b
(5 ecan.c Wakch 126 Ragiters vt 1 @ ADCSOCICTL OO b
[2] v e Wakch LIN Progsters " @ ADCSOCICTL OO o he
[5 rer.e VWikch CLA Repstins . @ ADCSOCICTL BOD | he
2] Gpkc Waakch BME Intmrugt Rageters 3 & ADCSOCACTL w000 n e
Perioheral Interrupk Expansion Bagisters % ADCIOCSCTL OO | he
w_,‘:m sqiars e ; b # ADCSOCECTL BOKO e
Watch 5P Rt I ADCSOCTCTL B0t he
ADCSOCOCT B0 | hes
Watch Watchdog Tavr Regitars £ : e G000 e
o Tioe g i 5
R S e e & ADCSOCIOCTL B0t he
\Wakch DSP2A03x Perchesal Rructures B % ADLSOCIIETL T T
————— © ADCSOCICTL OO0 ke
e % ADCSOCIXTL [!
. @ ADCSOCIACTL DO | hee b
a1 & ADCSOLTSCTL 0000wl Py
= - % ADCREFTRM DS ke s
- Example.pit - Debug - - - & ADCOFFTRIM [T n hew
Build Complete ADCRESULTD DD i he
0 Errors. U Wernings, O Remorks. P iR nnnen [y s
Jomahlon A Mk 1 I
T T s/ |
B s haLTED Execus GIL Function int, o1

(r Fle ERt Yiew Projet Desboy GEL Cpien Profie Tock CSPIEIOS Window Help g x
dEE g @ - - Restoemdston Cortrol rEwRm @
Sribisker Meniery Map 0
[Ensrpte e oty Watchds rie &
Gods Securty Made .
Bée OREEEHE m D Nare Vs | Type [s
=S AdcPegn [W} sct ADC_ hew
0 b Salicton E =% ADCCTL L) | wendDC. | hes
5 D et ¥ od 1612 | UmiE wiigrs
& L ook Mode Select L =T L] | sactDC. | hex
k % TEMPLONY] fursigned in.. | bin
™ ‘Wiabeh ADC Registers . © VREFLOCONY] fraigned i, | bn
o Wstich Clocking and Low-Fomer Reéguters » © INTPULSEPDS 1 lrignedin,, | bin
¥ L3 % ADCREFSEL] | buraignedin.. | bn
T Wakch Comparstor Regaters . & el] fraigred i | bin
witkch CPU Timer Hiaguiters. 3 % ADCREFPWT 1 fraigred in, | b
5] Wiakeh D Emmidation Raghtres » % ADCEGPWD 1 Iraigned i, | bin
& ‘watch EMJ Boot Mode Varisbles . & ADCPWDN 1 | buraignedin.. | bn
e F watch eCAN Regrters . : mﬁ"” flﬂm mwﬂ :
& I Wl ePHML PWIH Regters v I n
& e Lu:‘::::: Wahch sPWME-sP WY Regsters . 9 spranans 11 | Inrsigrendin,, | by
(5] Dafakizre watchecgr . g L ESEL [-m“"”"': s
= {81 Dtupucan ateh Extenal ket Regers » = gy) | wwnDG e
o | e ::"-:‘:f{";“m"’ H + %9 ADCINTFLBCLR () | wwnAD0 | he
|, e IC Reghisee + G SOOIV L) wwndD0 hew
=] L. Waich LIN Rogistors [+ % ADCINTOVECLE (4 wwnADD | hes
8 4 ‘watch LA Reguars 4 £ % INTSELTNG LE) | umionINTS. | hew
Wstch B Ik i K v 8 INTSEL R L) [urwntilS e
\Wakch Perigheral Interrugt Expansion Registers & LWL Flege v 4 INTSELENG L) wrenBlS | hex
\Wiatich SC1 Raguitens. b EPWHE Rogs % INTSELNE LY wewndHIS . hew
Wakch SPI Regrtrrs b EPWMD Regs # Q9 INTSELSNID L) | wsenBHTS | b
wistch Watchoce Timer Registers v e R Vi el |00 | et ek | e
b EPWMS RRgs # Y SOCFRICTL (L) [urwnSOC e
0w R & iwall L] U [
EPWNT Riegs + Y ADCSAMPLENTDE [¥) wenAlC | hex
e @ ik) u Urdls g
EQERI_fuegs # % ADCINTSOCSELT 18 wrmn AL e =]
[+ 4 ADCINTSOCSELY L) wrwndDO e
“ - w g ol 00 | vl et | b -
Fashand O Reee = U ADCSOEFLEY () wrmndlC | bae 2
By ld Complete, G0 _CTHL Regs & 1wnli [] et e
0 Erzors, 0 We 0 Remarks. I0_BATA Rz = -
GI0_INT_Regs Frmanics waend |
1CA ey 1
LIHA_eogri i |
T T ina _irterrupt_Regs | | i |
B e ALTED B PIE_Control_Megs Ln 57, Cal1

3-4 C2000 Piccolo Workshop - Peripheral Registers Header Files

Traditional and Structure Approach to C Coding

Is the Structure Approach Efficient?

The structure approach enables efficient compiler use of
DP addressing mode and C28x atomic operations

C Source Code Generated Assembly Code*
// Stop CPU TimerO MOVW DP, #0030
CpuTimerORegs.TCR.bit.TSS = 1; OR @4, #0x0010
// Load new 32-bit period value MOVL XAR4, #0x010000
CpuTimerORegs.PRD.all = 0x00010000; MOVL @2, XAR4
// Start CPU TimerO AND @4, #OXFFEF
CpuTimerORegs.TCR.bit.TSS = 0;

- Easy to read the code w/o comments
y 5 words, 5 cycles

- Bit mask built-in to structure
You could not have coded this example any more efficiently with hand assembly!

* C28x Compiler v5.0.1 with -g and either -01, -02, or -03 optimization level

Compare with the #define Approach

The #define approach relies heavily on less-efficient pointers for
random memory access, and often does not take advantage of
C28x atomic operations

C Source Code Generated Assembly Code*
// Stop CPU TimerO MOV @AL,*(0:0x0C04)
*TIMEROTCR |= 0x0010; ORB AL, #0x10
MOV *(0:0x0C04), @AL
// Load new 32-bit period value MOVL XAR5, #0x010000
*TIMEROTPRD32 = 0x00010000; MOVL XAR4, #0x000COA

MOVL *+XAR4[0], XAR5
// Start CPU TimerO

* = = MOV @AL, *(0:0x0C04
TIMEROTCR &= OXFFEF; oy AL #SxFFEF)
MOV *(0:0x0C04), @AL
- Hard to read the code w/o comments 9 words, 9 cycles

- User had to determine the bit mask

* C28x Compiler v5.0.1 with -g and either -01, -02, or -03 optimization level

C2000 Piccolo Workshop - Peripheral Registers Header Files 3-5

Naming Conventions

Naming Conventions

The header files use a familiar set of naming conventions. They are consistent with the Code
Composer Studio configuration tool, and generated file naming conventions

Structure Naming Conventions

¢ The DSP2803x header files define:
+ All of the peripheral structures
+ All of the register names
+ All of the bit field names
+ All of the register addresses

PeripheralName.RegisterName.all /I Access full 16 or 32-bit register
PeripheralName.RegisterName.half.L SW /I Access low 16-bits of 32-bit register
PeripheralName.RegisterName.half. MSW /I Access high 16-bits of 32-bit register

PeripheralName.RegisterName.bit.FieldName // Access specified bit fields of register

Notes: [1] “PeripheralName” are assigned by Tl and found in the DSP2803x header files.
They are a combination of capital and small letters (i.e. CpuTimerORegs).

[2] “ RegisterName” are the same names as used in the data sheet.
They are always in capital letters (i.e. TCR, TIM, TPR,..).

[3] “FieldName” are the same names as used in the data sheet.
They are always in capital letters (i.e. POL, TOG, TSS,..).

Editor Auto Complete to the Rescue!

R /F2B035 XDSTO0USE/TMS 3200 2800_0 - TMS 3200 28 - Code Composer Stadio - [Ade.e 7] =])
(b Fie Ek Vew Proma Debug GiL Opoon Frofle fook DSPICS Widow Heb -8 %
as@ & T AR RRG (B @ DT A

Darioie ot o 00 ¢ Siims s %

R« oomEEEA |
F e

o L L e
3 Prewts
= i3} Ensenple pit {Debug)
™ 20 Decendank rapects
) Ot
") Dmmn0s Condig
A Gerenated Fles
o +) Inchude

)CCTL1.bit .RESET = 1

= S B fdoRegs

4] clatasis.sen
& gl R bk

. 2] baih_Ghsbahysisbieeds.c
(]] Ecane
]] Ervens
0 rierc
& 3 et
0} 5]t
3 e
) paevect.c
] syscrc
2] watshog.c
[£) D 2m3:_Headers_erBI0S. e
%] F2e0us.cma

" (Y File View [#Bookmarks | AdcReas ADCSAMPLFMANE bt STMILEND = f: T Ty
. v

D Laylls | 13

‘Example.pjt - Oebug -

e = AL TED e i, St WL SR My Docurmt oL sl x| Ak ¢ L 37, Col 38

3-6 C2000 Piccolo Workshop - Peripheral Registers Header Files

F2803x C-Code Header Files

F2803x C-Code Header Files

The C-code header files consists of .h, ¢ source files, linker command files, and other useful
example programs, documentations and add-ins for Code Composer Studio.

DSP2803x Header File Package

(http://lwww.ti.com, literature # SPRC892)

¢ Contains everything needed to use the
structure approach

¢ Defines all peripheral register bits and
register addresses

¢ Header file package includes:

+ \DSP2803x_headers\include =-> .h files
+ \DSP2803x_headers\cmd - linker .cmd files

+ \DSP2803x_headers\gel - .gel files for CCS
+ \DSP2803x_examples - CCS3 examples
+ \DSP2803x_examples_ccsv4 -> CCS4 examples
+ \doc - documentation

A peripheral is programmed by writing values to a set of registers. Sometimes, individual fields
are written to as bits, or as bytes, or as entire words. Unions are used to overlap memory
(register) so the contents can be accessed in different ways. The header files group all the
registers belonging to a specific peripheral.

A DSP2803x_Peripheral.gel GEL file can provide a pull down menu to load peripheral data
structures into a watch window. Code Composer Studio can load a GEL file automatically. To
include fuctions to the standard F28035.gel that is part of Code Composer Studio, add:

GEL_LoadGel(“base_path/gel/DSP2803x_Peripheral.gel’)
The GEL file can also be loaded during a Code Composer Studio session by clicking:

File > Load GEL..

Peripheral Structure .h File

The DSP2803x_Device.h header file is the main include file. By including this file in the .c
source code, all of the peripheral specific .h header files are automatically included. Of course,
each specific .h header file can be included individually in an application that does not use all the
header files, or you can comment out the ones you do not need. (Also includes typedef
statements).

C2000 Piccolo Workshop - Peripheral Registers Header Files 3-7

F2803x C-Code Header Files

Peripheral Structure .h files @or2

¢ Contain bits field structure definitions for each peripheral register

DSP2803x_Adc.h

/I ADC Individual Register Bit Definitions:
struct ADCCTL1_BITS{ /I bits description
Uint1l6 TEMPCONV:1; /I 0 Temperature sensor connection
Uintl6 VREFLOCONV:1; // 1VSSA connection
Your C-source file (e_g., AdC.C) Uint16 INTPULSEPOS:1; // 2 INT pulse generation control
Uint16 ADCREFSEL:1; // 3 Internal/external reference select
Uint16 rsvdl:1; Il 4reserved
Uintl6 ADCREFPWD:1; //5Reference buffers powerdown
Uint16 ADCBGPWD:1; /16 ADC bandgap powerdown

{ Uintl6 ADCPWDN:1; II'7 ADC powerdown
* Reset the ADC module */ .
i Uint16 ADCBSYCHN:5; //12:8 ADC busy on a channel
AdcRegs.ADCCTL1.bit.RESET = 1;

#include "DSP2803x_Deviceh"

Void InitAdc(void)

Uint16 ADCBSY:1; /113 ADC busy signal
p i he ADG X “ Uint16 ADCENABLE:1; /114 ADC enable
CCIMEITO 12 register Uintl6 RESET:1; /I 15 ADC master reset

AdcRegs.ADCCTL1.all = 0xO0E4; ¥

b /I Allow access to the bit fields or entire register:
union ADCCTL1_REG {
Uint16 all;
struct ADCCTL1 _BITS bit;
b
/I ADC External References & Function Declarations:
extern volatile struct ADC_REGS AdcRegs;
Peripheral Structure .h files @or2
¢ The header file package contains a .h file
for each peripheral inthe device
DSP2803x_Adc.h DSP2803x_BootVars.h DSP2803x_Cla.h
DSP2803x_Comp.h DSP2803x_CpuTimers.h DSP2803x_DevEmu.h
DSP2803x_Device.h DSP2803x_ECan.h DSP2803x_ECap.h
DSP2803x_EPwm.h DSP2803x_EQep.h DSP2803x_Gpio.h
DSP2803x_I2c.h DSP2803x_Lin.h DSP2803x_Nmilntrupt.h
DSP2803x_PieCtrl.h DSP2803x_PieVect.h DSP2803x_Sci.h
DSP2803x_Spi.h DSP2803x_SysCtrl.h DSP2803x_Xlntrupt.h
¢ DSP2803x_Device.h
+ Main include file
+ Will include all other .h files
+ Include this file (directly or indirectly)
in each source file:
#include “DSP2803x_Device.h”

3-8 C2000 Piccolo Workshop - Peripheral Registers Header Files

F2803x C-Code Header Files

Global Variable Definitions File

With DSP2803x_GlobalVariableDefs.c included in the project all the needed variable definitions
are globally defined.

Global Variable Definitions File
DSP2803x_GlobalVariableDefs.c

¢ Declares a global instantiation of the structure
for each peripheral

¢ Each structure is placed in its own section
using a DATA_SECTION pragma to allow
linking to the correct memory (see next slide)

DSP2803x_GlobalVariableDefs.c
#include "DSP2803x_Device.h"

#pragma DATA_SECTION(AdcRegs,"AdcRegsFile");
volatile struct ADC_REGS AdcRegs;

¢ Add this file to your CCS project:
DSP2803x_GlobalVariableDefs.c

C2000 Piccolo Workshop - Peripheral Registers Header Files 3-9

F2803x C-Code Header Files

Mapping Structures to Memory

The data structures describe the register set in detail. And, each instance of the data type (i.e.,
register set) is unique. Each structure is associated with an address in memory. This is done by
(1) creating a new section name viaa DATA_SECTION pragma, and (2) linking the new section
name to a specific memory in the linker command file.

Linker Command Files for the Structures
DSP2803x_nonBIOS.cmd and DSP2803x_BIOS.cmd

DSP2803x_GlobalVariableDefs.c
#include "DSP2803x_Device.h"

& Links each structure to
the address of the

_ peripheral using the
— #pragma DATA_SECTION(AdcRegs,"AdcRegsFile"); structures named

volatile struct ADC_REGS AdcRegs; section

4 non-BIOS and BIOS

DSP2803x_Headers_nonBIOS.cmd versions of the .cmd file

MEMORY

e o Add one of these files to
ADC: origin=0x007100, length=0x000080 your CCS project:

y DSP2803x_nonBIOS.cmd

SECTIONS or

t .- DSP2803x_BIOS.cmd
AdcRegsFi le: > ADC PAGE = 1

,

Linker Command File

When using the header files, the user adds the MEMORY regions that correspond to the
CODE_SECTION and DATA_SECTION pragmas found in the .h and global-definitons.c file.

The user can modify their own linker command file, or use a pre-configured linker command file
such as F28035.cmd. This file has the peripheral memory regions defined and tied to the
individual peripheral.

3-10 C2000 Piccolo Workshop - Peripheral Registers Header Files

F2803x C-Code Header Files

Peripheral Specific Routines

Peripheral Specific C functions are used to initialize the peripherals. They are used by adding the
appropriate .c file to the project.

Peripheral Specific Examples

¢ Example projects for each peripheral

¢ Helpful to get you started
|[Z)adc_soc) epwm_up_anq |lina_sci_echoback,
|[Z)adc_temp_sensar | epwm_updown_aq |2 lina_sci_loopback_interrupts
[)cla_adc [)egep_freqeal I pm_halkwake
| Z)cla_adc_Ffir |[Z)egep_pos_speed I pm_idlewake
|[Z)cla_adc_fir_flash |[Z)external_interrupt | pm_standbywalke
|2 cpu_timer [Zhflash | sci_echoback
|[Z)ecan_backzback |2 gpio_setup |Z) sria_loopback,
|[Z)ecap_apwm | gpio_toggle | scia_loopback_interrupts
|[Z)ecap_capture_pwm |2 brpearn |2 spi_loopbadk
) epwrn_blanking_window [hrpinn_duky_sfo_wé) spi_loopback_interrupts
|[Z)epwrn_dcewent_trip | brpuann_prdup_sFo_vé |2 sw_prioritized_interrupts
() epwmn_dcevent_trip_comp (L) hrpwrn_prdupdown_sfo_wvé) timed_led_blink
|2 epwm_deadband |2 brpuann_slider |[ZJwakchdog
| epwm_timer_inkerrupts |[izc_eeprom
|2 epwrn_trip_zone |lina_external_loopback

C2000 Piccolo Workshop - Peripheral Registers Header Files 3-11

Summary

Summary

Peripheral Register Header Files
Summary

Easier code development

Easy to use

Generates most efficient code

Increases effectiveness of CCS watch window

Tl has already done all the work!

+ Use the correct header file package for your device:
+ F2803x # SPRC892
+ F2802x # SPRC832
+ F2833x and F2823x # SPRC530
+ F280x and F2801x # SPRC191
+ F2804x # SPRC324
+ F281x # SPRC097

Go to http:/Mww.ti.com and enter the literature number in the keyword search box

* 6 6 0 o

3-12 C2000 Piccolo Workshop - Peripheral Registers Header Files

Reset and Interrupts

Introduction

This module describes the interrupt process and explains how the Peripheral Interrupt Expansion
(PIE) works.

Learning Objectives

Learning Objectives

¢ Describe the C28x reset process

¢ Listthe event sequence during an
interrupt

¢ Describe the C28x interrupt structure

C2000 Piccolo Workshop - Reset and Interrupts 4-1

Module Topics

Module Topics

RESET AN INTEITUPDLS ...t bttt b et bbbt b et e b et bt st e neenee e nas 4-1
T LU T=TN o ot PSS 4-2
=] TSP RRTRTOTRSPUPRURPRN 4-3

T T= A = o To 4 0T U [T PSSR 4-3
EMUItION BOOT IMIOOE ...t sttt sttt st en e e e e 4-4
Stand-AlONE BOOT IMIOUE ..ottt b bbb b e bbb e st ane e neas 4-4
ReSet COUE FIOW — SUMIMAIYoviiiiiiitieieie ettt et b bbbttt bbbt e s e e 4-5
01 =] (V] o] T TSP U PP PR TR PR TTRRPP 4-6
INEEITUDPE PrOCESSING ... cuveveieite ittt ettt ettt te st e et et et et ese et e s besaesteeaeete et entesaesbesbesaeareaneeneeneeneas 4-6
Interrupt Flag REGISIET (IFR)vciiieie ittt sttt sae b s teebe e e eneesneeas 4-7
Interrupt Enable REQISTEr (IER).....cc.cve ittt es 4-7
Interrupt Global Mask Bit (INTIM)couiiiiiiiiesrseceeese st 4-8
Peripheral Interrupt EXPanSion (PIE)cocieiiiiiieie et 4-8
PIE INterrupt VECTOr TaDIE ..o 4-10
Interrupt RESPONSE AN LALENCYoviiiitiiiiiiieiieiesie ettt ettt e sb e sne e 4-11

4-2 C2000 Piccolo Workshop - Reset and Interrupts

Reset

Reset

Reset Sources

Missing Clock Detect C28x core

Watchdog Timer

Power-on Reset

Brown-out Reset :\’:)

XRS pin active

XRS

To XRS pin

Logic shown is functional representation, not actualimplementation

. POR — Power-On Rest generates a device reset during

power-up conditions

. BOR — Brown-Out Reset generates a device reset if the

power supply drops below specification for the device

Note: Devices support an on-chip regulator (VREG) to generate
the core voltage

Reset - Bootloader

Reset — Bootloader

ReS et Reset vector
OBJMODE =0 fetched from Bootloader sets
AMODE =0 boot ROM OBJMODE =1
ENFIE =0 0x3F FFCO AMODE = 0
INTM=1

YES Emulator NO
TRsST=1| Connected ?

TRST=0

Emulation Boot
Boot determined by

2 RAM locations:
EMU_KEY and EMU_BMODE

Stand-alone Boot
Boot determined by
2 GPIO pins and
2 OTP locations:
OTP_KEY and OTP_BMODE

— EMU_KEY & EMU_BMODE located in PIE at 0xOD0O0 & 0x0DO01, respectively
TRST =JTAG Test Reset ApTKEy & OTP _BMODE located in OTP at Ox3D78FE & Ox3D78FF, respectively

C2000 Piccolo Workshop - Reset and Interrupts

Reset

Emulation Boot Mode

Emulation Boot Mode TrsT=1)

Emulator Connected

Emulation Boot If either EMU_KEY or EMU_BMODE
- are invalid, the “wait” boot mode is
Boot determined by used. These values can then be
2 RAM locations: modified using the debugger and a
EMU_KEY and EMU_BMODE reset issued to restart the boot process

EMU_KEY = 0x55AA ? | NO | Boot Mode

Wait

YES
EMU BMODE = | Boot Mode
0x0000 Parallel /0 ——[OTP_KEY = 0x55AA ? | NO B"F"LtA“g%de
0x0001 SCI l YES
0x0002 Wait
0x0003 GetMode OTP_BMODE = | Boot Mode
0x0004 SPI 0x0001 SCI
0x0005 12C 0x0003 FLASH
0x0006 OTP 0x0004 SPI
0x0007 CAN 0x0005 12C
0x000A MO SARAM 0x0006 OTP
0x000B FLASH 0x0007 CAN
other Wait other FLASH

Stand-Alone Boot Mode

Stand-Alone Boot Mode (TrRsT =0)

Emulator Not Connected Note that the boot behavior for
Stand-alone Boot unprogrammed OTP is the

Boot determined by “FLASH" boot mode
2 GPIO pins and

2 OTP locations:
OTP_KEY and OTP_BMODE

- 1 NO | Boot Mode
——| OTP_KEY = 0x55AA ? | FLASH
GPIO GPIO l YES

37 34 |Boot Mode OTP_BMODE = | Boot Mode
0 0 Parallel /0 0x0001 SCI
0 1 SCI 0x0003 FLASH
1 0 Wait 0x0004 SPI
1 1 GetMode 0x0005 12C

0x0006 oTP

0x0007 CAN

other FLASH

4-4 C2000 Piccolo Workshop - Reset and Interrupts

Reset

Reset Code Flow — Summary

0x000000

0x3D7800

Ox3FEO0O

RESET I OX3FFFCO

0x000000
MO SARAM (1Kw)

Reset Code Flow - Summary

0x3D7800
OTP (1Kw)

OX3E8000[

—D
FLASH (64Kw)
- OX3F7FF6

Boot ROM (8Kw)

Boot Code
Ox3FF7BB

Execution Entry
determined by
Emulation Boot Mode or
Stand-Alone Boot Mode

]

BROM vector (64w)

Ox3FF7BB

v

Bootloading

Routines

(SClI, SPI, 12C,
Parallel 1/0)

C2000 Piccolo Workshop - Reset and Interrupts

Interrupts

Interrupts

Interrupt Sources

Internal Sources

TINT2
TINT1
TINTO
ePWM, eCAP,
eQEP, ADC, SClI,
SPI, 12C, eCAN,
LIN, CLA, WD

External Sources

TTTTTTTTTTR
XINTL — XINT3 ————

TZx

PIE
(Peripheral
Interrupt
Expansion)

e

XR

(%)

C28x CORE

XRS
NMI

INT1
INT2
INT3

INT12

INT13
INT14

Interrupt Processing

Maskable Interrupt Processing

Conceptual Core Overview

Core (IFR) (IER) (INTM)
Interrupt “Latch” “Switch” *“Global Switch”
W‘rl E ([g [
T2 ——{o]——"" C28x
. . . " Core
INT14 [1] .

¢ Avalid signal on a specific interrupt line causes the latch
to display a“1” in the appropriate bit

¢ If theindividual and global switches are turned “on” the
interrupt reaches the core

C2000 Piccolo Workshop - Reset and Interrupts

Interrupts

Interrupt Flag Register (IFR)

Interrupt Flag Register (IFR)

15 14 13 12 11 10 9 8
|RTOSINT|DLOGINT| INT14 | INT13 | INT12 | INT11 | INT10 | INT9 |
7 6 5 4 3 2 1 0
| INT8 | INT7 | INT6 | INT5 | INT4 | INT3 | INT2 | INTL |

Pending: |IFRg;=1
Absent : IFRg;; =0

f** Manual setting/clearing IFR ***/

extern cregister volatile unsigned int IFR;
IFR |= 0x0008; /lset INT4 in IFR
IFR &= OxFFF7; flclear INT4 in IFR

& Compiler generates atomic instructions (non-interruptible) for setting/clearing IFR
< If interrupt occurs when writing IFR, interrupt has priority

& IFR(bit) cleared when interrupt is acknowledged by CPU

Register cleared on reset

Interrupt Enable Register (IER)

Interrupt Enable Register (IER)

15 14 13 12 11 10 9 8
|RTOSINT|DLOGINT| INT14 | INT13 | INT12 | INT11 | INT10 | INTO |
7 6 5 4 3 2 1 0
| INT8 | INT7 | INT6 | INT5 | INT4 | INT3 | INT2 | INTL |

Enable: Set IER g; =1
Disable: Clear IERg;;=0

f** Interrupt Enable Register ***/

extern cregister volatile unsigned int IER;
IER |= 0x0008; /lenable INT4 in IER
IER &= OXFFF7; /ldisable INT4 in IER

& Compiler generates atomic instructions (non-interruptible)
for setting/clearing IER

& Register cleared on reset

C2000 Piccolo Workshop - Reset and Interrupts 4-7

Interrupts

Interrupt Global Mask Bit (INTM)
Interrupt Global Mask Bit

Bit 0
ST1 INTM

¢ INTM used to globally enable/disable interrupts:
+ Enable: INTM=0
+ Disable: INTM = 1 (reset value)

¢ [INTM modified from assembly code only:

** Global Interrupts ***/
asm(* CLRC INTM”); /lenable global interrupts
asm(“* SETC INTM”); //disable global interrupts

Peripheral Interrupt Expansion (PIE)

Peripheral Interrupt Expansion - PIE

Interrupt Group 1
PIEIFR1 PIEIER1

INT1x interrupt group |NT1.1/—

INT2.x interrupt grou
: ptgroup N INTL.2—{0}—+ -
INT3.x interrupt group TNTT

INT4.x interrupt group 5 .
INT5.x interrupt group :
INT6.x interrupt group
INT7.x interrupt group

PIE module for 96 Interrupts

96

INTL8 S

18l

28x Core Interrupt logic

INT8.x interrupt group

INT9.x interrupt group | |'NT1—INT12

28x
Core

INT10.x interrupt group 12 Interrupts

INTM

Peripheral Interrupts 12x8

INT11.x interrupt group

INT12.x interrupt group

(TINTL)
(TINT2)

4-8 C2000 Piccolo Workshop - Reset and Interrupts

Interrupts

INTX.8 INTX.7 INTX.6 INTX.5 INTx.4 INTX.3 INTx.2 INTx.1
INTL | WAKEINT| TINTO | ADCINT9| XINT2 XINTL ADCINT2 | ADCINT1
INT2 EPWM7 | EPWM6 | EPWM5 | EPWM4 | EPWM3 | EPWM2 | EPWML
_TZINT | _TZINT | _TZINT | _TZINT | _TZINT | _TZINT | _TZINT
INT3 EPWM?7 | EPWM6 | EPWM5 | EPWM4 | EPWM3 | EPWM2 | EPWML
INT _INT INT INT INT CINT INT
ECAP1
INT4 N
EQEP1
INT5 INT
INT6 SPITX SPIRX SPITX | SPIRX
INTB INTB INTA INTA

INT7
INT8 I2CINT2A | 12CINT1A
INTO ECAN1 | ECANO LINL LINO SCITX | SCIRX
INTA INTA INTA INTA INTA INTA
INT10 | ADCINTS | ADCINT7 | ADCINT6 | ADCINT5 | ADCINT4 | ADCINT3 | ADCINT2 | ADCINT1
INT11 CLAL CLAL CLAL CLA1 CLAL CLA1 CLAL CLA1L
CINT8 CINT? CINT6 CINT5 CINT4 CINT3 CINT2 CINT1
INT12 LUF LVF XINT3

PIE Registers

PIEIFRX register (x=1to12)
15-8 7 6 5 4 3 2 1 0

reserved | INTx.8| INTx.7| INTx.6| INTx.5| INTx.4| INTx.3| INTx.2| INTx.1|

PIEIERX register (x=1to12)
15-8 7 6 5 4 3 2 1 0

reserved INTX.8| INTX.7| INTX.6| INTX.5[INTX.4| INTX.3[INTx.2 [INTx.1

PIE Interrupt Acknowledge Register (PIEACK)
6 5

15-12 11 10 9 8 7 4 3 2 1 0

reserved PIEACKX

PIECTRL register 15-1 0

PIEVECT ENPIE

#include “DSP2803x_Device.h”
PieCtrIRegs.PIEIFR1.bit.INTx4 = 1; //manually set IFR for XINT1 in PIE group 1
PieCtrlRegs.PIEIER3.bit.INTx2 = 1; //lenable EPWM2_INT in PIE group 3
PieCtrIRegs.PIEACK.all = 0x0004; //acknowledge the PIE group 3
PieCtrIRegs.PIECTRL.bit.ENPIE = 1; //enable the PIE

C2000 Piccolo Workshop - Reset and Interrupts

Interrupts

PIE Interrupt Vector Table

Default Interrupt Vector Table at Reset

Vector Offset
RESET 00
INT1 02
INT2 04
INT3 06
INT4 08
INT5 0A
INT6 (0]08
INT7 OE
INT8 10
INT9 12
INT10 14
INT11 16
INT12 18
INT13 1A
INT14 1C
DATALOG 1E
RTOSINT 20
EMUINT 22
NMI 24
ILLEGAL 26
USER 1-12 | 28-3E

Default Vector Table
Re-mapped when
ENPIE=1

Memory

PIE Vectors
256w -

“a,
Voo
e,
o,

.,
v,
s,

v,
",

BROM Vectors |X3F FFCO ™,
64w

ENPEZ0 foxsFFrrr ¢

PieVectTablelnit{ }
Used to initialize PIE vectors

Remapped

PIE Vector Mapping enrie=1

Vector Name | PIE Address | PIE Vector Description

Reset 0x00 0D00 Reset fetched from Boot ROM 0x3F FFCO
INT1 0x00 0D02 INT1 remapped to PIE group below
INTx remapped to PIE group below
INT12 0x000D18 INT12 remapped to PIE group below
INT13 0x000D1A |CPU Timer 1

INT14 0x000D1C | CPU Timer 2

DATALOG 0x00 OD1E |CPU Data Logging Interrupt
USER12 0x00 OD3E | User Defined Trap

INT1.1 0x00 0D40 PIE INT1.1 Interrupt Vector

INT1.8 0x00 O0D4E | PIEINT1.8 Interrupt Vector

INT12.1 0x00 ODFO PIE INT12.1 Interrupt Vector

INT12.8 0x00 ODFE | PIE INT12.8 Interrupt Vector

¢ PIE vector location — 0x00 0D00 — 256 words in data memory
¢ RESET and INT1-INT12 vector locations are re-mapped
¢ CPU vectors are re-mapped to 0x00 0D0O0 in data memory

C2000 Piccolo Workshop - Reset and Interrupts

Interrupts

RESET
<Ox3F FFC0>

Reset Vector <0x3F F7BB> = Boot Code

Flash Entry Point <Ox3F 7FF6 >=LB _c_int00

User Code Start < _c_int00 >

_c_int00:

CALL mainQ)

Initialization()

_ Load PIE Vectors
main() Enable the PIE
{ initialization(); Enable PIEIER

L ™~ Enable Core IER
} Enable INTM
3

Device Vector Mapping - Summary

PIE Vector Table

256 Word RAM
0x00 0DO0 — ODFF

Interrupt Response and Latency

Interrupt Response - Hardware Sequence

CPU Action

Description

Registers — stack

14 Register words auto saved

0 = IFR (bit)

Clear corresponding IFR bit

0 - IER (bit)

Clear corresponding IER bit

1 - INTM/DBGM

Disable global ints/debug events

Vector - PC

Loads PC with int vector address

Clear other status bits

Clear LOOP, EALLOW, IDLESTAT

T STO

AH AL

PH PL

AR1 ARO

DP ST1
DBSTAT| IER
PC(msw)| PC(Isw)

Note: some actions occur simultaneously, none are interruptible

C2000 Piccolo Workshop - Reset and Interrupts

Interrupts

Interrupt Latency

e Latency

ext. Internal

interrupt : interrupt Assumes ISR in
occurs ! occurs internal RAM
here | here

LG

' 7
@ @& © 6 O ©

Syncext. Recognition Getvector F1/F2/D1of Save D2/R1/R2 of

signall delay (3), SP and place ISR return ISR
alignment (1), inPC instruction address instruction
. (ext. interrupt (Breg. (3reg. pairs
interrupt placed in pairs saved)
only pipeline saved)

[

I cycles

ISR
instruction
executed
on next
cycle

& Minimum latency (to when real work occurs in the ISR):
> Internal interrupts: 14 cycles

» External interrupts: 16 cycles

¢ Maximum latency: Depends on wait states, INTM, etc.

C2000 Piccolo Workshop - Reset and Interrupts

System Initialization

Introduction

This module discusses the operation of the OSC/PLL-based clock module and watchdog timer.
Also, the general-purpose digital 1/0 ports, external interrups, various low power modes and the
EALLOW protected registers will be covered.

Learning Objectives

Learning Objectives

¢ OSC/PLL Clock Module

¢ Watchdog Timer

¢ General Purpose Digital I/0
¢ External Interrupts

¢ Low Power Modes

¢ Register Protection

C2000 Piccolo Workshop - System Initialization 5-1

Module Topics

Module Topics

SYSEEM TNITIAIZATION.......ceieiiie bbb bbbt e e e e aas 5-1
T LU T=TN o ot PSS 5-2
OSCIlAtOr/PLL CIOCK MOTUIE ...ttt bbb 5-3
WALCRAOG TIMET ...ttt bbb bbbttt bbb b b ns 5-6
General-Purpose DIgital 1/O ..o 5-10
EXEEINAL INTEITUPLS ...ttt b e bbbttt b e bbbt be et e et et e e sbe e e 5-13
LOW POWET IMOGES. ...ttt bbbt b bbbt b e bttt n et n e 5-14
REGISTET PFOTECTION ...t et bbbttt bbb bt s b e bt et e e e b e e b e e e 5-16
Lab 5: System INITIAlIZALIONcvoiveiiiiice e et r e re e 5-18

5-2 C2000 Piccolo Workshop - System Initialization

Oscillator/PLL Clock Module

Oscillator/PLL Clock Module

F2803x Oscillator / PLL Clock Module
(lab file: SysCitrl.c)
WDCLK§RCSEL
Internal :
gg(r:nl OSCICLK 0*| WDCLK | Watchdog
(10 MH2) 1 Module
OSCCLKSRCSEL
OSCCLKSRCZ 1
Internal | 0sc2cLK J\‘\l '—>Bﬁ) OSCCLK DIVSEL
OSC 2 1 1 (PLL bypass) H
(10 MHz2) o X CLKIN
g —1/n C28x
PLL VCOCLK / Core
XCLKINOFF . SYSCLKOUT
! [b—m—
DNV
)—EXTCLK b TMRZ(IELKSRCSEL I:I:ILOSPCP
L 6 LSPCLK
11 | CPUTMR2CLK SCl, SPI
01)
SYscLKouT—00% CPU c|oAc|k|eoctjhgyr g?(rg)g E}Q%ISUT
Timer 2
* = default

The on-chip oscillator and phase-locked loop (PLL) block provide all the necessary clocking

signals for the F2803x devices. The two internal oscillators (INTOSC1 and INTOSC2) need no
external components.

F2803x PLL and LOSPCP

OSCCLK

(lab file: SysCitrl.c)

(PLL bypass)

VCOCLK

SysCtrlRegs.PLLCR.bit.DIV

SysCtrIl?eg s.PLLSTS.bit.DIVSEL
1

DIV

CLKIN

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100

OSCCLK / n* (PLL bypass)

OSCCLK x1/n
OSCCLK x2/n
OSCCLK x 3/n
OSCCLK x4 /n
OSCCLK x5/n
OSCCLK x 6/n
OSCCLK x 7 /n
OSCCLK x 8/n
OSCCLK x9/n
OSCCLK x 10/ n
OSCCLK x 11/n
OSCCLK x 12/ n

1
1/ CLKIN C28x SYSCLKOUT
—f1/n
cae LSPCLK
LOSPCP
1
1
SysCtrIRegs.LOSPCP.bit.LSPCLK
LSPCLK | Peripheral CIK Freq
DIVSEL | n 000 | SYSCLKOUT/1
ox 1 * 001 | SYSCLKOUT /2
10 - 010 | SYSCLKOUT /4 *
1 P 011 | SYSCLKOUT/6
100 | SYSCLKOUT/8
* default 101 | SYSCLKOUT /10
Note: /1 mode can 110 | SYSCLKOUT/12
gfﬂ_’E ibseb%%gs"g&e“ 111 | SYSCLKOUT /14

Input Clock Fail Detect Circuitry

PLL will issue a “limp mode” clock (1-4 MHz) if input
clock is removed after PLL has locked.

An internal device reset will also be issued (XRSn
pin not driven).

C2000 Piccolo Workshop - System Initialization

Oscillator/PLL Clock Module

The PLL has a 4-bit ratio control to select different CPU clock rates. In addition to the on-chip
oscillators, two external modes of operation are supported — crystal operation, and external clock
source operation. Crystal operation allows the use of an external crystal/resonator to provide the
time base to the device. External clock source operation allows the internal (crystal) oscillator to
be bypassed, and the device clocks are generated from an external clock source input on the
XCLKIN pin. The C28x core provides a SYSCLKOUT clock signal. This signal is prescaled to
provide a clock source for some of the on-chip communication peripherals through the low-speed
peripheral clock prescaler. Other peripherals are clocked by SYSCLKOUT and use their own
clock prescalers for operation.

Clock Control Register
(lab file: SysCitrl.c)
Upper Register:
Watchdog Internal Oscillator 1 Internal
HALT Mode Ignore HALT Mode Ignore Oscillator 1 Off
0 = automatic turn on/off 0 =automatic turn on/off 0= on
l=ignores HALT Mode 1 =ignores HALT Mode 1 = off
15 14 13 12 1 10 9 8
NMIRESET| XTAL XCLKIN [\wpHALTI | INTOSC2 | INTOSC2 INTOSC1 [INTOSC1
SEL OSCOFF OFF HALTI OFF HALTI OFF
NMI Crystal XCLKIN Internal Oscillator 2 Internal
Reset Oscillator Off HALT Mode Ignore Oscillator 2 Off
0=no delay Off 0=on O=automaticturnon/off 0=on
1 =delay 0=on 1=off 1=ignores HALT Mode 1= off
1 = off
0 =default

C2000 Piccolo Workshop - System Initialization

Oscillator/PLL Clock Module

Clock Control Register

(lab file: SysCitrl.c)

Lower Register:

Watchdog Oscillator
Clock Source Clock Source
0 =internal OSC1 0 =internal OSC1
1 = external or 1 = external or
internal OSC2 internal OSC2
7-5 4-3 2 1 0
WDCLK | OSCCLK | OSCCLK
TMR2CLKPRESCALE TMR2CLKSRCSEL SRCSEL | SRC2SEL | SRESEL

\

CPU Timer 2 CPU Timer 2 Oscillator 2
Clock Prescale Clock Source Clock Source

000 =/1 00 = SYSCLKOUT 0 = external

001 =/2 01 = external 1=internal OSC2
010=/4 10 =internal OSC1

011 =/8 11 =internal OSC2

100 =/16

1xx = reserved 0 =default

The peripheral clock control register allows individual peripheral clock signals to be enabled or
disabled. If a peripheral is not being used, its clock signal could be disabled, thus reducing power
consumption.

Peripheral Clock Control Registers
(lab file: SysCtrl.c)

SysCtrIRegs.PCLKCRO
15 14 13 12 11 10 9 8

ECANA SCIA SPIA SPIA
ENCLK reserved | reserved | reserved ENCLK ENCLK ENCLK

7 6 5 4 3 2 1 0
[2CA ADC | TBCLK | LINA | HRPWM
reserved | reserved | reseved | e\clk | ENCLK | SYNC | ENCLK | ENCLK

SysCtrIRegs.PCLKCR1
15 14

reserved

13 12 11 10 9 8
reserved E,(\%EE & reserved | reserved | reserved | reserved | reserved Eﬁéﬂ%
7 6 5 4 3 2 1 0

EPWM7 | EPWM6 | EPWM5 | EPWM4 | EPWM3 | EPWM2 | EPWM1
ENCLK ENCLK | ENCLK ENCLK ENCLK | ENCLK [ENCLK

SysCtrIRegs.PCLKCR3
15 14 13 12 1 10 9 8

reserved

CLAL | GPIOIN CPUTIMER2|[CPUTIMER1|CPUTIMERO
esenved| ok | encLk | resenved frreseved 1M enel kT ENCLK | ENCLK
7 6 5 4 3 2 1 0

COMP3 COMP2 | COMP1
reserved | reserved | reserved | reserved | reserved ENCLK ENCLK | ENCLK

Module Enable Clock Bit
0 =disable (default) 1=-enable

C2000 Piccolo Workshop - System Initialization 5-5

Watchdog Timer

Watchdog Timer

Watchdog Timer

¢ Resets the C28x if the CPU crashes
+ Watchdog counter runs independent of CPU

« If counter overflows, a reset or interrupt is
triggered (user selectable)

+ CPU must write correct data key sequence to
reset the counter before overflow

¢ Watchdog must be serviced or disabled
within 131,072 WDCLK cycles after reset

¢ This translates to 13.11 ms with a 10 MHz
WDCLK

The watchdog timer provides a safeguard against CPU crashes by automatically initiating a reset
if it is not serviced by the CPU at regular intervals. In motor control applications, this helps
protect the motor and drive electronics when control is lost due to a CPU lockup. Any CPU reset
will revert the PWM outputs to a high-impedance state, which should turn off the power
converters in a properly designed system.

The watchdog timer is running immediately after system power-up/reset, and must be dealt with
by software soon after. Specifically, you have 13.11 ms (for a 60 MHz device) after any reset
before a watchdog initiated reset will occur. This translates into 131,072 WDCLK cycles, which
is a seemingly tremendous amount! Indeed, this is plenty of time to get the watchdog configured
as desired and serviced. A failure of your software to properly handle the watchdog after reset
could cause an endless cycle of watchdog initiated resets to occur.

5-6 C2000 Piccolo Workshop - System Initialization

Watchdog Timer

Watchdog Timer Module gab file: watchdog.c)

4/ —
WDPS WDOVERRIDE
Watchdo 7
WhCLK /512 Prescale?
WDDIS
8-bit Watchdog
Counter
CLR
System WDRST
Output[—*
Reset > —| Pulge -
WDCHK 2-0 WDINT
55+ AA
Detector| cood key
? Bad WDCHK Key
Watchdog
Reset Key
Reqgister

Watchdog Period Selection

WDPS FRC WD timeout period
Bits rollover @ 10 MHz WDCLK
00x: 1 13.11 ms *
010: 2 26.22 ms
011: 4 52.44 ms
100: 8 104.88 ms
101: 16 209.76 ms
110: 32 419.52 ms
111: 64 839.04 ms

*reset default

¢ Remember: Watchdog starts counting immediately
after reset is released!

¢ Reset default with WDCLK =10 MHz computed as
(1/10 MHz) *512 * 256 = 13.11 ms

C2000 Piccolo Workshop - System Initialization 5-7

Watchdog Timer

Watchdo% Timer Control Reqister

SysCtrIRegs. WDCR (lab file: Watchdog.c

WD Flag Bit
Gets set when the WD causes a reset
* Writing a 1 clears this bit
* Writing a 0 has no effect

15-8 7 6 5-3 2-0
reserved | WDFLAG| WDDIS WDCHK WDPS
Logic Check Bits WD Prescale
Write as 101 or reset Selection Bits
Watchdog Disable Bit immediately triggered WDPS | WDCLK =
Write 1 to disable 000 | OSCCLK /512/1
(Functions only if WD OVERRIDE 001 | OSCCLK/512/1

010 | OSCCLK/512/2
011 | OSCCLK/512/4
100 | OSCCLK/512/8
101 | OSCCLK /512/16
110 | OSCCLK /512/32
111 [OSCCLK /512 /64

bitin SCSR is equal to 1)

Resetting the Watchdog

SysCtrIRegs .WDKEY (lab file: Watchdog.c)

15-8 7-0
reserved WDKEY

¢ WDKEY write values:
55h - counter enabled for reset on next AAh write
AAh - counter set to zero if reset enabled

¢ Writing any other value has no effect

¢ Watchdog should not be serviced solely in
an ISR

« If main code crashes, but interrupt continues to
execute, the watchdog will not catch the crash

+ Could put the 55h WDKEY in the main code, and
the AAh WDKEY in an ISR; this catches main
code crashes and also ISR crashes

5-8 C2000 Piccolo Workshop - System Initialization

Watchdog Timer

WDKEY Write Results
Sequential | Value Written
Step to WDKEY | Result
1 AAh No action
2 AAh No action
3 55h WD counter enabled for reset on next AAh write
4 55h WD counter enabled for reset on next AAh write
5 55h WD counter enabled for reset on next AAh write
6 AAh WD counter is reset
7 AAh No action
8 55h WD counter enabled for reset on next AAh write
9 AAh WD counter is reset
10 55h WD counter enabled for reset on next AAh write
11 23h No effect; WD counter not reset on next AAh write
12 AAh No action due to previous invalid value
13 55h WD counter enabled for reset on next AAh write
14 AAh WD counter is reset

System Control and Status Register
SysCtrlRegs.SCSR (lab file: Watchdog.c)

WD Override (protect bit)

Protects WD from being disabled

0 =WDDIS bit in WDCR has no effect (WD cannot be disabled)
1 = WDDIS bit in WDCR can disable the watchdog

 This bit is a clear-only bit (write 1 to clear)

* The reset default of this bitisa 1 \

15-3 2 1 0
reserved WDINTS |WDENINT |WDOVERRIDE
WD Interrupt Status WD Enable Interrupt
(read only) _
0 =WD generates a DSP reset
0 = active 1 =WD generates a WDINT interrupt

1 =not active

C2000 Piccolo Workshop - System Initialization 5-9

General-Purpose Digital I/O

General-Purpose Digital I/O

F2803x GPIO Grouping Overview
(lab file: Gpio.c)
GPIO Port A Mux1 Input .
R éﬁggfﬂ"ﬁ’xn GPIOPort A |« —l D
Direction Register Qual (@)
(GPADIR o [
GPIO Port A Mux2 [GPIO 0 to 31] REl
«p» Register (GPAMUX2) |em=p >
GPIO 16 to 31]
Si B Input | o)
o) GPIO Port B Mux1 D Sty val | |3
s [g CRilo — i) T S
@ to 44] [GPIO 32 t0 44] oS
g ve)
z
ANALOG I/O Mux1 Di'rAe'g'tAilc_)r? (I%ep(i)gtter ‘ E
«—> Register (AIOMUX1) [— AIODIR? Qle—>
o

GPxSET 0 =Input

F2803x GPIO Pin Block Diagram
GPxCLEAR 1 =Output

(lab file: Gpio.c)
Peripheral
3
GPxTOGGLE
GPxDIR

/O DIR Bit Perlplheral Perlpzheral
(GPxDAT) 01\ 4
= ou N o [GPxMUXL
| OO‘W 11 GPxMUX2

1/0 DAT
Bit (R'W) | |n MUX Control Bits *
—< }—l 00 = GPIO
01 = Peripheral 1
10 = Peripheral 2
11 = Peripheral 3
Input
Qualification
(CRO o4 GPxQSEL1
GPxQSEL2
Internal Pull-Up GPxCTRL

0 =enable (default GPIO 12-44)
1 =disable (default GPIO 0-11)
Pin

* See device datasheet for pin function selection matrices

5-10 C2000 Piccolo Workshop - System Initialization

General-Purpose Digital I/O

F2803x GPIO Input Qualification
ings

Input _ to GPIO and
pin O N peripheral
Qualification modules
1

SYSCLKOUT

¢ Qualification available on ports A & B (GPIO 0 - 44) only
¢ Individually selectable per pin s Eles il
+ no qualification (peripherals only) l i ‘
+ sync to SYSCLKOUT only
+ qualify 3 samples < JW
+ qualify 6 samples | >f | |
¢ AIO pins are fixed as _ T T 7T
sync to SYSCLKOUT 7 e e e

F2803x GPIO Input (%ual Registers

GpioCtrlRegs. reg|ster (lab file: Gpio.c)

GPAQSEL1/ GPAQSEL2 / GPBQSEL1
31

| [] [] | 16 pins configured per register | | [] | |

00 = sync to SYSCLKOUT only *

01 = qual to 3 samples

10 = qual to 6 samples

11 =no sync or qual (for peripheral only; GPIO same as 00)

GPACTRL / GPBCTRL

31 24 16 8 0
| QUALPRD3 | QUALPRD2 | QUALPRD1 | QUALPRDO |
B: reserved reserved GPI0O44-40 GPI039-32
A: GPIO31-24 GPI1023-16 GPIO15-8 GPIO7-0

00h no qualification (SYNC to SYSCLKOUT) *
0lh QUALPRD = SYSCLKOUT/2
02h QUALPRD = SYSCLKOUT/4

FFh QUALPRD = SYSCLKOUT/510 * reset default

C2000 Piccolo Workshop - System Initialization

General-Purpose Digital I/O

GPACTRL
GPAQSEL1
GPAQSEL2
GPAMUX1
GPAMUX2
GPADIR
GPAPUD

F2803x GPIO Control Registers

GpioCtrlRegs.register (lab file: Gpio.c)

GPIO A Control Register [GPIO 0 —31]

GPIO A Qualifier Select 1 Register [GPIO 0— 15]
GPIO A Qualifier Select 2 Register [GPIO 16 — 31]
GPIO A Mux1 Register [GPIO 0 — 15]

GPIO A Mux2 Register [GPIO 16 — 31]

GPIO A Direction Register [GPIO 0 — 31]

GPIO A Pull-Up Disable Register [GPIO 0 — 31]

GPBCTRL
GPBQSEL1
GPBMUX1
GPBDIR
GPBPUD

GPIO B Control Register [GPIO 32 —44]

GPIO B Qualifier Select 1 Register [GPIO 32 — 44]
GPIO B Mux1 Register [GPIO 32 — 44]

GPIO B Direction Register [GPIO 32 — 44]

GPIO B Pull-Up Disable Register [GPIO 32 —44]

AIOMUX1
AIODIR

ANALOG /O Mux1 Register [AIO 0—15]
ANALOG I/O Direction Register [AIO 0— 15]

GPADAT
GPASET
GPACLEAR
GPATOGGLE

F2803x GPIO Data ReGgisters

GpioDataRegs.register (lab file:

pio.c)

GPIO A Data Register [GPIO 0 — 31]
GPIO A Data Set Register [GPIO 0 — 31]
GPIO A Data Clear Register [GPIO 0—31]
GPIO A Data Toggle [GPIO 0 — 31]

GPBDAT
GPBSET
GPBCLEAR
GPBTOGGLE

GPIO B Data Register [GPIO 32 — 44]
GPIO B Data Set Register [GPIO 32 — 44]
GPIO B Data Clear Register [GPIO 32 —44]
GPIO B Data Toggle [GPIO 32 — 44]

AIODAT
AIOSET
AIOCLEAR
AIOTOGGLE

ANALOG /O Data Register [AIO 0 — 15]
ANALOG I/O Data Set Register [AIO 0 — 15]
ANALOG /O Data Clear Register [AIO 0 — 15]
ANALOG /O Data Toggle [AIO 0—15]

C2000 Piccolo Workshop - System Initialization

External Interrupts

External Interrupts

*

External Interrupts

¢ 3 external interrupt signals: XINT1, XINT2
and XINT3

XINT1, XINT2 and XINT3 can be mapped to
any of GPIO0-31

XINT1, XINT2 and XINT3 also each have a
free-running 16-bit counter that measures
the elapsed time between interrupts

+« The counter resets to zero each time the

interrupt occurs

External Interrupt Registers

Interrupt

Pin Selection Register
(GpiolntRegs.register)

Configuration Register
(XIntruptRegs .register)

Counter Register
(XIntruptRegs.register)

XINT1
XINT2
XINT3

GPIOXINT1SEL
GPIOXINT2SEL
GPIOXINT3SEL

XINT1CR
XINT2CR
XINT3CR

XINT1ICTR
XINT2CTR
XINT3CTR

¢ Pin Selection Register chooses which pin(s) the signal comes out on
¢ Configuration Register controls the enable/disable and polarity
¢ Counter Register holds the interrupt counter

C2000 Piccolo Workshop - System Initialization

Low Power Modes

Low Power Modes

Low Power Modes

Low Power |CPU Logic| Peripheral | Watchdog | PLL/
Mode Clock Logic Clock Clock 0SsC
Normal Run on on on on
IDLE off on on on
STANDBY off off on on
HALT off off off off

See device datasheet for power consumption in each mode

Low Power Mode Control Regjister 0
SysCtrIRegs.LPMCRO (lab file: SysCitrl.c

V\‘,’Va;ﬁgg‘;%i'cnéef[g#}t 000000 = 2 OSCCLKSs
STANDBY Wake from STANDBY 000001 = 3 OSCCLKs

0 =disable (default) GPIO signal qualification *

1 =enable \11111'1 = 65 OSCCLKS (default)

15 14-8 7-2 1-0
WDINTE reserved QUALSTDBY LPMO

Low Power Mode Selection

Low Power Mode Entering 00 = Idle (default)
1. Set LPM bits 01 = Standby
1x = Halt

2. Enable desired exit interrupt(s)

3. Execute IDLE instruction

4. The power down sequence of the hardware
depends on LP mode

* %UA_LSTDBY will qualify the GPIO wakeup signalin series with the GPIO port qualification.
This is useful when GPIO port qualification is not available or insufficient for wake-up purposes.

5-14 C2000 Piccolo Workshop - System Initialization

Low Power Modes

Low Power Mode Exit

Exit
GPIO Any
Interrupt
RESET | Port A Vlﬁg?gof Enabled
Low Power Signal P Interrupt
Mode
IDLE yes yes yes yes
STANDBY yes yes yes no
HALT yes yes no no

31

GPIO Low Power Wakeup Select

SysCtrIRegs.GPIOLPMSEL

30 29 28 27 26 25 24

GPIO31

GPIO30|GP1029 |GPIO28|GPIO27|GPI026|GPI025 [GPIO24

23

22 21 20 19 18 17 16

GPI023

GP1022 | GP1021 |GPIO20(GPIO19|GPIO18|GPIO17 |GPIO16

15

14 13 12 11 10 9 8

GPIO15

GPI1014|GPIO13|GPIO12|GPIO11|GPIO10| GPIO9 | GPIO8

7

6 5 4 3 2 1 0

GPIO7

GPIO6 | GPIOS | GPIO4 | GPIO3 | GPIO2 | GPIO1 | GPIOO

—_——
Wake device from
HALT and STANDBY mode
(GPIO Port A)

0 = disable (default)
1=enable

C2000 Piccolo Workshop - System Initialization

Register Protection

Register Protection

Write-Read Protection
DevEmuRegs.DEVICECNF.bit. ENPROT

Suppose you need to write to a peripheral register and
then read a different register for the same peripheral
(e.g., write to control, read from status register)?

¢ CPU pipeline protects W-R order for the same address

¢ Write-Read protection mechanism protects W-R order
for different addresses
+ Peripheral Frame 1 and Peripheral Frame 2 zones protected

+ Write-read protection mode bit ENPROT located in the
DEVICECNF register is enabled by default

Peripheral Frame Registers
PFO PF1

eCAN System Control
COMP SPI
ePWM SCI

eCAP Watchdog

eQEP XINT
Protected address: LIN ADC
0x4000 - Ox7FFF GPIO 2C

EALLOW Protection @of2)

¢ EALLOW stands for Emulation Allow

¢ Code access to protected registers allowed
only when EALLOW =1 in the ST1 register

¢ The emulator can always access protected
registers

¢ EALLOW bit controlled by assembly level
Instructions

+ 'EALLOW: sets the bit (register access enabled)
+ ‘EDIS’ clears the bit (register access disabled)

¢ EALLOW bit cleared upon ISR entry, restored
upon exit

-16 C2000 Piccolo Workshop - System Initialization

Register Protection

EALLOW Protection ¢of2)

The following registers are protected:

Device Emulation

Flash

Code Security Module

PIE Vector Table

LIN (some registers)

eCANA/B (control registers only; mailbox RAM not protected)
ePWM1-7 and COMP1-3 (some registers)

GPIO (control registers only)

System Control

See device datasheet and peripheral users guides for detailed listings

EALLOW register access C-code example:

asm("" EALLOW'™); // enable protected register access
SysCtr IRegs . WDKEY=0x55; // write to the register
asm(*" EDIS™); // disable protected register access

C2000 Piccolo Workshop - System Initialization

Lab 5: System Initialization

Lab 5: System Initialization
» Objective

The objective of this lab is to perform the processor system initialization. Additionally, the
peripheral interrupt expansion (PIE) vectors will be initialized and tested using the information
discussed in the previous module. This initialization process will be used again in all of the lab
exercises throughout this workshop. The system initialization for this lab will consist of the
following:

e Setup the clock module — PLL, LOSPCP = /4, low-power modes to default values, enable all
module clocks

o Disable the watchdog — clear WD flag, disable watchdog, WD prescale = 1

e Setup watchdog system and control register — DO NOT clear WD OVERRIDE bit, WD
generate a CPU reset

e Setup shared I/O pins — set all GPIO pins to GPIO function (e.g. a "00" setting for GP10
function, and a “01”, “10”, or *“11” setting for a peripheral function.)

The first part of the lab exercise will setup the system initialization and test the watchdog
operation by having the watchdog cause a reset. In the second part of the lab exercise the PIE
vectors will be added and tested by using the watchdog to generate an interrupt. This lab will
make use of the DSP2803x C-code header files to simplify the programming of the device, as
well as take care of the register definitions and addresses. Please review these files, and make use
of them in the future, as needed.

> Procedure

Create Project File

1. Create a new project called Lab5.pjtin C:\C28x\Labs\Lab5 and add the
following files to it:

CodeStartBranch.asm Lab 5 6 7.cmd
DelayUs.asm Main_5.c
DSP2803x_GlobalVvariableDefs.c SysCtrl.c
DSP2803x_Headers_nonBI0S.cmd Watchdog.c
Gpio.c

Note that include files, such as DSP2803x_Device.h and Lab.h, are automatically
added at project build time. (Also, DSP2803x_Defaultlsr._h is automatically
added and will be used with the interrupts in the second part of this lab exercise).

5-18 C2000 Piccolo Workshop - System Initialization

Lab 5: System Initialization

Project Build Options

2. We need to setup the search path to include the peripheral register header files. Click:

Project - Build Options..

Select the Compiler tab. In the Preprocessor Category, find the Include Search
Path (-1) box and enter:

. -\DSP2803x_headers\include
This is the path for the header files.
3. Select the Linker tab and set the Stack Size to 0x200.

4. Setup the compiler run-time support library. In the Libraries Category, find the
Include Libraries (-1) boxandenter: rts2800_ml_lib. Select OK and the
Build Options window will close.

Modify Memory Configuration

5. Open and inspect the linker command file Lab_5 6 7 .cmd. Notice that the user
defined section ““codestart” is being linked to a memory block named BEGIN_MO.
The codestart section contains code that branches to the code entry point of the project.
The bootloader must branch to the codestart section at the end of the boot process. Recall
that the "Jump to MO SARAM" bootloader mode branches to address 0x000000 upon
bootloader completion.

Modify the linker command file Lab_5 6_7.cmd to create a new memory block
named BEG IN_MO: origin = 0x000000, length = 0x0002, in program memory. You will
also need to modify the existing memory block MOSARAM in data memory to avoid any
overlaps with this new memory block.

Setup System Initialization

6. Modify SysCtrl.c and Watchdog. c to implement the system initialization as
described in the objective for this lab.

7. Open and inspect Gpio.c. Notice that the shared 1/0O pins have been set to the GPIO
function. Save your work and close the modified files.

Build and Load

8. Clickthe “*Build™ button and watch the tools run in the build window. The output
file should automatically load.

9. Under Debug on the menu bar click “Reset CPU™.

C2000 Piccolo Workshop - System Initialization 5-19

Lab 5: System Initialization

10.

11.

Under GEL on the menu bar click:

EMU Boot Mode Select -> EMU_BOOT_SARAM.

This has the debugger load values into EMU_KEY and EMU_BMODE so that the
bootloader will jump to "MO0 SARAM™" at 0x000000.

Under Debug on the menu bar click “Go Main™. You should now be at the start of
Main().

Run the Code — Watchdog Reset

12.

13.

14.

15.

16.

17.

18.

Place the cursor in the “main loop section (on the asm(* NOP’”) ; instruction
line) and right click the mouse key and select Run To Cursor. This is the same as
setting a breakpoint on the selected line, running to that breakpoint, and then removing
the breakpoint.

Place the cursor on the first line of code in main() and set a breakpoint by right
clicking the mouse key and select Toggle Software Breakpoint. Notice that
line is highlighted with a red dot indicating that the breakpoint has been set. Alternately,
you can double-click in the gray field to the left of the code line to set the breakpoint.
The breakpoint is set to prove that the watchdog is disabled. If the watchdog causes a
reset, code execution will stop at this breakpoint.

Run your code for a few seconds by using the <F5> key, or using the Run button on the
vertical toolbar, or using Debug - Run on the menu bar. After a few seconds halt
your code by using Shift <F5>, or the Halt button on the vertical toolbar. Where did your
code stop? Are the results as expected? If things went as expected, your code should be
in the “main loop”™.

Modify the InitWatchdog() function to enable the watchdog (WDCR). This will
enable the watchdog to function and cause a reset. Save the file and click the “Bui 1d”
button.

Reset the CPU by performing the following steps:
Click on Debug > Reset CPU
Next click Debug > Go Main

Like before, place the cursor in the “main loop” section (on the asm(** NOP**);
instruction line) and right click the mouse key and select Run To Cursor ..

Run your code. Where did your code stop? Are the results as expected? If things went
as expected, your code should have stopped at the breakpoint. What happened is as
follows. While the code was running, the watchdog timed out and reset the processor.
The reset vector was then fetched and the ROM bootloader began execution. Since the
device is in emulation boot mode (i.e. the emulator is connected) the bootloader read the
EMU_KEY and EMU_BMODE values from the PIE RAM. These values were
previously set for boot to MO SARAM bootmode when we invoked the
EMU_BOOT_SARAM GEL function earlier in this lab. Since these values did not change
and are not affected by reset, the bootloader transferred execution to the beginning of our
code at address 0x000000 in the MOSARAM, and execution continued until the
breakpoint was hit in main().

C2000 Piccolo Workshop - System Initialization

Lab 5: System Initialization

Setup PIE Vector for Watchdog Interrupt

The first part of this lab exercise used the watchdog to generate a CPU reset. This was tested
using a breakpoint set at the beginning of main(). Next, we are going to use the watchdog
to generate an interrupt. This part will demonstrate the interrupt concepts learned in the
previous module.

19.

20.

21.

22.

23.

24.

25.

Add the following files to the project:

Defaultlsr_5.c
PieCtrl _5 6

Check your files list to make sure the files are there.

InMain_5.c, add code to call the InitPieCtrl () function. There are no passed
parameters or return values, so the call code is simply:

InitPieCtri();

Using the “PIE Interrupt Assignment Table” shown in the previous module find the
location for the watchdog interrupt, “WAKEINT””. This will be used in the next step.

PIE group #: # within group:

Modify main() to do the following:
- Enable global interrupts (INTM bit)

Then modify InitWatchdog() to do the following:

- Enable the "WAKEINT" interrupt in the PIE (Hint: use the PieCtrIRegs structure)
- Enable the appropriate core interrupt in the IER register

In Watchdog . ¢ modify the system control and status register (SCSR) to cause the
watchdog to generate a WAKEINT rather than a reset. Save all changes to the files.

Open and inspect Defaultlsr_5.c. This file contains interrupt service routines. The
ISR for WAKEINT has been trapped by an emulation breakpoint contained in an inline
assembly statement using “ESTOPOQ”. This gives the same results as placing a breakpoint
in the ISR. We will run the lab exercise as before, except this time the watchdog will
generate an interrupt. If the registers have been configured properly, the code will be
trapped in the ISR.

interrupts. Close the modified and inspected files.

Build and Load

26.

Click the ““Bui 1d”” button. Next reset the CPU, and then “Go Main”.

C2000 Piccolo Workshop - System Initialization 5-21

Lab 5: System Initialization

Run the Code — Watchdog Interrupt

27. Place the cursor in the “main loop” section, right click the mouse key and select
Run To Cursor.

28. Run your code. Where did your code stop? Are the results as expected? If things went
as expected, your code should stop at the “ESTOPOQ” instruction in the WAKEINT ISR.

End of Exercise

Note: By default, the watchdog timer is enabled out of reset. Code in the file
CodeStartBranch.asm has been configured to disable the watchdog. This can be
important for large C code projects (ask your instructor if this has not already been
explained). During this lab exercise, the watchdog was actually re-enabled (or disabled
again) in the file Watchdog.c.

5-22 C2000 Piccolo Workshop - System Initialization

Analog-to-Digital Converter and Comparator

Introduction

This module explains the operation of the analog-to-digital converter and comparator. The ADC
system consists of a 12-bit analog-to-digital converter with up to 16 analog input channels. The
analog input channels have a full range analog input of 0 to 3.3 volts or VREFHI/VREFLO
ratiometric. Two input analog multiplexers are available, each supporting up to 8 analog input
channels. Each multiplexer has its own dedicated sample and hold circuit. Therefore, sequential,
as well as simultaneous sampling is supported. The ADC system is start-of-conversion (SOC)
based where each independent SOCx (where x = 0 to 15) register configures the trigger source
that starts the conversion, the channel to convert, and the acquisition (sample) window size. Up
to 16 results registers are used to store the conversion values. Conversion triggers can be
performed by an external trigger pin, software, an ePWM or CPU timer interrupt event, or a
generated ADCINTZ1/2 interrupt.

Learning Objectives

Learning Objectives

¢ Understand the operation of the
Analog-to-Digital converter (ADC)
and Comparator

¢ Use the ADC to perform data acquisition

C2000 Piccolo Workshop - Analog-to-Digital Converter 6-1

Module Topics

Module Topics

Analog-to-Digital Converter and COMPATATOLc.cooiiiiiiiiie et 6-1
T LU T=TN o ot PSS 6-2
ANAIOG-tO-Digital CONVEITETeueitiitiietiieeeet ettt bbbt b e 6-3

ADC Block and FUNCLIONAT DIAGIAMSc.couerieiiierieiiie ettt 6-3
ADC TIIGGEIING ¢ttt ettt ettt b etk b etk b etk s btk s b e st e b b e bt e b e b e bt besb et et b et 6-4
ADC CONVEISION PIIOTILY ...ttt ettt bbbttt se e sb et be b e e e e e 6-5
ADC CIOCK AN THMING ...ttt ettt bbbt b e et e be b b e sbe bt are e e e e ee 6-7
ADC CONVEIEE REGISEIStitetieteeiete ettt ettt sttt be et e et b e b e b e bt e be et e besbesbesbe bt ase e e eneeee 6-8
ADC Calibration and REFEIENCEciieieiie ettt be e re b 6-13
(0011 T T =1 (0] S PO PPROPPORRPR 6-15
Comparator BIOCK DIgIam.........cccviveieeeieresisesesies e eee e st e te e a e eseesae e e sresresnaenaeeeseseesnenns 6-15
COMPATAtOr REGISTETS ...vveveieieitestisie st e ettt e e st et e eesaeeseeseeseese e bestestesreaneeneeeeneeseenrenres 6-16
Lab 6: ANalog-to-Digital CONVEITETcoveiiieiesiecece ettt e et seesre e e 6-17

6-2 C2000 Piccolo Workshop - Analog-to-Digital Converter

Analog-to-Digital Converter

Analog-to-Digital Converter

ADC Block and Functional Diagrams

ADC Module Block Diagram

ADCINAO —{ ™>_
ADCINALI=mux| [sH RESULTO
: A A
: [RESULT1 |
ADCINA7 — X 12-bit A/D
5 : RESUL T2
ADCINBO —») onverter 5
ADCINB1 = MuUX S/H
: B 5 soc RESULT15
ADCINB7 — {
ADC ADC | ADCINT1-9
ADC full-scale CHSEL Generation [2O Interrupt >
input range is Logic Logic
0t0 3.3V
SOCx Signal ADCINT1
ADCINT2
SOCO [TRIGSEL |CHSEL [ACQPS | ,
SOC1 |[TRIGSEL [CHSEL |[ACQPS | &
SOC2 [TRIGSEL |CHSEL |[ACQPS | & Software
SOC3 |[TRIGSEL |CHSEL [ACQPS | = CPU Timer (0,1,2)
. . . 5 EPWMXSOCA (x=1to 7)
. . . o) EPWMXxSOCB (x=1to 7)
SOC15 [TRIGSEL [CHSELJACQPS | External Pin

SOCx Configuration Registers

(GPIO/XINT2_ADCSOC)

ADCSOCFRC1

Software Trigger |—>

TINTO (CPU Timer 0)—|
TINT1 (CPU Timer 1)—|
TINT2 (CPU Timer 2)—|
XINT2_ADCSOC (GPIO)—|
SOCA (ePWM1)—|

SOCB (ePWM1)—»

N

— Q@@ — = —

SOCA (ePWM7)—»
SOCB (ePWM7)—»)

none
ADCINT1
ADCINT2

Re-
Trigger

ADC SOCx Functional Diagram
ADCSOCXCTL
L» ADCINT1
ADCRESULTX > ADCINT2
|» ADCINT3
> ADCINT4
@_'Channel Sample| | Result
> > . — > ADCINT5
S Select Window| [Register| E
o o | PADCINTE
c c | |»ADCINT?
X X\ > ADCINT8
|» ADCINT9
INTSELxNy
ADCINTSOCSEL1
ADCINTSOCSEL2

This block diagram is replicated 16 times

C2000 Piccolo Workshop - Analog-to-Digital Converter

Analog-to-Digital Converter

ADC Triggering
Example — ADC Triggering wof2)

| Sample A2 B3 2> A7 when ePWM1 SOCB is generated and then generate ADCINT1n: |

socB (ETPWML) 200 Ch;agnel 732%%2 G no interrupt
SOC1 | Channel Sample _

B3 10 cygles Resultl no interrupt
SOC2 | Channel Sample l

A7 4 cycles ADCINT1n

As above, but also sample AO 2 B0 = A5 continuously and generate ADCINT2n:

SOCB (ETPWM1) ——2C0 Ch?\g”e' 75232:?(';; no interrupt
Software Trigger 2 Chzr%nel fggg?leg ADCINT1n
SOC3 Chzrcl)nel 1(S)%rggllgsnointerrupt
ADCINT2n Soc4 Ch%%nel 1%%@5"35 no interrupt
soce [Cagnel]|[SIPE] " Resars }— socnra

Example — ADC Triggering @of2)
| Sample all channels continuously and provide Ping-Pong interrupts to CPU/system: |
Software Triggerj) S0co [Channel Sample Result0 no interrupt
ADCINT2n A0:BO 7cycles Resultl

Soc2 CR?PanI 733% elg Eizﬂ:g no interrupt
soc4 CRZa:anzel 782%');% E:E::‘S‘ no interrupt
soce [Same e oo
Socs CRZ‘Panl 732910':";% I;(Z:j:ttg no interrupt
SOC10 CKSa:anSeI 753%%95 2223::12 nointerrupt
SOC12 cﬂgrllgéal 752%%2 2223:35 no interrupt
e G gl T

6-4 C2000 Piccolo Workshop - Analog-to-Digital Converter

Analog-to-Digital Converter

ADC Conversion Priority

ADC Conversion Priority

¢ When multiple SOC flags are set at the

same time — priority determines the
order in which they are converted

*

Round Robin Priority (default)

+ No SOC has an inherent higher priority than
another

+ Priority depends on the round robin pointer

*

High Priority

+ High priority SOC will interrupt the round robin
wheel after current conversion completes and
insert itself as the next conversion

« After its conversion completes, the round robin

wheel will continue where it was interrupted

Conversion Priority Functional Diagram

2 ([soco T
5 SOC1 SocC Prlorlftfy _
£~ [soc2 Deterrr_unes _cu_to point
- SOC3 for high priority and
2 d robin mode
SOC4 roun
T SOCPRIORITY
SOC5
SOC6 AdcRegs.SOCPRICTL
SOC7
S Soc8 RRPOINTER
& SOC9))
< SOC10 Round Robin Pointer
e} .
c Points to the last converted
5 SOC11 :
ng SOC12 roudnd rob!n SOC(;(and
SOC13 e]Eern:]mers iorner
SOC14 of conversions
\ [soci5

C2000 Piccolo Workshop - Analog-to-Digital Converter

Analog-to-Digital Converter

Round Robin Priority Example

SOCPRIORITY configured as 0;
RRPOINTER configured as 15;
SOCO is highest RR priority

SOC7 trigger received

SOCT7 is converted;
RRPOINTER now points to SOC7;
SOC8 is now highest RR priority

SOC2 & SOC12 triggers received
simultaneously

SOCI12is converted;
RRPOINTER points to SOC12;
SOC13is now highest RR priority

SOC2 is converted;
RRPOINTER points to SOC2;
SOC3 is now highest RR priority

High Priority Example

SOCPRIORITY configured as 4;
RRPOINTER configured as 15;
SOC4 is highest RR priority

SOCY7 trigger received

SOC7 is converted;
RRPOINTER points to SOC7;
SOC8 is now highest RR priority

SOC2 & SOC12 triggers received
simultaneously

SOC2is converted;
RRPOINTER stays pointing to SOC7

SOC12 s converted;
RRPOINTER points to SOC12;
SOC13is now highest RR priority

High Priority

RRPOINTER

C2000 Piccolo Workshop - Analog-to-Digital Converter

Analog-to-Digital Converter

ADC Clock and Timing

ADC Clocking Flow
Internal
0SCl PLLCR PLLSTS
(10 MHz) DIV DIVSEL To CPU
—> " :
bits bits
1100b (x12) 10b (/2) SYSCLKOUT
(60 MHz)
PCLKCRO.ADCENCLK =1 f\
v
To ADC
ADCCLK (60 MHz) pipeline
ADCSOCXCTL)
sampling
ACQ_PS window
L - —>
bits
0110b
sampling window = (ACQ_PS + 1)*(1/ADCCLK)

ADC Timing — Sequential Sampling

Latch Sample Convert Write
2 Clocks 7 Clocks 6 Clocks 7 Clocks 2 Clocks
[T
[TTTTT
[TTTTITTTTTI
m "
Generate Early Generate Late
Interrupt Interrupt

— Start Sampling Next Channel

60 MHz

13 cycles / 1 sample
40 MHz

13 cycles / 1 sample

Max Continuous Sampling:

= 4.62 MSPS

= 3.08 MSPS

C2000 Piccolo Workshop - Analog-to-Digital Converter

Analog-to-Digital Converter

ADC Timing — Simultaneous Sampling

Convert “B” Channel | Write
6 Clocks 7 Clocks 2 Clocks

Latch Sample Convert “A” Channel | Write
2 Clocks 7 Clocks 13 Clocks 2 Clocks
T
[TTTTT
[TTTTTTTTTTT I T T TITITTd
|
Generate Early
Interrupt “A” Channel Generate Late Generate Late
Interrupt “SAL“ Channel Interrupt “B” Channel
Generate Early '—> Start Sampling Next Channel

Interrupt “B” Channel

Max Continuous Sampling:
60 MHz
26 cycles / 2 sample

40 MHz
26 cycles / 2 sample

=4.62 MSPS

= 3.08 MSPS

ADC Converter Registers

Analog-to-Digital Converter Registers
AdcRegs.register (lab file: Adc.c)

Register Description

ADCCTL1 Control 1 Register

ADCSOCXCTL SOCO to SOC15 Control Registers
ADCINTSOCSEL x Interrupt SOC Selection 1 and 2 Registers
ADCSAMPLEMODE | Sampling Mode Register
ADCSOCFLG1 SOC Flag 1 Register

ADCSOCFRC1 SOC Force 1 Register
ADCSOCOVF1 SOC Overflow 1 Register
ADCSOCOVFCLR1 | SOC Overflow Clear 1 Register
INTSELXNy Interrupt x and y Selection Registers
ADCINTFLG Interrupt Flag Register
ADCINTFLGCLR Interrupt Flag Clear Register
ADCINTOVF Interrupt Overflow Register
ADCINTOVFCLR Interrupt Overflow Clear Register
SOCPRICTL SOC Priority Control Register
ADCREFTRIM Reference Trim Register
ADCOFFTRIM Offset Trim Register

ADCREV Revision Register — reserved
ADCRESULTx ADC Result 0 to 15 Registers

Note: ADCRESULTX is located in AdcResult.register and not in AdcRegs

C2000 Piccolo Workshop - Analog-to-Digital Converter

Analog-to-Digital Converter

ADC Control Register 1

Upper Register:

AdcRegs.ADCCTL1

ADC Module Reset ADC Busy ADC Busy Channel
0 =no effect 0= ADC busy When ADCBSY =
1 =reset (set back to 0 1=ADC available 0: last channel converted
by ADC logic) / 1: channel currently processing
15 14 13 12-8
RESET | ADCENABLE | ADCBSY ADCBSYCHN
ADC Enable 00h = ADCINAO 08h = ADCINBO
0 = ADC disable 01h = ADCINA1 09h = ADCINB1
1=ADC enable 02h = ADCINA2 0OAh = ADCINB2
03h = ADCINA3 0Bh = ADCINB3
04h = ADCINA4 0Ch = ADCINB4

05h = ADCINA5
06h = ADCINA6
07h = ADCINA7

0Dh = ADCINB5
OEh = ADCINB6
OFh = ADCINB7

ADC Control Register 1

Lower Register:

ADC Reference

ADC Power Down

0 =analog circuitry
powered down

1 =analog circuitry
powered up

Power

7 6

1 =reference circuitry
powered up

AdcRegs.ADCCTL1

Down Select
0 =reference circuitry 0=internal
powered down 1 = external

5 4 3

ADC Reference

(VREFHINREFLO)

Temperature

Sensor Convert
currently not used
0 =only valid setting

2 1 0

ADCPWN [ADCBGPWN

ADCREFPWD

reserved

ADCREF
SEL

INTPULSE
POS

TEMP
CONV

ADC Bandgap

Power Down

0 = bandgap circuitry
powered down

1 = bandgap circuitry
powered up

INT Pulse
Generation Control
0 = beginning of
conversion
1=one cycle prior
to result

VREFLO Convert
0 =not connected
1 =connected (B5)

C2000 Piccolo Workshop - Analog-to-Digital Converter

Analog-to-Digital Converter

SOCx Trigger

AdcRegs.ADCSOCXCTL

SOCx Channel

ADC SOCO0 - SOC15 Control Registers

SOCx Acquisition

Source Select Select Prescale (S/H window)
15-11 10 9-6 5-0
TRIGSEL reserved CHSEL ACQPS

00h = software

01h =CPU Timer 0
02h =CPU Timer 1
03h =CPU Timer 2
04h = XINT2SOC
05h = ePWM1SOCA
06h = ePWM1SOCB
07h = ePWM2SOCA
08h = ePWM2SOCB
0% = ePWM3SOCA
0Ah = ePWM3SOCB
0Bh = ePWM4SOCA
0Ch = ePWM4SOCB
0ODh = ePWM5SOCA
OEh = ePWM5SOCB
OFh = ePWM6SOCA
10h = ePWM6SOCB
11h =ePWM7SOCA
12h = ePWM7SOCB

Sequential SIM
(SIMUL ENx=0)
Oh = ADCINAO
1h = ADCINA1
2h = ADCINA2
3h = ADCINA3
4h = ADCINA4
5h = ADCINA5
6h = ADCINA6
7h = ADCINA7
8h = ADCINBO
9h = ADCINB1
Ah = ADCINB2
Bh = ADCINB3
Ch = ADCINB4
Dh = ADCINB5
Eh = ADCINB6
Fh = ADCINB7

Simultaneous S/M
(SIMULENXx=1)
0h = ADCINAO/BO
1h = ADCINAYB1
2h = ADCINA2/B2
3h = ADCINA3/B3
4h = ADCINA4/B4
5h = ADCINA5/B5
6h = ADCINA6/B6
7h = ADCINA7/B7
8h — Fh =invalid

Sampling Window
00h — 05h =invalid
06h =7 cycles long
07h =8 cycles long
08h =9 cycles long
0% =10 cycles long

3Fh =64 cycles long

ADC Interrupt Trigger SOC Select
Registers 1 & 2

AdcRegs.ADCINTSOCSELXx

ADCINTSOCSEL2

15-14 13-12

11-10 9-8

7-6 5-4

3-2 1-0

SOC15 SOC14

SOC13 SOC12

SOC11 | SOC10

SOC9 SOC8

ADCINTSOCSEL1

15-14 13-12 11-10 9-8 7-6 5-4 3-2 1-0
SOC7 SOC6 SOC5 SOC4 SOC3 SOC2 SOC1 SOCO
_/

SOCx ADC Interrupt Select
Selects which, if any, ADCINT triggers SOCx
00 =no ADCINT will trigger SOCx (TRIGSEL field determines SOCx trigger)
01 = ADCINT1 will trigger SOCx (TRIGSEL field ignored)
10 = ADCINT2 will trigger SOCx (TRIGSEL field ignored)
11 =invalid selection

C2000 Piccolo Workshop - Analog-to-Digital Converter

Analog-to-Digital Converter

ADC Sample Mode Register

AdcRegs.ADCSAMPLEMODE

Simultaneous Samplin

1 = simultaneous sample

15-8
reserved
7 6 5 4 3 2 1 0
SIMULEN14| SIMULEN12 [SIMULEN10 | SIMULENS | SIMULENG [SIMULEN4 | SIMULEN2 | SIMUL ENO
N _

~

g Enable

Couples SOCx and SOCx+1 in simultaneous sampling mode
0 = single sample mode for SOCx and SOCx+1

mode for SOCx and SOCx+1

SOC Prioritly

Control Register

00h = SOCO last converted, SOCL1 highest priority
01h = SOC1 last converted, SOC2 highest priority
02h = SOC2 last converted, SOC3 highest priority
03h = SOC3 last converted, SOC4 highest priority
04h = SOCA4 last converted, SOCS5 highest priority
05h = SOCES last converted, SOC6 highest priority
06h = SOCE last converted, SOC7 highest priority
07h = SOC7 last converted, SOC8 highest priority
08h = SOCS8 last converted, SOC9 highest priority
09h = SOC9 last converted, SOC11 highest priority
0Ah = SOC10 last converted, SOC11 highest priority
0Bh = SOC11 last converted, SOC12 highest priority
0Ch = SOC12 last converted, SOC13 highest priority
0Dh = SOC13 last converted, SOC14 highest priority
OEh = SOC14 last converted, SOC15 highest priority
OFh = SOC15 last converted, SOCO highest priority
Ixh =invalid selection

20h =reset value (no SOC has been converted)

Points to the last converted
round robin SOCx and
determines order
of conversions

AdcRegs.SOCPRICTL
15-11 10-5 4-0
reserved RRPOINTER SOCPRIORITY
Round Robin Pointer SOC Priority

Determines cutoff point
for high priority and
round robin mode

00h =round robin mode for all channels

01h = SOCO high priority, SOC1-15 round robin

02h = SOCO0-1 high priority, SOC2-15 round robin
03h = SOCO0-2 high priority, SOC3-15 round robin
04h = SOCO0-3 high priority, SOC4-15 round robin
05h = SOCO0-4 high priority, SOC5-15 round robin
06h = SOCO0-5 high priority, SOC6-15 round robin
07h = SOCO0-6 high priority, SOC7-15 round robin
08h = SOCO0-7 high priority, SOC8-15 round robin
09h = SOCO0-8 high priority, SOC9-15 round robin
0Ah = SOC0-9 high priority, SOC10-15 round robin
0Bh = SOCO0-10 high priority, SOC11-15 round robin
0Ch = SOCO0-11 high priority, SOC12-15 round robin
0Dh = SOCO0-12 high priority, SOC13-15 round robin
OEh = SOCO0-13 high priority, SOC14-15 round robin
OFh = SOCO0-14 high priority, SOC15 round robin
10h = all SOCs high priority (arbitrated by SOC #)
1xh =invalid selection

C2000 Piccolo Workshop - Analog-to-Digital Converter

Analog-to-Digital Converter

Interrupt Select x and y Register
AdcRegs.INTSELxNy

Where xfy = 1/2, 3/4,5/6, 7/8, 9/10 and 10 is reserved

15 14 13 12-8
reserved INTYCONT INTYE INTYySEL
7 6 5 4-0
reserved INTXCONT INTXE INTXSEL

I
ADCINTx/y EOC Source Select
00h = EOCO is trigger for ADCINTX/y

ADCINTx/y ADCINTx/y 01h = EOC1 is trigger for ADCINTx/y
Continuous Interrupt Enable 02h =EOC2 is trigger for ADCINTx/y
Mode Enable 0 = disable 03h = EOC3 is trigger for ADCINTx/y
0 = one-shot pulse 1=enable 04h = EOC4 is trigger for ADCINTX/y

05h = EOC5 is trigger for ADCINTx/y

generated (until flag 06h = EOCS6 is trigger for ADCINTX/y

cleared by user) 07h = EOC?7 is trigger for ADCINTx/y
1 = pulse generated for 08h = EOCS8 is trigger for ADCINTx/y
each EOC 09h = EOC9 is trigger for ADCINTx/y

0Ah = EOC10 is trigger for ADCINTX/y
0Bh = EOC11 is trigger for ADCINTX/y
0Ch =EOC12 is trigger for ADCINTx/y
0Dh = EOC13 is trigger for ADCINTx/y
OEh = EOC14 is trigger for ADCINTx/y
OFh = EOC15 is trigger for ADCINTx/y
1xh =invalid value

ADC Conversion Result Registers

AdcResult. ADCRESULTx, x =0-15

] ! O N =

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Input Digital AdcResult.

Voltage Result ADCRESULTX
3.3 FFFh 0000J1111j1111J1111
1.65 7FFh 0000Jj0111j1111j21211
0.00081 1lh 0000]0000]0000|0001
0 Oh 0000]0000]0000|0000

& Sequential Sampling Mode (SIMULENx = 0)
« After ADC completes a conversion of an SOCXx, the digital
resultis placed in the corresponding ADCRESULTX register
¢ Simultaneous Sampling Mode (SIMULENXx = 1)

+ After ADC completes a conversion of a channel pair, the
digital results are found in the corresponding ADCRESULTXx
and ADCRUSULTx+1 registers

6-12 C2000 Piccolo Workshop - Analog-to-Digital Converter

Analog-to-Digital Converter

How Can We Handle Signed Input Voltages?

Example: -1.65V <V, < +1.65V

n —

1) Add 1.65 volts to the Vin : $ R $ C28x

analog input 1.65V ADCINXx

ADCLO

GND

2) Subtract “1.65" from the digital result

#include “DSP2803x_Device.h”
#define offset OxO07FF
void main(void)
{
intl6é value; // signed

value = AdcResult.ADCRESULTO — offset;

ADC Calibration and Reference
Built-lIn ADC Calibration

¢ Tlreserved OTP contains device specific calibration
data for the ADC and internal oscillators

¢ The Boot ROM contains a Device_cal() routine that
copies the calibration data to their respective registers

¢ Device_cal() must be run to meet the ADC and oscillator
specs in the datasheet

+ The Bootloader automatically calls Device_cal() such that no
action is normally required by the user

+ If the bootloader is bypassed (e.g., during development)
Device_cal() should be called by the application:

#define Device_cal (void (*)(void))0x3D7C80
void main(void)
{

(*Device cal)(); // call Device cal()

}

+ A GEL function using CCS is also available as part of the
Peripheral Register Header Files to accomplish this

C2000 Piccolo Workshop - Analog-to-Digital Converter 6-13

Analog-to-Digital Converter

Manual ADC Calibration

¢ Ifthe offset and gain errors in the datasheet* are unacceptable for
your application, or you want to also compensate for board level
errors (e.g., sensor or amplifier offset), you can manually calibrate

& Offset error

« Compensated in analog with :\ _
the ADCOFFTRIM register q = ADCCIEE LY
« No reduction in full-scale range b
5 12-bit

« Configure input B5 to VREFLO,
set ADCOFFTRIM to maximum \
offset error, and take a reading

+ Re-adjust ADCOFFTRIM to
make result zero

¢ Gain error
« Compensated in software
« Some loss in full-scale range

+ Requires use of a second ADC input pin and an upper-range reference
voltage on that pin; see “TMS320280x and TMS320F2801x ADC
Calibration” appnote #SPRAADS8 for more information

¢ Tip: To minimize mux-to-mux variation effects, put your most critical
signals on a single mux and use that mux for calibration inputs

ADC

o]
a1

Treereee

i---- VREFL OCONV
VREFLO

* +/-15 LSB offset, +/-30 LSB gain. See device datasheet for exact specifications

ADC Reference Selection
AdcRegs . ADCREFSEL

¢ Theinternal reference has temperature stability of ~50 PPM/°C*

¢ Theinternal reference (default) will convert an applied input
voltage to a fixed scale of 0to 3.3V range

& [f this is not sufficient for your application, there is the option to
use an external reference*

« External reference will scale an input voltage range from VREFLO to
VREFHI (ratiometric)

« The reference value changes the 0 - 3.3 V full-scale range of the ADC
¢ The ADCREFSEL in ADCCTL1 controls the reference choice

15-5 4 3 2-0

reserved | ADCREFSEL
I

ADC Reference Selection

0 =internal (default)

1 = external VREFHI/VREFLO pins
used for reference generation

* See device datasheet for exact specifications and ADC reference hardware connections

6-14 C2000 Piccolo Workshop - Analog-to-Digital Converter

Comparator

Comparator

Comparator Block Diagram

Comparator
[AO ®
BO @
[Al [
Ble
A2 / | .
[* —{A102] [10-bit COMPlOUT
—AlO10| | DAC
B2
. N 1
[AS [
B3 e
d
[A4C —[AI04] [10bit COMponT ADC
—AIO12| | DAC
B4
hd \ 1
A5 @
B5 ®
A6 e / .
[—{AI06 | [10-bit W COMP30UT
—AIO14 DAC
B6 @ \ .
[A? [
B7 @
Comparator Block Diagram
COMPDACE
Input Pin A
. ePWM
Input Pin B Event
Voon — SYSCIIKOUT COMPXTRIP Tri(g&ger
Vesa — SynC/ GPIO
Qual MUX
DACVAL COMPSOURCE CMPINV QUALSEL COMPSTS
DAC Reference Comparator Truth Table
DACVAL * (Vops — Vssa) Voltages Output
V= 1023 Voltage A < Voltage B 0
Voltage A > Voltage B 1

C2000 Piccolo Workshop - Analog-to-Digital Converter 6-15

Comparator

Comparator Registers

Comparator Registers

AdcRegs.COMPCTL — Compare Control Register

15-9 8 7-3 2 1 0
[reserved| SYNCSEL | QUALSEL | CMPINV |[COMPSOURCE | COMPDACE |
Synchronization Select Qualification |nvert Comparator Comparator/
Output before being feed Period 0=passed Source DAC Enable
to ETPWM/GPIO blocks 0Oh = passed 1=inverteq 0=DAC 0 =disable
0 = Asynchronous 1lh =2clocks 1=pin 1 =enable

1= Synchronous 2h = 3 clocks
Fh =15 clocks
AdcRegs.COMPSTS — Compare Output Status Register
15-1 0
| reserved COMPSTS |

AdcRegs.DACVAL — DAC Value Register

Logical latched value of the comparator

15-10 9-0
| reserved DACVAL |
DAC Value

Scales output of DAC from 0 — 1023
Value = 0— 3FFh

C2000 Piccolo Workshop - Analog-to-Digital Converter

Lab 6: Analog-to-Digital Converter

Lab 6: Analog-to-Digital Converter
» Objective

The objective of this lab is to become familiar with the programming and operation of the on-chip
analog-to-digital converter. The MCU will be setup to sample a single ADC input channel at a
prescribed sampling rate and store the conversion result in a memory buffer. This buffer will
operate in a circular fashion, such that new conversion data continuously overwrites older results

in the buffer.
Lab 6: ADC Sampling
+3.3V Toggle
GND (GPIO20) (GPIO18)
® ® data
ADC _ memory
connector CPU copies result
- to buffer during
wire RESULTO ADC ISR E
3
ADCINAO -
- 2
[N - c
| ePWM2 triggering - 'g_
I ADC on period match
! using SOCA trigger every EI
i View ADC
! 20 us (50 kHz) @ b:ﬁrvér D
; Samples
Code Composer
Studio
ePWM2

Recall that there are three basic ways to initiate an ADC start of conversion (SOC):

1. Using software
a. SOCx bit (where x =0 to 15) in the ADC SOC Force 1 Register (ADCSOCFRC1) causes a
software initiated conversion
2. Automatically triggered on user selectable conditions
a. CPU Timer 0/1/2 interrupt
b. ePWMxSOCA / ePWMxSOCB (where x =1t0 7)
- ePWM underflow (CTR =0)
- ePWM period match (CTR = PRD)
- ePWM underflow or period match (CTR =0 or PRD)
- ePWM compare match (CTRU/D = CMPA/B)
c. ADC interrupt ADCINT1 or ADCINT2
- triggers SOCx (where x = 0 to 15) selected by the ADC Interrupt Trigger SOC Select1/2
Register (ADCINTSOCSEL1/2)
3. Externally triggered using a pin
a. ADCSOC pin (GPIO/XINT2_ADCSOC)

One or more of these methods may be applicable to a particular application. In this lab, we will
be using the ADC for data acquisition. Therefore, one of the ePWMs (ePWM2) will be

C2000 Piccolo Workshop - Analog-to-Digital Converter 6-17

Lab 6: Analog-to-Digital Converter

configured to automatically trigger the SOC A signal at the desired sampling rate (ePWM period
match CTR = PRD SOC method 2b above). The ADC end-of-conversion interrupt will be used
to prompt the CPU to copy the results of the ADC conversion into a results buffer in memory.
This buffer pointer will be managed in a circular fashion, such that new conversion results will
continuously overwrite older conversion results in the buffer. In order to generate an interesting
input signal, the code also alternately toggles a GPIO pin (GP1018) high and low in the ADC
interrupt service routine. The ADC ISR will also toggle LED LD3 on the Control CARD as a
visual indication that the ISR is running. This pin will be connected to the ADC input pin, and
sampled. After taking some data, Code Composer Studio will be used to plot the results. A flow
chart of the code is shown in the following slide.

Lab 6: Code Flow Diagram

General Initialization ADC interrupt

«PLL and clocks

e watchdog configure

» GPIO setup

*PIE |n|t|allzat|on Main Loo ADC ISR

; *read the ADC result

ADC Initialization i ey »write to result buffer

e convert cﬁa_mne AOon { « adjust the buffer pointer
ePWM2 period match } *toggle the GPIO pin

e send interrupt on
every conversion

e setup aresults buffer
in memory

e return from interrupt

[} return
ePWMZ2 Initialization
e clear counter
* set period register
*set to trigger ADC on —
period match
 set the clock prescaler
e enable the timer

Notes

Program performs conversion on ADC channel A0 (ADCINAO pin)
ADC conversion is set at a 50 kHz sampling rate

ePWM2 is triggering the ADC on period match using SOCA trigger
Data is continuously stored in a circular buffer

GPI1018 pin is also toggled in the ADC ISR

ADC ISR will also toggle the Control CARD LED LD3 as a visual indication that it is
running

C2000 Piccolo Workshop - Analog-to-Digital Converter

Lab 6: Analog-to-Digital Converter

» Procedure

Project File

1.

A project named Lab6.pjt has been created for this lab. Open the project by clicking
onProject > Open.. and look in C:\C28x\Labs\Lab6. All Build Options
have been configured the same as the previous lab. The files used in this lab are:

Adc.c Gpio.c
CodeStartBranch.asm Lab 5 6 7.cmd
Defaultlsr_6.c Main_6.c

DelayUs.asm PieCtrl 5 6 7 8 9 10.c
DSP2803x_GlobalVvariableDefs.c Pievect 5 6 7 8 9 10.c
DSP2803x_Headers_nonBI0S.cmd SysCtrl.c

EPwm_6.cC Watchdog.c

Setup ADC Initialization and Enable Core/PIE Interrupts

2.

In Main_6.c add code to call InitAdc() and InitEPwm() functions. The
InitEPwm() function is used to configure ePWM2 to trigger the ADC at a 50 kHz rate.
Details about the ePWM and control peripherals will be discussed in the next module.

Edit Adc. c to implement the ADC initialization as described above in the objective for
the lab. Configure SOCO for single sample mode, with an acquisition sample window of
7 cycles. Don’t use the ADCINT to trigger a SOCO, and have all SOCs handled in
round-robin mode. Enable ADCINT1 interrupt with EOCO as the trigger for ADCINTL.
Continuously generate an ADCINT1 pulse for each EOC.

Using the “PIE Interrupt Assignment Table” find the location for the
ADC interrupt “ADCINTL”” (high-priority) and fill in the following information:

PIE group #: # within group:
This information will be used in the next step.

Modify the end of Adc. c to do the following:

- Enable the "ADCINT" interrupt in the PIE (Hint: use the PieCtrlRegs structure)
- Enable the appropriate core interrupt in the IER register

Open and inspect Defaultlsr_6.c. This file contains the ADC interrupt service
routine.

Build and Load

7.
8.

Save all changes to the files and click the ““Bui 1d”” button.

Reset the CPU, select EMU_BOOT_SARAM, and then ““Go Main”.

C2000 Piccolo Workshop - Analog-to-Digital Converter 6-19

Lab 6: Analog-to-Digital Converter

Run the Code

9.

10.

In Main_6.c place the cursor in the “main Boop” section, right click on the mouse
key and select Run To Cursor.

Open a memory window to view some of the contents of the ADC results buffer. The
address label for the ADC results buffer is AdcBuf.

Note:

Exercise care when connecting any wires, as the power to the USB Docking Station is
on, and we do not want to damage the ControlCARD!

11.

12.

13.

14.

Using a connector wire provided, connect the ADCINAO (pin # ADC-AQ) to “GND” (pin
GND) on the Docking Station. Then run the code again, and halt it after a few seconds.
Verify that the ADC results buffer contains the expected value of 0x0000.

Adjust the connector wire to connect the ADCINAO (pin # ADC-AQ) to “+3.3V” (pin #
GPI10-20) on the Docking Station. (Note: pin # GP10-20 has been set to “1” in Gpio.c).
Then run the code again, and halt it after a few seconds. Verify that the ADC results
buffer contains the expected value of OxXOFFF.

Adjust the connector wire to connect the ADCINAO (pin # ADC-AOQ) to GP1018 (pin #
GPI10-18) on the Docking Station. Then run the code again, and halt it after a few
seconds. Examine the contents of the ADC results buffer (the contents should be
alternating 0x0000 and OxOFFF values). Are the contents what you expected?

Open and setup a graph to plot a 50-point window of the ADC results buffer.
Click: View > Graph - Time/Frequency.. and set the following values:

Start Address AdcBuf

Acquisition Buffer Size 50

Display Data Size 50

DSP Data Type 16-bit unsigned integer
Sampling Rate (Hz) 50000

Time Display Unit us

Select OK to save the graph options.

15.

Recall that the code toggled the GP1018 pin alternately high and low. (Also, the ADC
ISR is toggling the LED LD3 on the ControlCARD as a visual indication that the ISR is
running). If you had an oscilloscope available to display GP1018, you would expect to
see a square-wave. Why does Code Composer Studio plot resemble a triangle wave?
What is the signal processing term for what is happening here?

C2000 Piccolo Workshop - Analog-to-Digital Converter

Lab 6: Analog-to-Digital Converter

16. Recall that the program toggled the GP1018 pin at a 50 kHz rate. Therefore, a complete
cycle (toggle high, then toggle low) occurs at half this rate, or 25 kHz. We therefore
expect the period of the waveform to be 40 ps. Confirm this by measuring the period of
the triangle wave using the graph (you may want to enlarge the graph window using the
mouse). The measurement is best done with the mouse. The lower left-hand corner of
the graph window will display the X and Y axis values. Subtract the X-axis values taken
over a complete waveform period.

Using Real-time Emulation

Real-time emulation is a special emulation feature that offers two valuable capabilities:

A. Windows within Code Composer Studio can be updated at up to a 10 Hz rate while the
MCU is running. This not only allows graphs and watch windows to update, but also
allows the user to change values in watch or memory windows, and have those
changes affect the MCU behavior. This is very useful when tuning control law
parameters on-the-fly, for example.

B. It allows the user to halt the MCU and step through foreground tasks, while specified
interrupts continue to get serviced in the background. This is useful when debugging
portions of a realtime system (e.g., serial port receive code) while keeping critical
parts of your system operating (e.g., commutation and current loops in motor control).

We will only be utilizing capability #1 above during the workshop. Capability #2 is a
particularly advanced feature, and will not be covered in the workshop.

17. Reset the CPU, and then enable real-time mode by selecting:
Debug -> Real-time Mode

A message box may appear. Select YES to enable debug events. This will set bit 1
(DBGM bhit) of status register 1 (ST1) to a “0”. The DBGM is the debug enable mask bit.
When the DBGM bit is set to “0”, memory and register values can be passed to the host
processor for updating the debugger windows.

18. The memory and graph windows displaying AdcBuf should still be open. The connector
wire between ADCINADO (pin # ADC-AQ) and GPI018 (pin # GP10-18) should still be
connected. In real-time mode, we would like to have our window continuously refresh.
Click:

View - Real-time Refresh Options..

and check “Global Continuous Refresh”. Use the default refresh rate of 100
ms and select OK. Alternately, we could have right clicked on each window individually
and selected “Continuous Refresh”.

C2000 Piccolo Workshop - Analog-to-Digital Converter 6-21

Lab 6: Analog-to-Digital Converter

19.

20.

21.

22.

Note: “Global Continuous Refresh” causes all open windows to refresh at the
refresh rate. This can be problematic when a large number of windows are open, as
bandwidth over the emulation link is limited. Updating too many windows can cause the
refresh frequency to bog down. In that case, either close some windows, or disable
global refresh and selectively enable “Continuous Refresh” for individual
windows of interest instead.

Run the code and watch the windows update in real-time mode. Carefully remove and
replace the connector wire from GPI10O18. Are the values updating as expected?

Fully halting the CPU when in real-time mode is a two-step process. First, halt the
processor with Debug - Halt. Then uncheck the ““Real-time mode” to take
the CPU out of real-time mode (Debug > Real-time Mode).

So far, we have seen data flowing from the MCU to the debugger in realtime. In this
step, we will flow data from the debugger to the MCU.

e Open and inspect Defaultlsr_6.c. Notice that the global variable
DEBUG_TOGGLE is used to control the toggling of the GP10O18 pin. This is the pin
being read with the ADC.

e Highlight DEBUG_TOGGLE with the mouse, right click and select ““Add to
Watch Window”. The global variable DEBUG_TOGGLE should now be in the
watch window with a value of “1”.

e Run the code in real-time mode and change the value to “0”. Are the results shown
in the memory and graph window as expected? Change the value back to “1”. As
you can see, we are modifying data memory contents while the processor is running
in real-time (i.e., we are not halting the MCU nor interfering with its operation in any
way)! When done, fully halt the CPU.

Code Composer Studio includes GEL (General Extension Language) functions which
automate entering and exiting real-time mode. Four functions are available:

e Run_Realtime_with_Reset (reset CPU, enter real-time mode, run CPU)

e Run_Realtime_with_Restart (restart CPU, enter real-time mode, run CPU)
e Full_Halt (exit real-time mode, halt CPU)

e Full _Halt with_Reset (exit real-time mode, halt CPU, reset CPU)

These GEL functions can be executed by clicking:

GEL - Realtime Emulation Control -> GEL Function

In the remaining lab exercises we will be using the above GEL functions to run and halt
the code in real-time mode. If you would like, try repeating the previous step using the
following GEL functions:

GEL - Realtime Emulation Control - Run_Realtime_with_Reset
GEL - Realtime Emulation Control -> Full_Halt

End of Exercise

C2000 Piccolo Workshop - Analog-to-Digital Converter

Control Peripherals

Introduction

This module explains how to generate PWM waveforms using the ePWM unit. Also, the eCAP
unit, and eQEP unit will be discussed.

Learning Objectives

Learning Objectives

2

Pulse Width Modulation (PWM) review

¢ Generate a PWM waveform with the
Pulse Width Modulator Module (ePWM)

¢ Usethe Capture Module (eCAP) to
measure the width of a waveform

¢ Explain the function of Quadrature
Encoder Pulse Module (eQEP)

Note: Different numbers of ePWM, eCAP, and eQEP modules are available on F2803x and
F2802x devices. See the device datasheet for more information.

C2000 Piccolo Workshop - Control Peripherals 7-1

Module Topics

Module Topics

L0001 (o] =T T o] TCT - LSS 7-1
Y ToTo LU [T oo (ot SO RT PR URTUSUSR 7-2
PWIM REVIBW ...ttt ettt et bbbttt bbbt e st b s et et e sttt ne e 7-3
BPWIML. ettt bR bR bR bt R e bt e R e b et et et et Reebe e et e ebe st ereerenrereas 7-5

EPWM Time-Base SUD-IMOUUIEcoviiiiiiiiiiisiees et 7-6
ePWM Compare SUD-MOTUIEcoeiiiiiecccc e bbbt 7-9
ePWM Action Qualifier SUD-MOGUIE..........ccoviieiecc e e e 7-11
Asymmetric and Symmetric Waveform Generation using the ePWMc..ccccevevvvevevccnicnie e, 7-16
PWM Computation EXAMPIE.........ccviiviieieriee st ss e et a ettt re e enaesaessennennens 7-17
ePWM Dead-Band SUD-MOTUIE. ..o 7-18
ePWM PWM Chopper SUD-MOTUIE ..ot 7-21
ePWM Digital Compare SUD-IMOUUIEccooiiiiiiieei e 7-24
EPWM Trip-Z0oNne SUD-IMOGUIE..........ccoiuiiiiiieiee et 7-27
ePWM Event-Trigger SUD-IMOGUIE ..o e 7-30
Hi-Resolution PWIM (HRPWIM)ciiiiiiiiiiiincise ettt nnens 7-33
LT Y OSSP 7-34
LT TSSOSO USRS 7-40
=1 o I A 0o g1 o] I =T] LT LSS 7-42

C2000 Piccolo Workshop - Control Peripherals

PWM Review

PWM Review
What is Pulse Width Modulation?

¢ PWM is ascheme to represent a
signal as a sequence of pulses

+ fixed carrier frequency
+ fixed pulse amplitude

+ pulse width proportional to
Instantaneous signal amplitude

+ PWM energy ~ original signal energy

-
Original Signal PWM representation

Pulse width modulation (PWM) is a method for representing an analog signal with a digital
approximation. The PWM signal consists of a sequence of variable width, constant amplitude
pulses which contain the same total energy as the original analog signal. This property is
valuable in digital motor control as sinusoidal current (energy) can be delivered to the motor
using PWM signals applied to the power converter. Although energy is input to the motor in
discrete packets, the mechanical inertia of the rotor acts as a smoothing filter. Dynamic motor
motion is therefore similar to having applied the sinusoidal currents directly.

C2000 Piccolo Workshop - Control Peripherals 7-3

PWM Review

Wh\é use PWM with Power
witching Devices?
¢ Desired output currents or voltages are known

¢ Power switching devices are transistors
« Difficult to control in proportional region
+ Easy to control in saturated region

¢ PWMis adigital signal = easy for DSP to output

DC Supply DC Supply
? L
' _ PWM
D_es'rle? PWM approx.
signalto of desired
/\/\j system signal
Unknown Gate Signal Gate Signal Known with PWM

7-4 C2000 Piccolo Workshop - Control Peripherals

ePWM

ePWM

ePWM Module Signals and Connections

_/—'—M
ePWMx-1
EPWMxSYNCI EPWMXTZINT
GPIO TZ71 -TZ3 PIE
MUX EPWMXINT
€QEP1 EQEP1ERR —TZ4 EPWMxA
GPIO
svsorr, CLockraiL - 175 | €PWMX EPWMXE | MU
cPU EMUSTOP — TZ6
EPWMxSOCA
COMP —S2MPxCUT EPWMxSOCB | ADC
EPWMxSYNCO
ePWMx+1
—]
ePWM Block Diagram
Shadowed Shadowed
Clock Compare Compare
Prescaler Register Register
Tim16e-glz;se Compare Action Dead
TBCLK Counter Logic Qualifier Band _‘
EPWMxXSYNCI EPWMxSYNCO .
Period
................. Register L S = EPWMxA
rip
i [EEETE Chopper Zone —
SYSCLKOUT EPWMxB
I_t TZy

Digital [121-123
Compare

COMPxOUT

C2000 Piccolo Workshop - Control Peripherals

ePWM

ePWM Time-Base Sub-Module

v

ePWM Time-Base Sub-Module
Shadowed Shadowed
Clock Compare Compare
Prescaler Register Register
Tiriz-gletlse | Compare Action Dead
ek | counter Logic Qualifier Band
14 v
EPWMxSYNCI EPWMxXSYNCO N
Period
LLLLEE L Reg|ste|’ L - EPWMxA
. ST PWM Trip
H Chopper Z0Ne p——
SYSCLKOUT EPWMxB
r__j TZy
Digital e 721723
Compare [&=—— COMPXOUT

ePWM Time-Base Count Modes

TBCTR

TBPRD

Asymmetrical
Waveform

TBCTR

TBPRD

Count Up Mode

Asymmetrical

Waveform
Count Down Mode
TBCTR
TBPRD |. -
Symmetrical
Waveform

Count Up and Down Mode

C2000 Piccolo Workshop - Control Peripherals

ePWM

ePWM Phase Synchronization

Ext. Syncln
i \/\
[] 1
1] L}
1 1 1

(optional) L

Phase En _ Syncin

0 OT EPWM1A

CTR=zero
CTR=CMPB:O?\°— EPWM1B

X=—0

SyncOut
To eCAP1
Syncin
Phase Egn Syncin !
$=120° [«—0—"T + [EPWM2A $=120° ;
Q 1
CTR=zero—o E 1
CTR=CMPB—0 U EPWM2B ! !
X=——0 } T

SyncOut

Syncin |
Phase En y | g=120° |
$=240° j¢=—0—"0 ' [EPWM3A —
h— :

CTR=zero—9]
CTR=CMPB—0 O EPWM3B
X—0 " :
SyncOut e $=240° —»

ePWM Time-Base Sub-Module Registers

(lab file: EPwm.c)

Name Description Structure

TBCTL Time-Base Control EPwmxRegs.TBCTL .all =
TBSTS Time-Base Status EPwmxRegs.TBSTS.all =
TBPHS Time-Base Phase EPwmxRegs.TBPHS =
TBCTR Time-Base Counter EPwmxRegs.TBCTR =
TBPRD Time-Base Period EPwmxRegs.TBPRD =

C2000 Piccolo Workshop - Control Peripherals 7-7

ePWM

ePWM Time-Base Control Register

EPwmxRegs. TBCTL
Upper Register:

Phase Direction
0=count down after sync

1=co TBCLK =SYSCLKOUT / (HSPCLKDIV * CLKDIV)
unt up after sync N
~ ™~
15-14 13 12-10 9-7
FREE_SOFT PHSDIR CLKDIV HSPCLKDIV
Emulation Halt Behavior TB Clock Prescale High Speed TB
00 = stop after next CTR inc/dec 000 =/1 (default) Clock Prescale
01 =stop when: 001=/2 000=1/1
Up Mode; CTR = PRD 010 =/4 001 =/2 (default)
Down Mode; CTR=0 011 =/8 010 =/4
Up/Down Mode; CTR =0 100 =/16 011=1/6
1x = free run (do not stop) 101 =/32 100 =/8
110 =/64 101 =/10
111 =/128 110 =/12
111 =/14

(HSPCLKDIV is for legacy compatibility)

ePWM Time-Base Control Register

EPwmxRegs.TBCTL

Lower Register:
Counter Mode
00 =countup

Software Force Sync Pulse 01 = count down

0 =no action 10 =count up and down
1 =force one-time sync 11 = stop — freeze (default)
6 5-4 3 2 1-0
SWFSYNC SYNCOSEL PRDLD PHSEN CTRMODE

Sync Output Select Period Shadow Load Phase Reg. Enable
(source of EPWMxSYNCO signal) 0=load on CTR=0 0 =disable
00 = EPWMxSYNCI 1=load immediately 1=CTR=TBPHS on
01=CTR=0 EPWMxSYNCI signal

10 =CTR = CMPB
11 =disable SyncOut

C2000 Piccolo Workshop - Control Peripherals

ePWM

ePWM Compare Sub-Module

ePWM Compare Sub-Module
.| Clock Compare
Prescaler Register
Tiri?e-gletlse Compare P Action Dead
TBCLK Counter Logic |[e=eppiQualifier Band _‘
EPWMxSYNCI EPWMxSYNCO N
Period
Register L - EPWMxA
Shadowed PWM Trip
i Chopper Z0Ne p——
SYSCLKOUT EPWMxB
I_t TZy
Digital (e 721123
Compare [&=—— COMPXOUT

TBCTR,

TBPRD

CMPA
CMPB

ePWM Compare Event Waveforms

3 | e = compare events are fed to the Action Qualifier Sub-Module |

-[---—Asymmetrical
Waveform

TBCTR

TBPRD | oom oo pg-mmmmmmmm o m o mmmmmmmmm s m G mmmmm e m e

CMPA ----- TTTTTTTTAsymmetrical

CMPB F------ -------- Waveform
Count Down Mode

TBCTR 4

TBPRD |.

CMPA ====--- Symmetrical

CMPB Waveform

Count Up and Down Mode

C2000 Piccolo Workshop - Control Peripherals

ePWM

ePWM Compare Sub-Module Registers

(lab file: EPwm.c)

Name Description Structure

CMPCTL Compare Control EPwmxRegs.CMPCTL.all =
CMPA Compare A EPwmxRegs.CMPA =
CMPB Compare B EPwmxRegs.CMPB =

ePWM Co mpare Control Register
EPwmxRegs.CMPCTL
CMPA and CMPB Shadow Full Flag
(bit automatically clears on load)
0 = shadow not full
1 =shadow full
A
I ™
15-10 9 8 7
reserved SHDWBFULL | SHDWAFULL [reserved
6 5 4 3-2 1-0
SHDWBMODE | reserved | SHDWAMODE LOADBMODE LOADAMODE
~— -
N
CMPA and CMPB Operating Mode CMPA and CMPB Shadow Load Mode
0 = shadow mode; 00 =load on CTR=0
double buffer w/ shadow register 01 =load on CTR = PRD
1=immediate mode; 10 =load on CTR =0 or PRD
shadow register not used 11 =freeze (no load possible)

7-10 C2000 Piccolo Workshop - Control Peripherals

ePWM

ePWM Action Qualifier Sub-Module

ePWM Action Qualifier Sub-Module

Shadowed Shadowed
.| Clock Compare J Compare J
Prescaler Register Register
LTirﬁiEﬁse Compare Action [e==mp Dead
BCK | counter Logic —]Qualifier jumpp/ Band _‘
t1!
EPWMxSYNCI EPWMxXSYNCO
Period |
................. s Register L - EPWMxA
i Shaioied PWM Trip
i [Shadowed Chopper Zone —
SYSCLKOUT EPWMxB
I_t TZy
Digital e 721723
Compare [&=—— COMPXOUT
ePWM Action Qualifier Actions
for EPWMA and EPWMB
Time-Base Counter equals: EPWM
FS/W Output
orce Zero | CMPA | CMPB | TBPRD | Actions
SW Z CA CB P ,
Do Nothin
X X X X X J
SW V4 CA CB P
Clear Low
J 1 ! ! v
SW Z CA CB P :
Set High
T T))) s
SW Z CA CB P Toggle
T T T T T

C2000 Piccolo Workshop - Control Peripherals

ePWM

ePWM Count Up Asymmetric Waveform

with Independent Modulation on EPWMA / B
TBCTR

TBPRD }---------

EPWMA

z|lP| [cB CA zl||P| |cB CA z\llP
T X| | X Y| x| | X Y| | T X

L

zI|[p] [cB CA z|[P] [cB CA
T x| [X [T x| [X

| =N
BB

EPWMB

ePWM Count Up Asymmetric Waveform

with Independent Médulation on EPWMA
TBCTR

TBPRD

cAl [cB caAl [cB
T v . T Y
EPWMA | i |
1 i I
z z z
T T T
EPWMB |

C2000 Piccolo Workshop - Control Peripherals

ePWM

ePWM Count Up-Down Symmetric

Waveform
with Independent Modulation on EPWMA / B

TBCTR

TBPRD

EPWMA |

EPWMB |

ePWM Count Up-Down Symmetric

Waveform
with Independent Modulation on EPWMA

TBCTR

TBPRD

C2000 Piccolo Workshop - Control Peripherals 7-13

ePWM

ePWM Action Qualifier Sub-Module

Registers
(lab file: EPwm.c)

Name Description Structure

AQCTLA AQ Control Output A EPwmxRegs.AQCTLA.all =
AQCTLB AQ Control Output B EPwmxRegs.AQCTLB.all =
AQSFRC AQ S/W Force EPwmxRegs.AQSFRC.all =
AQCSFRC AQ Cont. S/W Force EPwmxRegs.AQCSFRC.all =

ePWM Action Qualifier Control Register

EPwmxRegs.AQCTLy (y =Aor B)

Action when Action when

CTR = CMPB CTR = CMPA Action when

on UP Count on UP Count CTF‘Q =0
15-12 11- 10 9-8 7-6 5-4 3-2 1-0
reserved CBD CBU CAD CAU PRD ZRO

Action when
CTR = PRD

Action when Action when
CTR =CMPB CTR = CMPA
on DOWN Count on DOWN Count

00 = do nothing (action disabled)

01 =clear (low)

10 = set (high)

11 =toggle (low — high; high —» low)

7-14 C2000 Piccolo Workshop - Control Peripherals

ePWM

15-8

ePWM Action Qualifier
S/W Force Re%l:ster

EPwmxRegs.AQS

7-6

One-Time S/W Force on Output B / A
0 =no action
1 =single s/w force event

T

5

4-3 2 1-0

reserved

RLDCSF

OTSFB

ACTSFB OTSFA ACTSFA

AQSFRC Shadow Reload Options
00 =load on event CTR =0

01 =load on event CTR = PRD
10 =load on event CTR =0 or CTR = PRD
11 = load immediately (from active reg.)

Action on One-Time S/W Force B/ A
00 =do nothing (action disabled)

0l =clear (Iowg

10 = set (high)

11 =toggle (low — high; high - low)

ePWM Action Qualifier Continuous
S/W Force Register

EPwmxRegs.AQCSFRC

15-4

3-2 1-0

reserved

CSFB CSFA

\/

Continuous S/W Force on OutputB /A
00 =forcing disabled
01 =force continuous low on output

10 =force continuous high on output
11 =forcing disabled

C2000 Piccolo Workshop - Control Peripherals

ePWM

Asymmetric and Symmetric Waveform Generation using
the ePWM

PWM switching frequency:

The PWM carrier frequency is determined by the value contained in the time-base period register,
and the frequency of the clocking signal. The value needed in the period register is:

Asymmetric PWM: period register = (SW'tCh'ng pe”OdJ 1

timer period

switching period
2(timer period)

Symmetric PWM: period register =

Notice that in the symmetric case, the period value is half that of the asymmetric case. This is
because for up/down counting, the actual timer period is twice that specified in the period register
(i.e. the timer counts up to the period register value, and then counts back down).

PWM resolution:

The PWM compare function resolution can be computed once the period register value is
determined. The largest power of 2 is determined that is less than (or close to) the period value.
As an example, if asymmetric was 1000, and symmetric was 500, then:

Asymmetric PWM: approx. 10 bit resolution since 2'° = 1024 ~ 1000

Symmetric PWM: approx. 9 bit resolution since 2° = 512 ~ 500

PWM duty cycle:

Duty cycle calculations are simple provided one remembers that the PWM signal is initially
inactive during any particular timer period, and becomes active after the (first) compare match
occurs. The timer compare register should be loaded with the value as follows:

Asymmetric PWM: TXCMPR = (100% - duty cycle) * TXxPR

Symmetric PWM: TxCMPR = (100% - duty cycle) * TxPR

Note that for symmetric PWM, the desired duty cycle is only achieved if the compare registers
contain the computed value for both the up-count compare and down-count compare portions of
the time-base period.

C2000 Piccolo Workshop - Control Peripherals

ePWM

PWM Computation Example

Symmetric PWM Computation Example

¢ Determine TBPRD and CMPA for 60 kHz, 25% duty
symmetric PWM from a 60 MHz time base clock

|._ fown = 60 kHz _.|
Peri Od R \
Compare

7
Counter T ‘L

“— figeLk = 60 MHz
PWM Pin 4| |—

TBPRD = . frecc 1 60MHZ -,

foon 2 60 KkHz
CMPA = (100% - duty cycle)*TBPRD = 0.75*500 = 375

Asymmetric PWM Computation Example

¢ Determine TBPRD and CMPA for 60 kHz, 25% duty
asymmetric PWM from a 60 MHz time base clock

|._ fop = 60 kHz _.|

Period
Compare
Counter
PWM Pin
@R 60 MHz
= -1= -1=999
TBPRD =~ 60 kHz

CMPA = (100% - duty cycle)*(TBPRD+1) - 1 = 0.75%(999+1) - 1 = 749

C2000 Piccolo Workshop - Control Peripherals 7-17

ePWM

ePWM Dead-Band Sub-Module

ePWM Dead-Band Sub-Module
Shadowed Shadowed
.| Clock Compare Compare
Prescaler Register Register
LTirﬁiEﬁse Compare Action —1 Dead
BCK | counter Logic Qualifier Band fum
EPWMxSYNCI EPWMxXSYNCO _
Period |
Register L S = EPWMxA
rip
i [ETTIEL Chopper Z0Ne p——
SYSCLKOUT EPWMxB
I_t TZy
Digital e 721723
Compare [&=—— COMPXOUT

Motivation for Dead-Band

supply rail
gate signals are to power
complementary PWM switching
I—IU device

¢ Transistor gates turn on faster than they shut off
¢ Short circuit if both gates are on at same time!

C2000 Piccolo Workshop - Control Peripherals

ePWM

Dead-band control provides a convenient means of combating current shoot-through problems in
a power converter. Shoot-through occurs when both the upper and lower gates in the same phase
of a power converter are open simultaneously. This condition shorts the power supply and results
in a large current draw. Shoot-through problems occur because transistors open faster than they
close, and because high-side and low-side power converter gates are typically switched in a
complimentary fashion. Although the duration of the shoot-through current path is finite during
PWM cycling, (i.e. the closing gate will eventually shut), even brief periods of a short circuit
condition can produce excessive heating and over stress in the power converter and power supply.

ePWM Dead-Band Block Diagram
PWMXA
A P o |
| ge Lo LSl 1 pwmxa
i 0o, Delay —q S2 RED | ot
1 i Out‘—m— ; 1
— AR !
1| @o-bit :
: counter) :
1

: Falling : !
Lo : Edge i 0q i 1 :

oS5 i | Dely | [. FED S0 ! pwwmxB

In Out; —o0 : A —>

5 : 1
Pl (10-bit : 10

TTRT counter) '""f"" \""f'"

IN-MODE f POLSEL OUT-MODE

HALFCYCLE
PWMxB

Two basic approaches exist for controlling shoot-through: modify the transistors, or modify the
PWM gate signals controlling the transistors. In the first case, the opening time of the transistor
gate must be increased so that it (slightly) exceeds the closing time. One way to accomplish this
is by adding a cluster of passive components such as resistors and diodes in series with the
transistor gate, as shown in the next figure.

by-pass diode

I‘l

PWM
signal ~VVVV—
R

Shoot-through control via power circuit modification

The resistor acts to limit the current rise rate towards the gate during transistor opening, thus
increasing the opening time. When closing the transistor however, current flows unimpeded from
the gate via the by-pass diode and closing time is therefore not affected. While this passive
approach offers an inexpensive solution that is independent of the control microprocessor, it is

C2000 Piccolo Workshop - Control Peripherals 7-19

ePWM

imprecise, the component parameters must be individually tailored to the power converter, and it
cannot adapt to changing system conditions.

The second approach to shoot-through control separates transitions on complimentary PWM
signals with a fixed period of time. This is called dead-band. While it is possible to perform
software implementation of dead-band, the C28x offers on-chip hardware for this purpose that
requires no additional CPU overhead. Compared to the passive approach, dead-band offers more
precise control of gate timing requirements. In addition, the dead time is typically specified with
a single program variable that is easily changed for different power converters or adapted on-line.

ePWM Dead-Band Sub-Module Registers

(lab file: EPwm.c)

Name Description Structure

DBCTL Dead-Band Control EPwmxRegs.DBCTL.all =
DBRED 10-bit Rising Edge Delay EPwmxRegs.DBRED =
DBFED\\ 10-bit Falling Edge Delay EPwmxRegs.DBFED =

Rising Edge Delay = T1gc k X DBRED
Falling Edge Delay = Tygc .k X DBFED

C2000 Piccolo Workshop - Control Peripherals

ePWM

Half Cycle Clocking

0 = full cycle clocking (TBCLK rate)
1 = half cycle clocking (TBCLK*2 rate)

15 14-6

ePWM Dead Band Control Register

EPwmxRegs.DBCTL

Polarity Select

00 = active high

01 = active low complementary (RED)
10 = active high complementary (FED)
11 = active low

5-4 3-2 1-0

HALFCYCLE reserved

IN_MODE POLSEL OUT_MODE

In-Mode Control

00 = PWMXA is source for RED and FED
01 = PWMXA is source for FED
PWMxB is source for RED
10 = PWMXA is source for RED
PWMxB is source for FED
11 = PWMxB is source for RED and FED

Out-Mode Control
00 = disabled (DBM bypass)
01 = PWMxA =no delay
PWMxB = FED
10 = PWMxA = RED
PWMxB = no delay
11 = RED & FED (DBM fully enabled)

ePWM PWM Chopper Sub-Module

ePWM PWM Chopper Sub-Module

Shadowed
Clock Compare
Prescaler Register Register

-

EPWMxSYNCI EPWMxSYNCO

Period
................ ; Register
Shadowed

SYSCLKOUT

TiniGe-glat\se Compare Action Dead
- Logic ualifier Band
TBCLK | Counter g Q _‘

L EPWMxA
PWM [y Trip ———
Chopper » Zone ——>
EPWMxB
I_t] TZy
Digital (e 721123
Compare [¢#—— COMPXOUT

C2000 Piccolo Workshop - Control Peripherals

ePWM

Purpose of the PWM Chopper

¢ Allows a high frequency carrier
signal to modulate the PWM
waveform generated by the Action
Qualifier and Dead-Band modules

¢ Used with pulse transformer-based
gate drivers to control power
switching elements

ePWM Chopper Waveform

EPWMXA |

EPWMxB

v IO A T
Il

EPWMXA

EPWMxB

—

: - Pg) ranwg#]le
1 uise Wi
OSHT (OSHTWTH) | |
EPWMXA | ||||||||||||| Sustaining ”””””””

With One-Shot Pulse on EPWMxA and/or EPWMxB

7-22 C2000 Piccolo Workshop - Control Peripherals

ePWM

ePWM Chopper Sub-Module Registers

(lab file: EPwm.c)

Name

Description

Structure

PCCTL

PWM-Chopper Control EPwmxRegs.PCCTL .all =

001 =2/8
010=3/8

100=15/8
101 =6/8

Chopper Clk Duty Cycle
000 = 1/8 (12.5%)

011 = 4/8 (50.0%)

110 = 7/8 (87.5%)

111 =reserved \

15-11 10-8

ePWM Chog)per Control Register

mxRegs.PCCTL

37.5%

75.0%

Chopper Clk Freq.

000 = SYSCLKOUT/8 + 1
525.0%; 001 = SYSCLKOUT/8 + 2
011 = SYSCLKOUTIS & 4
562.5%; 100 = SYSCLKOUT/8 =5 Chopper Enable
101 = SYSCLKOUT/8 + 6 0 = disable (bypass)
110 = SYSCLKOUT/8 + 7 1=-enable

111 = SYSCLKOUT/8 + 8 \

4-1 0

reserved CHPDUTY CHPFREQ OSHTWTH CHPEN

One-Shot Pulse Width

0000 =1 x SYSCLKOUT/8
0001 =2 x SYSCLKOUT/8
0010 =3 x SYSCLKOUT/8
0011 =4 x SYSCLKOUT/8
0100 =5x SYSCLKOUT/8
0101 =6 x SYSCLKOUT/8
0110 =7 x SYSCLKOUT/8
0111 =8x SYSCLKOUT/8

1000= 9 x SYSCLKOUT/8
1001 = 10 x SYSCLKOUT/8
1010 = 11 x SYSCLKOUT/8
1011 =12 x SYSCLKOUT/8
1100 = 13 x SYSCLKOUT/8
1101 = 14 x SYSCLKOUT/8
1110 = 15 x SYSCLKOUT/8
1111 =16 x SYSCLKOUT/8

C2000 Piccolo Workshop - Control Peripherals

ePWM

ePWM Digital Compare Sub-Module
ePWM Digital Compare Sub-Module

Shadowed Shadowed
Clock Compare Compare
Prescaler Register Register

[

Ti 16'2” Compare Action Dead
Ime-base Logic Qualifier Band_‘

TBCLK

Counter

T11

EPWMxSYNCI EPWMxSYNCO

Period
................. ; Reg ister L EPWMxA

PWM Trip
[EETTE Chopper Z0Ne ——

SYSCLKOUT EPWMxB

TZy
Digital J T21-1Z3

Compare €= COMPXOUT

Purpose of the Digital Compare
Sub-Module

¢ Comparator module outputs (comp1, COMP2, and
comp3) and Trip-Zone inputs (121, TZ2, and TZ3)
generate Digital Compare A and B High/Low
Signals (bcaAH, DCAL, DCBH, and DCBL)

¢ DCAH/L and DCBHI/L signals trigger events which
can be filtered or fed directly to the trip-zone,
event-trigger, and time-base sub-modules to:

+ Generate a trip-zone interrupt
+ Generate an ADC start of conversion
+« Force an event

+ Generate a synchronization event for synchronizing
the ePWM module TBCNT

¢ Event filtering can optionally blank the input
signal to remove noise

7-24 C2000 Piccolo Workshop - Control Peripherals

ePWM

Digital Compare Sub-Module Signals

Time-Base Sub-Module

— |DCAH Digital Trip f—>| Generate PWM Sync [
4 . ‘) N E\éﬁ?[g:r% Event-Trigger Sub-Module :
T Generate SOCA :
122 3 : ip- - 7
! Digital Trip Trlp Zone Sub-Module P
\ﬁ DCAL Event A2 Trip PWMA Output i
— Compare J - i
TZ3 : Generate Trip Interrupt | ; !
> f 1 v :
COMP10OUT ! i Time-Base Sub-Module

Digital Trip _,7—>| Generate PWM Sync [
—> E‘éﬁ?ﬁgé Event-Trigger Sub-Module
: Generate SOCB |

—
compzouT | |

Trip-Zone Sub-Module

EENEE R

COMP30OUT \ﬁ Digital Trip ,
Event B2 Trip PWMB Output !
ol | DCBL Compare p : p :
/J : Generate Trip Interrupt |
DCTRIPSEL TZDCSEL DCACTRL / DCBCTRL -——--

The Digital Compare sub-module compares signals external to the ePWM module to directly
generate events which are then feed to the Event-Trigger, Trip-Zone, and Time-Base sub-modules

ePWM Digital Compare Sub-Module

Registers
(lab file: EPwm.c)

Name Description Structure

DCACTL DC A Control EPwmxRegs.DCACTL .all =
DCBCTL DC B Control EPwmxRegs.DCBCTL .all =
DCTRIPSEL DC Trip Select EPwmxRegs.DCTRIPSEL .all =
DCCAPCTL Capture Control | EPWMxRegs.DCCAPCTL.all =
DCCAP Counter Capture | EPwmxRegs.DCCAP =

DCFCTL DC Filter Control | EPwmxRegs.DCFCTL .all =
DCFOFFSETCNT | Filter Offset Ctr | EPwmxRegs.DCOFFSETCNT =
DCFWINDOW Filter Window EPwmxRegs.DCFWINDOW =
DCFWINDOWCNT | Filter Window Ctr | EPwmxRegs.DCFWINDOWCNT =

C2000 Piccolo Workshop - Control Peripherals

ePWM

ePWM Digital Com[p

EPwmxRegs

DCyEVT2 Source Force
Sync Signal Select

0 =synchronous
1 =asynchronous

15-10 9 8 7-4

CyCTL (y = A or B)

DCyEVT1 SOC
Generation

0 disable
= enable

are Control Register

DCyEVT1 Source Force
Sync Signal Select

0 =synchronous

1 =asynchronous

~ /

0

SYNCSEL SEL

reserved | EVI2FRC [EVT2SRC [asarved EVT1 EVT1 EVTlFRC EVTLSRC

SYNCE | SOCE | SYNCSEL SEL

DCyEVT2 Source DCyEVT1 SYNC DCyEVT1 Source
Signal Select Generation Signal Select

0= DCyEVT2 signal 0 =disable 0=DCyEVT1 signal
1= DCEVTFILT signal 1 =enable 1=DCEVTFILT signal

/

ePWM Digital Compare Trip Select

Reg

EPwmxRegs.DCTRIPSEL

Digital Compare B
Low Input Source Select

Ister

Digital Compare B
High Input Source Select

15- 12 11-8
DCBLCOMPSEL DCBHCOMPSEL
7-4 3-0
DCALCOMPSEL DCAHCOMPSEL

Digital Compare A
Low Input Source Select

_ Digital Compare A
High Input Source Select

other values

0000 = TZ1 input
0001 =TZ2 input
0010 = TZ3 input
1000 = COMP10UT input
1001 = COMP20UT input
1010 = COMP30UT input

reserved

C2000 Piccolo Workshop - Control Peripherals

ePWM

ePWM Trip-Zone Sub-Module

ePWM Trip-Zone Sub-Module
Shadowed Shadowed
.»| Clock Compare Compare
Prescaler Register Register
ez Compare Action Dead
TBCLK Ul e Logic Qualifier Band
Counter —‘
EPWMxSYNCI EPWMxXSYNCO .
Period |
Register L r— = EPWMxA
—1 Trip
; [EETTE Chopper Zone
SYSCLKOUT EPWMxB
TZy
Digital JTZl-TZ3
Compare €= COMPXOUT

Over

Trip-Zone Features

current conditions

+ Trip-Zone has a fast, clock independent logic path to high-impedance
the EPWMXA/B output pins

¢ Interrupt latency may not protect hardware when responding to over
current conditions or short-circuits through ISR software

¢ Supports: #1) one-shot trip for major short circuits or over

#2) cycle-by-cycle trip for current limiting operation

Current
Sensors CcPU
— core
COMPxOUT CDlgltal
OmFErf" EPWMXTZINT
TZ; Cycle-by-Cycle
TZ
M
173 e
174 EQEP1ERR
eQEP1
SYSSTRL 175 CLOCKFAIL One-Shot
cpu_ 126 EMUSTOP Mode

EPWM1A
————»

EPWM1B
ESLIRALIL 2N

EPWMxA
| SPVWIVIRA
EPWMxB
= e,

w-HCU—HCO Z=T

The power drive protection is a safety feature that is provided for the safe operation of systems
such as power converters and motor drives. It can be used to inform the monitoring program of

C2000 Piccolo Workshop - Control Peripherals

ePWM

motor drive abnormalities such as over-voltage, over-current, and excessive temperature rise. If
the power drive protection interrupt is unmasked, the PWM output pins will be put in the high-
impedance state immediately after the pin is driven low. An interrupt will also be generated.

ePWM Trip-Zone Sub-Module Registers

(lab file: EPwm.c)

Name Description Structure

TZCTL Trip-Zone Control EPwmxRegs.TZCTL.all =
TZSEL Trip-Zone Select EPwmxRegs.TZSEL .all =
TZEINT Enable Interrupt EPwmxRegs.TZEINT.all =
TZDCSEL | Digital Compare EPWMxRegs.TZDCSEL .all =
TZFLG Trip-Zone Flag EPwmxRegs.TZFLG.all =
TZCLR Trip-Zone Clear EPwmxRegs.TZCLR.all =
TZFRC Trip-Zone Force EPwmxRegs.TZFRC.all =

ePWM Trip-Zone Control Register

EPwmxRegs.TZCTL

15-12 11-10 9-8 7-6 5-4 3-2 1-0
reserved DCBEVT2 [DCBEVT1|DCAEVT2 | DCAEVT1 TZB TZA

L L\

Digital Compare Output Digital Compare Output TZ1to TZ6 Action on
Event 2/ 1 Action Event 2 /1 Action EPWMxB / EPWMXxA
on EPWMxB on EPWMXxA

00 = high impedance

01 = force high

10 = force low

11 = do nothing (disable)

C2000 Piccolo Workshop - Control Peripherals

ePWM

ePWM Trip-Zone Select Register

EPwmxRegs.TZSEL

One-Shot Trip Zone

(event only cleared under S/W
control; remains latched)

0 =disable as trip source
1 =enable as trip source

_/\

15 14 13 12 11 10 9 8
DCBEVT1|DCAEVT1| OSHT6 | OSHT5 | OSHT4 | OSHT3 | OSHT2 | OSHT1

7 6 5 4 3 2 1 0
DCBEVT2|DCAEVT2| CBC6 CBC5 CBC4 CBC3 CBC2 CBC1

\/

Cycle-by-Cycle Trip Zone
(event cleared when CTR = 0;
i.e. cleared every PWM cycle)
0 = disable as trip source
1 =enable as trip source

ePWM Trip-Zone Enable Interrupt
Reglster

EPwmxRegs. TZEINT

15-7 6 5 4 3 2 1 0
reserved [DCBEVT2|DCBEVT1|DCAEVT2 | DCAEVT1 OST CBC reserved
Digital Compare Digital Compare One-Shot Cycle-by-Cycle
Output B Output A Interrupt Enable Interrupt Enable
Event2/1Enable Event2/1Enable (o=djsable 0 =disable
0 =disable 0 =disable 1= enable 1=enable
1 =enable 1 =enable

C2000 Piccolo Workshop - Control Peripherals

ePWM

ePWM Trip-Zone Digital Compare Event

Select Register
EPwmxRegs.TZDCSEL

15-12 11-9 8-6 5-3 2-0
reserved DCBEVT2 | DCBEVT1 | DCAEVT2 | DCAEVT1

Digital Compare Output B Digital Compare Output A
Event 2 /1 Select Event 2/ 1 Select

000 = event disable

001 = DCBH = low, DCBL = don’t care

010 = DCBH = high, DCBL - don’t care
011 = DCBL - low, DCBH = don’t care

100 = DCBL = high, DCBH = don’t care
101 = DCBL - high, DCBH - low

11x =reserved

ePWM Event-Trigger Sub-Module
ePWM Event-Trigger Sub-Module

.| Clock Compare Compare
Prescaler Register Register

—— |

Tirii-ggse . | Compare Action Dead
- "1 Logic ualifier Band
TBCLK ' Counter g Q

T 11 1 _‘

EPWMxSYNCI EPWMxSYNCO

Period
................ ; Register L —" T EPWMxA
Shadowed P

i Chopper Z0Ne p——
SYSCLKOUT EPWMxB

TZy

Digital ! 121723
Compare j¢&—— COMPXOUT

7-30 C2000 Piccolo Workshop - Control Peripherals

ePWM

ePWM Event-Trigger Interrupts and SOC

TBCTR
TBPRD
CMPB
CMPA}

EPWMA ! o 3 P |

r—
'

EPWMB

ool L %
CTR = PRD | 1 |
CTR =0 or PRD P I - f
CTRU = CMPA : P o

CTRD = CMPA f | ;
CTRU=CMPB | ! f o | ! f P
cro=cwes L+ i L b i i it

ePWM Event-Trigger Sub-Module

Registers
(lab file: EPwm.c)

Name Description Structure

ETSEL Event-Trigger Selection EPwmxRegs.ETSEL.all =
ETPS Event-Trigger Pre-Scale EPwmxRegs.ETPS.all =
ETFLG Event-Trigger Flag EPwmxRegs.ETFLG.all =
ETCLR Event-Trigger Clear EPwmxRegs.ETCLR.all =
ETFRC Event-Trigger Force EPwmxRegs.ETFRC.all =

C2000 Piccolo Workshop - Control Peripherals

ePWM

ePWM Event-Trigger Selection Register

EPwmXxRegs.ETSEL

Enable SOCB / A Enable EPWMXINT
0 =disable 0 =disable
1 =enable 1 =enable

15 14-12 11 10-8 7-4 3 2-0

SOCBEN| SOCBSEL SOCAEN SOCASEL reserved | INTEN [INTSEL

EPWMxSOCB / A Select EPWMXINT Select
000 = DCBEVT1/ DCAEVT1 000 =reserved
001=CTR =0 001=CTR=0

010 =CTR =PRD 010 =CTR = PRD

011 =CTR =0o0r PRD 011 =CTR=0o0r PRD
100 = CTRU = CMPA 100 = CTRU = CMPA
101 = CTRD = CMPA 101 = CTRD = CMPA
110 =CTRU = CMPB 110 =CTRU = CMPB
111 = CTRD = CMPB 111 = CTRD = CMPB

ePWM Event-Trigger Prescale Register

EPwmMxRegs.ETPS

EPWMxSOCB / A Counter EPWMXINT Counter
(number of events have occurred) (number of events have occurred)
00 = no events 00 = no events
01 =1 event 01 =1 event
10 = 2 events 10 = 2 events
11 =3 events 11 = 3 events
15-14 13-12 11-10 9-8 7-4 2-3 1-0

SOCBCNT | SOCBPRD | SOCACNT | SOCAPRD | reserved [INTCNT |INTPRD

EPWMxSOCB / A Period EPWMXINT Period
(number of events before SOC) (number of events before INT)
00 =disabled 00 = disabled

01 = SOC on first event 01 = INT on first event

10 = SOC on second event 10 = INT on second event
11 = SOC on third event 11 = INT on third event

7-32 C2000 Piccolo Workshop - Control Peripherals

ePWM

Hi-Resolution PWM (HRPWM)
Hi-Resolution PWM (HRPWM)

. PWM Period o
Regular
Device Clock ‘PWI\éI gtep

; i.e. 16.67 ns

(1.e. 60 MHz) IIIIIIIIIIIIIIII’I,,JL'!___IIIIIIIIIIIIIIIII()
HRPWM divides a clock ‘_J,,,»'"‘“‘“N-‘ u""~ Calibration Logic tracks the
cycle into smaller steps _m ______ m number of Micro Steps per

called Micro Steps > clock to account for

(Step Size ~= 150 ps) | Calibration Logic | variations caused by

Temp/Nolt/Process

| HRPWM
LEEEEEEEEEEEEEEETEEE D] E Micro Step (=150 ps)

Significantly increases the resolution of conventionally derived digital PWM

Uses 8-bit extensions to Compare registers (CMPxHR), Period register
(TBPRDHR) and Phase register (TBPHSHR) for edge positioning control

Typically used when PWM resolution falls below ~9-10 bits which occurs at
frequencies greater than ~120 kHz (with system clock of 60 MHz)

Not all ePWM outputs support HRPWM feature (see device datasheet)

* & oo

C2000 Piccolo Workshop - Control Peripherals 7-33

eCAP

eCAP

Capture Module (eCAP)

D _ L

Timer

| Trigger ._S
\(pin
Timestamp
Values

¢ The eCAP module timestamps transitions
on a capture input pin

The capture units allow time-based logging of external TTL signal transitions on the capture input
pins. The C28x has up to six capture units.

Capture units can be configured to trigger an A/D conversion that is synchronized with an
external event. There are several potential advantages to using the capture for this function over
the ADCSOC pin associated with the ADC module. First, the ADCSOC pin is level triggered,
and therefore only low to high external signal transitions can start a conversion. The capture unit
does not suffer from this limitation since it is edge triggered and can be configured to start a
conversion on either rising edges or falling edges. Second, if the ADCSOC pin is held high
longer than one conversion period, a second conversion will be immediately initiated upon
completion of the first. This unwanted second conversion could still be in progress when a
desired conversion is needed. In addition, if the end-of-conversion ADC interrupt is enabled, this
second conversion will trigger an unwanted interrupt upon its completion. These two problems
are not a concern with the capture unit. Finally, the capture unit can send an interrupt request to
the CPU while it simultaneously initiates the A/D conversion. This can yield a time savings
when computations are driven by an external event since the interrupt allows preliminary
calculations to begin at the start-of-conversion, rather than at the end-of-conversion using the
ADC end-of-conversion interrupt. The ADCSOC pin does not offer a start-of-conversion
interrupt. Rather, polling of the ADCSOC bit in the control register would need to be performed
to trap the externally initiated start of conversion.

C2000 Piccolo Workshop - Control Peripherals

eCAP

errors

sz

AX
{ifre

ta

¢ Auxiliary PWM generation

Some Uses for the Capture Module

¢ Measure the time width of a pulse
¢ Low speed velocity estimation from incr. encoder:

Problem: At low speeds, calculation of speed
based on a measured position change at
fixed time intervals produces large estimate

Alternative: Estimate the speed using a measured time interval
at fixed position intervals

Signal from one
guadrature

oKk Xt
At

encoder channel

—

32-Bit
¥ Time-Stamp
i Counter

SYSCLKOUT

—>

Capture 1
Register

>

Capture 2
Register

Capture 3
Register

Capture 4
Register

Event Logic

eCAP Module Block Diagram - capture Mode

CAP1POL

Polarity
Select 1

CAP2POL

Polarity
Select 2

PRESCALE

CAP3POL

Event
Prescale ECAPX

Polarity o

Select 3

CAP4POL

Polarity

Select 4 [

pin

C2000 Piccolo Workshop - Control Peripherals

eCAP

eCAP Module Block Diagram - apwm Mode
[Shadowed Period -
)) Period Register Smod%w
mmgggte Register (CAP3)
(CAP1)
32-Bit PWM
v Time-Stamp Compare p——t—
Counter Logic ECAP
: pin
SYSCLKOUT
. diah Compare
lmmgdleae NE S Compare | .\ jow
(CAP2) Register | “ode
[Shadowed (CAP4)
eCAP Module Registers
(lab file: ECap.c)
Name Description Structure

ECCTL1 Capture Control 1
ECCTL2 Capture Control 2
TSCTR Time-Stamp Counter
CTRPHS | Counter Phase Offset

ECapxRegs.ECCTL1.all =
ECapxRegs.ECCTL2.all =
ECapxRegs.TSCTR =
ECapxRegs.CTRPHS =

CAP1 Capture 1 ECapxRegs.CAP1 =
CAP2 Capture 2 ECapxRegs.CAP2 =
CAP3 Capture 3 ECapxRegs.CAP3 =
CAP4 Capture 4 ECapxRegs.CAP4 =
ECEINT Enable Interrupt ECapxRegs.ECEINT.all =
ECFLG Interrupt Flag ECapxRegs.ECFLG.all =
ECCLR Interrupt Clear ECapxRegs.ECCLR.all =
ECFRC Interrupt Force ECapxRegs.ECFRC.all =

C2000 Piccolo Workshop - Control Peripherals

eCAP

eCAP Control Reqister 1

ECapxRegs.ECCTL

Upper Register:

CAP1 -4 Load
on Capture Event
0 =disable
1= enaﬁ
15-14 13-9 8
FREE_SOFT PRESCALE CAPLDEN
Emulation Control Event Filter Prescale Counter
00 = TSCTR stops immediately 00000 = divide by 1 (bypass)
01 = TSCTR runs until equals 0 00001 = divide by 2
1X = free run (do not stop) 00010 = divide by 4

00011 = divide by 6
00100 = divide by 8

. .
. »

11110 = divide by 60
11111 = divide by 62

eCAP Control Reqister 1

ECapxRegs.ECCTL

Lower Register:

Counter Reset on Capture Event

0 = no reset (absolute time stamp mode)
1 =reset after capture (difference mode)

7 6 5 4 3 2 1 0
CTRRST4|CAP4POL|CTRRST3 |CAP3POL|CTRRST2|CAP2POL |CTRRST1 |CAP1POL

T\

Capture Event Polarity

0 =trigger on rising edge
1 =trigger on falling edge

C2000 Piccolo Workshop - Control Peripherals 7-37

eCAP

eCAP Control Register 2

ECapxRegs.ECCTL

Upper Register:

Capture/ APWM mode

0 =capture mode
1= APWM mode

15-11 10 9 8
reserved APWMPOL | CAP_APWM | SWSYNC

APWM Output Polarity Software Force

(valid only in APWM mode) Counter Synchronization
0 = active high output 0 = no effect
1 = active low output 1 =TSCTR load of current

module and other modules
if SYNCO_SEL bits =00

eCAP Control Register 2

ECapxRegs.ECCTL

Lower Register:

Re-arm Continuous/One-Shot
Coun_ter Sync-In (capture mode only) (capture mode only)
0= disable 0 = no effect 0 = continuous mode
1=enable 1 =arm sequence 1 =one-shot mode
7-6 5 4 3 2-1 0

SYNCO_SEL | SYNCI_EN | TSCTRSTOP | REARM | STOP_WRAP [CONT_ONESHT

Sync-Out Select Time Stamp Stop Value for One-Shot Mode/
00 = sync-in to sync-out Counter Stop Wrap Value for Continuous Mode
01=CTR = PRD event 0 = stop (capture mode only)

generates sync-out 1=run 00 = stop/wrap after capture event 1
1X =disable 01 = stop/wrap after capture event 2

10 = stop/wrap after capture event 3
11 = stop/wrap after capture event 4

C2000 Piccolo Workshop - Control Peripherals

eCAP

The capture unit interrupts offer immediate CPU notification of externally captured events. In
situations where this is not required, the interrupts can be masked and flag testing/polling can be
used instead. This offers increased flexibility for resource management. For example, consider a
servo application where a capture unit is being used for low-speed velocity estimation via a
pulsing sensor. The velocity estimate is not used until the next control law calculation is made,
which is driven in real-time using a timer interrupt. Upon entering the timer interrupt service
routine, software can test the capture interrupt flag bit. If sufficient servo motion has occurred
since the last control law calculation, the capture interrupt flag will be set and software can
proceed to compute a new velocity estimate. If the flag is not set, then sufficient motion has not
occurred and some alternate action would be taken for updating the velocity estimate. As a
second example, consider the case where two successive captures are needed before a
computation proceeds (e.g. measuring the width of a pulse). If the width of the pulse is needed as
soon as the pulse ends, then the capture interrupt is the best option. However, the capture
interrupt will occur after each of the two captures, the first of which will waste a small number of
cycles while the CPU is interrupted and then determines that it is indeed only the first capture. If
the width of the pulse is not needed as soon as the pulse ends, the CPU can check, as needed, the
capture registers to see if two captures have occurred, and proceed from there.

eCAP Interrupt Enable Register

ECapxRegs.ECEINT

CTR =CMP CTR = Overflow Capture Event 3 Capture Event 1
Interrupt Enable Interrupt Enable Interrupt Enable Interrupt Enable

15-8 7 6 5 4 3 2 1 0
reserved] CTR=CMP [CTR=PRD [CTROVF |CEVT4 |CEVT3 |CEVT2 |CEVT1 [reserved

CTR =PRD Capture Event 4 Capture Event 2
Interrupt Enable Interrupt Enable Interrupt Enable

0 =disable as interrupt source
1 =enable as interrupt source

C2000 Piccolo Workshop - Control Peripherals 7-39

eQEP

eQEP

What is an Incremental Quadrature

Encoder?
A digital (angular) position sensor
photo sensors spaced 0/4 deg. apart
V slots spaced 0 deg. apart _9/4
<P light P
I ght source (LED) H

Incremental Optical Encoder Quadrature Output from Photo Sensors

The eQEP circuit, when enabled, decodes and counts the quadrature encoded input pulses. The
QEP circuit can be used to interface with an optical encoder to get position and speed information
from a rotating machine.

How is Position Determined from
Quadrature Signals?

Position resolution is 6/4 degrees

increment decrement

(00) (11)
(AB)= | 10) | (01) counter counter
[

I I +

lllegal
e Transitions;_____ >
%enerate
phase error
interrupt
L *

Quadrature Decoder
State Machine

I
|
|
i
ch.A i
|
|
I
|
|
[}

Ch.B

7-40 C2000 Piccolo Workshop - Control Peripherals

eQEP

Generate periodic

calculations

interrupts for velocity

R 32-Bit Unit
Time-Base

SYSCLKOUT

Generate a sync output
and/or interrupt on a
position compare match

eQEP Module Block Diagram

Measure the elapsed time
between the unit position events;
used for low speed measurement

__,| Quadrature
Capture
[uadrature - [Direction -
clock mode count mode
Monitors the quadrature
clock to indicate proper
operation of the r%otﬂ)n EQEPXA/XCLK
control system
— EQEPXB/XDIR
Quadrature
QEP EQEPxI
Watchdog Decoder Q
EQEPXxS
| |Position/Counter
Compare
Generate the direction and

clock for the position counter
in quadrature count mode

eQEP Module Connections

Ch. A
Quadrature ch. B
> Capture [\
EQEPXAXCLK
| Togase [EQEPXB/XDIR
Time-Base e || Quadrature nd
ER— Watchdog Decoger EQEPXI ndex
* EQEPXS Strobe)
from homing sensor
SYSCLKOUT
Position/Counter
= Compare

C2000 Piccolo Workshop - Control Peripherals

Lab 7: Control Peripherals

Lab 7: Control Peripherals

» Objective

The objective of this lab is to become familiar with the programming and operation of the control
peripherals and their interrupts. ePWMZ1A will be setup to generate a 2 kHz, 25% duty cycle
symmetric PWM waveform. The waveform will then be sampled with the on-chip analog-to-
digital converter and displayed using the graphing feature of Code Composer Studio. Next,
eCAP1 will be setup to detect the rising and falling edges of the waveform. This information will
be used to determine the width of the pulse and duty cycle of the waveform. The results of this

step will be viewed numerically in a memory window.

Lab 7: Control Peripherals

ePWM1

TB Counter

Compare

connector

ADC

Action Qualifier wire

eCAP1

*—
ADC-

[Capture 1 Register |- @ INAO
[Capture 2 Register]
[Capture 3 Register]

RESULTO

! data
CPU copies memory
result to
buffer during
ADC ISR

ePWM2 triggering

ADC on period match
using SOCA trigger every
20 ps (50 kHz)

>

ePWM2

View ADC
buffer PWM
Samples

Code Composer |

pointer rewind

Studio

» Procedure

Project File

1. Aproject named Lab7.pjt has been created for this lab. Open the project by clicking
onProject > Open.. and look in C:\C28x\Labs\Lab7. All Build Options
have been configured the same as the previous lab. The files used in this lab are:

Adc.c

CodeStartBranch.asm
Defaultlsr_7.c
DelayUs.asm
DSP2833x_GlobalVariableDefs.c
DSP2833x_Headers_nonBI0S.cmd

ECap_7_8 9 10 12.c
EPwm_7_8 9 10 12.c

Gpio.c

Lab 5 6 7.cmd

Main_7.c

PieCtrl 5 6 7 8 9 10.
8 9 10

SysCtrl.c
Watchdog.c

C2000 Piccolo Workshop - Control Peripherals

Lab 7: Control Peripherals

Setup Shared I/O and ePWM1

2.
3.

Edit Gpio.c and adjust the shared I/O pin in GP100 for the PWMZ1A function.

INEPwm_7_8 9 10 12.c, setup ePWML1 to implement the PWM waveform as
described in the objective for this lab. The following registers need to be modified:
TBCTL (set clock prescales to divide-by-1, no software force, sync and phase disabled),
TBPRD, CMPA, CMPCTL (load on 0 or PRD), and AQCTLA (set on up count and clear
on down count for output A). Software force, deadband, PWM chopper and trip action
has been disabled. (Hint — notice the last steps enable the timer count mode and enable
the clock to the ePWM module). Either calculate the values for TBPRD and CMPA (as a
challenge) or make use of the global variable names and values that have been set using
#define in the beginning of Lab . h file. Notice that ePWMZ2 has been initialized earlier
in the code for the ADC lab. Save your work.

Build and Load

4.

Save all changes to the files and click the ““Bui 1d”” button to build and load the project.

Run the Code — PWM Waveform

5.

Open a memory window to view some of the contents of the ADC results buffer. The
address label for the ADC results buffer is AdcBuf. We will be running our code in real-
time mode, and will have our window continuously refresh.

Using a connector wire provided, connect the PWM1A (pin # GPI0-00) to ADCINAO
(pin # ADC-AQ) on the Docking Station.

Run the code (real-time mode) using the GEL function: GEL - Realtime
Emulation Control - Run_Realtime_with_Reset. Watch the window
update. Verify that the ADC result buffer contains the updated values.

Open and setup a graph to plot a 50-point window of the ADC results buffer.
Click: View - Graph - Time/Frequency.. and set the following values:

Start Address AdcBuf

Acquisition Buffer Size 50

Display Data Size 50

DSP Data Type 16-bit unsigned integer
Sampling Rate (Hz) 50000

Time Display Unit us

Select OK to save the graph options.

C2000 Piccolo Workshop - Control Peripherals 7-43

Lab 7: Control Peripherals

9.

The graphical display should show the generated 2 kHz, 25% duty cycle symmetric
PWM waveform. The period of a 2 kHz signal is 500 us. You can confirm this by
measuring the period of the waveform using the graph (you may want to enlarge the
graph window using the mouse). The measurement is best done with the mouse. The
lower left-hand corner of the graph window will display the X and Y-axis values.
Subtract the X-axis values taken over a complete waveform period (you can use the PC
calculator program found in Microsoft Windows to do this).

Frequency Domain Graphing Feature of Code Composer Studio

10. Code Composer Studio also has the ability to make frequency domain plots. It does this

11.

12.

by using the PC to perform a Fast Fourier Transform (FFT) of the DSP data. Let's make
a frequency domain plot of the contents in the ADC results buffer (i.e. the PWM
waveform).

Click: View > Graph -> Time/Frequency.. and set the following values:

Display Type FFT Magnitude

Start Address AdcBuf

Acquisition Buffer Size 50

FFT Framesize 50
DSP Data Type 16-bit unsigned integer
Sampling Rate (Hz) 50000

Select OK to save the graph options.

On the plot window, left-click the mouse to move the vertical marker line and observe the
frequencies of the different magnitude peaks. Do the peaks occur at the expected
frequencies?

Fully halt the CPU (real-time mode) by using the GEL function: GEL - Realtime
Emulation Control -> Full _Halt.

Setup eCAP1 to Measure Width of Pulse

The first part of this lab exercise generated a 2 kHz, 25% duty cycle symmetric PWM
waveform which was sampled with the on-chip analog-to-digital converter and displayed
using the graphing feature of Code Composer Studio. Next, eCAP1 will be setup to detect
the rising and falling edges of the waveform. This information will be used to determine the
period and duty cycle of the waveform. The results of this step will be viewed numerically in
a memory window and can be compared to the results obtained using the graphing features of
Code Composer Studio.

13. Add the following file to the project:

ECap_7 8 9 10 _12.c

C2000 Piccolo Workshop - Control Peripherals

Lab 7: Control Peripherals

14.

15.
16.

17.

18.

19.

Check your files list to make sure the file is there.

InMain_7.c, add code to call the InitECap () function. There are no passed
parameters or return values, so the call code is simply:

InitECap();
Edit Gpio.c and adjust the shared 1/0 pin in GPIO5 for the ECAP1 function.

Open and inspect the eCAP1 interrupt service routine (ECAPL_INT_ISR) in the file
Defaultlsr_7.c. Notice that PwmDuty is calculated by CAP2 — CAP1 (rising to
falling edge) and that PwmPeriod is calculated by CAP3 — CAP1 (rising to rising edge).

INECap_7_8_9 10 _12_c, setup eCAP1 to calculate PWM_duty and PWM_period.
The following registers need to be modified: ECCTL2 (continuous mode, re-arm disable,
and sync disable), ECCTL1 (set prescale to divide-by-1, configure capture event polarity
without reseting the counter), and ECEINT (enable desired eCAP interrupt).

Using the “PIE Interrupt Assignment Table” find the location for the
eCAPL interrupt “ECAP1__INT’” and fill in the following information:

PIE group #: # within group:
This information will be used in the next step.

Modify theend of ECap_7 8 9 10 12.c to do the following:

- Enable the “ECAP1_INT” interrupt in the PIE (Hint: use the PieCtrlIRegs structure)
- Enable the appropriate core interrupt in the IER register

Build and Load

20.

Save all changes to the files and click the “Bui 1d”” button.

Run the Code — Pulse Width Measurement

21.

22.

23.

24.

25.

Open a memory window to view the address label PwmPeriod. (Type &PwmPeriod in
the address box). The address label PwmDuty (address &PwmDuty) should appear in the
same memory window.

Set the memory window properties format to “32-Bit UnSigned Int”.

Using the connector wire provided, connect the PWM1A (pin # GP10-00) to ECAP1 (pin
GP10-05) on the Docking Station.

Run the code (real-time mode) by using the GEL function: GEL - Realtime
Emulation Control - Run_Realtime_with_Reset. Notice the values for
PwmDuty and PwmPeriod.

Fully halt the CPU (real-time mode) by using the GEL function: GEL - Realtime
Emulation Control -> Full_Halt.

C2000 Piccolo Workshop - Control Peripherals 7-45

Lab 7: Control Peripherals

Questions:
e How do the captured values for PwmDuty and PwmPeriod relate to the compare register
CMPA and time-base period TBPRD settings for ePWM1A?

e What is the value of PwmDuty in memory?
e What is the value of PwmPeriod in memory?
o How does it compare with the expected value?

End of Exercise

7-46 C2000 Piccolo Workshop - Control Peripherals

Numerical Concepts

Introduction

In this module, numerical concepts will be explored. One of the first considerations concerns
multiplication — how does the user store the results of a multiplication, when the process of mul-
tiplication creates results larger than the inputs. A similar concern arises when considering accu-
mulation — especially when long summations are performed. Next, floating-point concepts will
be explored and 1Qmath will be described as a technique for implementing a “virtual floating-
point” system to simplify the design process.

The IQmath Library is a collection of highly optimized and high precision mathematical
functions used to seamlessly port floating-point algorithms into fixed-point code. These C/C++
routines are typically used in computationally intensive real-time applications where optimal
execution speed and high accuracy is needed. By using these routines a user can achieve
execution speeds considerable faster than equivalent code written in standard ANSI C language.
In addition, by incorporating the ready-to-use high precision functions, the IQmath library can
shorten significantly a DSP application development time. (The IQmath user's guide is included
in the application zip file, and can be found in the /docs folder once the file is extracted and
installed).

Learning Objectives

Learning Objectives

Integers and Fractions

|IEEE-754 Floating-Point

IQmath

Format Conversion of ADC Results

C2000 Piccolo Workshop - Numerical Concepts 8-1

Module Topics

Module Topics

N[0 T g Tor= L I O] g ot o] ISR 8-1
Yoo U] T3 o1t OSSOSO 8-2
NUMDEFING SYSTEM BASICS ...vveuvereeiteitesiestieieeieie ettt sttt et sttt se et e eneesaesaesbesbesteaneeneeneenees 8-3

BINANY NUMDEIS. ...ttt et bbbt b et eb e bt b e et e ebe e et e b nrerea 8-3
TWO'S COMPIEMENT NUMDETS ...ttt 8-3
INEEGET BASICS ...ttt ettt bbbttt et sb e bt bt bt b e e Rt e R e e e e b e ne e bt bbb et e e e eas 8-4
SigN EXIENSION IMOTE.......oeiieieieiee ettt b bbbt e bbbt st e e ene e e e 8-5
Binary MURTPIICALIONoiiie et bbbt en s 8-6
ST TV T Ut o] PSS 8-8
Representing Fractions iN BINATYc.ccoiiieieiiie ittt re e st s te e ne e s 8-8
FRACION BASICS ...eveuietiiteieti ittt ettt sttt stk bbbttt b ettt eb e et e b et et e eb et et e sbeneeren 8-8
MuUltiplying Binary FIACIONScciviieieiiiie sttt et sr e ene e s 8-9
[= Yo o 1O Lo S 8-11
Fractional vs. Integer REPreSENtAtiON.coiveiierieeie et 8-12
FLOBEING-POINT. ..ot bbbttt b ettt b ettt sb et et bt et nb e 8-13
@] 4= 1 o PSSRSO RSR 8-15
1Q Fractional REPIESENTATIONcoiiiiieiitiie ettt se e bbb 8-15
Traditional “Q” Math APPrOACHc.eiiie bbb 8-16
1QMALN APPIOACK ...t et bbbt e e bbb bt bRt e r e e e b e e 8-18
L@ qF= (T I] - OSSR 8-23
Converting ADC Results into 1Q FOIMAL.........cccceiiiiieiicicicie et st e e e besresne 8-25
AC INAUCLION MOLOE EXAMPIEcviiicircieice sttt sttt b e re et se e be e stennas 8-26
IQMALN SUMMAIY ...ttt e st e st be s ae et e e s e es e e e et e tesaeeteeneeneeseeeeseenrenen 8-32
Lab 8: IQmath & Floating-Point FIR Filter..........cooieiircie e 8-33

C2000 Piccolo Workshop - Numerical Concepts

Numbering System Basics

Numbering System Basics

Given the ability to perform arithmetic processes (addition and multiplication) with the C28x, it is
important to understand the underlying mathematical issues which come into play. Therefore, we
shall examine the numerical concepts which apply to the C28x and, to a large degree, most
processors.

Binary Numbers

The binary numbering system is the simplest numbering scheme used in computers, and is the
basis for other schemes. Some details about this system are:

e Ituses only two values: 1 and 0

e Each binary digit, commonly referred to as a bit, is one “place” in a binary number
and represents an increasing power of 2.

e The least significant bit (LSB) is to the right and has the value of 1.
o Values are represented by setting the appropriate 1's in the binary number.
e The number of bits used determines how large a number may be represented.

Examples:

0110, = (0 * 8) + (1 *4) + (1 * 2) + (0 * 1) = 64
11110, = (L * 16) + (L * 8) + (1 * 4) + (1 * 2) + (0 * 1) = 304

Two's Complement Numbers

Notice that binary numbers can only represent positive numbers. Often it is desirable to be able to
represent both positive and negative numbers. The two's complement numbering system modifies
the binary system to include negative numbers by making the most significant bit (MSB)
negative. Thus, two's complement numbers:

o Follow the binary progression of simple binary except that the MSB is negative — in
addition to its magnitude

e Can have any number of bits — more bits allow larger numbers to be represented

Examples:

0110, = (0 * -8) + (1 * 4) + (L * 2) + (0 * 1) = 6y
11110, = (A * -16) + (1 *8) + (A *4) + (A *2) + (0 * 1) = -2

The same binary values are used in these examples for two's complement as were used above for
binary. Notice that the decimal value is the same when the MSB is 0, but the decimal value is
quite different when the MSB is 1.

Two operations are useful in working with two's complement numbers:
e The ability to obtain an additive inverse of a value
e The ability to load small numbers into larger registers (by sign extending)

C2000 Piccolo Workshop - Numerical Concepts 8-3

Numbering System Basics

To load small two's complement numbers into larger

registers:

The MSB of the original number must carry to the MSB of the number when represented in the

larger register.

1. Load the small number “right justified” into the larger register.

2. Copy the sign bit (the MSB) of the original number to all unfilled bits to the left in the
register (sign extension).

Consider our two previous values, copied into an 8-bit register:

Examples:
Original No. 0110, =619 11110, =-210
1. Load low 0110 11110
2. Sign Extend 00000110 |=4+2=6 11111110 |=-128+64+..+2=-2
Integer Basics
Integer Basics
28 | 22 | 21 | 20

i2n'1 I eoo

¢ Unsigned Binary Integers

0100b = (0*23)+(1*22)+(0*22)+(0*2%) = 4
1101b = (1*23)+(1*22)+(0*21)+(1*20) = 13

0100b = (0*-23)+(1*22)+(0*22)+(0*20) = 4

1101b = (1%-23)+(1%22)+(0*21)+(1*20) = -3

¢ Signed Binary Integers (2's Complement)

C2000 Piccolo Workshop - Numerical Concepts

Numbering System Basics

Sign Extension Mode

The C28x can operate on either unsigned binary or two's complement operands. The “Sign
Extension Mode” (SXM) bit, present within a status register of the C28x, identifies whether or
not the sign extension process is used when a value is brought into the accumulator. It is good
programming practice to always select the desired SXM at the beginning of a module to assure
the proper mode.

What is Sign Extension?

¢ When moving a value from a narrowed width location
to a wider width location, the sign bit is extended to fill
the width of the destination

¢ Sign extension applies to signed numbers only
It keeps negative numbers negative!

¢ Sign extension controlled by SXM bitin STO register;
When SXM =1, sign extension happens automatically

2

4 bit Example: Load a memory value into the ACC

memory (1101 | =-23+22+20=-3

l Load and sign extend
<

ACC |1111]1101| =-27+ 26+ 25+ 24+ 23+ 224+ 20
=-128+64+32+16+8+4+1
=-3

C2000 Piccolo Workshop - Numerical Concepts 8-5

Binary Multiplication

Binary Multiplication

Now that you understand two's complement numbers, consider the process of multiplying two
two's complement values. As with “long hand” decimal multiplication, we can perform binary
multiplication one “place” at a time, and sum the results together at the end to obtain the total

product.
Note: This is not the method the C28x uses in multiplying numbers — it is merely a way of observing
how binary numbers work in arithmetic processes.
The C28x uses 16-bit operands and a 32-bit accumulator. For the sake of clarity, consider the
example below where we shall investigate the use of 4-bit values and an 8-bit accumulation:
Integer Multiplication (signed)
0100 4
X 1101 x -3
0100
0000
0100
1100
1110100 -12
Accumulator | 11110100 I
Data Memory ? I
In this example, consider the following:
e What are the two input values, and the expected result?
e Why are the “partial products” shifted left as the calculation continues?
e Why is the final partial product “different” than the others?
e What is the result obtained when adding the partial products?
e How shall this result be loaded into the accumulator?
o How shall we fill the remaining bit? Is this value still the expected one?
e How can the result be stored back to memory? What problems arise?
8-6 C2000 Piccolo Workshop - Numerical Concepts

Binary Multiplication

Note: With two’s complement multiplication, the leading “1” in the second multiplicand is a
sign bit. If the sign bit is “1”, then take the 2’s complement of the first multiplicand.
Additionally, each partial product must be sign-extended for correct computation.

Note: All of the above questions except the final one are addressed in this module. The last
guestion may have several answers:

e Store the lower accumulator to memory. What problem is apparent using this
method in this example?

e Store the upper accumulator back to memory. Wouldn't this create a loss of
precision, and a problem in how to interpret the results later?

e Store both the upper and lower accumulator to memory. This solves the above
problems, but creates some new ones:

— Extra code space, memory space, and cycle time are used

— How can the result be used as the input to a subsequent calculation? Is such a
condition likely (consider any “feedback” system)?

From this analysis, it is clear that integers do not behave well when multiplied. Might some other
type of number system behave better? Is there a number system where the results of a
multiplication are bounded?

C2000 Piccolo Workshop - Numerical Concepts 8-7

Binary Fractions

Binary Fractions

Given the problems associated with integers and multiplication, consider the possibilities of using
fractional values. Fractions do not grow when multiplied, therefore, they remain representable
within a given word size and solve the problem. Given the benefit of fractional multiplication,
consider the issues involved with using fractions:

e How are fractions represented in two's complement?
e What issues are involved when multiplying two fractions?

Representing Fractions in Binary

In order to represent both positive and negative values, the two's complement process will again
be used. However, in the case of fractions, we will not set the LSB to 1 (as was the case for
integers). When one considers that the range of fractions is from -1 to ~+1, and that the only bit
which conveys negative information is the MSB, it seems that the MSB must be the “negative
ones position.” Since binary representation is based on powers of two, it follows that the next bit
would be the “one-halves” position, and that each following bit would have half the magnitude
again. Considering, as before, a 4-bit model, we have the representation shown in the following
example.

1]1.]0 1 1 |=-1+1/4+1/8=-5/8

-1 12 1/4 1/8

Fraction Basics

Fraction Basics

-20 21| 22| 23 [eaa |2-(0-1)
°

1101b = (1*-20)+(1*2:1)+(0*2:2)+(1*273)
=-1+1/2+1/8
=-3/8

Fractions have the nice property that
fraction x fraction = fraction

8-8 C2000 Piccolo Workshop - Numerical Concepts

Binary Fractions

Multiplying Binary Fractions

When the C28x performs multiplication, the process is identical for all operands, integers or
fractions. Therefore, the user must determine how to interpret the results. As before, consider the
4-bit multiply example:

Fraction Multiplication

0100 1/2
x 1101 x -3/8
0100
0000
0100
1100
1110100 -3/16

Accumulator | 11110100 I

Dmawmmowv'1110| ~1/4

As before, consider the following:
e What are the two input values and the expected result?
o As before, “partial products” are shifted left and the final is negative.
e How is the result (obtained when adding the partial products) read?
e How shall this result be loaded into the accumulator?
e How shall we fill the remaining bit? Is this value still the expected one?
e How can the result be stored back to memory? What problems arise?

To “read” the results of the fractional multiply, it is necessary to locate the binary point (the base
2 equivalent of the base 10 decimal point). Start by identifying the location of the binary point in
the input values. The MSB is an integer and the next bit is 1/2, therefore, the binary point would

be located between them. In our example, therefore, we would have three bits to the right of the

binary point in each input value. For ease of description, we can refer to these as “Q3” numbers,
where Q refers to the number of places to the right of the point.

When multiplying numbers, the Q values add. Thus, we would (mentally) place a binary point
above the sixth LSB. We can now calculate the “Q6” result more readily.

C2000 Piccolo Workshop - Numerical Concepts 8-9

Binary Fractions

As with integers, the results are loaded low and the MSB is a sign extension of the seventh bit. If
this value were loaded into the accumulator, we could store the results back to memory in a
variety of ways:

e Store both low and high accumulator values back to memory. This offers maximum
detail, but has the same problems as with integer multiply.

e Store only the high (or low) accumulator back to memory. This creates a potential for
a memory littered with varying Q-types.

e Store the upper accumulator shifted to the left by 1. This would store values back to
memory in the same Q format as the input values, and with equal precision to the
inputs. How shall the left shift be performed? Here’s three methods:

— Explicit shift (C or assembly code)
— Shift on store (assembly code)
— Use Product Mode shifter (assembly code)

8-10 C2000 Piccolo Workshop - Numerical Concepts

Fraction Coding

Fraction Coding

Although COFF tools recognize values in integer, hex, binary, and other forms, they understand
only integer, or non-fractional values. To use fractions within the C28x, it is necessary to describe
them as though they were integers. This turns out to be a very simple trick. Consider the
following number lines:

Coding Traditional 16-bit Q15 Fractions

~1 32767 == Ox7FFF
Yo = 16384 == 0x4000
=
0 0 ——0x0000
* 32768

Yo - (219) -16384 - 0xC000
-1 -32768 —d— 0x8000
Fraction Integer

¢ C-code example: y =0.707 * x

void main(void)
{
intlé coef = 32768*707/1000; // 0.707 in Q15
intlée x, y;
y = (intl6)((int32)coef * (int32)x) >> 15);
}

By multiplying a fraction by 32K (32768), a normalized fraction is created, which can be passed
through the COFF tools as an integer. Once in the C28x, the normalized fraction looks and
behaves exactly as a fraction. Thus, when using fractional constants in a C28x program, the coder
first multiplies the fraction by 32768, and uses the resulting integer (rounded to the nearest whole
value) to represent the fraction.

The following is a simple, but effective method for getting fractions past the assembler:
1. Express the fraction as a decimal number (drop the decimal point).
2. Multiply by 32768.
3. Divide by the proper multiple of 10 to restore the decimal position.
» Examples:

o Torepresent 0.62: 32768 x 62 / 100
e To represent 0.1405: 32768 x 1405 / 10000

This method produces a valid number accurate to 16 bits. You will not need to do the math
yourself, and changing values in your code becomes rather simple.

C2000 Piccolo Workshop - Numerical Concepts 8-11

Fractional vs. Integer Representation

Fractional vs. Integer Representation

Integer vs. Fractions
Range Precision
Integer determined 1
by # of bits
Fraction ~+1to -1 determined
by # of bits

¢ Integers grow whe
¢ Fractions have lim

+ Fractions can still grow when you add them
« Scaling an application is time consuming

Are there any other alternatives?

n you multiply them
ited range

The C28x accumulator, a 32-bit register, adds extra range to integer calculations, but this

becomes a problem in storing the results back to 1

6-bit memory.

Conversely, when using fractions, the extra accumulator bits increase precision, which helps

minimize accumulative errors. Since any number

is accurate (at best) to + one-half of a LSB,

summing two of these values together would yield a worst case result of 1 LSB error. Four

summations produce two LSBs of error. By 256 s
accumulator holds 32 bits of information, and frac
accumulator, the extra range of the accumulator is
sum-of-products type calculations.

ummations, eight LSBs are “noisy.” Since the
tional results are stored from the high
a major benefit in noise reduction for long

C2000 Piccolo Workshop - Numerical Concepts

Floating-Point

Floating-Point
IEEE-754 Single Precision Floating-Point

31 30 23 22 0
| s| eeeeeeee | FFFFFFFFFFFFFFFFFFFFFFF
1 bit sign 8 bit exponent 23 bit mantissa (fraction)

Casel: ife=255andf=0, thenv=NaN
Case2: ife=255andf =0, thenv=[(-1p]*infinity
Normalized — Case 3: if 0<e <255, then v = [(-1)S]*[2(6-2270]*(1.f)
values Case4: ife=0andf=0, then v = [(-1)3]*[2(128)]%(0.f)
Case5: ife=0andf=0, then v = [(-1)5]*0

100 0001 O
e =130

010 0000 0000 ... 0000|b
f=22=0.25

Example: 0x41200000 =0

S

= Case3 v =(-10%2030120%] 25 =100

Advantage = Exponent gives large dynamic range
Disadvantage = Precision of a number depends on its exponent

Number Line Insight

Floating-Point:

A
+00 0 -00

¢ Non-uniform distribution
+ Precision greatest near zero
+ Less precision the further you get from zero

C2000 Piccolo Workshop - Numerical Concepts 8-13

Floating-Point

Floating-Point Pros and Cons

¢ Advantages
+ Easy to write code
+ No scaling required

¢ Disadvantages
+ Somewhat higher device cost

+ May offer insufficient precision for some
calculations due to 23 bit mantissa and
the influence of the exponent

What if you don’t have the luxury of
using a floating-point C28x device?

8-14 C2000 Piccolo Workshop - Numerical Concepts

IQmath

IQmath

Implementing complex digital control algorithms on a Digital Signal Processor (DSP), or any
other DSP capable processor, typically come across the following issues:

e Algorithms are typically developed using floating-point math

e Floating-point devices are more expensive than fixed-point devices

o Converting floating-point algorithms to a fixed-point device is very time consuming

e Conversion process is one way and therefore backward simulation is not always possible

The design may initially start with a simulation (i.e. MatLab) of a control algorithm, which
typically would be written in floating-point math (C or C++). This algorithm can be easily ported
to a floating-point device, however because of cost reasons most likely a 16-bit or 32-bit fixed-
point device would be used in many target systems.

The effort and skill involved in converting a floating-point algorithm to function using a 16-bit or
32-bit fixed-point device is quite significant. A great deal of time (many days or weeks) would
be needed for reformatting, scaling and coding the problem. Additionally, the final
implementation typically has little resemblance to the original algorithm. Debugging is not an
easy task and the code is not easy to maintain or document.

IQ Fractional Representation

A new approach to fixed-point algorithm development, termed “1Qmath”, can greatly simplify the
design development task. This approach can also be termed “virtual floating-point” since it looks
like floating-point, but it is implemented using fixed-point techniques.

IQ Fractional Representation

31 0
S 111111, FRFFFFFFFFFFFFFFFFFFFFf]

32 bit mantissa

2042+ 428420, 204224 420

18Q24 Example: 0x41200000
= 0100 0001 . 0010 0000 0000 0000 0000 0000 b
=26+20+23=65.125

Advantage = Precision same for all numbers in an IQ format
Disadvantage = Limited dynamic range compared to floating-point

C2000 Piccolo Workshop - Numerical Concepts 8-15

IQmath

The 1Qmath approach enables the seamless portability of code between fixed and floating-point
devices. This approach is applicable to many problems that do not require a large dynamic range,
such as motor or digital control applications.

Number Line Insight
Distributions

Floating-Point: non-uniform distribution (variable precision)

e]

+o00 0 -00

IQ Fractions: uniform distribution (same precision everywhere)

& Both floating-point and IQ formats have 232
possible values on the number line

& It's how each distributes these values that differs

Traditional “Q” Math Approach
Traditional 32-bit “Q” Math Approach

y=mx+Db

18, Q24 M

—] 116 o Q48 —

18, Q24 X

[ssssssssssssssssss 15, Q24 j——————18, Q24 B

@ Align Decimal
Point for Add

—— ssssl8, Q48 |

116 Q48 |
Align Decimal
@ Point for Store

sssssssssssssssssl16, Q24 |—> 18 o Q24 Y

in C:| Y = ((int64) M * (int64) X + (int64) B << Q) >> Q; |

Note: Requires support for 64-bit integer data type in compiler

8-16 C2000 Piccolo Workshop - Numerical Concepts

IQmath

The traditional approach to performing math operations, using fixed-point numerical techniques
can be demonstrated using a simple linear equation example. The floating-point code for a linear
equation would be:

float Y, M, X, B;
Y =M*X + B;

For the fixed-point implementation, assume all data is 32-bits, and that the "Q" value, or location
of the binary point, is set to 24 fractional bits (Q24). The numerical range and resolution for a
32-bit Q24 number is as follows:

Q value Min Value Max Value Resolution

Q24 | -2%2%=.128.000 000 00 | 22 _ (15)** = 127.999 999 94 | (%2)** = 0.000 000 06

The C code implementation of the linear equation is:

int32 Y, M, X, B; // numbers are all Q24
Y = ((int64) M * (int64) X + (int64) B << 24) >> 24;

Compared to the floating-point representation, it looks quite cumbersome and has little resem-
blance to the floating-point equation. It is obvious why programmers prefer using floating-point
math.

The slide shows the implementation of the equation on a processor containing hardware that can
perform a 32x32 bit multiplication, 64-bit addition and 64-bit shifts (logical and arithmetic) effi-
ciently.

The basic approach in traditional fixed-point "Q" math is to align the binary point of the operands
that get added to or subtracted from the multiplication result. As shown in the slide, the multipli-
cation of M and X (two Q24 numbers) results in a Q48 value that is stored in a 64-bit register.
The value B (Q24) needs to be scaled to a Q48 number before addition to the M*X value (low
order bits zero filled, high order bits sign extended). The final result is then scaled back to a Q24
number (arithmetic shift right) before storing into Y (Q24). Many programmers may be familiar
with 16-bit fixed-point "Q" math that is in common use. The same example using 16-bit numbers
with 15 fractional bits (Q15) would be coded as follows:

intlé Y, M, X, B; // numbers are all Q15
Y = ((int32) M * (int32) X + (int32) B << 15) >> 15;

In both cases, the principal methodology is the same. The binary point of the operands that get
added to or subtracted from the multiplication result must be aligned.

C2000 Piccolo Workshop - Numerical Concepts 8-17

IQmath

IQmath Approach
32-bit IQmath Approach

y=mx+Db

I8, Q24 M
[116 Q48
. . 18 24 X
Align Decimal - ¢
Point Of Multiply

[sssssssssssssssssl16, Q24 |

| 18, 024 B

18 Q24 18, Q24 Y

in C: |Y = ((int64) M * (int64) X) >> Q + B;

In the "IQmath" approach, rather then scaling the operands, which get added to or subtracted
from the multiplication result, we do the reverse. The multiplication result binary point is scaled
back such that it aligns to the operands, which are added to or subtracted from it. The C code
implementation of this is given by linear equation below:

int32 Y, M, X, B;
Y = ((int64) M * (int64) X) >> 24 + B;

The slide shows the implementation of the equation on a processor containing hardware that can
perform a 32x32 bit multiply, 32-bit addition/subtraction and 64-bit logical and arithmetic shifts
efficiently.

The key advantage of this approach is shown by what can then be done with the C and C++ com-
piler to simplify the coding of the linear equation example.

Let’s take an additional step and create a multiply function in C that performs the following op-
eration:

int32 _1024mpy(int32 M, int32 X) { return ((int64) M * (int64) X) >> 24; }

The linear equation can then be written as follows:
Y = _1Q24mpy(M , X) + B;

Already we can see a marked improvement in the readability of the linear equation.

8-18 C2000 Piccolo Workshop - Numerical Concepts

IQmath

Using the operator overloading features of C++, we can overload the multiplication operand "*"
such that when a particular data type is encountered, it will automatically implement the scaled
multiply operation. Let’s define a data type called "ig" and assign the linear variables to this data

type:

iq Y, M, X, B // numbers are all Q24
The overloading of the multiply operand in C++ can be defined as follows:

iq operator*(const iq &M, const iq &X){return((int64)M*(int64) X) >> 24;}
Then the linear equation, in C++, becomes:

Y=M?*X + B;

This final equation looks identical to the floating-point representation. It looks "natural”. The
four approaches are summarized in the table below:

Math Implementations Linear Equation Code
32-bit floating-point math in C Y=M*X+B;
32-bit fixed-point "Q" math in C Y = ((int64) M * (int64) X) + (int64) B << 24) >> 24;
32-bit IQmath in C Y = _1Q24mpy(M, X) + B;
32-bit IQmath in C++ Y=M*X+B;

Essentially, the mathematical approach of scaling the multiplier operand enables a cleaner and a
more "natural™ approach to coding fixed-point problems. For want of a better term, we call this
approach "l1Qmath" or can also be described as "virtual floating-point".

C2000 Piccolo Workshop - Numerical Concepts 8-19

IQmath

IQmath Approach
Multiply Operation

| Y = ((i64) M * (i64) X) >> Q + B; |

Redefine the multiply operation as follows:
| _1Qmpy(M,X) == ((i64) M * (i64) X) >> Q |
This simplifies the equation as follows:
| Y = _1Qmpy(M,X) + B; |

C28x compiler supports “_1Qmpy” intrinsic; assembly code generated:

MOVL XT,@M
IMPYL P,XT,@X ; P
QMPYL ACC,XT,@X ; ACC high 32-bits of M*X
LSL64 ACC:P,#(32-Q) ; ACC ACC:P << 32-Q

; (same as P = ACC:P >> Q)

low 32-bits of M*X

ADDL ACC,@B ; Add B
MOVL @Y ,ACC ; Result =Y = _1Qmpy(M*X) + B
; 7 Cycles

IQmath Approach

It looks like floating-point!

_ ~ float Y, M, X, B;
Floating-Point

Y =M * X+ B;

.. long Y, M, X, B;
Traditional

Fix-Point Q v = ((i64) M * (i64) X + (i64) B << Q)) >> Q;

uIQmathn _iq Y, M, X, B;
InC Y = _1Qmpy(M, X) + B;

“IQmath” '@ Y. M, X, B;

In C++

Y=M=*X + B;

“IQmath” code is easy to read!

8-20 C2000 Piccolo Workshop - Numerical Concepts

IQmath

IQmath Approach
GLOBAL_Q simplification

User selects “Global Q" value for the whole application
GLOBAL_Q

[]
based on the required dynamic range or resolution, for example:
GLOBAL_Q Max Val Min Val Resolution
28 7.999 999 996 -8.000 000 000 | 0.000 OO0 004
24 127.999 999 94 -128.000 000 OO |[0.000 00O 06
20 2047.999 999 -2048.000 000 0.000 001

#define GLOBAL_Q 18 // set in “lIQmathLib.h” file
_iq Y, M, X, B;
Y = _10mpy(M,X) + B; // all values are in Q = 18

The user can also explicitly specify the Q value to use:
_ig20 Y, M, X, B;

Y = _1Q20mpy(M,X) + B; // all values are in Q = 20

The basic "IQmath" approach was adopted in the creation of a standard math library for the Texas
Instruments TMS320C28x DSP fixed-point processor. This processor contains efficient hardware
for performing 32x32 bit multiply, 64-bit shifts (logical and arithmetic) and 32-bit add/subtract
operations, which are ideally suited for 32 bit "IQmath".

Some enhancements were made to the basic "IQmath" approach to improve flexibility. They are:

Setting of GLOBAL_Q Parameter Value: Depending on the application, the amount of numerical
resolution or dynamic range required may vary. In the linear equation example, we used a Q
value of 24 (Q24). There is no reason why any value of Q can't be used. In the "IQmath™ library,
the user can set a GLOBAL_Q parameter, with a range of 1 to 30 (Q1 to Q30). All functions
used in the program will use this GLOBAL_Q value. For example:

#define GLOBAL_Q 18
Y = _1Qmpy(M, X) + B; // all values use GLOBAL_Q = 18

If, for some reason a particular function or equation requires a different resolution, then the user
has the option to implicitly specify the Q value for the operation. For example:

Y = _1Q23mpy(M,X) + B; // all values use Q23, including B and Y

The Q value must be consistent for all expressions in the same line of code.

C2000 Piccolo Workshop - Numerical Concepts 8-21

IQmath

IQmath Provides Compatibility Between
Floating-Point and Fixed-Point

1) Develop any mathematical function
| Y = _I0mpy(M, X) + B; |

< 2) Select math type in IQmathLib.h N/
|#if MATH_TYPE == IQ_MATH| |#if MATH_TYPE == FLOAT_MATH|

3) Compiler automatically converts to: </
| Y = (float)M * (float)X + (Float)B; |

Fixed-Point

Floating-Point
Math Code

Math Code

Compile & Run
on Fixed-Point
F282xx

Compile & Run
on Floating-Point
F283xx *

All “IQmath” operations have an equivalent floating-point operation

* Can also compile floating-point code on any floating-point compiler (e.g., PC, Matlab, fixed-point w/ RTS lib, etc.)

Selecting FLOAT_MATH or 1Q_MATH Mode: As was highlighted in the introduction, we would
ideally like to be able to have a single source code that can execute on a floating-point or fixed-
point target device simply by recompiling the code. The "IQmath" library supports this by setting
a mode, which selects either IQ_MATH or FLOAT_MATH. This operation is performed by
simply redefining the function in a header file. For example:

#1f MATH_TYPE == I1Q_MATH

#define _1Qmpy(M , X) _IQmpy(M , X)
#elseif MATH_TYPE == FLOAT_MATH

#define _1Qmpy(M , X) (Float) M * (float) X
#endif

Essentially, the programmer writes the code using the "IQmath™ library functions and the code
can be compiled for floating-point or "IQmath" operations.

8-22 C2000 Piccolo Workshop - Numerical Concepts

IQmath Library

IQmath Library

IQmath Library: Math & Trig Functions

if(A <Neg) A =Neg

Operation Floating-Point “IQmath” in C “lIQmath” in C++
type float A, B; _ig A, B; iq A, B;
constant A=1.2345 A =_1Q(1.2345) A = 1Q(1.2345)
multiply A*B _IQmpy(A , B) A*B
divide A/B _lQdiv (A, B) A/B
add A+B A+B A+B
substract A-B A-B A-B
boolean > >= < <=, ==, |5, &&, || > >=, < <=, =5, |5, &&, || > >=, <, <=, =5, |5, &&, ||
trig sin(A),cos(A) _lQsin(A), _IQcos(A) 1Qsin(A),IQcos(A)
and sin(A*2pi),cos(A*2pi) | _IQsinPU(A), _IQcosPU(A) | 1QsinPU(A),IQcosPU(A)
power asin(A),acos(A) _IQasin(A),_IQacos(A) IQasin(A),IQacos(A)
functions atan(A),atan2(A,B) | _IQatan(A), _IQatan2(A,B) | IQatan(A),IQatan2(A,B)
atan2(A,B)/2pi _IQatan2PU(A,B) IQatan2PU(A,B)
sqrt(A),1/sqrt(A) _1Qsqrt(A), _1Qisqrt(A) 1Qsqrt(A),IQisqrt(A)
sqrt(A*A + B*B) _1Qmag(A,B) IQmag(A,B)
exp(A) _IQexp(A) 1Qexp(A)
saturation if(A > Pos) A = Pos _lQsat(A,Pos,Neg) IQsat(A,Pos,Neg)

Accuracy of functions/operations approx ~28 to ~31 bits

Additionally, the "IQmath” library contains DSP library modules for filters (FIR & IIR) and Fast
Fourier Transforms (FFT & IFFT).

IQmath Library: Conversion Functions

Operation Floating-Point “lQmath” in C “lIQmath” in C++
iq to iqN A _IQtolQN(A) IQtolQN(A)
igN to iq A _IQONtolQ(A) IQNtoIQ(A)

integer(iq) (long) A _IQint(A) IQint(A)

fraction(iq) A—(long) A _IQfrac(A) IQfrac(A)

iq =ig*ong A * (float) B _IQmpyI32(A,B) IQmpyI32(A,B)

integer(ig*long)

(long) (A * (float) B)

_IQmpyI32int(A,B)

IQmpyI132int(A,B)

fraction(ig*long)

A - (long) (A * (float) B)

_IQmpyI32frac(A,B)

IQmpyI32frac(A,B)

gNtoiq A _ONtolQ(A) QNtolQ(A)
igtogN A _IQtoQN(A) 1QtoQN(A)
string to iq atof(char) _atolQ(char) atolQ(char)
1Q to float A _IQtoF(A) IQtoF(A)
IQ to ASCII sprintf(A,B,C) _IQtoA(A,B,C) IQtoA(A,B,C)
IQmath.lib > contains library of math functions
IQmathLib.h > C header file
IQmathCPP.h > C++ header file

C2000 Piccolo Workshop - Numerical Concepts

IQmath Library

16 vs. 32 Bits

The "IQmath" approach could also be used on 16-bit numbers and for many problems, this is suf-
ficient resolution. However, in many control cases, the user needs to use many different "Q" val-
ues to accommodate the limited resolution of a 16-bit number.

With DSP devices like the TMS320C28x processor, which can perform 16-bit and 32-bit math
with equal efficiency, the choice becomes more of productivity (time to market). Why bother
spending a whole lot of time trying to code using 16-bit numbers when you can simply use 32-bit
numbers, pick one value of "Q" that will accommodate all cases and not worry about spending
too much time optimizing.

Of course there is a concern on data RAM usage if numbers that could be represented in 16 bits
all use 32 bits. This is becoming less of an issue in today's processors because of the finer tech-
nology used and the amount of RAM that can be cheaply integrated. However, in many cases,
this problem can be mitigated by performing intermediate calculations using 32-bit numbers and
converting the input from 16 to 32 bits and converting the output back to 16 bits before storing
the final results. In many problems, it is the intermediate calculations that require additional ac-
curacy to avoid quantization problems.

C2000 Piccolo Workshop - Numerical Concepts

Converting ADC Results into 1Q Format

Converting ADC Results into 1Q Format
Getting the ADC Result into IQ Format

AdcResult.
[OT O O[OIXIXIXIXIXIXIXIXIXIXIXIX] ADCRESULTx

Do not sign extendl

31 15 0
[OTOJO[OJO0TOT O[O OTOTOTO[OTOTOTOTOTOTOTO IXIXIX IXIXIXIXIXIXIXIX[X] 32-bitlong

Notice that the 32-bit long is already in 1Q12 format

_iqg Result;

void main(void)

{

// Convert the ADC result into global 1Q format valued between 0.0 and 1.0
Result = _1Q12tolQ((_iq)AdcResult _ADCRESULTO);

// Optional: scale by ADC full-scale range to get 0.0 to 3.3
// (if you prefer to think/scale in terms of voltage)

Result = _1Qmpy(_iq(3.3), Result);
3

As you may recall, the converted values of the ADC are placed in the lower 12 bits of the
ADCRESULTO register. Before these values are filtered using the IQmath library, they need to
to be put into the 1Q format as a 32-bit long. For uni-polar ADC inputs (i.e., 0 to 3.3 V inputs), a
conversion to global 1Q format can be achieved with:

IQresult_unipolar = _1Qmpy(_I1Q(3-3),_1012tolQ((_iq) AdcResult_ADCRESULTO0));

How can we modify the above to recover bi-polar inputs, for example +-1.65 volts? One could
do the following to offset the +1.65V analog biasing applied to the ADC input:

IQresult_bipolar =
_1Qmpy(_1Q(3.3),_1Q12to1Q((_iq) AdcResult.ADCRESULTO0)) - _1Q(1.65);

However, one can see that the largest intermediate value the equation above could reach is 3.3.
This means that it cannot be used with an 1Q data type of 1Q30 (IQ30 range is -2 < x < ~2). Since
the IQmath library supports 1Q types from 1Q1 to 1Q30, this could be an issue in some applica-
tions.

The following clever approach supports 1Q types from 1Q1 to 1Q30:

IQresult_bipolar =
_10mpy(C_1Q(1.65),_1Q15tolQ(C_iqg) ((intl6) (AdcResult.ADCRESULTO ~
0x8000)))):

The largest intermediate value that this equation could reach is 1.65. Therefore, 1Q30 is easily
supported.

C2000 Piccolo Workshop - Numerical Concepts 8-25

AC Induction Motor Example

AC Induction Motor Example

AC Induction Motor Example

One of the more complex motor control algorithms

AC INDUCTION MOTOR
T FORWARD CONTROL MODEL
id_rof=H pin_REGI
——w—

il ICTRTTTR | e — ipark_o PARE L »
spd_filh P LET PIDEEET g out —ipark o AL fpsi_r_heta
)
a |-|nnu ind ipark_a —psi_r_alfa—b
L inlind
ek D] PARK |........_,J
M=park_d
%0 M-park g
1o B
—thutn_s_fo :

1 Mewr_hat se—

§ dever_hat_rpm_se

FEEDBACK CONTROL . 'i E! [!

Alpha.fxis Stator Current Plot

Figure &

& Sensorless, AClinduction machine direct rotor flux control
& Goal: motor speed estimation & alpha-axis stator current estimation

The "IQmath" approach is ideally suited for applications where a large numerical dynamic range
is not required. Motor control is an example of such an application (audio and communication
algorithms are other applications). As an example, the IQmath approach has been applied to the
sensor-less direct field control of an AC induction motor. This is probably one of the most chal-
lenging motor control problems and as will be shown later, requires numerical accuracy greater
then 16-bits in the control calculations.

The above slide is a block diagram representation of the key control blocks and their interconnec-
tions. Essentially this system implements a "Forward Control™ block for controlling the d-g axis
motor current using PID controllers and a "Feedback Control” block using back emf's integration
with compensated voltage from current model for estimating rotor flux based on current and volt-
age measurements. The motor speed is simply estimated from rotor flux differentiation and open-
loop slip computation. The system was initially implemented on a "Simulator Test Bench” which
uses a simulation of an "AC Induction Motor Model" in place of a real motor. Once working, the
system was then tested using a real motor on an appropriate hardware platform.

Each individual block shown in the slide exists as a stand-alone C/C++ module, which can be
interconnected to form the complete control system. This modular approach allows reusability
and portability of the code. The next few slides show the coding of one particular block, PARK
Transform, using floating-point and "IQmath" approaches in C:

8-26 C2000 Piccolo Workshop - Numerical Concepts

AC Induction Motor Example

AC Induction Motor Example

Park Transform — floating-point C code

#include “math.h”

#define TWO_PI 6.28318530717959
void park_calc(PARK *v)

{
float cos_ang , sin_ang;
sin_ang = sin(TWO_PI * v->ang);
cos_ang = cos(TWO_PI * v->ang);
v->de = (v->ds * cos_ang) + (v->gs * sin_ang);
v->ge = (v->gs * cos_ang) - (v->ds * sin_ang);
}

AC Induction Motor Example

Park Transform - converting to “IQmath” C code

#include “math.h”
#include “I1QmathLib._h”

#define TWO_PI _1Q(6.28318530717959)
void park_calc(PARK *v)
{
_iq cos_ang , sin_ang;
sin_ang = _1Qsin(_IQmpy (TWO_PI1 , v->ang));
cos_ang = _IQcos(_IQmpy (TWO_PI , v->ang));
v->de = _l1Qmpy(v->ds , cos_ang) + _IQmpy(v->gs , sin_ang);
v->qge = _IQmpy(v->gs , cos_ang) - _IQmpy(v->ds , sin_ang);

The complete system was coded using "1Qmath”. Based on analysis of coefficients in the system,
the largest coefficient had a value of 33.3333. This indicated that a minimum dynamic range of 7
bits (+/-64 range) was required. Therefore, this translated to a GLOBAL_Q value of 32-7 =25
(Q25). Just to be safe, the initial simulation runs were conducted with GLOBAL_Q = 24 (Q24)

C2000 Piccolo Workshop - Numerical Concepts 8-27

AC Induction Motor Example

value. The plots start from a step change in reference speed from 0.0 to 0.5 and 1024 samples are
taken.

AC Induction Motor Example
GLOBAL_Q = 24, system stable

D Bh0 Yoww Cremsl Dsbug Pesllles GE. Optus Teds Windew Hslp

0 ¥ fl |
= e - |' o
_.-' 4 5 1 | | ,- ,\ Y
i a e I"|||I||'r|| i |I| |I| A || [l 1\
o \"'fl"‘-||]'|"'|’l:"
_1; "”i__ :..: ||. J| | || '-j' .i ||I ||“| I | |I I |
s - | ; v
2 e {l J
IQmath: speed ol | IQmath: current
o I
o fl
r||| /\ e }l || || J\
I v I“ | | | “I I'il 1 A A A AN
ass || |\ (] .||!|,'|,|-'| I
o ,]’ ||||| |,|| II||I|||!||I||!|'I .II‘.
};_} \n-. lJ ” |II Il I '-_'II III.'II II..'I Ill.lil Ill.lll I'I. |III
Floating-Point: speed e ‘] FIoating—Point: current

The speed eventually settles to the desired reference value and the stator current exhibits a clean
and stable oscillation. The block diagram slide shows at which points in the control system the
plots are taken from.

What’'s Happening Here?
Equal Precision in the Computation Region

Floating-Point:

I—I—I-4—I—H*—I+|—|+~IH+HHHHH+HH+H1~+H—I-I—H—I-|—|—|
ny

ame precision as 18Q24

S

18Q24 Fractions: \

¥

L ey
REREERERAREREERRRE NN RER A RREEN

+00 0 -0

In the region where these particular computations occur, the
precision of single-precision floating-point just happens to equal
the precision of the 18Q24 format.

So, both produce similar results!

8-28 C2000 Piccolo Workshop - Numerical Concepts

AC Induction Motor Example

AC Induction Motor Example
GLOBAL_Q =27, system unstable

(=]

] 5 T
Dils Blit View Browd Csieag frofier O Cwlien Tosls Wewbes tsly

: IQmath: speed
mj‘““] =,] e 1 e A B = B o i) .;; = n.:-‘hh?, .
=W “\
=)
o [| (
e (1 | | |r| hoA "' f
[1 \ ||'||'| |r |I |||I]|'|'|,I]l'IM I '1”|'I ||ﬁ||
ST \ f w.‘.l'l"f' VY
:: I! I] I| | J
= Al \ l |} | |
""" ARV \4 IQmath current

AC Induction Motor Example
GLOBAL_Q =16, system unstable

M (".l ﬂ II\ /w\ lﬂ \ .ﬂﬁ Iﬁ\ /q". Jir“\ P\'. /\\)r\

LT | T

i \ﬁ\ f\kww “II‘. Jf\/ \I J,\‘f [“ llvnt j \f I \’\ \ v j ll 'hllJl \’IU i) lllll‘ ‘I'lu

| \ !

” L‘lu i} o lematrL current

C2000 Piccolo Workshop - Numerical Concepts 8-29

AC Induction Motor Example

With the ability to select the GLOBAL_Q value for all calculations in the "IQmath", an experi-
ment was conducted to see what maximum and minimum Q value the system could tolerate be-
fore it became unstable. The results are tabulated in the slide below:

AC Induction Motor Example
Q stability range

Qrange Stability Range
Unstable
Q31 to Q27 (not enough dynamic range)
Q26 to Q19 Stable
Q18 to QO Unstable

(not enough resolution, quantization problems)

The developer must pick the right GLOBAL_Q value!

The above indicates that, the AC induction motor system that we simulated requires a minimum
of 7 bits of dynamic range (+/-64) and requires a minimum of 19 bits of numerical resolution (+/-
0.000002). This confirms our initial analysis that the largest coefficient value being 33.33333
required a minimum dynamic range of 7 bits. As a general guideline, users using 1Qmath should
examine the largest coefficient used in the equations and this would be a good starting point for
setting the initial GLOBAL_Q value. Then, through simulation or experimentation, the user can
reduce the GLOBAL_Q until the system resolution starts to cause instability or performance deg-
radation. The user then has a maximum and minimum limit and a safe approach is to pick a mid-
point.

What the above analysis also confirms is that this particular problem does require some calcula-
tions to be performed using greater then 16 bit precision. The above example requires a mini-
mum of 7 + 19 = 26 bits of numerical accuracy for some parts of the calculations. Hence, if one
was implementing the AC induction motor control algorithm using a 16 bit fixed-point DSP, it
would require the implementation of higher precision math for certain portions. This would take
more cycles and programming effort.

The great benefit of using GLOBAL_Q is that the user does not necessarily need to go into de-
tails to assign an individual Q for each variable in a whole system, as is typically done in conven-
tional fixed-point programming. This is time consuming work. By using 32-bit resolution and the
"IQmath" approach, the user can easily evaluate the overall resolution and quickly implement a
typical digital motor control application without quantization problems.

C2000 Piccolo Workshop - Numerical Concepts

AC Induction

Motor Example

AC Induction Motor Exam

Performance comparisons

ple

Benchmark

(20 kHz control loop)

C28x C C28x C C28x C
floating-point | floating-point IQmath
std. RTS lib fast RTS lib v1.4d
(150 MHz) (150 MHz) (150 MHz)
B1: ACI module cycles 401 401 625
B2: Feedforward control cycles 421 371 403
B3: Feedback control cycles 2336 792 1011
Total control cycles (B2+B3) 2757 1163 1414
% of available MHz used 36.8% 15.5% 18.9%

fast RTS lib v1.0betal
IQmath lib v1.4d

Notes: C28x compiled on codegen tools v5.0.0, -g (debug enabled), -03 (max. optimization)

Using the profiling capabilities of the respective DSP tools, the table above summarizes the num-
ber of cycles and code size of the forward and feedback control blocks.

The MIPS used is based on a system sampling frequency of 20 kHz, which is typical of such sys-

tems.

C2000 Piccolo Workshop - Numerical Concepts

IQmath Summary

IQmath Summary

IQmath Approach Summary

“IQmath” + fixed-point processor with 32-bit capabilities =

¢ Seamless portability of code between fixed and floating-
point devices

« User selects target math type in “IQmathLib.h” file
+ #f MATH_TYPE == 1Q_MATH
+ #f MATH_TYPE == FLOAT_MATH
& One source code set for simulation vs. target device

¢ Numerical resolution adjustability based on application
requirement

+ Set in “IQmathLib.h” file
. #define GLOBAL_Q 18

« Explicitly specify Q value
. _ig20 X, Y, Z
& Numerical accuracy without sacrificing time and cycles
¢ Rapid conversion/porting and implementation of algorithms

IQmath library is freeware - available from Tl DSP website
http://www.ti.com/c2000

The 1Qmath approach, matched to a fixed-point processor with 32x32 bit capabilities enables the
following:

Seamless portability of code between fixed and floating-point devices
Maintenance and support of one source code set from simulation to target device
Adjustability of numerical resolution (Q value) based on application requirement
Implementation of systems that may otherwise require floating-point device
Rapid conversion/porting and implementation of algorithms

C2000 Piccolo Workshop - Numerical Concepts

Lab 8: IQmath & Floating-Point FIR Filter

Lab 8: IQmath & Floating-Point FIR Filter
» Objective

The objective of this lab is to become familiar with 1Qmath programming. In the previous lab,
ePWM1A was setup to generate a 2 kHz, 25% duty cycle symmetric PWM waveform. The
waveform was then sampled with the on-chip analog-to-digital converter. In this lab the sampled
waveform will be passed through an FIR filter and displayed using the graphing feature of Code
Composer Studio. The filter math type is selected in the “IQmathLib.h” file.

ePWM1 ADC
TB Counter ADCINAO | RESULTO)
Compare » FIR Filter
Action Qualifier
connector 4
Wire :

ePWM2 triggering ADC on period

match using SOCA trigger every data

20 ps (50 kHz) memory

ePWM2
°
£
= CPU copies
() result to
= buffer during
3 - ADC ISR
c .
g —
Display
using CCS

» Procedure

Project File

1. Aproject named Lab8.pjt has been created for this lab. Open the project by clicking
onProject - Open.. and look in C:\C28x\Labs\Lab8. All Build Options
have been configured the same as the previous lab. The files used in this lab are:

Adc.c Filter.c
CodeStartBranch._asm Gpio.c
Defaultlsr_8.c Lab 8.cmd
DelayUs.asm Main_8.c
DSP2803x_GlobalVariableDefs.c PieCtrl 5 6 7 8 9 10.c
DSP2803x_Headers nonBI10S.cmd PieVect 5 6 7 8 9 10.c
ECap_7 8 9 10 12.c SysCtrl.c
EPwm_7 8 9 10 12.c Watchdog.c

C2000 Piccolo Workshop - Numerical Concepts 8-33

Lab 8: IQmath & Floating-Point FIR Filter

Project Build Options

2. Setup the include search path to include the IQmath header file. Open the Build
Options and select the Compiler tab. In the Preprocessor Category, find the Include
Search Path (-1) box and add to the end of the line (preceeded with a semicolon to
append this directory to the existing search path):

;- -\1Qmath\include
3. Setup the library search path to include the IQmath library. Select the Linker tab.
a. In the Libraries Category, find the Search Path (-1i) box and enter:
--\IQmath\lib

b. Inthe Include Libraries (-1) box add to the end of the line (preceeded with
a semicolon to append this library to the existing library):

;IQmath.lib

Then select OK to save the Bui Id Options.

Include IQmathLib.h

4. Inthe CCS project window left click the plus sign (+) to the left of the Include folder.
Edit Lab . h to uncomment the line that includes the 1QmathLib.h header file. Next,
in the Function Prototypes section, uncomment the function prototype for 1Qssfir(), the
I1Q math single-sample FIR filter function. In the Global Variable References section
uncomment the two _iq references. Save the changes and close the file.

Inspect Lab_8.cmd

5. Open and inspect Lab_8.cmd. First, notice that a section called “1Qmath’ is being
linked to LOSARAM. The IQmath section contains the IQmath library functions (code).
Second, notice that a section called “1QmathTables™ is being linked to the
IQTABLES with a TYPE = NOLOAD maodifier after its allocation. The IQmath tables
are used by the 1Qmath library functions. The NOLOAD modifier allows the linker to
resolve all addresses in the section, but the section is not actually placed into the .out
file. This is done because the section is already present in the device ROM (you cannot
load data into ROM after the device is manufactured!). The tables were put in the ROM
by TI when the device was manufactured. All we need to do is link the section to the
addresses where it is known to already reside (the tables are the very first thing in the
BOOT ROM, starting at address Ox3FE000). Close the inspected file.

8-34 C2000 Piccolo Workshop - Numerical Concepts

Lab 8: IQmath & Floating-Point FIR Filter

Select a Global 1Q value

6. UseFile - Open..toopen c:\C28x\Labs\1Qmath\include\lQmathLib.h.
Confirm that the GLOBAL_Q type (near beginning of file) is set to a value of 24. If it is not,
modify as necessary:

#define GLOBAL_Q 24

Recall that this Q type will provide 8 integer bits and 24 fractional bits. Dynamic range
is therefore -128 < x < +128, which is sufficient for our purposes in the workshaop.

Notice that the math type is defined as IQmath by:
#define MATH_TYPE 1Q_MATH

Close the file.

IQmath Single-Sample FIR Filter

7. Open and inspect Defaultlsr_8.c. Notice that the ADCINT_ISR calls the IQmath
single-sample FIR filter function, 1Qssfir(). The filter coefficients have been defined in
the beginning of Main_8.c.

8. Open and inspect the 1Qssfir() function in Fi lter.c. This is a simple, non-optimized
coding of a basic IQmath single-sample FIR filter. Close the inspected files.

Build and Load
9. Click the ““Bui 1d”’ button to build and load the project.

Run the Code — Filtered Waveform

10. Open a memory window to view some of the contents of the filtered ADC results buffer.
The address label for the filtered ADC results buffer is AdcBufFiltered. Set the Format to
16-Bit Unsigned Integer. We will be running our code in real-time mode, and will have
our window continuously refresh.

Note: For the next step, check to be sure that the jumper wire connecting PWM1A (pin #
GP10-00) to ADCINAQO (pin # ADC-AQ) is in place on the Docking Station.

11. Run the code in real-time mode using the GEL function: GEL -> Realtime
Emulation Control - Run_Realtime_with_Reset, and watch the memory
window update. Verify that the ADC result buffer contains updated values.

12. Open and setup a dual-time graph to plot a 50-point window of the filtered and unfiltered
ADC results buffer. Click: View > Graph > Time/Frequency.. and set the
following values:

C2000 Piccolo Workshop - Numerical Concepts 8-35

Lab 8: IQmath & Floating-Point FIR Filter

13.

14.

15.

Display Type Dual Time

Start Address — upper display | AdcBufFiltered

Start Address — lower display | AdcBuf

Acquisition Buffer Size 50

Display Data Size 50

DSP Data Type 16-bit unsigned integer
Sampling Rate (Hz) 50000

Time Display Unit us

Select OK to save the graph options.

The graphical display should show the generated FIR filtered 2 kHz, 25% duty cycle
symmetric PWM waveform in the upper display and the unfiltered waveform generated
in the previous lab exercise in the lower display. Notice the shape and phase differences
between the waveform plots (the filtered curve has rounded edges, and lags the unfiltered
plot by several samples). The amplitudes of both plots should run from 0 to 4095.

Open and setup two (2) frequency domain plots — one for the filtered and another for the
unfiltered ADC results buffer. Click: View - Graph - Time/Frequency..
and set the following values:

GRAPH #1 GRAPH #2
Display Type FFT Magnitude FFT Magnitude
Start Address AdcBufFiltered AdcBuf
Acquisition Buffer Size 50 50
FFT Framesize 50 50
DSP Data Type 16-bit unsigned integer | 16-bit unsigned integer
Sampling Rate (Hz) 50000 50000

Select OK to save the graph options.

The graphical displays should show the frequency components of the filtered and
unfiltered 2 kHz, 25% duty cycle symmetric PWM waveforms. Notice that the higher
frequency components are reduced using the Low-Pass FIR filter in the filtered graph as
compared to the unfiltered graph.

C2000 Piccolo Workshop - Numerical Concepts

Lab 8: IQmath & Floating-Point FIR Filter

16. Fully halt the CPU (real-time mode) by using the GEL function: GEL - Realtime
Emulation Control -> Full_Halt.

End of Exercise

C2000 Piccolo Workshop - Numerical Concepts 8-37

Lab 8: IQmath & Floating-Point FIR Filter

Lab 8 Reference: Low-Pass FIR Filter

Bode Plot of Digital Low Pass Filter
Coefficients: [1/16, 4/16, 6/16, 4/16, 1/16]

Sample Rate: 50 kHz

LowFass Filter Magnitude

o o =
15N (a7]

o
(]

hagnitude (dimensionless)

Freguency (HE:I. w10t

Lowe-Fass Fiter Phase

a

100
7
=
w 200
i :
i 1
D_ 1

-300 .

400 i | | i

a 0.5 1 1.5 2 25
Frequency (Hz) « 10

C2000 Piccolo Workshop - Numerical Concepts

Control Law Accelerator

Introduction

This module explains the operation of the control law accelerator (CLA). The CLA is an
independent, fully programmable, 32-bit floating-point math processor that enables concurrent
execution into the C28x family. This extends the capabilities of the C28x CPU by adding parallel
processing. The CLA has direct access to the ADC result registers, and all ePWM, HRPWM and
comparator registers. This allows the CLA to read ADC samples “just-in-time” and significantly
reduces the ADC sample to output delay enabling faster system response and higher frequency
operation. Utilizing the CLA for time-critical tasks frees up the CPU to perform other system and
communication functions concurrently.

Learning Objectives

Learning Objectives

¢ Explain the purpose and operation of
the Control Law Accelerator (CLA)

& Describe the CLA initialization
procedure

¢ Review the CLA registers, instruction
set, and programming flow

C2000 Piccolo Workshop - Control Law Accelerator 9-1

Module Topics

Module Topics

CONTIOI LW ACCEIBIALOLottt bbbt e e bbbt b ettt e e e st e e tas 9-1
T LU T=TN o ot PSS 9-2
Control Law ACCEIEIaOr (CLA)coiiieiiieieit ittt sttt 9-3

(OF I =] [oTo3 (g B T:] =1 o FO TSP ST PP UPPT PP 9-3
CLA Memory and REGISTEN ACCESSvcviuirieiirieietistenieieste ettt sttt ettt b ettt b e bt nbenans 9-4
(O N I T OO SSPRRR 9-4
Control and EXECULION REGISTEIScouiiueitirieeieie it sttt sttt st see b s be b sbe e enee e 9-5
CLA REYISLEIS ...ttt sttt etee et ekt eb et te e s e ee e be et e bt e b e e bt eb e e st e mb e b e ebeeb e ebe ek e e seene e e e b e nbeabeabe e e anbeneen 9-6
(OF I [1A= 17421 o] OSSPSR 9-8
CLA TaSK Programmingcccceoeiieitieieeieeiiesiesie e ste e siessaesaeaesaestestessessessesssessessessessessessesssssesssessessens 9-9
CLA INSEIUCTION SBL.....itiiiitiieeiietiite sttt bbbt b et b et bbb 9-10
(@8 Y NN o | €Tty T o T 1Y Lo T LTSS 9-11
(O8I N O o (=38 T 1] o S 9-11
CLA COUE DEOUGGING -tttk b et b bbbt b et et 9-12
Lab 9: CLA Floating-Point FIR FIItEr........cccoiiiiiiiiicecee e 9-13

C2000 Piccolo Workshop - Control Law Accelerator

Control Law Accelerator (CLA)

Control Law Accelerator (CLA)
Control Law Accelerator (CLA)

— ADC || C28x CPU 3
e PnEE 1

— e

—lcmp CLA —

¢ CLAis an independent 32-bit floating-
point math accelerator

¢ Executes algorithms independently and
in parallel with the main CPU

¢ Direct access to ePWM / HRPWM, ADC
result and comparator registers

¢ Responds to peripheral interrupts
independently of CPU

¢ Frees-up CPU for other tasks
(communications and diagnostics)

CLA Block Diagram
CLA Block Diagram

Task Triggers
(Peripheral Interrupts)

ADCINT1 or

EPWML _INT \
Al MPERINT1-8 o CLA INTL8Y| o INTL1,|C28X
ADCINT7 or Control & Execution LVF, LUF INT12 | CPU
Registers

EPWM7_INT

ADCINTS or

CPU Timer 0

CLA Program Bus
CLA Data Bus
MSG RAMs Periph. Regs
Prog RAM Data RAMO Data RAM1 CPU to CLA ADC Reslts
CLA to CPU ePWM
HRPWM
Comparator

C2000 Piccolo Workshop - Control Law Accelerator 9-3

Control Law Accelerator (CLA)

CLA Memory and Register Access

CLA Memory and Register Access

CLA Program Memory Message RAMs
+ Contains CLA program code « Used to pass data between
+ Mapped to the CPU at reset the CPU and CLA
+ Initialized by the CPU + Always mapped to both
) the CPU and CLA
L3 DPSARAM L1 DPSARAM L2 DPSARAM PFO PFO & PF1
MSG RAMs Periph. Regs
Prog RAM Data RAMO Data RAM1 CPUto CLA ADC Results
CLA to CPU ePWM
- HRPWM
CLA Data Memory Peripheral Reg Access
+ Contains variables and coefficients « ADC Results Regs
used by the CLA program code

« ePWM (all regs)
+ Mapped to the CPU at reset + HRPWM (all regs)

+ Initialized by CPU + Comparator (all regs)

CLA Tasks

CLA Tasks

Task Triggers
(Peripheral Interrupts)

ADCINT1 or
EPWM1_INT
se s MPERINT1-8 S
ADCINT?7 or) Control & Execution
EPWM7_INT Registers

ADCINTS8 or
CPU Timer 0

INT11| C28X
INT12| CPU

CLA_INT1-8

LVF, LUF HIE

¢ A Task is similar to an interrupt service routine
CLA supports 8 Tasks (Task1-8)

& Atask is started by a peripheral interrupt trigger
« Triggers are enabled in the MPISRCSEL 1 register

L 2

¢ When atrigger occurs the CLA begins execution at the

associated task vector entry (MVECT1-8)

¢ Once atask begins it runs to completion (no nesting)

+ A task is terminated with an MSTOP instruction

C2000 Piccolo Workshop - Control Law Accelerator

Control Law Accelerator (CLA)

Software triggering a task

¢ Tasks can also be started by a software trigger
using the CPU

¢ Method #1: Write to Interrupt Force Register (MIFRC) register

15-8 7 6 5 4 o 2 1 0
| reserved | INT8 | INT7 | INT6 | INT5 | INT4 | INT3 |INT2 | INT1 |
asm(** EALLOW™); // enable protected register access
ClalRegs -MIFRC_bit.INT4 = 1; // start task 4
asm('" EDIS™); // disable protected register access

¢ Method #2: Use IACK instruction

asm(*" IACK #0x0008'); // set bit 4 in MIFR to start task 4

More efficient — does not require EALLOW
Note: Use of IACK requires ClalRegs.MCTL.bit.IACKE = 1

Control and Execution Registers

CLA Control and Execution Registers

MIFR MIER
ADCINT1
ePWM1_INT ~ (1] ™~ CLA INTLS
S/W trigger =
. . .) CLA LVF, LUF PIE INT11 | C28x%
. . . . Core INT12| CPU
ADCINT8
CPU Timer 0 ~ @ ~\
S/W trigger MRO
MPISRCSEL1
LIRT MARO
MR2
[wPCl—{MVECTL8|H s MAR1
Program Data
Memory CLA Program Bus CLA Data Bus Memory

i 4
ermsrommmmmmsssscssoomeceosece oo MMEMCFG fo-smmsmmmsms e sesossmnnaaee -

MPISRCSEL1 — Peripheral Interrupt Source Select (Task 1-8)

MVECT1-8 — Task Interrupt Vector (MVECTL1/2/3/4/5/6/7/8)

MMEMCFG — Memory Map Configuration (RAM1E, RAMOE, PROGE)
MPC — 12-bit Program Counter (initialized by appropriate MVECTX register)
MRO-3 — CLA Floating-Point 32-bit Result Registers

MARO-1 — CLA Auxiliary Registers

L 2R 2R 2R 2R 2R 4

C2000 Piccolo Workshop - Control Law Accelerator 9-5

Control Law Accelerator (CLA)

CLA Registers

CLA Registers
ClalRegs register (lab file: Cla.c)

Register Description
MCTL Control Register
MMEMCFG Memory Configuration Register
MPISRCSEL1 Peripheral Interrupt Source Select 1 Register
MIFR Interrupt Flag Register
MIER Interrupt Enable Register
MIFRC Interrupt Force Register
MICLR Interrupt Flag Clear Register
MIOVF Interrupt Overflow Flag Register
MICLROVF Interrupt Overflow Flag Clear Register
MIRUN Interrupt Run Status Register
MVECTx Task x Interrupt Vector (x = 1-8)
MPC CLA 12-bit Program Counter
MARX CLA Auxiliary Register x (x = 0-1)
MRx CLA Floating-Point 32-bit Result Register (x =0-3)
MSTF CLA Floating-Point Status Register

CLA Control Register

ClalRegs.MCTL

IACK Enable girgsgfsfz::t
0 = CPU IACK instruction ignored 1 = CLA reset

1 =CPU IACK instruction triggers a task (registers set

to default state)

15 -3 2 1 0
reserved IACKE [SOFTRESET| HARDRESET
Soft Reset
0 = no effect
1 =CLAreset

(stop current task)

9-6 C2000 Piccolo Workshop - Control Law Accelerator

Control Law Accelerator (CLA)

CLA Memory Configuration Register
ClalRegs MMEMCFG

CLA Program Space Enable

0= mapped to CPU program and data space
1= mapped to CLA program space

15-6 5 4 2-1 0
reserved RAM1E | RAMOE reserved PROGE

N

CLA Data RAM1/ RAMO Enable

0 =mapped to CPU program and data space
1 =mapped to CLA data space

CLA Peripheral Interrupt Source
Select 1 Register
ClalRegs.MPISRCSEL1
Task 8 Peripheral Task 7 Peripheral Task 6 Peripheral Task 5 Peripheral

Interrupt Input Interrupt Input Interrupt Input Interrupt Input
000 = ADCINTS8 000 = ADCINT7 000 = ADCINT6 000 = ADCINT5
010=CPU Timer 0 010 = ePWM7 010 = ePWM6 010 = ePWM5
xx1=no source xX1 =no source xx1 =no source xx1= no source
31-28 27-24 23-20 19 -16
PERINT8SEL PERINT7SEL PERINT6SEL PERINT5SEL
15-12 11 -8 7-4 3-0
PERINT4SEL PERINT3SEL PERINT2SEL PERINT1SEL
/ | | \
Task 4 Peripheral Task 3 Peripheral Task 2 Peripheral Task 1 Peripheral
Interrupt Input Interrupt Input Interrupt Input Interrupt Input
000 = ADCINT4 000 = ADCINT3 000 = ADCINT2 000 = ADCINT1
010 = ePWM4 010 = ePWM3 010 = ePWM2 010 = ePWM1
xx1=no source xx1 =no source xx1 =no source xx1=no source
Note: select xx1 (no source) if task is generated by software 000 = Default

C2000 Piccolo Workshop - Control Law Accelerator 9-7

Control Law Accelerator (CLA)

CLA Interrupt Enable Register

ClalRegs.MIER

15-8 7 6 5 4 3 2 1
reserved INT8 | INT7 | INT6 | INTS | INT4 | INT3 |INT2 | INT1

N

0 =task interrupt disable (default)
1 =task interrupt enable

#include “DSP2803x_Device.h”
ClalRegs.-MIER.bit.INT2 = 1; //enable Task 2 interrupt
ClalRegs-MIER.all = 0x0028; //enable Task 6 and 4 interrupts

CLA Initialization

CLA Initialization

CLA initialization is performed by the CPU in C code
(typically done with the Peripheral Register Header Files)

1. Copy CLA task code from flash to CLA program RAM
2. Initialize CLA data RAMs, as needed

. Populate with data coefficients, constants, etc.

3. Configure the CLA registers
. Enable the CLA clock (PCLKCRS3 register)
. Populate the CLA task interrupt vectors (MVECT1-8 registers)
. Select the desired task interrupt sources (PERINT 1SEL register)
. If desired, enable IACK to start task using software (avoids EALLOW)
. Map CLA program RAM and data RAMs to CLA space

4. Configure desired CLA task completion interrupts in the PIE
Enable CLA tasks triggers in the MIER register
6. Initialize the ePWM and/or ADC to trigger the CLA tasks
Data is passed between the CLA and CPU via message RAMs

9-8 C2000 Piccolo Workshop - Control Law Accelerator

Control Law Accelerator (CLA)

Enabling CLA Support in CCS

Build Options for Example. pjt (Debug) @@

Genersl Compiler | Linker | DspBiosBuildss | Link Order |

Category:

Advanced
Advanced [2]
Feedback.
Files
Assembly
Parser
Preprocessor
Diagrostics

-0 -pdsw225 i ${Prol_dir\Debug” 4. \D5P2803_headers\include”
A" MO mathvinclude' -d"_DEBUG" -d"LARGE_MODEL" -ml 28
~cla_support=clal

Basic

Target Version: C28um w2e) »

Generate Debug Info: | Full Symbolic Debug (o] ~ |
Optimize for Speed [mi): [No =
Opt Level Mone -

Program Level Opt. More i
Specify CLA Support: clal [From Device Type 0] =

Mo
clall [From Device Type 0]

ak Cancel Help

Note: You must be using a
C28x Piccolo device that has
the Control Law Accelerator!

In the project build options,
select:
‘cla0 (From Device Type 0)

This is required in order to
assemble CLA code

CLA support requires
codegen tools v5.2.0 or later

CLA Task Programming

CLA Task Programming

C28x+FPU

¢ CLA tasks are written in assembly code
¢ Same instruction format as the C28x and

« Destination operand is always on the left

+ Same mnemonics as C28x+FPU but with a

leading “M”

CPU:
FPU:
CLA:

MPYF32
MMPY F32

ACC, T, Ilocl6
ROH, R1H, R2H
MRO, MR1, MR2

Destination ~ Source Operands

C2000 Piccolo Workshop - Control Law Accelerator

Control Law Accelerator (CLA)

CLA Instruction Set

CLA Instruction Overview
Type Example Cycles
Load (Conditional) MMOV32 MRa,mem32{,CONDF} 1
Store MMOV32 mem32,MRa 1
Load with Data Move MMOVD32 MRa, mem32 1
Store/Load MSTF MMOV32 MSTF, mem32 1
Compare, Min, Max MCMPF32 MRa,MRb 1
Absolute, Negative Value MABSF32 MRa,MRb 1
Unsigned Integer to Float MUI16TOF32 MRa,meml6 1
Integer to Float MI32TOF32 MRa, mem32 1
Float to Integer & Round MF32TOI16R MRa,MRb 1
Float to Integer MF32T0132 MRa,MRb 1
Multiply, Add, Subtract MMPYF32 MRa,MRb,MRc 1
1/X (16-bit Accurate) MEINVF32 MRa,MRb 1
1/Sqrt(x) (16-bit Accurate) MEISQRTF32 MRa,MRb 1
Integer Load/Store MMOV16 MRa,mem16 1
Load/Store Auxiliary Register MMOV16 MAR,mem16 1
Branch/Call/Return MBCNDD 16bitdest {,CNDF} 1-7
Conditional Delayed
Integer Bitwise AND, OR, XOR MAND32 MRa,MRb,MRc 1
Integer Add and Subtract MSUB32 MRa,MRb,MRc 1
Integer Shifts MLSR32 MRa,#SHIFT 1
Write Protection Enable/Disable MEALLOW 1
Halt Code or End Task MSTOP 1
No Operation MNOP 1

CLA Parallel Instructions

¢ Parallel bars indicate a parallel instruction

¢ Parallel instructions operate as a single instruction with
a single opcode and performs two operations

« Example: Add + Parallel Store

MADDF32 MR3, MR3, MR1
Il MMOV32 @ Var, MR3

Instruction Example Cycles
Multiply MMPYF32 MRa,MRb,MRC
& Parallel Add/Subtract IS e WOl i !
Multiply, Add, Subtract MADDF32 MRa,MRb,MRc
& Parallel Store |1 MMOV32 mem32,MRe 1
Multiply, Add, Subtract, MAC MADDF32 MRa,MRb,MRc
& Parallel Load Il MMOV32 MRe, mem32 1

Both operations complete in a single cycle

C2000 Piccolo Workshop - Control Law Accelerator

Control Law Accelerator (CLA)

CLA Addressing Modes
CLA Addressing Modes

¢ CLA has two addressing modes
+ Both modes can access the low 64Kw of memory:
« All of the CLA data space

+ Both message RAMs
« Shared peripheral registers

+ Thereis no stack pointer or data page pointer
¢ Direct Addressing Mode:

+ Populates opcode field with 16-bit address of the variable

Example 1: MMOV32 MR1, @ VarA
Example 2: MMOV32 MR1, @ EPwmlRegs.CMPA.all

¢ Indirect Addressing with 16-bit Post Increment:
+ Uses the address in MARO or MAR1 to access memory
+ After the read or write MARO/MARL1 is incremented by #imm16

Example 1: MMOV32 MRO, *MARO[2]++
Example 2: MMOV32 MR1, *MAR1[-2]++

CLA Code Example

CLA Code Example @of2)

ClaTasks.asm
.cdecls "Lab.h" g

A — & .cdecls directive used

to include the C
~ClalProg_Start . header file in the CLA
_ClalTaskl: ; FIR filter assemb|y file

MUI16TOF32 MR2, @ AdcResult .ADCRESULTO \0 .sect directive used to

MMPYF32 MR2, MR1, MRO \ pIace_CLA assembly
i code in its own
MADDF32 MR3, MR3, MR2 \ section
upaztoTiie Mi2, MRS ¢ C Peripheral Register
MMOV16 @ _ClaFilteredOutput, MR2 Header File references

i can be used in CLA
MSTOP ; End of task assemb|y code

ClalTask2: — ———e& MSTOP instruction
N : used at the end of the
task
""""""""""""""""""" ¢ CLA assembly and
C28 C-code reside in
i the same project
MSTOP

C2000 Piccolo Workshop - Control Law Accelerator 9-11

Control Law Accelerator (CLA)

Lab.h

CLA Code Example @of2)

include "DSP2803x Device.h"
#include x Device.h'" |

extern
extern

extern

extern

Uint32 ClalProg Start; \ * DSP2803X_.DeViCe'.h
N defines register bit
field structures

Uint32 ClalTask2; \\
o ¢ Symbols in header file
CELAEE EetEl g that are defined in the

- CLA assembly file are

Uint32 ClalTaskl;

Cla.c

made global (by the
.cdecls in Cla.asm) and

-
.
.

#include "Lab.h"

// Symbols used to calculate vector/address

ClalRegs.MVECT1 =
(Uintl16) ((Uint32) &ClalTaskl

ClalRegs.MVECT2 =
(Uint16) ((Uint32) &ClalTask2 -

are usable in C

(Uint32) &ClalProg Start) ;

(Uint32) &ClalProg Start) ;

CLA Code Debugging

e The CLA can halt, single-step and run independently from the CPU
*Boththe CLA and CPU are debugged from the same JTAG port

CLA Code Debugging

1.

Insert a breakpoint in CLA code

-

Enable CLA breakpoints

-

Start the task

.

-

-

Single step the CLA code

-

-

-

Disable CLA breakpoints, if desired

Insert MDEBUGSTOP instruction to halt CLA and then rebuild/reload

Enable CLA breakpoints in the debugger

Done by peripheral interrupt, software (IACK) or MIFRC register
CLA executes instructions until MDEBUGSTOP
MPC will the have address of MDEBUGSTOP instruction

Once halted, single step the CLA code
Can also run to the next MDEBUGSTOP or to the end of task
If another task is pending it will start at end of previous task

* CLA single step — CLA pipeline is clocked only one cycle and then frozen
« CPU single step — CPU pipeline is flushed for each single step

C2000 Piccolo Workshop - Control Law Accelerator

Lab 9: CLA Floating-Point FIR Filter

Lab 9: CLA Floating-Point FIR Filter
» Objective

The objective of this lab is to become familiar with operation of the CLA. In the previous lab, the
CPU was used to filter the ePWM1A generated 2 kHz, 25% duty cycle symmetric PWM
waveform. In this lab, the PWM waveform will be filtered using the CLA. The CLA will
directly read the ADC result register and a task will run a low-pass FIR filter on the sampled
waveform. The filtered result will be stored in a circular memory buffer. Note that the CLA is
operating concurrently with the CPU. As an operational test, the filtered and unfiltered
waveforms will be displayed using the graphing feature of Code Composer Studio.

Lab 9: CLA Floating-Point FIR Filter
ePWML ADC CLA
TB Counter ADCINAO | RESULTO _ClalTaskl
Compare »| | _ClalTask2
Action Qualifier I:I :
Cal el * _ClalTasks
ePWM2 triggering ADC on period
match using SOCA trigger every @ data
20 ps (50 kHz) memory
ePWM2
°
£
= CPU copies
() result to
= buffer during
3] - ADC ISR
< .
©
A s
Display
using CCS

» Procedure

Project File

1. Aproject named Lab9.pjt has been created for this lab. Open the project by clicking
onProject > Open.. and look in C:\C28x\Labs\Lab9. All Build Options
have been configured the same as the previous lab. The files used in this lab are:

Adc.c EPwm_7 8 9 10 12.c

Cla 9.c Filter.c

ClaTasks.asm Gpio.c
CodeStartBranch.asm Lab_9.cmd

Defaultlsr_9 10.c Main_9.c

DelayUs._asm PieCtrl 5 6 7 8 9 10.c
DSP2803x_GlobalVariableDefs.c PievVect 5 6 7 8 9 10.c
DSP2803x_Headers_nonB10S.cmd SysCtrl._c

ECap 7 8 9 10 12.c Watchdog.c

C2000 Piccolo Workshop - Control Law Accelerator

Lab 9: CLA Floating-Point FIR Filter

Enabling CLA Supportin CCS

2. Openthe Build Options and select the Compiler tab. In the Basic Category set the
Specify CLA Supporttoclal (From Device Type 0). Thisis needed to
assemble CLA code. Then select OK to save the Build Options.

Inspect Lab_9.cmd

3. Openand inspect Lab_9.cmd. Notice that a section called “ClalProg” is being
linked to L3DPSARAM. This section links the CLA program tasks (assembly code) to the
CPU memory space. This memory space will be remapped to the CLA memory space
during initialization. Also, notice the two message RAM sections used to pass data
between the CPU and CLA.

Setup CLA Initialization

During the CLA initialization, the CPU memory block L3DPSARAM needs to be configured as
CLA program memory. This memory space contains the CLA Task routines, which are coded in
assembly. The CLA Task 1 has been configured to run an FIR filter. The CLA needs to be
configured to start Task 1 on the ADCINTL interrupt trigger. The next section will setup the PIE
interrupt for the CLA.

4. Open ClaTasks.asm and notice that the .cdecls directive is being used to include the
C header file in the CLA assembly file. Therefore, we can use the Peripheral Register
Header File references in the CLA assembly code. Next, notice Task 1 has been
configured to run an FIR filter. Within this code special instructions have been used to
convert the ADC result integer (i.e. the filter input) to floating-point and the floating-
point filter output back to integer.

5. Edit Cla_9.c to implement the CLA operation as described in the objective for this lab
exercise. Configure the L3DPSARM memory block to be mapped to CLA program
memory space. Set Task 1 peripheral interrupt source to ADCINT1 and set the other
Task peripheral interrupt source inputs to no source. Enable CLA Task 1 interrupt.

6. Open Main_9.c and add a line of code in main() to call the InitCla() function.
There are no passed parameters or return values. You just type

InitClaQ;

at the desired spot inmain().

Setup PIE Interrupt for CLA

Recall that ePWM2 is triggering the ADC at a 50 kHz rate. In the previous lab exercise, the ADC
generated an interrupt to the CPU, and the CPU implemented the FIR filter in the ADC ISR. For
this lab exercise, the ADC is instead triggering the CLA, and the CLA will directly read the ADC
result register and run a task implementing an FIR filter. The CLA will generate an interrupt to
the CPU, which will store the filtered results to a circular buffer implemented in the CLA ISR.

C2000 Piccolo Workshop - Control Law Accelerator

Lab 9: CLA Floating-Point FIR Filter

7. Edit Adc. c to comment out the code used to enable ADCINT1 interrupt in PIE group 1.
This is no longer being used. The CLA interrupt will be used instead.

8. Using the “PIE Interrupt Assignment Table” find the location for the CLA Task 1
interrupt “CLA1_INTZ1” and fill in the following information:

PIE group #: # within group:
This information will be used in the next step.

9. Modify the end of Cla_9.c to do the following:

- Enable the "CLAL_INT1" interrupt in the PIE (Hint: use the PieCtr IRegs structure)
- Enable the appropriate core interrupt in the IER register

10. Open and inspect Defaultlsr_9 10.c. Notice that this file contains the CLA
interrupt service routine. Save and close all modified files.

Build and Load
11. Click the ““Bui 1d” button to build and load the project.

Run the Code — Test the CLA Operation

Note: For the next step, check to be sure that the jumper wire connecting PWM1A (pin #
GPI0O-00) to ADCINAQO (pin # ADC-AO) is in place on the Docking Station.

12. Run the code in real-time mode using the GEL function: GEL - Realtime
Emulation Control - Run_Realtime_with_Reset, and watch the memory
window update. Verify that the ADC result buffer contains updated values.

13. Setup a dual-time graph of the filtered and unfiltered ADC results buffer. Click:
View > Graph - Time/Frequency.. and set the following values:

C2000 Piccolo Workshop - Control Law Accelerator 9-15

Lab 9: CLA Floating-Point FIR Filter

Display Type

Dual Time

Start Address — upper display | AdcBufFiltered

Start Address — lo

wer display | AdcBuf

Acquisition Buffe

r Size 50

Display Data Size

50

DSP Data Type

16-bit unsigned integer

Sampling Rate (H

2) 50000

Time Display Uni

t us

14. The graphical display should show the filtered PWM waveform in the upper display and

the unfiltered waveform in the |
previous lab exercise.

ower display. You should see that the results match the

15. Fully halt the CPU (real-time mode) by using the GEL function: GEL - Realtime
Emulation Control -> Full_Halt.

End of Exercise

C2000 Piccolo Workshop - Control Law Accelerator

System Design

Introduction

This module discusses various aspects of system design. Details of the emulation and analysis
block along with JTAG will be explored. Flash memory programming and the Code Security
Module will be described.

Learning Objectives

Learning Objectives

¢ Emulation and Analysis Block

¢ Flash Configuration and

Memory Performance
¢ Flash Programming

¢ Code Security Module (CSM)

C2000 Piccolo Workshop - System Design 10-1

Module Topics

Module Topics

YY1 (5] 1 A B LT [o] o OO RRO USRS 10-1
T LU T=N o ot 10-2
Emulation and ANalYSis BIOCKccoiiiiiiiiiieie e 10-3
Flash Configuration and Memory PerformManCe...........coociiiieiiienieieienee e 10-6
F1aSh PrOGramMINGc..oveiiiieeiieiee sttt bbbt b bbbt sb ettt 10-9
Code Security MOAUIE (CSM) ..ottt e bbbttt sb e b e 10-11
Lab 10: Programming the FIash...........cco i 10-14

10-2 C2000 Piccolo Workshop - System Design

Emulation and Analysis Block

Emulation and Analysis Block
JTAG Emulation System

(based on IEEE 1149.1 Boundary Scan Standard)

System Under Test

SCAN IN

Emulator | g
Pod -

Tuxas Instrumants

*

SCAN OUT

MO >mMI

Some Available Emulators
XDS510 CLASS -

Slddiank: USE00 e e
Signum System: JTAGjet-TMS-C2000
Spectrum Digital: XDS510LC that support all TI MCU/DSP platforms

(although those can certainly be used)

XDS100 CLASS -

BlackHawk: USB100 These emulators are much slower than
Olimex: TMS320-JTAG-USB the ones listed above, but are also
Spectrum Digital: XDS100 available at a lower cost than XDS510
TI: TMDSEMU100U-14T class and are NOT C2000 specific

Emulator Connections to the Device

Vce (3.3 V)

GND 4 Vece (3.3 V)
TMS320F2803x é ; g Emulator Header
131 Emuo PD |2
14
EMU1
TRST 4 TRST GND
1 6
™S < TMS GND
8
TDI« . 3! 1pi GND
7 10
TDO > DO GND
11 12
TCK A TCK GND
9 v
TCK_RET GMD

-: If distance between device and header is greater than 6 inches

C2000 Piccolo Workshop - System Design 10-3

Emulation and Analysis Block

On-Chip Emulation Analysis Block:
Capabilities

Two hardware analysis units

can be configured to provide

any one of the following advanced debug features:

Analysis Configuration

Debug Activity

2 Hardware Breakpoints —» Halton a specified instruction

(for debugging in Flash)

2 Address Watchpoints —> A memory location is getting

corrupted; halt the processor when
any value is written to this location

1 Address Watchpoint with Data —=p» Halt program execution after a

specific value is written to a variable

1 Pair Chained Breakpoints ——> Halton a specified instruction only

after some other specific routine has
executed

On-Chip Emulation Analysis Block:
Hardware Breakpoints

Instuction Breakpoint | Bus Address Moritar | 132 Bit Counter | 216 Bit Counlers | Action |

Instruction breakpoints and don't cares

Program address or expression; | _ADCINT_ISR

/_ Symbolic or

numeric address

Mask value for

[¥ Enable AU1 breakpaint / Sp ecl fyl n g
Bit rumber o 15 1 7 = address ranges
Binary representation: 111110 1001 0011 1101 1111
Dan't cares: BE EFEE EEEN EERE EEEE EREE
Chained braakpoints

I Chain breakpoints {will enable 4U2 breakpoint]
I Clear mark tag

Start address (U2 |0

End addiess [4U1) _ADCINT_ISR

/

[————— Chained

breakpoint
selection

o]

Cancel Help

10-4

C2000 Piccolo Workshop - System Design

Emulation and Analysis Block

On-Chip Emulation Analysis Block:

Instnuction Breakpoint Bus Addiess Moritor | 1 32 Bit Courter | 216 Bit Counters | Action | /_ Symbolic or

numeric address

bdanitar

Bus address and don't cares M aSk Val ue fO r
Bus address o expression: | AdeBuf /_ P
specifying
Bit number. 21 13 15 1 7 3 o
Binary representation 00 0000 0000 0100 11000000 address ranges
Don't cares: B PERE EERE EREE RERE BEEE
Watch for

" Data memory reads &+ Data memory wites (,——_’_ B us Se|eCtIO n

" Program memory reads ¢ Program memory writes

I Watch for bus data contents (requires ALI2) \

[Address with Data
selection

oK Cancel Help

On-Chip Emulation Analysis Block:
Online Stack Overflow Detection

¢ Emulation analysis registers are accessible to code as well!

¢ Configure awatchpoint to monitor for writes near the end of
the stack

¢ Watchpoint triggers maskable RTOSINT interrupt
¢ Works with DSP/BIOS and non-DSP/BIOS
+ See Tlapplication report SPRA820 for implementation details

Region of Stack grows
memory towards higher
occupied memory
by the addresses
stack Monitor for data

writes in region near
the end of the stack

Data Memory

C2000 Piccolo Workshop - System Design 10-5

Flash Configuration and Memory Performance

Flash Configuration and Memory Performance

Basic Flash Operation

¢ Flashis arranged in pages of 128 words

¢ Wait states are specified for consecutive accesses within a page,
and random accesses across pages

¢ OTP has random access only

¢ Must specify the number of SYSCLKOUT wait-states;
Reset defaults are maximum value (15)

¢ Flash configuration code should not be run from the Flash memory

15 12 11 8 7 4 3 0

FlashRegs.FBANKWAIT reserved PAGEWAIT reserved RANDWAIT

15 5 4 0

FlashRegs.FOTPWAIT reserved OTPWAIT

*** Refer to the F2803x datasheet for detailed numbers ***
For 60 MHz, PAGEWAIT =2, RANDWAIT = 2, OTPWAIT =3

Speeding Up Code Execution in Flash

Flash Pipelining (for code fetch only)

le— 16—

16 or 32
e 64 | dispatched
64 C28x Core
& decoder unit
Aligned 2-level deep
64-bit fetch buffer
fetch

Flash Pipeline Enable
0 = disable (default)

1=-enable
FlashRegs.FOPT.bit.ENPIPE = 1,
15 1 0
reserved ENPIPE

10-6

C2000 Piccolo Workshop - System Design

Flash Configuration and Memory Performance

Code Execution Performance

¢ Assume 60 MHz SYSCLKOUT, 16-bit instructions

(80% of instructions are 16 bits wide — Rest are 32 bits)

Internal RAM: 60 MIPS
Fetch up to 32-bits every cycle = 1 instruction/cycle * 60 MHz = 60 MIPS

Flash (w/ pipelining): 60 MIPS
RANDWAIT =2
Fetch 64 bits every 3 cycles, but it will take 4 cycles to execute them =
4 instructions/4 cycles * 60 MHz = 60 MIPS
RPT will increase this; PC discontinuity will degrade this
Benchmarking in control applications has shown actual performance of about 54 MIPS

Data Access Performance

¢ Assume 60 MHz SYSCLKOUT

Memory 16-bit access 32-bit access Notes
(words/cycle) (words/cycle)

Internal RAM 1 1

Flash 0.33 0.33 RANDWAIT =2

Flash is read only!

¢ Internal RAM has best data performance — put time critical data here
¢ Flash performance usually sufficient for most constants and tables

¢ Note that the flash instruction fetch pipeline will also stall during a
flash data access

C2000 Piccolo Workshop - System Design

10-7

Flash Configuration and Memory Performance

Other Flash Configuration Registers

FlashRegs.name

Address [Name Description

0x00 0A80 | FOPT Flash option register

0x00 0A82 | FPWR Flash power modes registers
0x00 0A83 | FSTATUS Flash status register

0x00 0A84 |FSTDBYWAIT | Flash sleep to standby wait register
0x00 0A85 | FACTIVEWAIT | Flash standby to active wait register
0x00 0A86 | FBANKWAIT Flash read access wait state register
0x00 0A87 | FOTPWAIT OTP read access wait state register

¢ FPWR: Save power by putting Flash/OTP to ‘Sleep’ or ‘Standby’
mode; Flash will automatically enter active mode if a Flash/OTP
access is made

FSTATUS: Various status bits (e.g. PWR mode)

¢ FSTDBYWAIT, FACTIVEWAIT: Specify # of delay cycles during
wake-up from sleep to standby, and from standby to active,
respectively. The delay is needed to let the flash stabilize.
Leave these registers set to their default maximum value.

*

See the “TMS320x2803x Piccolo System Control and Interrupts Reference
Guide,” SPRUGLS, for more information

10-8 C2000 Piccolo Workshop - System Design

Flash Programming

Flash Programming

Flash Programming Basics

The DSP CPU itself performs the flash programming

The CPU executes Flash utility code from RAM that reads the
Flash data and writes it into the Flash

We need to get the Flash utility code and the Flash data into RAM

FLASH CPU

1
1
v
ROM
Bootloader
T
1
1
\

TMS320F2803x

*

Flash Programming Basics

Sequence of steps for Flash programming:

Function
- Set all bits to zero, then to one
- Program selected bits with zero

Algorithm
1. Erase

2. Program
3. Verify

- Verify flash contents

Minimum Erase size is a sector (4Kw or 8Kw)
Minimum Program size is a bit!

Important not to lose power during erase step:
If CSM passwords happen to be all zeros, the
CSM will be permanently locked!

Chance of this happening is quite small! (Erase
step is performed sector by sector)

C2000 Piccolo Workshop - System Design

10-9

Flash Programming

Flash Programming Utilities

¢ JTAG Emulator Based
« Code Composer Studio Plug-in
« BlackHawk Flash utilities (requires Blackhawk emulator)
« Elprotronic FlashPro2000
« Spectrum Digital SDFlash JTAG (requires SD emulator)
« Signum System Flash utilities (requires Signum emulator)
& SCI Serial Port Bootloader Based
+ Code-Skin (http://www.code-skin.com)
« Elprotronic FlashPro2000
¢ Production Test/Programming Equipment Based
+« BP Micro programmer
+ Data I/O programmer
¢ Build your own custom utility
+ Can use any of the ROM bootloader methods
« Can embed flash programming into your application
+ Flash APl algorithms provided by TI

* Tl web has links to all utilities (http:/Avww.ti.com/c2000)

Code Composer Studio Flash Plug-In

Clack Configuration Erase Sectar Selection 1=

l— ¥ Sector & [3FE000-3F7FFF) ¥ SectarF: [3EC000-3EDFFF
’—_| ¥ Sector B: (3F4000-3F5FFF) ¥ Sector G: [3EA000-3EBFFF)
Iv Sector C: [3F2000-3F3FFF) Iv Sectar H: (3E8000-3E9FFF)
:I W Sector D: [3F0000-3F1FFF) 3
SYSCLKOUT (MHz]: 600000 W Sector E: (3EE000-3EFFFF) I
Code Security Password Operation

Please specify the COFF file ta Program/\erify:
Key 7 [0R8E7): |FFFF

CAC284Labs\ExampleiDebughE vample. out B %
Key 6 (02EBE [FFFF L Sl Browse. |
% Erase, Program, Yenfy © Depletion Recovery

Key 5 (0:4E5E [FFFF
Key 4 (0:4E4) [FFFF

" Progiam, Yerif lar
Key 3 (0463 [FFFF gl Y Fiegister: ’—4|
" Program Orly

Fey 2 [0xAE2): FFF Pin:

Key 1 [0%4E1] — " Verify Only
: Flash Randaom Wait State: |19 7] Calculate Checksums
Key 0 [D=AEQ): FFF

" Erase Only " Frequency Test

Flazh Page Wait State: 5 - Flash:

__ Uriock | Lock OTP “Wait State: EE

Program Password " Load RAM QOnly Flash+0TF:
Execute Operation Help

ERERRERRR

Flash Programmer Settings.. |

-
q [»

10-10 C2000 Piccolo Workshop - System Design

Code Security Module (CSM)

Code Security Module (CSM)
Code Security Module (CSM)

¢ Access to the following on-chip memory is restricted:

0X000A80 Flash Registers

0x008000

Ox008800 | L0 SARAM (2Kw) —

OX008C00]_LL DPSARAM (1Kw)
X L2 DPSARAM (1Kw)

0x009000
OX00A000 =3 DPSARAM (4Kw)
reserved

0x3D7800 175555 5TP (Tkw) Dual

0x3D7C00 reserved > Mapped

0x3D7C80
0x3D8000 ADC / OSC cal. data

0x3E8000
Ox3F7FF8
0x3F8000
0x3F8800

reserved
FLASH (64Kw)
PASSWORDS (8w)
LO SARAM (2Kw)

¢ Datareads and writes from restricted memory are only
allowed for code running from restricted memory

& All other data read/write accesses are blocked:

JTAG emulator/debugger, ROM bootloader, code running in
external memory or unrestricted internal memory

CSM Password

0x3E8000
FLASH (64Kw) CSM Password
Locations (PWL)

OX3F7FF8 [Fsamae e OX3F7FF8 - OX3F7FFF

¢ 128-bit user defined password is stored in Flash

¢ 128-bit KEY registers are used to lock and unlock
the device

+ Mapped in memory space 0x00 OAEO — 0x00 OAE7
+ Registers “EALLOW” protected

C2000 Piccolo Workshop - System Design 10-11

Code Security Module (CSM)

CSM Registers

Key Registers —accessible by user; EALLOW protected

Address Name Description

0x00 OAEO |KEYO Low word of 128-bit Key register
0x00 OAE1|KEY1 2"d word of 128-bit Key register
0x00 OAE2 |[KEY2 3rd word of 128-bit Key register
0x00 OAE3 |KEY3 4t word of 128-bit Key register
0x00 OAE4 |KEY4 5th word of 128-bit Key register
0x00 OAE5 |KEY5 6th word of 128-bit Key register
0x00 OAE6 |KEY6 7th word of 128-bit Key register
0x00 OAE7 |KEY7 High word of 128-bit Key register

0x00 OAEF|[CSMSCR | CSM status and control register
PWL in memory — reserved for passwords only

Address Name Description

Ox3F 7FF8 | PWLO Low word of 128-bit password
Ox3F 7FF9 | PWL1 2nd word of 128-bit password
Ox3F 7FFA| PWL2 39 word of 128-bit password
Ox3F 7FFB| PWL3 4th word of 128-bit password
0x3F 7FFC| PWL4 5t word of 128-bit password
O0x3F 7FFD| PWL5 6th word of 128-bit password
0x3F 7FFE| PWL6 7th word of 128-bit password
Ox3F 7FFF | PWL7 High word of 128-bit password

Locking and Unlocking the CSM

¢ The CSM is always locked after reset

¢ To unlock the CSM:

+ Perform adummy read of each PWL
(passwords in the flash)

+ Write the correct password to each KEY
register

& Passwords are all OxFFFF on new devices

+ When passwords are all OxFFFF, only a read
of each PWL is required to unlock the device

+ The bootloader does these dummy reads and
hence unlocks devices that do not have
passwords programmed

10-12 C2000 Piccolo Workshop - System Design

Code Security Module (CSM)

CSM Caveats

¢ Never program all the PWL’s as 0x0000
+ Doing so will permanently lock the CSM
¢ Flash addresses 0x3F7F80 to Ox3F7FF5,

inclusive, must be programmed to 0x0000 to
securely lock the CSM

¢ Remember that code running in unsecured
RAM cannot access data in secured memory

+ Don’t link the stack to secured RAM if you have
any code that runs from unsecured RAM

¢ Do not embed the passwords in your code!
+ Generally, the CSM is unlocked only for debug
+ Code Composer Studio can do the unlocking

Start

Flash device
secure after
reset or runtime

Do dummy reads of PWL
Ox3F 7FF8 — 0x3F 7FFF

I

CSM Password Match Flow

>._ Yes .
ISaIFI’\(I)VSI:)_ Device permanently locked
No
ls PWL>>, Yes
all Fs?

No

b

Write password to KEY registers
0x00 OAEO — 0x00 OAE7

(EALLOW) protected

Device unlocked

User can access on-
chip secure memory

C2000 Piccolo Workshop - System Design

10-13

Lab 10: Programming the Flash

Lab 10: Programming the Flash
» Objective

The objective of this lab is to program and execute code from the on-chip flash memory. The
TMS320F28035 device has been designed for standalone operation in an embedded system.
Using the on-chip flash eliminates the need for external non-volatile memory or a host processor
from which to bootload. In this lab, the steps required to properly configure the software for
execution from internal flash memory will be covered.

Lab 10: Programming the Flash
ePWM1 ADC CLA
TB Counter ADCINAO | RESULTO _ClalTaskl
Compare _ClalTask2
Action Qualifier I:I :
connector * _ClalTasks
ePWM2 triggering
ADC on period match @ data
using SOCA trigger every memory
20 ps (50 kHz) ePWM2
©
£
= CPU copies
. . o resultto
Objective: 5 . Ruffer during
& Program system into Flash £ .
vemory 2\l ==
¢ Learn use of CCS Flash Plug-in Display
¢ DO NOT PROGRAM PASSWORDS using CCS

» Procedure

Project File

1. Aproject named LablO.pjt has been created for this lab. Open the project by
clickingon Project - Open.. and look in C:\C28x\Labs\Lab10. All Build
Options have been configured the same as the previous lab. The files used in this lab are:

Adc.c Filter.c

Cla_10 12.c Flash.c

ClaTasks.asm Gpio.c
CodeStartBranch.asm Lab 10.cmd
Defaultlsr_9 10.c Main_10.c

DelayUs.asm Passwords.asm
DSP2803x_GlobalVvariableDefs.c PieCtrl 5 6 7.8 9 10.c
DSP2803x_Headers_nonBI0S.cmd PieVect 5 6 7. 8 9 10.c
ECap_7 8 9 10 12.c SysCtrl.c

EPwm_7 8 9 10 12.c Watchdog.c

10-14 C2000 Piccolo Workshop - System Design

Lab 10: Programming the Flash

Link Initialized Sections to Flash

Initialized sections, such as code and constants, must contain valid values at device power-up.
Stand-alone operation of an F28035 embedded system means that no emulator is available to
initialize the device RAM. Therefore, all initialized sections must be linked to the on-chip flash
memory.

Each initialized section actually has two addresses associated with it. First, it has a LOAD
address which is the address to which it gets loaded at load time (or at flash programming time).
Second, it has a RUN address which is the address from which the section is accessed at runtime.
The linker assigns both addresses to the section. Most initialized sections can have the same
LOAD and RUN address in the flash. However, some initialized sections need to be loaded to
flash, but then run from RAM. This is required, for example, if the contents of the section needs
to be modified at runtime by the code.

2. Open and inspect the linker command file Lab_10.cmd. Notice that a memory block
named FLASH_ABCDEFGH has been been created at origin = 0x3E8000, length =
Ox00FF80 on Page 0. This flash memory block length has been selected to avoid
conflicts with other required flash memory spaces. See the reference slide at the end of
this lab exercise for further details showing the address origins and lengths of the various
memory blocks used.

3. EditLab_10.cmd to link the following compiler sections to on-chip flash memory
block FLASH_ABCDEFGH:

Compiler Sections

text

.cinit

.const

.econst

pinit

.switch

4. InLab_10.cmd notice that the section named “1Qmath’ is an initialized section that
needs to load to and run from flash. Previously the ““1Qmath” section was linked to
LOSARAM. Edit Lab_10.cmd so that this section is now linked to
FLASH_ABCDEFGH. Save your work and close the file.

Copying Interrupt Vectors from Flash to RAM

The interrupt vectors must be located in on-chip flash memory and at power-up needs to be
copied to the PIE RAM as part of the device initialization procedure. The code that performs this
copy is located in InitPieCtrl(). The C-compiler runtime support library contains a memory copy
function called memcpy() which will be used to perform the copy.

C2000 Piccolo Workshop - System Design 10-15

Lab 10: Programming the Flash

function used to initialize (copy) the PIE vectors. At the end of the file a structure is used
to enable the PIE.

Initializing the Flash Control Registers

The initialization code for the flash control registers cannot execute from the flash memory (since
it is changing the flash configuration!). Therefore, the initialization function for the flash control
registers must be copied from flash (load address) to RAM (run address) at runtime. The memory
copy function memcpy() will again be used to perform the copy. The initialization code for the
flash control registers InitFlash() is located in the Flash. c file.

6. Add Flash.c to the project.

7. Open and inspect Flash.c. The C compiler CODE_SECTION pragma is used to place
the InitFlash() function into a linkable section named ““‘secureRamFuncs™.

8. The “secureRamFuncs’ section will be linked using the user linker command file
Lab_10.cmd. Open and inspect Lab_10.cmd. The “secureRamFuncs” will load
to flash (load address) but will run from LOSARAM (run address). Also notice that the
linker has been asked to generate symbols for the load start, load size, and run start
addresses.

While not a requirement from a MCU hardware or development tools perspective (since
the C28x MCU has a unified memory architecture), historical convention is to link code
to program memory space and data to data memory space. Therefore, notice that for the
LOSARAM memory we are linking “secureRamFuncs” to, we are specifiying
“PAGE = 0” (which is program memory).

9. Open and inspect Main_10.c. Notice that the memory copy function memcpy() is
being used to copy the section “secureRamFuncs”’, which contains the initialization
function for the flash control registers.

10. Add a line of code in main() to call the InitFlash() function. There are no passed
parameters or return values. You just type

InitFlash(Q);

at the desired spot inmain().

Code Security Module and Passwords

The CSM module provides protection against unwanted copying (i.e. pirating!) of your code from
flash, OTP memory, and the LO, L1, L2 and L3 RAM blocks. The CSM uses a 128-bit password
made up of 8 individual 16-bit words. They are located in flash at addresses 0x3F7FF8 to
Ox3F7FFF. During this lab, dummy passwords of OxFFFF will be used — therefore only dummy
reads of the password locations are needed to unsecure the CSM. DO NOT PROGRAM ANY
REAL PASSWORDS INTO THE DEVICE. After development, real passwords are typically

10-16

C2000 Piccolo Workshop - System Design

Lab 10: Programming the Flash

placed in the password locations to protect your code. We will not be using real passwords in the
workshop.

The CSM module also requires programming values of 0x0000 into flash addresses 0x3F7F80
through 0x3F7FF5 in order to properly secure the CSM. Both tasks will be accomplished using a
simple assembly language file Passwords.asm.

11. Add Passwords.asm to the project.

12. Open and inspect Passwords.asm. This file specifies the desired password values
(DO NOT CHANGE THE VALUES FROM 0xFFFF) and places them in an initialized
section named ““passwords”. It also creates an initialized section named
““csm_rsvd” which contains all 0x0000 values for locations 0x3F7F80 to 0x3F7FF5
(Iength of 0x76).

13. Open Lab_10.cmd and notice that the initialized sections for “passwords’ and
“csm_rsvd” are linked to memories named PASSWORDS and CSM_RSVD,
respectively.

Executing from Flash after Reset

The F28035 device contains a ROM bootloader that will transfer code execution to the flash after
reset. When the boot mode selection is set for “Jump to Flash” mode, the bootloader will branch
to the instruction located at address Ox3F7FF6 in the flash. An instruction that branches to the
beginning of your program needs to be placed at this address. Note that the CSM passwords
begin at address Ox3F7FF8. There are exactly two words available to hold this branch
instruction, and not coincidentally, a long branch instruction “LB” in assembly code occupies
exactly two words. Generally, the branch instruction will branch to the start of the C-
environment initialization routine located in the C-compiler runtime support library. The entry
symbol for this routine is _c_int00. Recall that C code cannot be executed until this setup routine
is run. Therefore, assembly code must be used for the branch. We are using the assembly code
file named CodeStartBranch.asm.

14. Open and inspect CodeStartBranch.asm. This file creates an initialized section
named “codestart” that contains a long branch to the C-environment setup routine.
This section needs to be linked to a block of memory named BEGIN_FLASH.

15. In the earlier lab exercises, the section ““codestart’ was directed to the memory
named BEGIN_MO. Edit Lab_10.cmd so that the section “codestart’ will be
directed to BEGIN_FLASH. Save your work and close the opened files.

On power up the reset vector will be fetched and the ROM bootloader will begin execution. If
the emulator is connected, the device will be in emulator boot mode and will use the EMU_KEY
and EMU_BMODE values in the PIE RAM to determine the bootmode. This mode was utilized
in an earlier lab. In this lab, we will be disconnecting the emulator and running in stand-alone
boot mode (but do not disconnect the emulator yet!). The bootloader will read the OTP_KEY
and OTP_BMODE values from their locations in the OTP. The behavior when these values have
not been programmed (i.e., both OXFFFF) or have been set to invalid values is boot to flash
bootmode.

C2000 Piccolo Workshop - System Design 10-17

Lab 10: Programming the Flash

Initializing the CLA

Previously, the named section “ClalProg’ containing the CLA program tasks was linked
directly to the CPU memory block L3DPSARAM for both load and run purposes. At runtime, all
the code did was map the L3DPSARAM block to the CLA program memory space during CLA
initialization. For an embedded application, the CLA program tasks are linked to load to flash
and run from RAM. At runtime, the CLA program tasks must be copied from flash to
L3DPSARAM. The memory copy function memcpy() will once again be used to perform the
copy. After the copy is performed, the L3DPSARAM block will then be mapped to CLA program
memory space as was done in the earlier lab.

16.

17.

Open and inspect Lab_10.cmd. Notice that the named section “ClalProg” will now
load to flash (load address) but will run from L3DPSARAM (run address). The linker will
also be used to generate symbols for the load start, load size, and run start addresses.

Open Cla_10_12.c and notice that the memory copy function memcpy() is being used
to copy the CLA program code from flash to L3DPSARAM using the symbols generated
by the linker. Just after the copy the ClalRegs structure is used to configure the
L3DPSARAM block as CLA program memory space. Close the inspected files.

Build — Lab.out

18.

19.

At this point we need to build the project, but not have CCS automatically load it since
CCS cannot load code into the flash (the flash must be programmed)! On the menu bar
click: Option -> Customize.. and select the “Program/Project Cl10” tab.
Uncheck ““Load Program After Build”.

CCS has a feature that automatically steps over functions without debug information.
This can be useful for accelerating the debug process provided that you are not interested
in debugging the function that is being stepped-over. While single-stepping in this lab
exercise we do not want to step-over any functions. Therefore, select the ““Debug
Properties” tab. Uncheck “Step over functions without debug
information when source stepping”, then click OK.

Click the ““Bui 1d” button to generate the Lab . out file to be used with the CCS Flash
Plug-in.

CCS Flash Plug-in

20.

21.

Open the Flash Plug-in tool by clicking:
Tools > F28xx On-Chip Flash Programmer

A Clock Configuration window may open. If needed, in the Clock Configuration
window set “OSCCLK (MHz):” to 10, “DIVSEL:” to /2, and “PLLCR Value:” to 12.
Then click OK. In the next Flash Programmer Settings window confirm that the selected
DSP device to program is F28035 and all options have been checked. Click OK.

10-18

C2000 Piccolo Workshop - System Design

Lab 10: Programming the Flash

22.

23.

24.

25.

26.

27

The CCS Flash Programmer uses the Piccolo™ 10 MHz internal oscillator as the device
clock during programming. Confirm the “Clock Configuration” in the upper left corner
has the OSCCLK set to 10 MHz, the DIVSEL set to /2, and the PLLCR value set to 12.
Recall that the PLL is divided by two, which gives a SYSCLKOUT of 60 MHz.

Confirm that all boxes are checked in the “Erase Sector Selection” area of the plug-in
window. We want to erase all the flash sectors.

We will not be using the plug-in to program the “Code Security Password”. Do not
modify the Code Security Password fields. They should remain as all OXFFFF.

In the “Operation” block, notice that the “COFF file to Program/Verify” field
automatically defaults to the current . out file. Check to be sure that “Erase, Program,
Verify” is selected. We will be using the default wait states, as shown on the slide in this
module. The selection for wait-states only affects the verify step, and makes little
noticeable difference even if you reduce the wait-states.

Click “Execute Operation” to program the flash memory. Watch the programming status
update in the plug-in window.

. After successfully programming the flash memory, close the programmer window.

Running the Code — Using CCS

28

29.

30.

31.

32.

33.

. In order to effectively debug with CCS, we need to load the symbolic debug information
(e.g., symbol and label addresses, source file links, etc.) so that CCS knows where
everything is in your code. Click:

File > Load Symbols - Load Symbols Only..
and select Lab10.out in the Debug folder.

Reset the CPU. The program counter should now be at 0x3FF8AL, which is the start of
the bootloader in the Boot ROM.

Under GEL on the menu bar click:

EMU Boot Mode Select - EMU BOOT_FLASH.

This has the debugger load values into EMU_KEY and EMU_BMODE so that the
bootloader will jump to "FLASH" at 0x3F7FF6.

Single-Step <F11> through the bootloader code until you arrive at the beginning of the
codestart section in the CodeStartBranch._asm file. (Be patient, it will take about
125 single-steps). Notice that we have placed some code in CodeStartBranch.asm
to give an option to first disable the watchdog, if selected.

Step a few more times until you reach the start of the C-compiler initialization routine at
the symbol _c_int00.

Now do Debug - Go Main. The code should stop at the beginning of your main()
routine. If you got to that point succesfully, it confirms that the flash has been

C2000 Piccolo

Workshop - System Design 10-19

Lab 10:

Programming the Flash

programmed properly, that the bootloader is properly configured for jump to flash mode,
and that the codestart section has been linked to the proper address.

34. You can now RUN the CPU, and you should observe the LED on the Control CARD
blinking. Try resetting the CPU, select the EMU_BOOT_FLASH boot mode, and then
hitting RUN (without doing all the stepping and the Go Main procedure). The LED
should be blinking again.

35. HALT the CPU.

Running the Code — Stand-alone Operation (No Emulator)

36. Close Code Composer Studio.

37. Disconnect the USB cable (emulator) from the Docking Station (i.e. remove power from
the ControlCARD).

38. Re-connect the USB cable to the Docking Station to power the Control CARD. The LED
should be blinking, showing that the code is now running from flash memory.

End of Exercise

10-20

C2000 Piccolo Workshop - System Design

Lab 10: Programming the Flash

Lab 10 Reference: Programming the Flash

origin =

Ox3F 7F80

Ox3F 7FF6

Ox3F 7FF8

Ox3E 8000

FLASH
length = OxFF80
page =0

CSM_RSVD
length = 0x76
page =0

BEGIN_FLASH
length = 0x2
page =0

PASSWORDS
length = 0x8
page =0

Flash Memory Section Blocks

Lab_10.cmd

SECTIONS

{
codestart :> BEGIN_FLASH, PAGE=0
passwords :> PASSWORDS, PAGE=0
csm_rsvd > CSM_RSVD, PAGE=0

DR

Startup Sequence from Flash Memory

®

0x3F E000

E
OBEB000 | o Ash (Bakw)
— Ox3F7FFe [B

c_int00 —

Passwords (8w)

Boot ROM (8Kw)

Boot Code
0x3F F8A1

5 0x3F FFCO

RESET

{SCAN GPIO}

BROM vector (32w)

0x3F FBA1 —

_c_int00

“rts2800_ml.lib”

“user” code sections
main ()

C2000 Piccolo Workshop - System Design

10-21

Lab 10: Programming the Flash

10-22 C2000 Piccolo Workshop - System Design

Communications

Introduction

The TMS320C28x contains features that allow several methods of communication and data
exchange between the C28x and other devices. Many of the most commonly used
communications techniques are presented in this module.

The intent of this module is not to give exhaustive design details of the communication
peripherals, but rather to provide an overview of the features and capabilities. Once these
features and capabilities are understood, additional information can be obtained from various
resources such as documentation, as needed. This module will cover the basic operation of the
communication peripherals, as well as some basic terms and how they work.

Learning Objectives

Learning Objectives

Serial Peripheral Interface (SPI)
Serial Communication Interface (SCI)

Local Interconnect Network (LIN)

Inter-Integrated Circuit (12C)

* 6 6 o o

Enhanced Controller Area Network (eCAN)

Note: Up to 2 SPI modules (A/B), 1 SCI module (A), 1 LIN module (A), 1 12C module (A),
and 1 eCAN module (A) are available on the F2803x devices

C2000 Piccolo Workshop - Communications 11-1

Module Topics

Module Topics

COMIMIUNICATIONS ...ttt bbb bbb bbbt bbbt b bbb 11-1
T LU T=N o ot 11-2
ComMUNICALIONS TECANMIGUESeveiviieiiiteieeie sttt sttt sttt sb et sn et sne e 11-3
Serial Peripheral INtErface (SPI) ..o 11-4

SPIREGISIEIS ...ttt bbbt bbbt bbbt b bbbt bbb 11-7
SPI SUMMAIY ..ttt ettt b e bt e bt e st e h e e b e s b e e sb e e nbe e ebeeseeene e saeenbeenneenns 11-8
Serial Communications INtErface (SCI) ... e 11-9
MuUltiprocessor Wake-UpP MOGES..........ooiiiiiiiii ettt bbb 11-11
SO IR (=T 113 (=1 £SO 11-14
108 BTN 1 0T LY PP PP PPRTSR 11-15
Local Interconnect NEtWOTK (LIN)cvcieiiieie et 11-16
LIN Message Frame and Data TIMiNGcccovvieireiierieneiesese e sese et se s s seesseseeens 11-17
LI LAV TH 0] 0 - o S 11-18
Inter-Integrated CIrCUIT (I2C)coiiiiiiieiriee bbb 11-19
12C Operating Modes and Data FOMMALScoereiieieiiereese e 11-20
12C SUMIMEIY ...t e r e bbbt bbbt ne e nennens 11-21
Enhanced Controller Area NetWOrk (EBCAN)c..iiiiieieeeere e 11-22
CAN BUS @GN0 NOTEeeviiteiieiee sttt bbb bbbt b et e bbbt e e 11-23
PrINCIPIES OF OPEIAtIONoiviieiiiiii bbbttt e bt sbe e e 11-24
Message Format and BIOCK DIagram...........cceiuiieiineiieiieseseeeeiee sttt st e sre e sa e sresresresresresneens 11-25
ECAN SUMMEAIY <.ttt bt st e e s b bt e s s be e sb bt e s s te e s b b e e s Rbeenb b e e sabeenb b e e snbeentre s 11-26

11-2

C2000 Piccolo Workshop - Communications

Communications Techniques

Communications Techniques

Several methods of implementing a TMS320C28x communications system are possible. The
method selected for a particular design should reflect the method that meets the required data rate
at the lowest cost. Various categories of interface are available and are summarized in the
learning objective slide. Each will be described in this module.

Synchronous vs. Asynchronous

¢ Synchronous ¢ Asynchronous
+ Short distances (on- + longer distances
board) + Lower datarate (= 1/8 of
« High data rate SPI)

. Explicit clock " Impags! clock (clk/data

« Economijcal with
reasonable performance

C28x C28x

Port U2 Port_D_

Destination

PCB PCB

Serial ports provide a simple, hardware-efficient means of high-level communication between
devices. Like the GPIO pins, they may be used in stand-alone or multiprocessing systems.

In a multiprocessing system, they are an excellent choice when both devices have an available
serial port and the data rate requirement is relatively low. Serial interface is even more desirable
when the devices are physically distant from each other because the inherently low number of
wires provides a simpler interconnection.

Serial ports require separate lines to implement, and they do not interfere in any way with the data
and address lines of the processor. The only overhead they require is to read/write new words
from/to the ports as each word is received/transmitted. This process can be performed as a short
interrupt service routine under hardware control, requiring only a few cycles to maintain.

The C28x family of devices have both synchronous and asynchronous serial ports. Detailed
features and operation will be described next.

C2000 Piccolo Workshop - Communications 11-3

Serial Peripheral Interface (SPI)

Serial Peripheral Interface (SPI)

The SPI module is a synchronous serial 1/0O port that shifts a serial bit stream of variable length
and data rate between the C28x and other peripheral devices. During data transfers, one SPI
device must be configured as the transfer MASTER, and all other devices configured as
SLAVES. The master drives the transfer clock signal for all SLAVES on the bus. SPI
communications can be implemented in any of three different modes:

e MASTER sends data, SLAVES send dummy data
¢ MASTER sends data, one SLAVE sends data
e MASTER sends dummy data, one SLAVE sends data

In its simplest form, the SPI can be thought of as a programmable shift register. Data is shifted in
and out of the SPI through the SPIDAT register. Data to be transmitted is written directly to the
SPIDAT register, and received data is latched into the SPIBUF register for reading by the CPU.
This allows for double-buffered receive operation, in that the CPU need not read the current
received data from SPIBUF before a new receive operation can be started. However, the CPU
must read SPIBUF before the new operation is complete of a receiver overrun error will occur. In
addition, double-buffered transmit is not supported: the current transmission must be complete
before the next data character is written to SPIDAT or the current transmission will be corrupted.

The Master can initiate a data transfer at any time because it controls the SPICLK signal. The
software, however, determines how the Master detects when the Slave is ready to broadcast.

SPI Data Flow

¢ Simultaneous transmits and receive
¢ SPI Master provides the clock signal

SPI Device #1 - Master SPI Device #2 - Slave
shift _ ihlf_t _
| SPI Shift Register I- | SPI Shift Register |
clock

11-4

C2000 Piccolo Workshop - Communications

Serial Peripheral Interface (SPI)

SPI Block Diagram

C28x - SPI Master Mode Shown

SPISIMO

RX FIFO_0

RX FIFO_15
SPIRXBUF.15-0

e SP|DAfT15-o =5 SPISOMI
-

SPITXBUF.15-0
TXFIFO_O
TX FIFO_15
baud clock clock
LSPCLK s polarity phase SPICLK

SPI Transmit / Receive Sequence

1.

2.

Slave writes data to be sent to its shift register (SPIDAT)
Master writes data to be sent to its shift register (SPIDAT or SPITXBUF)
Completing Step 2 automatically starts SPICLK signal of the Master

MSB of the Master’s shift register (SPIDAT) is shifted out, and LSB of the Slave’s shift
register (SPIDAT) is loaded

Step 4 is repeated until specified number of bits are transmitted
SPIDAT register is copied to SPIRXBUF register

SPI'INT Flag bitissetto 1

An interrupt is asserted if SPI INT ENA bitissetto 1

If data is in SPITXBUF (either Slave or Master), it is loaded into SPIDAT and transmission
starts again as soon as the Master’s SPIDAT is loaded

C2000 Piccolo Workshop - Communications 11-5

Serial Peripheral Interface (SPI)

Since data is shifted out of the SPIDAT register MSB first, transmission characters of less than 16
bits must be left-justified by the CPU software prior to be written to SPIDAT.

Received data is shifted into SPIDAT from the left, MSB first. However, the entire sixteen bits
of SPIDAT is copied into SPIBUF after the character transmission is complete such that received
characters of less than 16 bits will be right-justified in SPIBUF. The non-utilized higher
significance bits must be masked-off by the CPU software when it interprets the character. For
example, a 9 bit character transmission would require masking-off the 7 MSB’s.

SPI Data Character Justification

¢ Programmable data
length of 1 to 16 bits

* ;I'hran slrgilgt_(?d datat%f I?Sf? SPIDAT - Processor #1
an ItS must be le
than Lo, 1100100 1XXXXXXXX |

+ MSB transmitted first

¢ Received data of less
than 16 bits are right
justified SPIDAT - Processor #2

XXXXXXXX11001001 | —

¢ User software must
mask-off unused MSB’s

11-6

C2000 Piccolo Workshop - Communications

Serial Peripheral Interface (SPI)

SPI Registers

SPI Baud Rate Register

SpixRegs.SPIBRR

Need to set this only when in master mode!

15-7 6-0
reserved SPIBIT RATE
__LSPCLK _ gpIBRR =310 127
(SPIBRR + 1)
SPICLK signal =
LSP—fLK, SPIBRR =0, 1, or 2

Baud Rate Determination: The Master specifies the communication baud rate using its baud rate
register (SPIBRR.6-0):

e For SPIBRR =3t0 127: SPI Baud Rate = ﬂ bits/sec
(SPIBRR +1)
e ForSPIBRR=0,1,0or2: SPIBaud Rate = % bits/sec

From the above equations, one can compute
Maximum data rate = 25 Mbps @ 100 MHz

Character Length Determination: The Master and Slave must be configured for the same
transmission character length. This is done with bits 0, 1, 2 and 3 of the configuration control
register (SPICCR.3-0). These four bits produce a binary number, from which the character length
is computed as binary + 1 (e.g. SPICCR.3-0 = 0010 gives a character length of 3).

C2000 Piccolo Workshop - Communications 11-7

Serial Peripheral Interface (SPI)

Select SPI Registers
¢ Configuration Control spixregs.spiccr

+ Reset, Clock Polarity, Loopback, Character Length

¢ Operation Control spixregs.spicTL

« Overrun Interrupt Enable, Clock Phase, Interrupt Enable
+ Master / Slave Transmit enable

& Status spixregs.spisT
+« RX Overrun Flag, Interrupt Flag, TX Buffer Full Flag

¢ FIFO Transmit spixregs.sPiFFTx

FIFO Receive SpixRegs.SPIFFRX

FIFO Enable, FIFO Reset

FIFO Over-flow flag, Over-flow Clear

Number of Words in FIFO (FIFO Status)

FIFO Interrupt Enable, Interrupt Status, Interrupt Clear
FIFO Interrupt Level (Number of Words in FIFO)

* * * * *

Note: refer to the reference guide for a complete listing of registers

SPI Summary

SPI Summary

¢ Synchronous serial communications

+ Two wire transmit or receive (half duplex)

+ Three wire transmit and receive (full duplex)
¢ Software configurable as master or slave

+ C28x provides clock signal in master mode
¢ Data length programmable from 1-16 bits

¢ 125 different programmable baud rates

11-8 C2000 Piccolo Workshop - Communications

Serial Communications Interface (SCI)

Serial Communications Interface (SCI)

The SCI module is a serial 1/0O port that permits Asynchronous communication between the C28x
and other peripheral devices. The SCI transmit and receive registers are both double-buffered to
prevent data collisions and allow for efficient CPU usage. In addition, the C28x SCl is a full
duplex interface which provides for simultaneous data transmit and receive. Parity checking and

data formatting is also designed to be done by the port hardware, further reducing software
overhead.

SCI Pin Connections

(Full Duplex Shown)

TX FIFO_0

TX FIFO_15

Transmitter-data
buffer register

TX FIFO_0

TX FIFO_15

Transmitter-data
buffer register

Transmitter SCITXD SCITXD Transmitter
shift register ﬁ) shift register
Receiver SCIRXD SCIRXD Receiver
shift register shift register

Receiver-data Receiver-data
buffer register buffer register
RX FIFO_0O RX FIFO_0
RX FIFO_15 RX FIFO_15
SCI Device #1 SCI Device #2

C2000 Piccolo Workshop - Communications

11-9

Serial Communications Interface (SCI)

SCIl Data Format

NRZ (non-return to zero) format

Addr/|__ ' '
Start | LSB 2 3 4 5 6 7 MSB Data Parity [Stop 1 Stop 2

This bit present only in Address-bit mode A

Communications Control Register (ScixRegs.SCICCR)

7 6 5 4 3 2 1 0
Stop Even/Odd| Parit Loopback| Addr/idle SCI SCl SCl
Bits Parity Enable Enable Mode Char2 Charl Char0
| | ~
0 =1 Stop bit 0 =Disabled O0=Idle-linemode # of databits = (binary +1)
1 =2 Stop bits 1 =Enabled 1= Addr-bit mode e.g.110b gives 7 data bits
0 =0dd 0 = Disabled
1 =Even 1=Enabled

The basic unit of data is called a character and is 1 to 8 bits in length. Each character of data is
formatted with a start bit, 1 or 2 stop bits, an optional parity bit, and an optional address/data bit.
A character of data along with its formatting bits is called a frame. Frames are organized into
groups called blocks. If more than two serial ports exist on the SCI bus, a block of data will
usually begin with an address frame which specifies the destination port of the data as determined
by the user’s protocol.

The start bit is a low bit at the beginning of each frame which marks the beginning of a frame.
The SCI uses a NRZ (Non-Return-to-Zero) format which means that in an inactive state the
SCIRX and SCITX lines will be held high. Peripherals are expected to pull the SCIRX and
SCITX lines to a high level when they are not receiving or transmitting on their respective lines.

When configuring the SCICCR, the SCI port should first be held in an inactive state. This
is done using the SW RESET bit of the SCI Control Register 1 (SCICTLL1.5). Writing a 0 to this
bit initializes and holds the SCI state machines and operating flags at their reset condition. The
SCICCR can then be configured. Afterwards, re-enable the SCI port by writing a 1 to the SW
RESET bit. At system reset, the SW RESET bit equals 0.

11-10 C2000 Piccolo Workshop - Communications

Serial Communications Interface (SCI)

SCI Data Timing

o Start bit valid if 4 consecutive SCICLK periods of zero bits after falling edge
e Majority vote taken on 4th, 5t and 6t SCICLK cycles

Majority

\ Vote /
SCICLK

Internal
();'123456781234567812
1

sowo [4444 bod |

Start Bit LSB of Data

' Falling Edge Detected

Note: 8 SCICLK periods per data bit

Multiprocessor Wake-Up Modes

Multiprocessor Wake-Up Modes

¢ Allows numerous processors to be hooked
up to the bus, but transmission occurs
between only two of them

¢ Idle-line or Address-bit modes

¢ Sequence of Operation

1. Potential receivers set SLEEP = 1, which disables RXINT
except when an address frame is received

2. All transmissions begin with an address frame

3. Incoming address frame temporarily wakes up all SCIs on bus
4. CPUs compare incoming SCI address to their SCI address

5. Process following data frames only if address matches

C2000 Piccolo Workshop - Communications

11-11

Serial Communications Interface (SCI)

Idle-Line Wake-Up Mode

¢ Idle time separates blocks of frames

¢ Receiver wakes up when SCIRXD high for 10 or
more bit periods

¢ Two transmit address methods
+ Deliberate software delay of 10 or more bits

+ Set TXWAKE bit to automatically leave exactly
11 idle bits

Idle periods

of less than Block of Frames
0bits N\~

SCIRXD/ """ 725" o P

} LastDatal S |ST[Adar FS;‘STl Data_|sp|sT| LastDam]| sp !STL _Addr__iSP:

SCITXD "~
v/ \ v / \ v / _v_/

Idle Address frame 1stdata frame Idle

Period i Period
10bits Johows 100 10 bits
or greater °"9 or greater

Address-Bit Wake-Up Mode

¢ All frames contain an extra address bit
¢ Receiver wakes up when address bit detected

¢ Automatic setting of Addr/Data bit in frame by
setting TXWAKE = 1 prior to writing address to
SCITXBUF

Block of Frames

SCIRXD/ \
scitxp et T E——— = L —— e e T e

\ / \ /
V
First frame within 1st data frame

no additional

Idle Period block is Address. idle bits needed
length of no ADDR/DATA beyond stop bits
S|gn|f|cance bit set to 1

11-12 C2000 Piccolo Workshop - Communications

Serial Communications Interface (SCI)

The SCI interrupt logic generates interrupt flags when it receives or transmits a complete
character as determined by the SCI character length. This provides a convenient and efficient
way of timing and controlling the operation of the SCI transmitter and receiver. The interrupt
flag for the transmitter is TXRDY (SCICTL2.7), and for the receiver RXRDY (SCIRXST.6).
TXRDY is set when a character is transferred to TXSHF and SCITXBUF is ready to receive the
next character. In addition, when both the SCIBUF and TXSHF registers are empty, the TX
EMPTY flag (SCICTL2.6) is set. When a new character has been received and shifted into
SCIRXBUF, the RXRDY flag is set. In addition, the BRKDT flag is set if a break condition
occurs. A break condition is where the SCIRXD line remains continuously low for at least ten
bits, beginning after a missing stop bit. Each of the above flags can be polled by the CPU to
control SCI operations, or interrupts associated with the flags can be enabled by setting the
RX/BK INT ENA (SCICTL2.1) and/or the TX INT ENA (SCICTL2.0) bits active high.

Additional flag and interrupt capability exists for other receiver errors. The RX ERROR flag is
the logical OR of the break detect (BRKDT), framing error (FE), receiver overrun (OE), and
parity error (PE) bits. RX ERROR high indicates that at least one of these four errors has
occurred during transmission. This will also send an interrupt request to the CPU if the RX ERR
INT ENA (SCICTLL1.6) bit is set.

C2000 Piccolo Workshop - Communications 11-13

Serial Communications Interface (SCI)

SCI Registers

SCI Baud Rate Registers

_LSPCLK _ BRR=1 1065535
(BRR + 1) x 8
SCIl baud rate =
_LSPCLK BRrRr=0
16

Baud-Select MShyte Register (ScixRegs.SCIHBAUD)

7 6 5 4 3 2 1 0
B&US%S BAUD14 | BAUD13 | BAUD12 | BAUD11 | BAUD10 | BAUDY | BAUDS

Baud-Select LSbyte Register (ScixRegs.SCILBAUD)

7 6 5 4 3 2 1 0
BAUDO
BAUD7 [BAUD6 | BAUD5 | BAUD4 | BAUD3 | BAUD2 | BAUD1 (LSB)

Baud Rate Determination: The values in the baud-select registers (SCIHBAUD and SCILBAUD)
concatenate to form a 16 bit number that specifies the baud rate for the SCI.

e For BRR =1 to 65535: SCI Baud Rate = ﬂ bits/sec
(BRR+1)x8
e ForBRR=0: SCI Baud Rate = % bits/sec

Max data rate = 6.25 Mbps @ 100 MHz

Note that the CLKOUT for the SCI module is one-half the CPU clock rate.

11-14 C2000 Piccolo Workshop - Communications

Serial Communications Interface (SCI)

Select SCI Registers
& Control 1 scixregs.scicti1

« Reset, Transmitter / Receiver Enable
+« TX Wake-up, Sleep, RX Error Interrupt Enable

¢ Control 2 ScixRegs.SPICTL2
« TX Buffer Full / Empty Flag, TX Ready Interrupt Enable
+« RXBreak Interrupt Enable

¢ Receiver Status scixregs.SCIRXST

« Error Flag, Ready, Flag Break-Detect Flag, Framin?__Error
Detect Flag, Parity Error Flag, RX Wake-up Detect Flag

& FIFO Transmit scixregs.sciFrTx

FIFO Recelve scixregs.SCIFFRX

FIFO Enable, FIFO Reset

FIFO Over-flow flag, Over-flow Clear

Number of Words in FIFO (FIFO Status)

FIFO Interrupt Enable, Interrupt Status, Interrupt Clear
FIFO Interrupt Level (Number of Words in FIFO)

* * * * *

Note: refer to the reference guide for a complete listing of registers

SCI Summary

SCI Summary

*

Asynchronous communications format
¢ 65,000+ different programmable baud rates

¢ Two wake-up multiprocessor modes
« Idle-linewake-up & Address-bit wake-up

¢ Programmable data word format
« 1to 8 bit data word length

+ 1or 2stop bits
« even/odd/no parity

Error Detection Flags
« Parity error; Framing error; Overrun error; Break detection

Transmit FIFO and receive FIFO
Individual interrupts for transmit and receive

L 2R 4

C2000 Piccolo Workshop - Communications 11-15

Local Interconnect Network (LIN)

Local Interconnect Network (LIN)

Local Interconnect Network (LIN)

Compliant to the LIN2.0 protocol Specification Package

Module based on SCI (core) with added hardware
features for LIN compatibility:

« Error detector

+ Mask filter

+ Synchronizer

+ Multi-buffered receiver/transmitter

Standard is based on SCI (UART) serial data link format

Communication concept is single-master/multiple-slave
with message identification for multi-cast transmission
between any network nodes

Module can be used in LIN mode or SCI (UART) mode

LIN Block Diagram

RD7
RD6
RD5
RD4
RD3
RD2
RD1

RDO Checksum

Mask
Filter SelbEinl? Parity
« SCITXSHF G
Bit
Monitor

TDO
D1
TD2
TD3
TD4
TD5

TD6
TD7

o|o|o|o|o|o|o|o

~ [~~~ N~~~

LINRX/
SCIRX

LINTX/
SCITX

| Synchronizer |

EN BN BN BN BN BN BN BN
olo|o|o|o|o|o|o

11-16

C2000 Piccolo Workshop - Communications

Local Interconnect Network (LIN)

LIN Message Frame and Data Timing

LIN Message Frame

Message Frame

+— Master Header —»| Response

¢—————— 1to 8 Data Fields ——>

Sync | Sync| ID Check
Y y Data | |Data| |Data PP Data| | Data

Break | Field | Field | |Field| |Field| |Field Field| |Field| | Sum

In-Frame Space Interbyte Spaces

Sync Break — beginning of a message
Sync Field — bit rate information
ID Field — content of a message

Data Field — consists of 1 data b)(te, 1 start bit, and 1
stop bit (10 bits total)

¢ Checksum Field — consists of 1 checksum byte, 1 start
bit and 1 stop bit (10 bits total)

¢ In-Frame & Interbyte Spaces — can be O

* 6 00

LIN Data Timing

To make a determination of the bit value, 16 samples of each
bit are taken with majority vote on samples 8, 9, and 10

LM_CLK

/AN~ A/
LR Ay A VAT

(Internal)

o BT T T

¢ LINmoduleis clocked at %2 the CPU clock (SYSCLKOUT)

C2000 Piccolo Workshop - Communications 11-17

Local Interconnect Network (LIN)

LIN Summary

LIN Summary

*

Functionally compatible with standalone
SCI of C28x devices

Identification masks for filtering
Automatic master header generation
228 programmable transmission rates
Automatic wakeup support

Error detection (bit, bus, no response,
checksum, synchronization, parity)

Multi-buffered receive/transmit units

*® & 06 o o

*

11-18 C2000 Piccolo Workshop - Communications

Inter-Integrated Circuit (12C)

Inter-Integrated Circuit (12C)

L 2R JER 2R JER JER 2R 2R 2

VDD

Pull-up
Resisters

Serial Data (SDA)

28xx
2C

Inter-Integrated Circuit (12C)

Philips 12C-bus specification compliant, version 2.1
Data transfer rate from 10 kbps up to 400 kbps

Each device can be considered as a Master or Slave
Master initiates data transfer and generates clock signal
Device addressed by Master is considered a Slave
Multi-Master mode supported
Standard Mode — send exactly n data values (specified in register)

Repeat Mode — keep sending data values (use software to initiate a
stop or new start condition)

12C
Controller

Serial Clock (SCL)

2C 28xx
EPROM 12C

12C Block Diagram

SDA

SCL

I2CXSR < I2CDXR
1
TXFIFO
RX FIFO
1
I2CRSR I2CDRR
Clock
Circuits

C2000 Piccolo Workshop - Communications

11-19

Inter-Integrated Circuit (12C)

I2C Operating Modes and Data Formats

|12C Operating Modes

Operating Mode Description

Slave-receiver mode Module is a slave and receives data from a master
(all slaves begin in this mode)

Slave-transmitter mode Module is a slave and transmits datato a master
(can only be entered from slave-receiver mode)

Master-receiver mode Module is amaster and receives data from a slave
(can only be entered from master-transmit mode)

Master-transmitter mode | Module is a master and transmits to a slave

(all masters begin in this mode)

|2C Serial Data Formats

7-Bit Addressing Format

1 7 1 1 n 1 n 1 1
[s] slave Address [Rw[ACK] Daa [ack| Dam [AcK|P]

10-Bit Addressing Format

1 7 1 1 8 1 n 1 1
|s | 11110AA |RNV|ACK| AAAAAAAA |ACK| Data |ACK| P |

Free Data Format

1 1 n 1 n 1
[s] Data |ACK] Data | Ack| Data [Ack]| P |

R/W = 0 — master writes data to addressed slave

R/W = 1 — master reads data from the slave

n =1 to 8 hits

S = Start (high-to-low transition on SDA while SCL is high)
P = Stop (low-to-high transition on SDA while SCL is high)

11-20 C2000 Piccolo Workshop - Communications

Inter-Integrated Circuit (12C)

12C Arbitration

¢ Arbitration procedure invoked if two or more master-
transmitters simultaneously start transmission

« Procedure uses data presented on serial data bus (SDA) by
competing transmitters

+ First master-transmitter which drives SDA high is overruled
by another master-transmitter that drives SDA low

« Procedure gives priority to the data stream with the lowest
binary value

SCL
I_, | | | | Device #1 lost arbitration
e and switches to slave-

Data from _|_,_ receiver mode
device #1 140 __,/

Data from Device #2

device #2 T IT 0 Ow drives SDA
soa” | J1io of1lof

12C Summary

I2C Summary

¢ Compliance with Philips 12C-bus
specification (version 2.1)

7-bit and 10-bit addressing modes
Configurable 1 to 8 bit data words

¢ Data transfer rate from 10 kbps up to
400 kbps

¢ Transmit FIFO and receive FIFO

* o

C2000 Piccolo Workshop - Communications 11-21

Enhanced Controller Area Network (eCAN)

Enhanced Controller Area Network (eCAN)
Controller Area Network (CAN)

A Multi-Master Serial Bus System

¢ CAN 2.0B Standard

¢ High speed (up to 1 Mbps)

¢ Add anode without disturbing the bus (number of nodes not
limited by protocol)

¢ Less wires (lower cost, less maintenance, and more reliable)

¢ Redundant error checking (high reliability)

¢ No node addressing (message identifiers)

& Broadcast based signaling

® ©

CAN does not use physical addresses to address stations. Each message is sent with an identifier
that is recognized by the different nodes. The identifier has two functions — it is used for message
filtering and for message priority. The identifier determines if a transmitted message will be
received by CAN modules and determines the priority of the message when two or more nodes
want to transmit at the same time.

11-22 C2000 Piccolo Workshop - Communications

Enhanced Controller Area Network (eCAN)

CAN Bus and Node

CAN Bus

¢ Two wire differential bus (usually twisted pair)

¢ Max. bus length depend on transmission rate
+ 40 meters @ 1 Mbps

CAN CAN
NODE A NODE B

CAN_H

1200 1200
CAN_L

The MCU communicates to the CAN Bus using a transceiver. The CAN bus is a twisted pair

wire and the transmission rate depends on the bus length. If the bus is less than 40 meters the
transmission rate is capable up to 1 Mbit/second.

CAN Node
Wired-AND Bus Connection
CAN_H
120Q [:] [:] 120Q
p CAN_L
N
CAN Transceiver
(e.g. TI SN65HVD23x)
I I
X RX

CAN Controller
(e.g. TMS320F28035)

C2000 Piccolo Workshop - Communications 11-23

Enhanced Controller Area Network (eCAN)

Principles of Operation

Principles of Operation

& Data messages transmitted are identifier based,
not address based

¢ Content of message is labeled by an identifier that
is unique throughout the networ

« (e.g. rpm, temperature, position, pressure, etc.)

¢ All nodes on network receive the message and
each performs an acceptance test on the identifier

¢ If message is relevant, it is processed (received);
otherwise it is ignored

¢ Unique identifier also determines the priority of the
message

+ (lower the numerical value of the identifier, the higher the
priority)

¢ When two or more nodes attempt to transmit at the
same time, a non-destructive arbitration tech_nlqtue
guarantees messages are sent in order of priority
and no messages are lost

Non-Destructive Bitwise Arbitration

& Bus arbitration resolved via arbitration with
wired-AND bus connections

+ Dominate state (logic 0O, bus is high)
+ Recessive state (logic 1, bus is low)

Start
Bit

Node A 1 [T m — Node A wins
Node B L1
NodeC ™" [1§ f L]
CANBus “_[] | B
Node B Iosesjr k Node C loses
arbitration arbitration

11-24 C2000 Piccolo Workshop - Communications

Enhanced Controller Area Network (eCAN)

Message Format and Block Diagram

CAN Message Format

¢ Datais transmitted and received using Message Frames
¢ 8 byte data payload per message
¢ Standard and Extended identifier formats

& Standard Frame: 11-bit Identifier (CAN v2.0A)

Arbitration Control)
Field Field Data Field

S| a11bit |R
O | Identifier ; D|ro| pLC | 0...8Bytes Data |CRC | ACK
F

mom

& Extended Frame: 29-bit Identifier (CANv2.0B)

Control

Arbitration Field Field Data Field
S . S| . R E
11-bit 18-bit
g Identifier S 'é Identifier ; ri|r0| DLC | 0..8 Bytes Data |CRC | ACK 'C:J

The MCU CAN module is a full CAN Controller. It contains a message handler for transmission
and reception management, and frame storage. The specification is CAN 2.0B Active — that is,

the module can send and accept standard (11-bit identifier) and extended frames (29-bit
identifier).

eCAN Block Diagram

eCANOINT eCANIINT
Address I_I Data

¥

Memory Management
Mailbox RAM Unit) eCéAll\é ll\)/lemory
(512 bytes) (ytes)

CPU Interface, ﬁ ;
32 Mailboxes @ Receive Control Unit 32 Register and Message

(4 x 32-bit words) Timer Management Unit Object Control

A message mailbox
Identifier — MID

Control —-MCF -
Data low — MDL Receive Buffer
Data high - MDH Transmit Buffer

Control Buffer
Status Buffer

SN65HVD23x
3.3-V CAN Transceiver

B

CAN Bus

C2000 Piccolo Workshop - Communications 11-25

Enhanced Controller Area Network (eCAN)

The CAN controller module contains 32 mailboxes for objects of 0 to 8-byte data lengths:
e configurable transmit/receive mailboxes
e configurable with standard or extended indentifier

The CAN module mailboxes are divided into several parts:
o MID - contains the identifier of the mailbox

e MCF (Message Control Field) — contains the length of the message (to transmit or
receive) and the RTR bit (Remote Transmission Request — used to send remote
frames)

¢ MDL and MDH - contains the data

The CAN module contains registers which are divided into five groups. These registers are
located in data memory from 0x006000 to 0x0061FF. The five register groups are:

e Control & Status Registers

o Local Acceptance Masks

e Message Object Time Stamps
o Message Object Timeout

e Mailboxes

eCAN Summary

eCAN Summary

*

Fully compliant with CAN standard v2.0B
Supports data rates up to 1 Mbps

¢ Thirty-two mailboxes

+ Configurable as receive or transmit

+ Configurable with standard or extended identifier
+ Programmable receive mask

+ Uses 32-bit time stamp on messages

+ Programmable interrupt scheme (two levels)

+ Programmable alarm time-out

Programmable wake-up on bus activity

Self-test mode

*

* o

11-26 C2000 Piccolo Workshop - Communications

DSP/BIOS

Introduction

This module discusses the basic features of using DSP/BIOS in a system. Scheduling threads,
periodic functions, and the use of real-time analysis tools will be demonstrated, in addition to
programming the flash with DSP/BIOS.

Learning Objectives

Learning Objectives

¢ Introduction to DSP/BIOS

¢ DSP/BIOS Configuration Tool
¢ Scheduling DSP/BIOS threads
¢ Periodic Functions

¢ Real-Time Analysis Tools

C2000 Piccolo Workshop - DSP/BIOS 12-1

Module Topics

Module Topics

DSP/BIOS..... ettt et bt bbbt Rt e £ b e Rt R b e R £ R £ EeR e R b e R bt b e Rt en e et et e e et 12-1
T LU T=N o ot 12-2
INtroduCtion t0 DSP/BIOSoviiiiiiiiirtees bbbt 12-3
DSP/BIOS CONfIGUIALION TOOI......civiiiiiiieiiiieiieiesie ettt 12-4
SCheduling DSP/BIOS thFEAUS.cciiiirieieiiit ettt 12-9
PErTOAIC FUNCHIONS......cuiiiiiitie bbbttt 12-14
Real-Time ANAIYSIS TOOIS......cuiiiiiitiieiiei ettt bbbt bt et e e se b e e b e 12-15
LD 122 DSP/BIOS ...ttt bbbt bbbt bt bbbt et n b e ere e 12-16

12-2 C2000 Piccolo Workshop - DSP/BIOS

Introduction to DSP/BIOS

Introduction to DSP/BIOS
What is DSP/BIOS?

¢ A full-featured, scalable real-time kernel
+ System configuration tools
+ Preemptive multi-threading scheduler
+ Real-time analysis tools

$SHHO00 N w

Why Use DSP/BIOS?

¢ Helps Manage complex system resources
+ no need to develop or maintain a “home-brew” kernel
- faster time to market

¢ Efficient debugging of real-time applications
+ Real-Time Analysis

¢ Create robust applications
« industry proven kernel technology

¢ Reduce cost of software maintenance
« code reuse and standardized software

¢ Integrated with Code Composer Studio IDE
« requires no runtime license fees
« fully supported by TI

¢ Uses minimal Mips and Memory (2-8Kw)
« scalable — use only what is needed
« easily fits in limited memory space

C2000 Piccolo Workshop - DSP/BIOS 12 -3

DSP/BIOS Configuration Tool

DSP/BIOS Configuration Tool

The DSP/BIOS Configuration Tool (often called Config Tool or GUI Tool or GUI) creates and
modifies a system file called the Text Configuration File (.tcf). If we talk about using .tcf files,

we’re also talking about using the Config Tool.

#F§ Lab. tcf
Estimated Data Size: 888 Est. Min. Stack Size [Mals]: 173

g Global Settings

+|-4fln MEM - Memory Section Manager
Iﬂﬂ BUF - Buffer Manager
m]g] POOL - Allocatar Manager
5%5 - Syskem Settings
& HOOK - Module Hook Manager
= [‘E Instrumentation
+ ﬂ LG - Event Log Manager ’

+ 5T5 - Statistics Object Manager
= f:g Scheduling
+ {12 CLK - Clack Manager
@ PRD - Periodic Function Manager
+ |||\, HWI - Hardware Interrupt Service Routine Manager

+ g w1 - Software Interrupk Manager
+ Q TSk - Task Manager
+ [:] IDL - Idle Function Manager
= aa Synchronization
‘,x' SEM - Semaphore Manager
q@; MEB¥ - Mailbox Manager
"__.| QUE - Atomic Queus Manager
LCK - Resource Lock Manager
= [g Input/Cukbput
+ 43 Device Drivers
& RTDX - Real-Time Data Exchange Settings
+- B3 HST - Host Channel Manager
2, PIF - Buffered Fipe Manager
:g: SIC - Stream Input and Qutput Manager
Gl - General Input/Output Manager
% M3G0 - Message Queue Manager

<

<—

DSP/BIOS Configuration Tool ite tcf)

¢ System Setup Tools

Real-Time Analysis Tools
¢ Real-Time Scheduler

¢ Real-Time /O

« Handles memory configuration
(builds .cmd file), run-time
support libraries, interrupt
vectors, system setup and
reset, etc.

+ Allows application to run
uninterrupted while displaying
debug data

« Preemptive tread manager
kernel configures DSP/BIOS
scheduling

« Allows two way
communication between
threads or between target and
PC host

The GUI (graphical user interface) simplifies system design by:

e Automatically including the appropriate runtime support libraries
e Automatically handles interrupt vectors and system reset

e Handles system memory configuration (builds .cmd file)

[]

When a .tcf file is saved, the Config Tool generates 5 additional files:

Filename.tcf

Text Configuration File

Filenamecfg_c.c

C code created by Config Tool

Filenamecfg.s28

ASM code created by Config Tool

Filenamecfg.cmd

Linker command file

Filenamecfg.h

header file for *cfg_c.c

Filenamecfg.h28

header file for *cfg.s28

When you add a .tcf file to your project, CCS automatically adds the C and assembly
(.s28) files and the linker command file (.cmd) to the project under the Generated Files

folder.

12-4

C2000 Piccolo Workshop - DSP/BIOS

DSP/BIOS Configuration Tool

1. Creating a New Memory Region (Using MEM)

First, to create a specific memory area, open up the .tcf file, right-click on the Memory Section
Manager and select “Insert MEM”. Give this area a unique name and then specify its base and
length. Once created, you can place sections into it (shown in the next step).

RS Lab.tcf *

= @ System
§ Global Settings
=4 MEM - Memory Section
o BEGIN_FLASH
4 BOOTROM
o CLAMSGRAML
4 CLAMSGRAMZ
4 CSM_RSWD
4 DPSARAM
4 FLASH
4 IQTABLES
4 L3DPSARAM
4 LSARAM
& JHSARAN
oTP
4 PASSWORDS
4 PIEVECT
[l BUF - Euffer Manager
i POOL - Allocator Manal
SVS - System Settings
&, HoOK - Module Hook

= (g2 nstrumentation
+ 3% scheduling

+ 24 Synchronization
-

InputjOutput

Estimated Data Size: 1038 Est. Min. Stack Size (MALUs): 254

Manager
MSARAM Properties @
General I
comment: 3 AAM Memory
base: 0000000
len: 0::0800
i
&
Ipace data hd
QK Cancel ‘ ‘ Help

Memory Section Manager (MEM)

Generates the main
linker command file for
your code project

+ Create memories

+ Place sections

To create anew memory
area.

+ Right-click on MEM and
select insert memory

« Enter your choice of a
name for the memory

« Right-click on the
memory, and select
Properties

« fill'in base, length, space

C2000 Piccolo Workshop - DSP/BIOS

12-5

DSP/BIOS Configuration Tool

2. Placing Sections — MEM Manager Properties

The configuration tool makes it easy to place sections. The predefined compiler sections that
were described earlier each have their own drop-down menu to select one of the memory regions
you defined (in step 1).

Memory Section Manager Properties

General | BIOS Data | BIOS Code Compler Sections | Laad Address |
I~ User .cmd File For Compiler Sections

Text Section [text): ’m
Suwiitch.Jump Tables [switch): [Fasn]
CVariables Section [bss) [MsomaM <]

I Wariables Section | ehss) [msare +]

Data Initigization Section [oint: [FLASH =]

C Function Initialization Table [pinit) ’m
Constent Sections [ecorst, printll [FLASH =]
Constant Sections (const, pintl} ~ [FLASH ~|

Diata Sestion [data} [Fasn <]

Diata Section [ciak [fasn <]

I Heln

¢ To place a section
into a memory area:

+ Right-click on MEM
and select Properties

+ Select the desired tab
(e.g. Compiler)

+ Select the memory
you would like to link
each section to

12-6

C2000 Piccolo Workshop - DSP/BIOS

DSP/BIOS Configuration Tool

3. PIE Interrupts — HWI Interrupts

The configuration tools is also used to assign the interrupt vectors. The vectors are placed into a
section named .hwi_vec. The memory manager (MEM) links this section to the proper location
in memory.

Hardware Interrupt Manager (HWI)

“5{ Configuratien Tool - [C:Wocumants and Settings
Fin Edt View Object Help

Dlafal siaiel siv] # Config Tool used to assign

Estenated Dars S 1035 £t Min Slack Soe MAUSE 254

® 8 eten interru pt vectors

+ {5 LK - Chock Manager
31 g PRD - Prriock: Furtion Hanagn:

BT ¢ Vectors are placed in the

AL HWI_INTL

g section .hwi_vec

i ¢ Use MEM manager to link
Ao .hwi_vec to the proper memory

L HwI_TINT

A, HWILDLOG
3 s PIE_INT1_1 Properties X
Py

Whl's This?
TN i

F General | Dispatcher |

opy

function:

ADCINTIISF:
A el _USRE -
A, HWI_USERT monitor Mathing -

A HWT_USERS

L HWL_UGIRS .

AL HWI_USERID

=, HOWL_LGERTL 5

ML USRI
AL FIE INTERRLPTS
.

BIE_INTY 2
L PIE_NTS 3
" PIE_INT1 Ok Cancel |

BIE_NTI S
A, PIE_INTS 6

Help

C2000 Piccolo Workshop - DSP/BIOS 12 -7

DSP/BIOS Configuration Tool

4. Running the Linker

Creating the Linker Command File (via .tcf)

When you have finished creating memory regions and allocating sections into these memory
areas (i.e. when you save the .tcf file), the CCS configuration tool creates five files. One of the
files is BIOS’s cfg.cmd file — a linker command file.

S Lab.tcf

@ PRD - Periodic Function Manager

+ “‘I, HWI - Hardware Interrupk Service Rautine Manager
w3 SWI - Software Inkerrupt Manager

g TSK - Task Manager

+- @ Synchronization
-] Input/Output

Files Created by the Configuration Tool

Estimated Data Size: 1038 Est Min, Stack Size (Malls]: 254 ’

Y IDL - Il Function Manager ¢

Config tool generates
five different files

.cmd file is generated
from your MEM settings

Vectors putinto *cfg_c.c

*cfg.cmd

|

*cfg.h

to compiler

*cfg_c.c

save
*.tef _—

*cfg.h28

*cfg.s28

This file contains two main parts, MEMORY and SECTIONS. (Though, if you open and examine
it, it’s not quite as nicely laid out as shown above.)

Running the Linker

The linker’s main purpose is to link together various object files. It combines like-named input
sections from the various object files and places each new output section at specific locations in
memory. In the process, it resolves (provides actual addresses for) all of the symbols described in
your code. The linker can create two outputs, the executable (.out) file and a report which

describes the results of linking (.map).

Note: The linker gets run automatically when you BUILD or REBUILD your project.

12-8

C2000 Piccolo Workshop - DSP/BIOS

Scheduling DSP/BIOS threads

Scheduling DSP/BIOS threads
DSP/BIOS Thread Types

HWI & Used to implement ‘urgent’ part of real-time event
« Triggered by hardware interrupt
Hardware Interrupts | o Hwi priorities fixed in hardware

SWI & Use SWIto perform HWI ‘follow-up’ activity
& SWI's are ‘posted’ by software
Software Interrupts | o Multiple SWis at each of 15 priority levels

TSK ¢ Use TSK to run different programs concurrently
under separate contexts

Priority

Tasks & TSK's enabled by posting ‘semaphore’ (a signal)
IDL & Runswhen no service routines are pending
¢ Runs as an infinite loop, like traditional while loop
Background & Al BIOS data transfers to host occur here

Enabling DSP/BIOS in main()

void main(void)
{

//*** Initialization

e _ _+ BIOSwill enable global
// Enable global |ntfw/ interrupts for you

// asm(* CLRC INTM™);
_—+¢ Must delete the

J/%%* Vain Loo/ endless loop at end of
/7 while(l); main()

. ma:jin() return?]to BIOS
B, and goes to the IDLE
iy JUETE e mEIRG) thread, allowing BIOS to

schedule events,
transfer data to the host,
etc.

« Anendless loop in
main() will keep BIOS
from running

C2000 Piccolo Workshop - DSP/BIOS 12-9

Scheduling DSP/BIOS threads

Using Hardware Interrupts - HWI

| € strnatod Distn i VI Eol My Shack Siom [MALIS) 264 FIE_IHTT_T guopmrtins

A, PIE INTERRLFTS Property Yok
=, [T . [Tl et hureckion for the PIE_INT1.1
A P T2 WhaLS This? function _ADCINT1 1SR
A, Pz nTi_3 workor Hthing
& renmd ru o:m?m
A, PE_INTLS L i 1 1
4 urer ot STS_add("addr)
P b ooy Ue Dogatctier Fakon
W G = Interrupt priorit
A pE_INTIY an 0:00000000
A, poE_TI_R Irkerrugh Mok IR0 wl

A, PEL_INTZ 1

S @ Prepmtyjushem v

M, PE_INTS S
A, P T3
A, PIL_INTI D

=, PEE_INTY_1
A PE_INTA_2
. PIE_INT4_3
A P it s

M, PE_INT4S

Trderugh Bt Mack TER 020001

PIE_INT1_1 Properties

Genersl I Dispatcher |

function,

SF]
mritar Nathing -

fixed by hardware

)

ok | cance | |

Help

The HWI Dispatcher

¢ Fornon-BIOS code, use the
interrupt keyword to declare an ISR

tells the compiler to perform
context save/restore

interrupt void MyHwi(void)

}

& For DSP/BIOS code, use the
Dispatcher to perform the
save/restore

& Remove theinterrupt keyword
from the MyHwi()

& Check the “Use Dispatcher” box
when you configure the interrupt
vector in the DSP/BIOS
configuration tool

& Thisis necessary if you want to
use any DSP/BIOS functionality
inside the ISR

PIE_INT1_1 Properties

General Dispatcher I

v Use Dispatcher

Arg 000000000
Interrupt Mask IERD self -

QK Cancel Apply Help

12-10

C2000 Piccolo Workshop - DSP/BIOS

Scheduling DSP/BIOS threads

Using Software Interrupts - SWI

¢ Make each algorithm an

Estimated Data Size: 1038 Est. Min. Stack Si: Independent SOftware Interrupt
i %fjjﬂentm & SWiI scheduling is handled by DSP/BIOS
=138 Schedulin H H
T 5 (LK. Clock Manager ¢ HWI function triggered by hardware
+ FRD - Periodic Function Manager H H
. i‘.fﬁHWI_Hm mars Itermut soonie & SWI function triggered by software
= :E SSWI UFtre Inkerrupk Manager e‘g .a Ca” tO SWI_pOStO
B KNL_swi
sE PRD._swi ¢ Why use a SWI?
+ @TSK-TaskManager . . .
+- (% 0L - Tdle Function Manager ¢ No limitation on number of SWIs, and
;i gf:;;;fgg;;ajgm priorities for SWis are user-defined

¢ SWI can be scheduled by hardware or
software event(s)

& Defer processing from HWI to SWI

SWI Properties

CLA1_swi Properties

FF§ Lab.tcf

; : ; General l
Estimated Data Size: 1038 Est. Min. Stack Size [Mallg]: 254 CLAT |
: %f:::rzr:nantation for;l:: ferei = g < adld comments here
=1-:% Scheduling Funicti o -

L‘E £33 CLE - Clock Managar prinit function: |_Clal5wi

ik

*
: @ PRD - Periodic Function Manager arg0 pricrity 1 i

" HWI - Hardware Inkerrupt Service Routine Manager argt
E W1 - Software Interrupt Manager mailbox: il
H- LAl sw :
B KL swi what's This? argl; 0=00000000
B PRO_swi i
) dg TSK - Task Man: argl: 0x00000000
+ [:] IDL - Idle Functi cyt
I+ g Synchraonization Copy

Trput/Output QK | Cancel | | Help

Delete
Rename
& Property/value view

C2000 Piccolo Workshop - DSP/BIOS 12-11

Scheduling DSP/BIOS threads

Managing SWI Priority

¢ Drag and Drop SWIs to change
priority

¢ Equal priority SWIs run in the
order that th ey are posted Sl - Software Interupt Manager objects by priority

(L1 Priority 14 (Highest)
[_E Instrumentation |:| Priarity 13
= L=E Scheduling (2 Priovity 12
+ £ CLK - Clock Manager (2 Priority 11
+- &8 PRD - Perindic Function Manager (23 Priotity 10
+ |||L, HWI - Hardware Interrupt Service Roukine Manager |:| Priarity 9
= E S re Interrupk Manager |:| Priarity &
- Fal i (2 Priority 7
B KL _swi [Priority &
B PRO_swi (21 Priority 5
+ @ TSK - Task Manager (21 Priority 4
+ [:] 100 - Idle Function Manager (2 Priarity 3
+ & Synchronization [Priority 2
+ g Input/Cutput = [0 Priatity 1
BF PRD_swi
B CLAL swi
=-[_1 Priority O {Reserved when TSK is enabled)
B KML_swi

Priority Based Thread Scheduling

post3 rtn

HWI 2 [TIS[T S5V
(highest) SW1_post(&swi2);

post2 rtn
HWI 1 A

postl rtn
Swi 3 [TTTINTTTI

int2 rtn
O

SWI 2 I

rtn
SWI 1 T O

rtn
MAIN [T

intl
0 =S . T A
(lowest)

User sets the priority...BIOS does the scheduling

12-12

C2000 Piccolo Workshop - DSP/BIOS

Scheduling DSP/BIOS threads

SWI SWI_post

start /

“must run to
completion”

end

+ Similar to hardware interrupt,
but triggered by SWI_post()

+ SWIs must run to completion
+ All SWI's use system stack

+ faster context switching

+ smaller code size

Using Tasks (TSK)

SWIlvs. TSK

TSK SEM_post

_lendj

Pause
(blocked

+ SEM_post() readies the TSK
which pends on an event

+ TSKs can be terminated by S/W
¢ Each TSK has its own stack

+ slower context switching

+ larger code size

C2000 Piccolo Workshop - DSP/BIOS

12 -13

Periodic Functions

Periodic Functions

Using Periodic Functions - PRD

DSP/BIOS

LED LED LED

Periodic functions are a special type of SWI that are triggered by
DSP/BIOS

Periodic functions run at a user specified rate:
- e.g. LED blink requires 0.5 Hz

Use the CLK Manager to specify the DSP/BIOS CLK rate in
microseconds per “tick”

¢ Use the PRD Manager to specify the period (for the function) in ticks

Allows multiple periodic functions with different rates

DSP/BIOS

Creating a Periodic Function

 tick

F I—

period | | | | | |
funcl funcl funcl
CLK - Clock Manager Properties LedBlink_PRD Properties
General |
General]
bjectMemon) Estimated D ata Size: 1066 Est. Min. Stack Si:
™ Continue to1un on sw breakgoint ree 1un) + f@ System Sl -
+ Instrumentation I R
d [tick: 500
= = fgs:heduling el ‘ I
¥ Lse high reslution time for intsrnal timings +1-{8 CLK - Clock Manager mode |C0ntmu0us j
=& Perigd iop Manager
I Directly configure on-chip timer registsrs hd “ :
+1. PP T=TraravaTe Tt upt Service argl) |<00000000
= + g W1 - Software Interrupt Manager
R +-& T5K - Task Manager argl EHUUUUUUUU
+ C] I0L - Idle Function Manager ’7
¥ Synchranization
-] Inputfoutput
oK | Cancel ‘ |
13 Cancel |

12-14

C2000 Piccolo Workshop - DSP/BIOS

Real-Time Analysis Tools

Real-Time Analysis Tools

Built-in Real-Time Analysis Tools

Last: 43.90% +0.0 Peak: 71.92%

¢ Gather data on target (3-10 CPU cycles)

¢ Send data during BIOS IDL (100s of cycles)

¢ Format data on host (1000s of cycles)

¢ Data gathering does NOT stop target CPU
e i ==m=="| Execution Graph
EEEN & Software logic analyzer
e ™ - e T ———— ¢ Debug event timing
| and priority

CPU Load Graph

& Shows amount of CPU

horsepower being
consumed

W Statistics View

5TS
LedBlink_PRD
PRD_swi
CLAT swi
TSK_idle
|DL_buswObj

Count Taotal Max Average

122 0 a
15268 38255957 inst I inst 250562
301588+, 2017256202 inst 3759 inst EEE.22
0 Oirest -2147483648 inst ooo
72rng E.30711e+008 2642 BEE.5FR

M Message Log

Log Mame: |trace V]

140
141

LedSwiCount = 140
LedSwiCount = 141
LedSwiCount = 142
LedSwiCount = 143
LedSwiCount = 144
LedSwiCount = 145
LedSwiCount = 146
LedSwiCount = 147
LedSwiCount = 148
LedSwiCount = 143
LedSwiCount = 150
LedSwiCount = 151

A

Built-in Real-Time Analysis Tools

HE3) Statistics View

& Profile routines w/o

halting the CPU

Message LOG

L 4
L 4
L 4

*

Send debug msgs to host
Doesn’t halt the DSP
Deterministic, low DSP
cycle count

More efficient than
traditional printf()

LOG_printf(&trace, “LedSwiCount = %u", LedSwiCount++);

C2000 Piccolo Workshop - DSP/BIOS

12 -15

Lab 12: DSP/BIOS

Lab 12: DSP/BIOS
» Objective

The objective of this lab is to become familiar with DSP/BIOS. In this lab exercise, we will make
use of the DSP/BIOS configuration tool, implement a software interrupt (SWI) and periodic
function (PRD), program the DSP/BIOS project into the flash, and explore the built-in real-time
analysis tools. The DSP/BIOS configuration tool creates a text configuration file (*.tcf) and
generates a linker command file (*cfg.cmd). This generated linker command file is functionally
equivalent to the linker command file previously used. The memory area of the lab linker
command file will be deleted; however, part of the sections area will be used to link sections that
are not part of DSP/BIOS. In the lab files we will change the CLA HWI (CLAL1_INT1 ISR)toa
SWI and replace the LED blink routine with a periodic function. The steps required to properly
configure the software for execution from internal flash memory will be covered. Features of the
real-time analysis tools, such as the CPU Load Graph, Execution Graph, Message Log, and RTA
Control Panel will be demonstrated.

ePWM1 ADC CLA
TB Counter ADCINAO | RESULTO _ClalTaskl
Compare _ClalTask2
Action Qualifier I:I :
Frm— ol i _ClaiTasks
§ :_- ePWM2 triggering
ADC on period match @ data
== using SOCA trigger every memory
= 40 ps (25 kHz) ePWM2
©
=
L CPU copi
Objective: E) [)esflfjltcggle,s
. . ufrer aurin
* Use DSP/BIOS Configuration Tool to: & - ADC ISR 9
¢ Handle system memory & interrupt vectors § -
Create a .tcf file = EI
¢ Change CLA CLA1_INT1_ISR HWIto SWI Display
¢ Replace LED blink routine with a Periodic using CCS
Function
¢ Program system into Flash Memory

> Procedure

Project File

1. Aproject named Labl2.pjt has been created for this lab. Open the project by
clickingon Project - Open.. and look in C:\C28x\Labs\Lab12. All Build
Options have been configured the same as the previous lab. The files used in this lab are:

12-16 C2000 Piccolo Workshop - DSP/BIOS

Lab 12: DSP/BIOS

Adc.c Filter.c
Cla_10 _12.c Flash.c
ClaTasks.asm Gpio.c
CodeStartBranch.asm Lab 12.cmd
Defaultlsr_12.c Main_12.c
DelayUs.asm Passwords.asm
DSP2803x_GlobalVariableDefs.c PieCtrl_12.c
DSP2803x_Headers_BI10S.cmd SysCtrl.c
ECap_7 8 9 10 12.c Watchdog.c

EPwm_7_8 9 10 12.c

Edit Lab.h File

2. Edit Lab.h to uncomment the line that includes the labcfg . h header file. This is the
DSP/BIOS generated include file, and is needed to allow code to access the DSP/BIOS
functions and data structures. Next, comment out the line that includes the
“DSP2803x_Defaultlsr.h” ISR function prototypes. DSP/BIOS will supply its
own ISR function prototypes.

3. Inour lab setup, we are running the ADC at a 50 kHz interrupt rate. Such a high
frequency interrupt would typically be handled directly in the HWI, as SWIs and TSKs
have some overhead associated with them and lauching them this frequently can cause
very large processing loads on the CPU. DSP/BIOS is flexible in this way. You can
have some interrupts processed directly in the HWI, and others delegated to SWIs or
TSKs. For purposes of this lab however, we would like to illustrate how to code a SWI.
Therefore, we will convert the ADC ISR into a SWI. To reduce the CPU load, we are
going to reduce the frequency of the ADC sample rate by half to 25 kHz.

In Lab . h modify the constant definition for the ADC sample rate as follows:

#define ADC_SAMPLE_PERIOD 2399 // 25 KHz sampling

Save and close the file.

Remove “rts2800_ml.lib” and Inspect Lab_12.cmd

4. The DSP/BIOS configuration tool supplies its own RTS library. Open the Bui ld
Options and select the Linker tab. In the Libraries Category, find the Include
Libraries (-1) boxand delete: rts2800_ml.lib.

5. Select the Compiler tab. As the project is now configured, we would get a warning at
build time stating that the typedef name has already been declared with the same type.
This is because it has been defined twice; once in the header files and again in the include
file generated by DSP/BIOS. To suppress the warning select Diagnostics Category and
find the Suppress Diagnostic <n> (-pds): box. Type in code number 303.
Select OK and the Bui ld Options window will close.

6. We will be using the DSP/BIOS configuration tool to create a linker command file. Open
and inspect Lab_12.cmd. Notice that the linker command file does not have a memory

C2000 Piccolo Workshop - DSP/BIOS 12 - 17

Lab 12: DSP/BIOS

area and includes only a limited sections area. These sections are not part of DSP/BIOS
and need to be included in a “user” linker command file. Close the inspected file.

Using the DSP/BIOS Configuration Tool

7.

10.

11.

The text configuration file (*.tcf) created by the DSP/BIOS configuration tool controls a
wide range of CCS capabilities. The .tcf file will be used to automatically create and
perform memory management. Create a new .tcf file for this lab. On the menu bar click:

File > New - DSP/BI0S Configuration..

A dialog box appears showing a number of available .tcf seed files. The seed files are
used to configure many objects specific to the processor and will be invoked as the first
item in your own .tcf file. On the C2xxx tab select the ti.platforms.control28035
template and click OK. A configuration window will open.

Save the configuration file by selecting:

File > Save As..

and name it Lab . tcf in C:\C28x\Labs\Lab12 then click Save. Close the
configuration window and select YES to save changes to Lab . tcf.

Add the configuration file to the project. Click:
Project - Add Files to Project..

Make sure you’re looking in C:\C28x\Labs\Lab12. Change the “files of type” to
view All Files (*.*) and select Lab . tcF. Click OPEN to add the file to the project.

In the project window left click the plus sign (+) to the left of DSP/B10S Config.
Notice that the Lab . tcT file is listed.

Next, add the generated linker command file Labcfg.cmd to the project. After the file
has been added you will notice that it is listed under the source files.

Create New Memory Sections Using the TCF File

12.

13.

Open the Lab . tcT file by double clicking on Lab . tc¥. In the configuration window,
left click the plus sign next to System and the plus sign next to MEM. By default, the
Memory Section Manager has combined the memory space L1, L2 and L3DPSARAM
into a single memory block called DPSARAM. It has also combined MO and
M1SARAM into a single memory block called MSARAM.

Next, we will add some of the additional memory sections that will be needed for the lab
exercises in this module. To add a memory section:

Right clickon MEM — Memory Section Manager and select Insert MEM.
Rename the newly added memory section to BEGIN_FLASH. Repeat the process and
add the following memory sections: CLAMSGRAM1, CLAMSGRAM2, CSM_RSVD,
IQTABLES, L3DPSARAM, and PASSWORDS. Double check and see that all seven
memory sections have been added.

12-18

C2000 Piccolo Workshop - DSP/BIOS

Lab 12: DSP/BIOS

14. Modify the base addresses, length, and space of each of the memory sections to
correspond to the memory mapping shown in the table below. To modify the length,
base address, and space of a memory section, right click on the memory in the
configuration tool, and select Properties.

Memory Base Length | Space
BEGIN_FLASH | Ox3F 7FF6 | 0x0002 | code
CLAMSGRAM1 | 0x00 1480 | 0x0080 | data
CLAMSGRAM?2 | 0x00 1500 | 0x0080 | data
CSM_RSVD Ox3F 7F80 | 0x0076 | code
IQTABLES 0x3F E000 | 0x0B50 | code
L3DPSARAM 0x00 9000 | 0x1000 | code
PASSWORDS Ox3F 7FF8 | 0x0008 | code

15. Modify the base addresses, length, and space of each of the memory sections to avoid
memory conflicts with the newly added memory sections as shown in the table below.

Memory Base Length | Space

BOOTROM | 0x3F F27C | 0x0D44 | code

DPSARAM | 0x00 8800 | 0x0800 | data

FLASH 0x3E 8000 | 0xFF80 | code

Link Uninitialized Sections to RAM

16. Rightclickon MEM — Memory Section Manager andselect Properties.
Select the Compiler Sections tab and link the following uninitialized sections
into the MSARAM memory block via the pull-down boxes.

MSARAM

.bss

.ebss

C2000 Piccolo Workshop - DSP/BIOS 12 -19

Lab 12: DSP/BIOS

Link Initialized Sections to Flash

All initialized sections must be linked to the on-chip flash memory. Each initialized section has
two addresses associated with it. First, it has a LOAD address which is the address to which it
gets loaded at load time (or at flash programming time). Second, it has a RUN address which is
the address from which the section is accessed at runtime. The linker assigns both addresses to
the section. Most initialized sections can have the same LOAD and RUN address in the flash.
However, some initialized sections need to be loaded to flash, but then run from RAM. This is
required, for example, if the contents of the section needs to be modified at runtime by the code.

17. This step assigns the RUN address of those sections that need to run from flash. Using
the MEM — Memory Section Manager inthe DSP/BIOS configuration tool link
the following sections to on-chip flash memory via the pull-down boxes:

BIOS Data tab BIOS Code tab Compiler Sections tab
.gblinit .bios text
.sysinit .switch
hwi .cinit
rtdx_text .pinit
.econst / .const
.data / .cio

18. This step assigns the LOAD address of those sections that need to load to flash. Again
using the MEM — Memory Section Manager in the DSP/BIOS configuration tool
select the Load Address tab and check the ““Specify Separate Load
Addresses” box. Then set all entries to the FLASH memory block.

19. Click the BIOS Data tab and notice that the .stack section has been linked into
memory. Click OK to close the window.

20. The section named ““1Qmath’ is an initialized section that needs to load to and run from
flash. This section is not linked using the DSP/BIOS configuration tool (because it is
neither a standard compiler section nor a DSP/BIOS generated section). Instead, this
section is linked with the user linker command file (Lab_12.cmd). Open and inspect
Lab_12.cmd. Previously the “1Qmath’ section was linked to LOSARAM. Notice
that this section is now linked to FLASH.

12-20

C2000 Piccolo Workshop - DSP/BIOS

Lab 12: DSP/BIOS

Set the Stack Size in the TCF File

Recall in the previous lab exercise that the stack size was set using the CCS project Build
Options. When using the DSP/BIOS configuration tool, the stack size is instead specified in the
.tcf file. First we need to remove the stack size setting from the project Build Options.

21. Click: Project —-> Build Options.. and select the Linker tab. Delete the entry
of 0x200 in the Stack Size box. Select OK to close the Build Options window.

22. Using the MEM — Memory Section Manager select the General tab. Set the
Stack Size to 0x100. The stack size needs to be reduced from 0x200 to 0x100 because of
the limited amount of available RAM on the device when using DSP/BIOS. Click OK to
close the window.

Copying .hwi_vec Section from Flash to RAM

The DSP/BIOS .hwi_vec section contains the interrupt vectors. This section must be loaded to
flash (load address) but run from RAM (run address). The code that performs this copy is located
in InitPieCtrl(). The linker command file generated by the DSP/BIOS configuration tool
generates global symbols that can be accessed by code in order to determine the load address, run
address, and length of the .hwi_vec section. The RTS library contains a memory copy function
called memcpy() which will be used to perform the copy.

23. Open and inspect InitPieCtrl() in PieCtrl_12_c. Notice the memcpy() function and
the symbols used to initialize (copy) the .hwi_vec section.

Copying the .trcdata Section from Flash to RAM

The DSP/BIOS .trcdata section is used by CCS and DSP/BIOS for certain real-time debugging
features. This section must be loaded to flash (load address) but run from RAM (run address).
The linker command file generated by the DSP/BIOS configuration tool generates global symbols
that can be accessed by code in order to determine the load address, run address, and length of the
.trcdata section. The memory copy function memcpy() will again be used to perform the copy.

The copying of .trcdata must be performed prior to main(). This is because DSP/BIOS modifies
the contents of .trcdata during DSP/BIOS initialization, which also occurs prior to main(). The
DSP/BIOS configuration tool provides a user initialization function which will be used to
perform the .trcdata section copy prior to both main() and DSP/BIOS initialization.

24. In the DSP/BIOS configuration file (Lab . tcT) and select the Properties for the
Global Settings. Checkthe box “Call User Init Function’ and enter
the UserInit() function name with a leading underscore: _UserInit. This will
cause the function UserlInit() to execute prior to main(). Click OK to close the window.

25. Open and inspect the file Main_12.c. Notice that the function UserInit() is used
to copy the .trcdata section from its load address to its run address before main().

C2000 Piccolo Workshop - DSP/BIOS 12-21

Lab 12:

DSP/BIOS

Initializing the Flash Control Registers

The initialization code for the flash control registers cannot execute from the flash memory (since
it is changing the flash configuration!). Therefore, the initialization function for the flash control
registers must be copied from flash (load address) to RAM (run address) at runtime. The memory
copy function memcpy() will again be used to perform the copy. The initialization code for the
flash control registers InitFlash() is located in the Flash. c file.

26. Open and inspect Flash_c. The C compiler CODE_SECTION pragma is used to place
the InitFlash() function into a linkable section named ““secureRamFuncs”.

27. Since the DSP/BIOS configuration tool does not know about user defined sections, the
““secureRamFuncs” section will be linked using the user linker command file
Lab_12_cmd. Open and inspect Lab_12_.cmd. The “secureRamFuncs’ will load
to flash (load address) but will run from LSARAM (run address). Also notice that the
linker has been asked to generate symbols for the load start, load size, and run start
addresses.

28. Open and inspect Main_12.c. Notice that the memory copy function memcpy() is
being used to copy the section “secureRamFuncs”’, which contains the initialization
function for the flash control registers. Close all the inspected files.

Setup PIE Vectors for Interrupts in the TCF File

Next, we will setup all of the PIE interrupt vectors that will be needed for the lab exercises in this
module. This will include all of the vectors used in the previous lab exercises. (Note: the
PieVect.c file is not used since DSP/BIOS generates the interrupt vector table).

29. Modify the configuration file Lab . tcT to setup the PIE vector for the watchdog
interrupt. Click on the plus sign (+) to the left of Schedul ing and again on the plus
sign (+) to the left of HW1 — Hardware Interrupt Service Routine
Manager. Click the plus sign (+) to the left of PIE INTERRUPTS. Locate the
interrupt entry for the watchdog at PIE_INT1_8. Right click, select Properties,
and type _WAKEINT_ISR (with a leading underscore) in the function field. Click OK to
save.

30. Setup the PIE vector for the ADC interrupt. Locate the interrupt entry for the ADC at
PIE_INT21_1. Right click, select Properties, and type _ADCINT1_ ISR (with a
leading underscore) in the function field. Click OK to save.

31. Setup the PIE vector for the ECAPL interrupt. Locate the interrupt entry for the ECAP1
at PIE_INT4_1. Rightclick, select Properties, and type ECAP1 INT_ISR
(with a leading underscore) in the function field. Click OK to save.

32. Setup the PIE vector for the CLA Task 1 interrupt. Locate the interrupt entry for the
CLATask 1atPIE_INT11 1. Rightclick, select Properties, and type
_CLAL1_INT21_ISR (with a leading underscore) in the function field. Click OK to save.
Close the configuration window and select YES to save changes to Lab . tcf.

12 - 22

C2000 Piccolo Workshop - DSP/BIOS

Lab 12: DSP/BIOS

Prepare main() for DSP/BIOS

33. Open Main_12._c and delete the inline assembly code from main() that enables global
interrupts. DSP/BIOS will enable global interrupts after main().

34. InMain_12.c, remove the endless while() loop from the end of main(). When using
DSP/BIOS, you must return from main(). In all DSP/BIOS programs, the main()
function should contain all one-time user-defined initialization functions. DSP/BIOS will
then take-over control of the software execution. Save and close the file.

Configuring DSP/BIOS Global Settings

35. Open the configuration file Lab . tcT and click on the plus sign (+) to the left of
System. Rightclick on Global Settings and select Properties. Confirm
that the ““DSP Speed in MHz (CLKOUT)” field is set to 60 so that it matches the
processor speed. Click OK to save the value and close the configuration window. This
value is used by the CLK manager to calculate the register settings for the on-chip timers
and provide the proper time-base for executing CLK functions.

Create a SWI

36. Open Main_12_c and notice that at the end of main() two new functions have been
added — ClalSwi() and LedBlink(). We moved part of the CLA1_INT1_ISR() routine
from Defaultlsr_12.c to this space in Main_12.c.

37. Open Defaultlsr_12.c and locate the CLAL_INT1_ISR() routine. The entire
contents of the CLAL1_INT21_ISR() routine was moved to the ClalSwi() function in
Main_12 . c with the following exceptions:

e The instruction used to acknowledge the PIE group interrupt
e The GPIO pin (LED) toggle code

Comment: In almost all appplications, the PIE group acknowledge code is left in the HWI
(rather than move it to a SWI). This allows other interrupts to occur on that PIE group
even if the SWI has not yet executed. On the other hand, we are leaving the GPIO
toggle code in the HWI just as an example. It illustrates that you can post a SWI and also
do additional operations in the HWI. DSP/BIOS is extremely flexible!

38. Delete the interrupt key word from the CLAL1_INT1_ISR. The interrupt keyword is
not used when a HWI is under DSP/BIOS control. A HWI is under DSP/BIOS control
when it uses any DSP/BIOS functionality, such as posting a SWI, or calling any
DSP/BIOS function or macro.

Post a SWiI

39. Still in Defaultlsr_12.c add the following SWI_post to the CLAL1 _INT1 ISR(),
just after the structure used to acknowledge the PIE group:

C2000 Piccolo Workshop - DSP/BIOS 12 - 23

Lab 12: DSP/BIOS

SW1_post(&CLAL swi); // post a SWIi

This posts a SWI that will execute the CLA1_swi() code that was moved to the
ClalSwi() function in Main_212_c. In other words, the CLAL interrupt still executes
the same code as before. However, most of that code is now in a posted SWI that
DSP/BIOS will execute according to the specified scheduling priorities. Save and close
the modified files.

Add the SWI to the TCF File

40.

41.

42.

43.

In the configuration file Lab . tcT we need to add and setup the ClalSwi() SWI. Open
Lab.tcf and click on the plus sign (+) to the left of Schedul ing and again on the
plus sign (+) to the left of SWI — Software Interrupt Manager.

Right click on SWI — Software Interrupt Manager and select Insert SWI.
Rename SW10 to CLAL1_swi and click OK. This is just an arbitrary name. We want to
differentiate the ClalSwi() function itself (which is nothing but an ordinary C function)
from the DSP/BIOS SWI object which we are calling CLAL_swi.

Select the Properties for CLA1_swi and type ClalSwi (with a leading
underscore) in the function field. Click OK. This tells DSP/BIOS that it should run the
function ClalSwi() when it executes the CLAL_swi SWI.

We need to have the PIE for the CLA Task 1 interrupt use the dispatcher. The dispatcher
will automatically perform the context save and restore, and allow the DSP/BIOS
scheduler to have insight into the ISR. You may recall from an earlier lab that the CLA
Task 1 interrupt is located at PIE_INT11 1.

Click on the plus sign (+) to the left of HWl — Hardware Interrupt Service
Routine Manager. Click the plus sign (+) to the left of PIE INTERRUPTS. Locate
the interrupt entry for the CLA Task 1: PIE_INT11 1. Right click, select Properties,
and select the Dispatcher tab. Check the “Use Dispatcher’ box and select OK.
Close the configuration file and click YES to save changes.

Add a Periodic Function

Recall that an instruction was used in the CLA1_INT1_ISR to toggle the LED on the
ControlCARD. This instruction has been moved into a periodic function that will toggle the LED
at the same rate.

44. Open Defaultlsr_12_c and locate the CLAL _INT1_ISR routine. Notice that the

instruction used to toggle the LED was moved to the LedBlink() function in
Main_12_c:

GpioDataRegs.GPBTOGGLE .bit.GPI1034 = 1; // Toggle the pin

Also, the code used to implement the interval counter for the LED toggle (i.e., the
GP1032_count++ loop), and the declaration of the GP1032_count itself from the
beginning of CLAL1_INT1_ISR() have been deleted. These are no longer needed, as
DSP/BIOS will implement the interval counter for us in the periodic function
configuration (next step in the lab). Close the inspected files.

12-24

C2000 Piccolo Workshop - DSP/BIOS

Lab 12: DSP/BIOS

45. In the configuration file Lab . tcT we need to add and setup the LedBlink_PRD. Open
Lab.tcF and click on the plus sign (+) to the left of Schedul ing. Right click on
PRD — Periodic Function Manger and select Insert PRD. Rename PRDO
to LedBlink_PRD and click OK.

Select the Properties for LedBlink_PRD and type _LedBlink (with a leading
underscore) in the function field. This tells DSP/BIOS to run the LedBlink() function
when it executes the LedBlink_PRD periodic function object.

Next, in the period (ticks) field type 500. The default DSP/BIOS system timer
increments every 1 millisecond, so what we are doing is telling the DSP/BIOS scheduler
to schedule the LedBlink() function to execute every 500 milliseconds. A PRD object is
just a special type of SWI which gets scheduled periodically and runs in the context of
the SW1 level at a specified SWI priority. Click OK. Close the configuration file and
click YES to save changes.

DSP/BIOS — Real-time Analysis Tools

The DSP/BIOS analysis tools complement the CCS environment by enabling real-time program
analysis of a DSP/BIOS application. You can visually monitor an MCU application as it runs
with essentially no impact on the application’s real-time performance. In CCS, the DSP/BIOS
realt-time analysis (RTA) tools are found on the DSP/BIOS menu. Unlike traditional debugging,
which is external to the executing program, DSP/BIOS program analysis requires that the target
program be instrumented with analysis code. By using DSP/BIOS APIs and objects, developers
automatically instrument the target for capturing and uploading real-time information to CCS
using these tools.

46. In the next few steps the Log Event Manager will be setup to record the occurrence of an
event in real-time while the program executes. We will be using LOG_printf() to
write to a log buffer. The LOG_printf() function is a very efficient means of sending
a message from the code to the CCS display. Unlike an ordinary C-language printf(),
which can consume several hundred CPU cycles to format the data on the MCU before
transmission to the CCS host PC, a LOG_printf() transmits the raw data to the host. The
host then formats the data and displays it in CCS. This consumes only 10’s of cycles
rather than 100’s of cycles.

In Main_12 _c notice the following code at the top of the LedBlink() function just
before the instruction used to toggle the LED:

static Uintl6 LedSwiCount=0; // used for LOG printf
/*** Using LOG_printf() to write to a log buffer ***/
LOG_printf(&trace, "LedSwiCount = %u', LedSwiCount++);

Close the file.

47. In the configuration file Lab . tcf we need to add and setup the trace buffer. Open
Lab.tcfT and click on the plus sign (+) to the left of Instrumentation and again on
the plus sign (+) to the left of LOG — Event Log Manager.

C2000 Piccolo Workshop - DSP/BIOS 12 - 25

Lab 12: DSP/BIOS

48.

49,

Right click on LOG — Event Log Manager and select Insert LOG. Rename
LOGO to trace and click OK.

Select the Properties for trace and confirm that the logtype is set to circular and
the datatype is set to printf. Click OK. Close the configuration file and click YES to save
changes.

Build — Lab.out

50.

51.

At this point we need to build the project, but not have CCS automatically load it since
CCS cannot load code into the flash (the flash must be programmed)! On the menu bar
click: Option -> Customize.. and select the “Program/Project CI0” tab

and confirm that the ““Load Program After Build” is unchecked.

Next select the ““Debug Properties” tab and confirm that the “Step over
functions without debug information when source stepping” is
unchecked. Then click OK.

Click the ““Bui 1d” button to generate Lab . out.

CCS Flash Plug-in

52.

53.

o4.

55.

56.

57.

Open the Flash Plug-in tool by clicking:
Tools - F28xx On-Chip Flash Programmer

A Clock Configuration window may open. If needed, in the Clock Configuration
window set “OSCCLK (MHz):” to 10, “DIVSEL:” to /2, and “PLLCR Value:” to 12.
Then click OK. In the next Flash Programmer Settings window confirm that the selected
DSP device to program is F28035 and all options have been checked. Click OK.

The CCS Flash Programmer uses the Piccolo™ 10 MHz internal oscillator as the device
clock during programming. Confirm the “Clock Configuration” in the upper left corner
has the OSCCLK set to 10 MHz, the DIVSEL set to /2, and the PLLCR value set to 12.
Recall that the PLL is divided by two, which gives a SYSCLKOUT of 60 MHz.

Confirm that all boxes are checked in the “Erase Sector Selection” area of the plug-in
window. We want to erase all the flash sectors.

We will not be using the plug-in to program the “Code Security Password”. Do not
modify the Code Security Password fields. They should remain as all OXFFFF.

In the “Operation” block, notice that the “COFF file to Program/Verify” field
automatically defaults to the current . out file. Check to be sure that “Erase, Program,
Verify” is selected. We will be using the default wait states, as shown on the slide in this
module. The selection for wait-states only affects the verify step, and makes little
noticeable difference even if you reduce the wait-states.

12 - 26

C2000 Piccolo Workshop - DSP/BIOS

Lab 12: DSP/BIOS

58.

Click “Execute Operation” to program the flash memory. Watch the programming status
update in the plug-in window.

59. After successfully programming the flash memory, close the programmer window.

Running the Code — Using CCS

60.

61.

62.

63.

64.

65.

66.

In order to effectively debug with CCS, we need to load the symbolic debug information
(e.g., symbol and label addresses, source file links, etc.) so that CCS knows where
everything is in your code. Click:

File > Load Symbols - Load Symbols Only..
and select Lab12 . out in the Debug folder.

Reset the CPU. The program counter should now be at 0x3FF8AL, which is the start of
the bootloader in the Boot ROM.

Under GEL on the menu bar click:

EMU Boot Mode Select - EMU BOOT_FLASH.

This has the debugger load values into EMU_KEY and EMU_BMODE so that the
bootloader will jump to "FLASH" at 0x3F7FF6.

Single-Step <F11> through the bootloader code until you arrive at the beginning of the
codestart section in the CodeStartBranch._asm file. (Be patient, it will take about
125 single-steps). Notice that we have placed some code in CodeStartBranch.asm
to give an option to first disable the watchdog, if selected.

Step a few more times until you reach the start of the C-compiler initialization routine at
the symbol _c_int00.

Now do Debug - Go Main. The code should stop at the beginning of your main()
routine. If you got to that point succesfully, it confirms that the flash has been
programmed properly, that the bootloader is properly configured for jump to flash mode,
and that the codestart section has been linked to the proper address.

You can now RUN the CPU, and you should observe the LED on the Control CARD
blinking. Try resetting the CPU, select the EMU_BOOT_FLASH boot mode, and then
hitting RUN (without doing all the stepping and the Go Main procedure). The LED
should be blinking again.

Run the Code — Real-time Analysis Tools

It will be interesting to investigate the CPU computational burden of the the different pieces of
DSP/BIOS real-time analysis tools that we will be using in this lab exercise. The ‘CPU Load
Graph’ feature of DSP/BIOS will provide a quick and easy method for doing this. We will be
tabulating these results in the table that follows at various steps throughout the remainder of this

lab.

C2000 Piccolo Workshop - DSP/BIOS 12 - 27

Lab 12: DSP/BIOS

67.

68.

69.

70.

71.

72.

73.

Table 12-1: CPU Computational Burden Results

Case Description CPU Load %
#

1 CLA processing handled in SWI.
LED blink handled in PRD.
RTA Global Host Enable disabled.

2 Case #1 + LOG_printf in SWI.

3 Case #2 + RTA SWI Logging enabled.

4 Case #3 + RTA SWI Accumulators enabled.

Open the RTA Control Panel by clicking DSP/B10S -> RTA Control Panel.
Uncheck ALL of the boxes. This disables most of the realtime analysis tools. We will
selectively enable them in the lab.

Open the CPU Load Graph by clicking DSP/BI0OS - CPU Load Graph. The CPU
load graph displays the percentage of available CPU computing horsepower that the
application is consuming. The CPU may be running ISRs, software interrupts, periodic
functions, performing 1/0 with the host, or running any user routine. When the CPU is
not executing user code, it will be idle (in the DSP/BIOS idle thread).

Record the value shown in the CPU Load Graph under “Case #1” in Table 12-1.
Open the Message Log. On the menu bar, click:
DSP/BIOS > Message Log

The message log dialog box is displaying the commanded LOG_printf() output, i.e. the
number of times (count value) that the LedSwi() has executed.

Verify that all the check boxes in the RTA Control Panel window are still unchecked.
Then, check the box marked “Global Host Enable.” This is the main control switch for
most of the RTA tools. We will be selectively enabling the rest of the check boxes in this
portion of the exercise.

Record the value shown in the CPU Load Graph under “Case #2” in Table 12-1.
Open the Execution Graph. On the menu bar, click:

DSP/BIOS - Execution Graph

12 - 28

C2000 Piccolo Workshop - DSP/BIOS

Lab 12: DSP/BIOS

Presently, the execution graph is not displaying anything. This is because we have it
disabled in the RTA Control Panel.

In the RTA Control Panel, check the top four boxes to enable logging of all event types to
the execution graph. Notice that the Execution Graph is now displaying information
about the execution threads being taken by your software. This graph is not based on
time, but the activity of events (i.e. when an event happens, such as a SWI or periodic
function begins execution). Notice that the execution graph simply records DSP/BIOS
CLK events along with other system events (the DSP/BIOS clock periodically triggers
the DSP/BIOS scheduler). As a result, the time scale on the execution graph is not linear.

The logging of events to the execution graph consumes CPU cycles, which is why the
CPU Load Graph jumped as you enabled logging.

74. Record the value shown in the CPU Load Graph under “Case #3” in Table 12-1.

75. Open the Statistics View window. On the menu bar, click:
DSP/BIOS - Statistics View
Presently, the statistics view window is not changing with the exception of the statistics
for the IDL_busyObj row (i.e., the idle loop). This is because we have it disabled in the
RTA Control Panel.
In the RTA Control Panel, check the next five boxes (i.e., those with the word
“Accumulator” in their description) to enable logging of statistics to the statistics view
window. The logging of statistics consumes CPU cycles, which is why the CPU Load
Graph jumped as you enabled logging.

76. Record the value shown in the CPU Load Graph under “Case #4” in Table 12-1.

77. Table 12-1 should now be completely filled in. Think about the results.

Note: In this lab exercise only the basic features of DSP/BIOS and the real-time analysis tools
have been used. For more information and details, please refer to the DSP/BIOS user’s
manuals and other DSP/BIOS related training.

Running the Code — Stand-alone Operation (No Emulator)
78. Close Code Composer Studio.

79. Disconnect the USB cable (emulator) from the Docking Station (i.e. remove power from
the ControlCARD).

80. Re-connect the USB cable to the Docking Station to power the Control CARD. The LED
should be blinking, showing that the code is now running from flash memory.

End of Exercise

C2000 Piccolo Workshop - DSP/BIOS 12 - 29

Lab 12: DSP/BIOS

Lab 12 Reference: Programming the Flash

Flash Memory Section Blocks
base =
O0x3E 8000
FLASH
len = OXFF80
space = code Lab_12.c md
SECTIONS
{
Ox3F 7F80 CSM_RSVD codestart :> BEGIN_FLASH, PAGE=0
len = Ox76 passwords :> PASSWORDS, PAGE=0
space = code csm rsvd > CSM_RSVD, PAGE=0
OGF7FF6 | BEGIN_FLASH }
len =0x2 \—//F
space = code
Ox3F 7FF8| PASSWORDS
len = 0x8
space = code

BIOS Startup Sequence from Flash Memory

,,,,,,,,, ~" | BIOS code Sections
0x3E 8000 _c_int00 BIOS reset()
FLASH (64Kw) BIOS_init()
main ()
— oxaF 7PRe [T R T
-C_int00 ——
Passwords (8w) C5> IDL_run()
. “rts2800_mllib”
N\,
Ca) \\ “user” code sections <6>
AN main ()
Ox3F E000 | Boot ROM (8Kw) AN {
Boot Code \\
Ox3F F8AL N return
{SCAN GPIO} @ N } '
\
BROM vector (32w) \\
5 0x3F FFCO Ox3F FBA1 —
RESET

12-30 C2000 Piccolo Workshop - DSP/BIOS

Lab 12: DSP/BIOS

Table 12-2: CPU Computational Burden Results (Solution)

Case Description CPU Load %

#

1 CLA processing handled in SWI. 27.5
LED blink handled in PRD.
RTA Global Host Enable disabled.

2 Case #1 + LOG_printf in SWI. 27.5

3 Case #2 + RTA SWI Logging enabled. 37.0

4 Case #3 + RTA SWI Accumulators enabled. 48.6

C2000 Piccolo Workshop - DSP/BIOS

12-31

Lab 12: DSP/BIOS

12-32 C2000 Piccolo Workshop - DSP/BIOS

Development Support

Introduction

This module contains various references to support the development process.

Learning Objectives

Learning Objectives

¢ TIWorkshops Download Site
¢ Signal Processing Libraries
¢ Tl Development Tools

¢ Additional Resources
+ Internet

+ Product Information Center

C2000 Piccolo Workshop - Development Support 13-1

Module Topics

Module Topics

DEVEIOPMENT SUPPOKT ...ttt ettt bbbt et e et e st e e et e besbeebe s beeb e e e e b e e seeeas 13-1
T LU T=N o ot 13-2

T1 SUPPOIT RESOUICES ...ttt sttt r ettt e e sn bbb nnens 13-3
C28x Signal Processing LIDIaries.coeiiriiiiiiiinese e e 13-3
EXPEIIMENTEITS KIS ...ttt b bbbt 13-4
F28335 Peripheral EXPIOrer Kit.........cc.ooi ittt 13-5
C2000 ControlCARD ApPPHCAtioN KitS.......cociiiiiiiiieiiie ettt 13-5
Product INfOrmation RESOUICEScuiuirieiiiuirieiiitiieiist ettt b e 13-6

13-2

C2000 Piccolo Workshop - Development Support

Tl Support Resources

Tl Support Resources

TI Workshops Download Site

AP Tewas v rwrs

| TI Workshops Download Site

Login Name: c26
| b

http:/vww.tiworkshop.com/survey/downloadsort.asp

Login Name: c28xmdw
Password: ttoc28

C28x Signal Processing Libraries

C2000 Signal Processing Libraries
Signal Processing Libraries & Applications Software Literature #
ACI3-1: Control with Constant V/Hz SPRC1%
ACI3-3: Sensored Indirect Flux Vector Control SPRC207
ACI3-3: Sensored Indirect Flux Vector Control (simulation) SPRC208
ACI3-4: Sensorless Direct Flux Vector Control SPRC195
ACI3-4: Sensorless Direct Flux Vector Control (simulation) SPRC209
PMSM3-1: Sensored Field Oriented Control using QEP SPRC210
PMSM3-2: Sensorless Field Oriented Control SPRC197
PMSM3-3: Sensored Field Oriented Control using Resolver SPRC211
PMSM3-4: Sensored Position Control using QEP SPRC212
BLDC3-1: Sensored Trapezoidal Control using Hall Sensors SPRC213
BLDC3-2: Sensorless Trapezoidal Drive SPRC196
DCMOTOR: Speed & Position Control using QEP without Index SPRC214
Digital Motor Control Library (F/C280x) SPRC215
Communications Driver Library SPRC183
DSP Fast Fourier Transform (FFT) Library SPRCO081
DSP Filter Library SPRC082
DSP Fixed-Point Math Library SPRC085
DSP IQ Math Library SPRCO087
DSP Signal Generator Library SPRC083
DSP Software Test Bench (STB) Library SPRC084
C28x FPU Fast RTS Library SPRC664
DSP2803x C/C++ Header Files and Peripheral Examples SPRC892
Available from Tl Website = http://www.ti.com/c2000

C2000 Piccolo Workshop - Development Support 13-3

Tl Support Resources

Experimenter’s Kits

TMDXDOCK28027 @) + USB docking station

TMDSDOCK 28335

C2000 Expzerimenter’s Kits

F28027, F28035, F2808, F28335

¢ Experimenter Kits include

+ F28027, F28035, F2808 or F28335
ControlCARD

+ C2000 Applications Software CD
with example code and full
hardware details

+ Code Composer Studio v3.3 with
code size limit of 32KB

¢ Docking station features
+ Access to ControlCARD signals
+ Breadboard areas
+ Onboard USB JTAG Emulation
« JTAG emulator not required

¢ Available through Tl authorized
distributors and the Tl eStore

TMDXDOCK28343

TMDXDOCK28346-168 distributors and the Tl eStore

C2834x Experimenter’s Kits
C28

343, C28346

¢ Experimenter Kits include
« (C2834x ControlCARD
« Docking station

« C2000 Applications Software CD
with example code and full
hardware details

+ Code Composer Studio v3.3 with
code size limit of 32KB

« 5V power supply

¢ Docking station features
« Access to ControlCARD signals

+ Breadboard areas

« JTAG emulator required — sold
separately

¢ Available through Tl authorized

13-4

C2000 Piccolo Workshop - Development Support

Tl Support Resources

F28335 Peripheral Explorer Kit

F28335 Peripheral Explorer Kit

& Experimenter Kitincludes
« F28335 ControlCARD
« Peripheral Explorer baseboard

« C2000 Applications Software CD
with example code and full
hardware details

+« Code Composer Studio v3.3 with
code size limit of 32KB

+« 5V DC power supply

¢ Peripheral Explorer features
« ADC input variable resistors
+ GPIO hex encoder & push buttons
+ eCAP infrared sensor
+ GPIO LEDs, I12C & CAN connection
+ Analog I/O (AIC+McBSP)

¢ JTAG emulator required — sold
separately

- / ¢ Available through Tl authorized
TMDSPREX28335 _ distributors and the Tl eStore

C2000 ControlCARD Application Kits

C2000 ControlCARD Application Kits

Digital Power ¢ Kitsincludes

Experimenter's + ControlCARD and application

specific baseboard
« Full version of Code Composer

Digital Power Studio v3.3 with 32KB code size
Devell<qtper’s limit
|

& Software download includes

ReDSé’/B%m +« Complete schematics, BOM, gerber
Developer’s Kit files, and source code for board
and all software
ReE”ewame + Quickstart demonstration GUI for
Developer's Kit quick and easy access to all board
features
AC/DC + Fully documented software
Developer's specific to each kit and application
Kit .
¢ See www.ti.com/c2000 for more
Dual Motor details
Control and . .
PFC ¢ Available through Tl authorized

Developer's distributors and the T1 eStore

C2000 Piccolo Workshop - Development Support

13-5

Tl Support Resources

Product Information Resources

For More Information . . .

Internet
Website: http://www.ti.com

FAQ: http://www-k.ext.ti.com/sc/technical_support/knowledgebase.htm

+ Device information ¢+ my.ti.com
+ Application notes _ + News and events
+ Technical documentation ¢ Training

Enroll in Technical Training: http:/www ti.com/sc/training

USA - Product Information Center (PIC)
Phone: 800-477-8924 or 972-644-5580
Email: support@ti.com

¢ Information and support for all TI Semiconductor products/tools
+ Submit suggestions and errata for tools, silicon and documents

European Product Information Center (EPIC)

Web: http:/Mmwww-Kk.ext.ti.com/sc/technical support/pic/euro.htm

Phone: Language Number

Belgium (English) +32 (0) 27 45 55 32
France +33 (0) 1 30 70 11 64
Germany +49 (0) 8161 80 33 11
Israel (English) 1800 949 0107 (free phone)
Italy 800 79 11 37 (free phone)
Netherlands (English) +31 (0) 546 87 95 45
Spain +34 902 35 40 28
Sweden (English) +46 (0) 8587 555 22
United Kingdom +44 (0) 1604 66 33 99
Finland (English) +358(0) 9 25 17 39 48

Fax: All Languages +49 (0) 8161 80 2045

Email: epic@ti.com

+ Literature, Sample Requests and Analog EVM Ordering

¢ Information, Technical and Design support for all Catalog T
Semiconductor products/tools

+ Submit suggestions and errata for tools, silicon and documents

13-6 C2000 Piccolo Workshop - Development Support

Appendix A — Experimenter’s Kit

C2000 Piccolo Workshop - Appendix A -Experimenter's Kit A-1

Module Topics

Module Topics

AppendixX A — EXPEriMENTEI™S Kt ..ottt et b nn A-1
T LU T=TN I o ot PSSP A-2
F28035 CONIOICARD ..ottt ettt et sttt e b st et et et te st nente st ne e A-3

F28035 PCB OULHNE (TOP VIBW) ...ttt sttt st A-3
I X I A B T SRRSO A-3
RS OSSR A-3
YT SRS A-4
YT OSSR A-4
F28335 CONIOICARDoviiiiiiiicitites ettt ettt b et b et ettt bt aee A-5
F28335 PCB OULHNE (TOP VIBW) ...iciiiieieiiiie ettt sttt sttt ettt sae et e enens A-5
[X I 7 B X OSSPSR PRPPRPRTN A-5
[To T (T a0 S5 = L4 T] o OSSP A-6
SWL T LD L.ttt bbb e bt bbbt bbb bbbt bt nn A-6
JPL T IP2 ettt e ettt R et bR Rt et R et Re ettt re et et re et et A-6
AN A L AN 1 L OSSP A-6
F2833X BOOt MOUE SEIECLIONccvviciieitie ettt ettt s ae e sbe e sbeenbeenre e A-7
F280XX BOOt MO SEIECTION ...ttt bbb bbb A-7
J3 — DB-9 10 4-Pin Header CabIe ..o e e A-8

C2000 Piccolo Workshop - Appendix A -Experimenter's Kit

F28035 ControlCARD

F28035 ControlCARD

F28035 PCB Outline (Top View)

SwWi

F2803x controlCARD
RELEASE 1.0

it O O
gl[’;] i

i =

EEME

28 ICND NN 26

-

SW3

LD1/LD2/LD3
LD1
LDZ — Controlled by GPIO-31
LD3 — Controlled by GPI0O-34

SwW1

— Turns on when controlCARD is powered on

LD1 LD2 LD3

\\/

SW1 — controls whether on-card RS-232 connection is enabled or disabled.

e ON — RS-232 transceiver will be enabled and allow communication
through a serial cable via pins 2 and 42 of the DIMM-100 socket. Putting
SW1 in the “ON” position will allow the F28035 controlCARD to be card
compatible with the F2808, F28044, F28335, and F28027 controlCARDs.
GP10-28 will be stuck as logic high in this position.

e OFF - The default option. SW1 in the “OFF” position allows GPI0O-28 to
be used as a GPIO. Serial communication is still possible, however an

external transceiver such as the FTDI —

FT2232D chip.

C2000 Piccolo Workshop - Appendix A -Experimenter's Kit

F28035 ControlCARD

SW2
SW2 — controls the boot options of the F28035 device

Position 1 | Position 2
(GPIO-34) | (TDO)
0 0 Parallel I/O
0 1 Wait mode
1 0 SCI
1 1 (default) Get mode; the default get mode is boot from FLASH

SW3

SW3 - ADC VREF control

The ADC will by default convert from 0 to 3.3V, however if in the ADC registers
the ADC is configured to use external limits the ADC will convert its full range of
resolution from VREF-LO to VREF-HI.

Position 1 controls VREF-HI, the value that the ratiometric ADC will convert as
the maximum 12-bit value, OXOFFF. In the downward position, VREF-HI will be
connected to 3.3V. In the upward position, VREF-HI will be connected to pin 66
of the DIMM100-socket. This would allow a connecting board to control the
ADC-VREFHI value.

Position 2 controls VREF-LO, the value that the ratiometric ADC will convert as
the minimum 12-bit value, 0x0000. In the downward position, VREF-LO will be
connected to OV. In the upward position, VREF-LO will be connected to pin 16 of
the DIMM100-socket. This would allow a connecting board to control the ADC-
VREFLO value.

A-4 C2000 Piccolo Workshop - Appendix A -Experimenter's Kit

F28335 ControlCARD

F28335 ControlCARD

F28335 PCB Outline (Top View)

LD3 LD2 LD1

N/

[| el ="“- l ERwL o

a4
=
i
o
~
=3

EEU cs2iEm .

C35

-~ F2833x-BCA
&

P
- e 13 “’5 c32
— Ll A F e L4 [: [:]
oy 2 = vz t::== LI P | omm, ..U Lns g Jum
(11]] i R le m
o E mnm NEN, NN || 15, see s o:l | | IRE] R0 MW S
£ e o B S ik T mg L
s DM.‘i DN DN2 ses .e
g EE il 1 R2ONMEN NEEN
S e
e =

]

LD1/LD2/LD3

LD1 — Turns on when controlCARD is powered on
LD2 — Controlled by GPI10O-31
LD3 — Controlled by GPIO-34

C2000 Piccolo Workshop - Appendix A -Experimenter's Kit A-5

Docking Station

Docking Station

2833X
Boot

. JP2

""...I "'...III
OOCOO0
DUOOUO00)
ssjsssiss e

o0 (L]
0000000000.. 0\

sssssisssessises
)

SW1/LD1

+~SW1

~JP1

J1

SW1 - USB: Power from USB; ON — Power from JP1

LD1 — Power-On indicator

JP1/JP2

JP1-5.0V power supply input

JP2 — USB JTAG emulation port

J1/32/33738/J9

J1 - ControlCARD 100-pin DIMM socket

J2 — JTAG header connector

J3 — UART communications header connector

J8 — Internal emulation enable/disable jumper (NO jumper for internal emulation)

J9 — User virtual COM port to C2000 device (Note: ControlCARD would need to be
modified to disconnect the C2000 UART connection from header J3)

C2000 Piccolo Workshop - Appendix A -Experimenter's Kit

Docking Station

Note:

device. By default this device enables the USB connection to perform JTAG
communication and in parallel create a virtual serial port (SCI/UART). As shipped, the
C2000 device is not connected to the virtual COM port and is instead connected to J3.

The internal emulation logic on the Docking Station routes through the FT2232 USB

F2833x Boot Mode Selection

MODE

GPIOBTIXA15

GPIO86/XA14

GPIO85/XA13

GPIO84/XA12

MoODE!™

F

1

1

Jump to Flash

SCI-A boot

SPI-A boot

12C-A boot

eCAN-A boot

McBSP-A boot

Jump to XINTF x16

Jump to XINTF x32

Jump to OTP

Parallel GPIO IfO boot

Parallel XINTF boot

Jump to SARAM

Branch to check boot mode

Mlwls|ln]|o | ~|e|le|r|o|o|Olm

1
1
1
1
1
1
1
0
0
0
0
0
0

1
1
1
0
0
0
0
1
1
1
1
0
0

=l=|lolol=l=lolol==|olal|—=

Branch to Flash, skip ADC
calibration

Branch to SARAM, skip ADC
calibration

Branch to SCI, skip ADC
calibration

i

All four GPIO pins have an internal pullup.

F280xx Boot Mode Selection

Mode Description GPlO18 GPIO29 GPIO34
SPICLKA) SCITXDA
SCITXDB
Boot to Flash 2 Jump to flash address 0x3F 7FF6. You must have programmed 1 1 1
a branch instruction here prior to reset to redirect code
execution as desired.
SCI-A Boot Load a data stream from SCI-A. 1 1 0
SFPI-A Boot Load from an external serial SPI EEPROM on SPI-A. 1 0 1
12C Boot Load data from an external EEFPROM at address 0x50 on the 1 0 0
12C bus.
eCAN-A Boot 3 Call CAN_Boot to load from eCAN-A mailbox 1. 0 1 1
Boot ta MO SARAM “) Jump to M0 SARAM address 0x00 0000. 0 1 0
Boot ta OTP @) Jump to OTP address 0x3D 7800 0 0 1
Parallel IO Boot Load data from GPIOO - GPIO15. 0 0 0

(1)
(2)

(3)

()

You must take extra care because of any effect toggling SPICLKA to select a boot mode may have on external logic.
When booting directly to flash, it is assumed that you have previously programmed a branch statement at 0x3F 7FFG to redirect
pragram flow as desired
On devices that do not have an eCAN-A module this configuration is reserved. If it is selected, then the eCAN-A bootloader will
run and will loop forever waiting for an incoming message.
When booting directly to OTF or MO SARAM, it is assumed that you have previously programmed or loaded code starting at the

entry point

location.

C2000 Piccolo Workshop - Appendix A -Experimenter's Kit

Docking Station

J3 - DB-9to 4-Pin Header Cable

Note: This cable is NOT included with the Experimenter’s Kit and is only shown for reference.

DB-9 Male Pin-Out Table for Both Ends of the Cable:
| Dists cartier detect DB-9 female SIL 0.1" female
— Data st ready Pin# Pin#
— Receive dats

T?— ?eques}ttgaisend - -
— Tranzm a

BO——— Clear to send 2 (black) 1 (TX)

40— Data terminal ready 3 (red) 4 (RX)
2 o Sl o 5 (barewire) 3 (GND)

Protective ground Note: pin 2 on SIL is a no-connect

A-8 C2000 Piccolo Workshop - Appendix A -Experimenter's Kit

Appendix B — Addressing Modes

Introduction

Appendix B will describe the data addressing modes on the C28x. Immediate addressing allows
for constant expressions which are especially useful in the initialization process. Indirect
addressing uses auxiliary registers as pointers for accessing organized data in arrays. Direct
addressing is used to access general purpose memory. Techniques for managing data pages,
relevant to direct addressing will be covered as well. Finally, register addressing allows for
interchange between CPU registers.

Learning Objectives

Learning Objectives

¢ Explain .sect and .usect assembly directives
¢ Explain assembly addressing modes
¢ Understand instruction formats

¢ Describe options for each addressing mode

C2000 Piccolo Workshop - Appendix B - Addressing Modes B-1

Module Topics

Module Topics

AppendixX B — ADAresSing MOAESooiiiiiiieiee ettt bbb b b e B-1
T LU T=TN I o ot PSSP B-2
Labels, Mnemonics and ASSEMDIY DIFECHIVEScviveieieieiese sttt e B-3
AQAIESSING MOGESeveeeieti ettt bbbt h bt bbbt bbbt bbb bt bbbt ens B-4
INSEFUCTION FOIMALSe.viiieieiciieiee sttt sttt e re e e et sbesbesbesbesteaneeneeneenees B-5
REGISTET AGUIESSING ...ttt sttt bbbt be b e et et b e s bt bt e be e Rt e b e e e et e neeebesbeebeab e e bt eneenneneas B-6
IMMEAIALE AQATESSING ... ettt sttt ettt bt b bt bt e s e e st et se e s besbeebesbe bt eree e eneas B-7
D] = To AN (o TSt OOV URU SRR B-8
a0 LYol [0 | 1T 1o R B-10
REVIBW ...ttt sttt sttt et sttt st b et b e bt Rt bR E e R e Rt b e R e R e Rt e R e ebe e beebe e ebent e ebenes B-13

EXEICISE Bttt bbbttt bbb bbb bbbt ae e B-14
(= Lo I8 Vo [0 TSt oo OSSR B-15
OPTIONAL Lab B-C: Array Initialization in C.........ccocvvviiviiiiieee e B-17
30 L1 o SRS B-18

B-2 C2000 Piccolo Workshop - Appendix B - Addressing Modes

Labels, Mnemonics and Assembly Directives

Labels, Mnemonics and Assembly Directives

Labels and Mnemonics
eLabels fef st
. .sect vectors
» Optional for all assembly ;make reset vector address 'start'
instructions and most reset: .long start
assembler directives
> Must begin in column 1 def start
o count .set 9
> The® :” is not treated as :create an array x of 10 words
part of the label name X usect “mydata”, 10
» Used as pointers to : s Tt
memory or INStructions ——_ 1qtart: C280BJ ;operate in C28x mode
. MOV ACC#l
+Mnemonics nextt MOVL XARL #x
> Lines of instructions __ _J——— MOV AR2 #count
loop: MOV *XAR1++AL
> Use upper or lower case BANZ l00p AR2-.
> Become components of bump: ADD ACC#1

program memory

SB next,UNC

Assembly Directives

+ Begin with a period (.) and are
lower case

> Used by the linker to locate —
code and data into specified

sections

+ Directives allow you to:
> Define a label as global—~
» Reserve space in memory

for un-initialized variables ——F=

> Initialized memory ———— "]
snmnmnndDjrectivesperane s

initialized section

.sect “name” |
used for code or constants
uninitialized section

.ref start
| _ ——»> .Sect “vectors”
;make reset vector address 'start’
reset: .long start
_ > def start
—Tcount .set 9
; create an array x of 10 words
X _—>.usect “mydata”, 10
| __ —— .sect “code”
start: C280BJ ;operate in C28x mode
MOV ACC#1
next: MOVL XARL1,#x
MOV AR2#count
loop: MOV *XAR1++AL
BANZ loop,AR2--
bump: ADD ACC#1
SB next,UNC

label .usect “name”,5|

used for variables

FfEsEEIEEsEFEEEEEEEEEEEn”

C2000 Piccolo Workshop - Appendix B - Addressing Modes

Addressing Modes

Addressing Modes

Addressing Modes

Mode Symbol | Purpose
(register)| Register Operate between Registers
(constant)| Inmediate| # Constants and Initialization
(paged)| Direct @ General-purpose access to data
(pointer)| Indirect L Support for pointers —access arrays,
lists, tables

Four main categories of addressing modes are available on the C28x. Register addressing mode
allows interchange between all CPU registers, convenient for solving intricate equations.
Immediate addressing is helpful for expressing constants easily. Direct addressing mode allows
information in memory to be accessed. Indirect addressing allows pointer support via dedicated
‘auxiliary registers’, and includes the ability to index, or increment through a structure. The C28x
supports a true software stack, desirable for supporting the needs of the C language and other
structured programming environments, and presents a stack-relative addressing mode for
efficiently accessing elements from the stack. Paged direct addressing offers general-purpose
single cycle memory access, but restricts the user to working in any single desired block of

memory at one time.

C2000 Piccolo Workshop - Appendix B - Addressing Modes

Instruction Formats

Instruction Formats

Instruction Formats

INSTR dst,src Example

INSTR REG NEG AL

INSTR REG,#imm MOV ACC,#1
INSTR REG,mem ADD AL, @x

INSTR mem,REG SUB AL,@ARO
INSTR mem,#imm MOV *XARO++,#25

€ What is a“REG"?
& 16-bit Access = ARO through AR7, AH, AL, PH, PL, T and SP
& 32-bit Access = XARO through XAR7, ACC, P, XT

€ What is an “#imm”?
4 an immediate constant stored in the instruction

€ What is a “mem” ?
& Adirectly or indirectly addressed operand from data memory

& Or, one of the registers from “REG”!
& locl6 or loc32 (for 16-bit or 32-bit data access)

The C28x follows a convention that uses instruction, destination, then source operand order
(INSTR dst, src). Several general formats exist to allow modification of memory or registers
based on constants, memory, or register inputs. Different modes are identifiable by their leading
characters (# for immediate, * for indirect, and @ for direct). Note that registers or data memory
can be selected as a ‘mem’ value.

C2000 Piccolo Workshop - Appendix B - Addressing Modes

Register Addressing

Register Addressing

Register Addressing

32-bit Registers
[XARO - XAR7 ACC P XT|

16-bit Registers
|[ARO-AR7 AH AL PH PL T TL DP SP]|

¢ Allows for efficient register to register
operation

16-bit and 32-bit Register Address modes

¢ Reduces code overhead, memor
accesses, and memory overhea

*

Register addressing allows the exchange of values between registers, and with certain instructions
can be used in conjunction with other addressing modes, yielding a more efficient instruction set.
Remember that any ‘mem’ field allows the use of a register as the operand, and that no special
character (such as @, *, or #) need be used to specify the register mode.

Register Addressing — Example

Format—{ MOV AXx, loc16| |MOVL loc32,ACC
Instruction——{ MOV AH, @AL MOVL @XT,ACC

Format —>| MOV locl6,Ax,COND |
Instrucion——{ MOV @AR1,AL,GT

User Guide & Dis-assembler
use @ for second register

B-6 C2000 Piccolo Workshop - Appendix B - Addressing Modes

Immediate Addressing

Immediate Addressing

Immediate Addressing —“#”

one word instruction
OPCODE | 8-bit OPERAND|

two word instruction
OPCODE
16-bit OPERAND

¢ Fixed value part of program memory
instruction

¢ Supports short (8-bit) and long (16-bit)
immediate constants

¢ Long immediate can include a shift

¢ Used to initialize registers, and operate
with constants

Immediate addressing allows the user to specify a constant within an instruction mnemonic. Short
immediate are single word, and execute in a single cycle. Long (16-bit) immediate allow full
sized values, which become two-word instructions - yet execute in a single instruction cycle.

Immediate Addressing — Example

& Short Immediate, 1 Word (ANDB) ¢ Long Immediate, 2 Words (AND)

ANDB Ax,#8Bit AND locl6,#16Bit
[anpB[Ax] #8Bit | AND loc16
#16Bit
AND automatically replaced by :
ANDB if IMM value is 8 bits or less AND Ax,locl6,#16Bit
AND | Ax | 1oci6
#16Bi t

AND ACC,#16Bit,<<0-16

AND | Acc | shift
#16Bit

C2000 Piccolo Workshop - Appendix B - Addressing Modes B-7

Direct Addressing

Direct Addressing

Direct addressing allows for access to the full 4-Meg words space in 64 word “page” groups. As
such, a 16-bit Data Page register is used to extend the 6-bit local address in the instruction word.
Programmers should note that poor DP management is a key source of programming errors.
Paged direct addressing is fast and reliable if the above considerations are followed. The watch
operation, recommended for use whenever debugging, extracts the data page and displays it as the
base address currently in use for direct addressing.

Direct Addressing —“@”

Data Page Offset Data Memory
00 0000 0000 0000 00|00 0000

L] L] L]
00 0000 0000 00000011 1111
00 0000 0000 0000 01 {00 0000

L] L] L]
00 0000 0000 00000111 1111
00 0000 0000 0000 10|00 0000

. ° . Page 2: 00 0080 — 00 00BF
00 0000 0000000010111 1111

[] [] [] [] []
11 1111 1111 1111 11 |00 0000

. . . Page 65,535: 3F FFCO — 3F FFFF
11 1111 1111 1111 1111 1111

Page 0: 00 0000 — 00 003F

Page 1: 00 0040 — 00 007F

¢ Data memory space divided into 65,536 pages with
64 words on each page

¢ Data page pointer (DP) used to select active page

¢ 16-bit DP is concatenated with a 6-bit offset from the
instruction to generate an absolute 22-bit address

¢ Access data on a given page in any order

B-8 C2000 Piccolo Workshop - Appendix B - Addressing Modes

Direct Addressing

Direct Addressing — Example

0 0 0 1 F E
Z=X+Y 0000]0000|0000[{0001/1111[1111
: DP offset
Data Memory

.usect ‘“‘samp”,3
.sect ‘“‘code”

f Page7[00]

address | data

MOVW DP. #x o FageT 0001C0 0001
MOV AL,@x Page7[3D] X:| 0001FD (1000
ADD AL, Qy Page7[3E] y:| 0001FE [0500
MOV @z, AL Page7[3F] z:| 0001FF |1500
DP=0007 Accumulator
variations: Mov AL,@x|0 O O 0|1 O O O
> MOVW DP,#mm ;2W, 16-bit (4 Meg) ADD AL,0¥(O0O O O O|/1 5 O O
> MOVZ DP#imm ;1W, 10-bit (64K)
> MOV DP#imm ;DP(15:10) unchanged MOV @z,AL]

Direct Addressing — Caveats
(X'and Y not on the same page)

Z=X+Y

DP | offset

0000

0000 | 0000|0001 [12111]1111

0000

DP=0007 Accumulator

0007 - - - === - =
0007 00002000
000 7 0000/10,01

exp'ecting 1500 __|

———

0000 (0000 (0010|0000 | 0000 |~

Data Memory

address | data

Page7[00] |0001CO0|0001

.Page7[3F]x:[0001FF [1000

a Pages[00]Y : 000200 |0500

Solution: Group and block variables in ASM file:

.usect ‘“‘samp”,3
.sect “code”

MOVW DP,#x
MOV AL, @x
ADD AL,@y
MOV @z, AL

X

y
z

-usect “samp”,d,1] ;Force all locations to same data
.set x+1 ;page (1st hole, else linker error)
.set x+2 ;Assign vars within block

C2000 Piccolo Workshop - Appendix B - Addressing Modes

Indirect Addressing

Indirect Addressing

Indirect Addressing — “«”

Data Memory

XARO
XAR1
XAR2 p—)
XAR3
XAR4
XARS
XAR6
XAR7

¢ Auxiliary Registers (XARn) used to access full
data memory space

¢ Address Register Arithmetic Unit (ARAU) used
to modify the XARN

¢ Access data from arrays anywhere in data
memory in an orderly fashion

Any of eight hardware pointers (ARs) may be employed to access values from the first 64K of
data memory. Auto-increment or decrement is supported at no additional cycle cost. XAR register
formats offer larger 32-bit widths, allowing them to access across the full 4-Giga words data
space.

Indirect Addressing Modes

¢ Auto-increment / decrement: *XARn++, *--XARnN
+ Post-increment or Pre-decrement
¢ Offset: *+XARN[ARO or AR1], *+XARN[3bit]
+ Offset by 16-bit ARO or AR1, or 3-bit constant
¢ Stack Relative: *-SP[6bit]
+ Index by 6-bit offset (optimal for C)
¢ Immediate Direct: *(0:16bit)
+ Access low 64K
¢ Circular: *AR6%++
+ AR1(7:0) is buffer size
+ XARG is current address

B-10 C2000 Piccolo Workshop - Appendix B - Addressing Modes

Indirect Addressing

Indirect Addressing — Example
Autoincrement
X -usect “samp”,6 Data
4
_ yoooERE X v) x | x0 |<— XAR2
=) X, .sect “code” <1 D
n=0 MOVL XAR2,#x <2 |2
MOV ACC,*XAR2++ x3 |2
ADD ACC,*XAR2++ x4 |2
ADD ACC,*XAR2++ y
ADD ACC,*XAR2++
ADD ACC,*XAR2++ *(0:16bit) - 16 bit label
Mov *(0:y),AL - must be in lower 64K
- 2 word instruction
Fast, efficient access to arrays, lists, tables, etc.

Indexed addressing offers the ability to select operands from within an array without modification
to the base pointer. Stack-based operations are handled with a 16-bit Stack Pointer register, which
operates over the base 64K of data memory. It offers 6-bit non-destructive indexing to access

larger stack-based arrays efficiently.

X[2] = x[1] + x[3]

Offset

.sect “.code”

MOVL XAR2,#x
MOV ARO,#1
MOV AR1,#3

X .usect “_.samp”,5

MOV ACC,*+XAR2[ARO]
ADD ACC,*+XAR2[AR1]
MOV ~ *+XAR2[2],AL

XARZ:—> x| X0

Data

x1

[i?] %2
t- | X3
x4

Indirect Addressing — Example

X

.usect “_samp”

.sect “.code”

MOVL XAR2 ,#Xx

MOV ACC,*+XAR2[1]
ADD ACC,*+XAR2[3]
MOV *+XAR2[2],AL

,5

16 bit offset

3 bit offset

Allows offset into arrays with fixed base pointer

C2000 Piccolo Workshop - Appendix B - Addressing Modes

Indirect Addressing

Indirect Addressing — Example
Stack Relative

Data Memory

x2=x1+x3 012 0|x3
032 0|x2 -
020 0|x1
| - SP - |—| empty
empty
Instr. 3
.sect “_code”
MOV AL,*-SP[1] Accumulator
e Instr.1/0 0 0 0/0 2 0 O
MOV *-SP[2].,AL insr.2[0 0 0 0]0 3 2 0}~

Useful for stack based operations

Indirect Addressing — Example
Circular
start of buffer

Buffer Size N
| AAAA .. AAAA |AAAA AAAA|oooo oooo|—> Element 0

(align on 256 word boundary)
access pointer XAR6 (32)
| AAAA . AAAA | AAAA AAAA [XXXX XXX

circular
buffer
range

AR1 Low (16)

-------- | N-1 ElementN-1] |/
(AR1 Low is set to buffer size — 1)

end of buffer |

MAC P,*AR6%++,*XAR7++

LINKER.CMD
SECTIONS

{ Buf_Mem: align(256) { } > RAM PAGE 1
3

C2000 Piccolo Workshop - Appendix B - Addressing Modes

Review

Review

0x000000

0x00003F

Ox00FFFF

OX3FFFFF

OXFFFFFFFF

Addressing Range Review

|

Stack
Addressing

SP
64K

Direct
Addressing
Indirect
DPElll\j+6) Addressing
XARN
4G

Data memory can be accessed in numerous ways:
Stack Addressing: allows a range to 64K

Direct Addressing: Offers a 16-bit DP plus a 6-bit offset, allowing a 4M range
Indirect Addressing: Offers the full 4G range

C2000 Piccolo Workshop - Appendix B - Addressing Modes

Review

Exercise B
Exercise B: Addressing
Given: DP =4000 DP =4004 DP = 4006
Address/Data (hex) 100030 [0025 100100 (0105 100180 |0100
Fill in the 100031 |0120 100101 (0060 100181 |0030
table below 100032 100102 (0020 100182 |0040
Src Mode Program ACC DP XAR1 | XAR2

MOVW DP,#4000h
MOVL XAR1,#100100h
MOVL XAR2,#100180h
MOV AL,@31h

ADD AL ,*XARL++
SUB AL .@30h

ADD AL ,*XARL++
MOVW DP ,#4006h

ADD AL,@1

SUB AL, *XARL

ADD AL ,*XAR2

SUB AL,*+XAR2[1]
ADD AL, #32

SUB AL, *+XAR2[2]
MOV @32h,AL

Imm: Immediate; Dir: Direct;
Reg: Register; [dr: Indirect

In the table above, fill in the values for each of the registers for each of the instructions. Three
areas of data memory are displayed at the top of the diagram, showing both their addresses and
contents in hexadecimal. Watch out for surprises along the way. First, you should answer the
addressing mode for the source operand. Then, fill in the change values as the result of the in-
struction operation.

B-14 C2000 Piccolo Workshop - Appendix B - Addressing Modes

Lab B: Addressing

Lab B: Addressing

Note: The lab linker command file is based on the F28035 memory map — modify as needed, if
using a different F28xx device memory map.

» Objective

The objective of this lab is to practice and verify the mechanics of addressing. In this process we
will expand upon the ASM file from the previous lab to include new functions. Additionally, we
learn how to run and observe the operation of code using Code Composer Studio.

In this lab, we will initialize the “vars’ arrays allocated in the previous lab with the contents of
the “const” table. How is this best accomplished? Consider the process of loading the first
““const” value into the accumulator and then storing this value to the first ““vars’ location,
and repeating this process for each of the succeeding values.

o What forms of addressing could be used for this purpose?
o Which addressing mode would be best in this case? Why?
e What problems could arise with using another mode?

> Procedure

Copy Files, Create Project File

1. Create a new project called LabB.pjt in C:\C28x\Labs\Appendix\LabB and
add LabB.asmand Lab.cmd to it. Check your file list to make sure all the files are
there. Be sure to setup the Build Options by clicking: Project -> Build
Options onthe menu bar. Select the Linker tab. In the middle of the screen select
“No Autoinitialization” under “Autoinit Model:". Enter start in
the “Code Entry Point (-e):” field. Next, select the Compiler tab. Note that
“Full Symbolic Debug (-g)” under “Generate Debug Info:”is
selected. Then select OK to save the Build Options.

Initialize Allocated RAM Array from ROM Initialization Table

2. Edit LabB.asm and modify it to copy table[9] to data[9] using indirect addressing.
(Note: data[9] consists of the allocated arrays of data, coeff, and result). Initialize the
allocated RAM array from the ROM initialization table:

e Delete the NOP operations from the ““code’” section.

¢ Initialize pointers to the beginning of the “const’ and ““vars” arrays.
o Transfer the first value from ““const’ to the ““vars” array.

e Repeat the process for all values to be initialized.

To perform the copy, consider using a load/store method via the accumulator. Which
part of an accumulator (low or high) should be used? Use the following when writing
your copy routine:

- use AR1 to hold the address of table

- use AR2 to hold the address of data

C2000 Piccolo Workshop - Appendix B - Addressing Modes B-15

Lab B: Addressing

3. Itis good practice to trap the end of the program (i.e. use either “end: B
end,UNC” or “end: B start,UNC”). Save your work.

Build and Load

4. Click the “Bui 1d” button and watch the tools run in the build window. Debug as
necessary. To open up more space, close any open files or windows that you do not need.

5. Load the output file onto the target. Click:

File > Load Progranm..

If you wish, right click on the LabB_asm source window and select Mixed Mode to
debug using both source and assembly.

Note: Code Composer Studio can automatically load the output file after a successful build. On
the menu bar click: Option > Customize.. and select the ““Program Load
Options™ tab, check “Load Program After Build”, then click OK.

6. Single-step your routine. While single-stepping, it is helpful to see the values located in
table[9] and data[9] at the same time. Open two memory windows by using the “View
Memory’’ button on the vertical toolbar and using the address labels table and data.
Setting the properties filed to “Hex 16 Bit — TI style” will give you more viewable data in
the window. Additionally, it is useful to watch the CPU registers. Open the CPU
registers by using the “View - Registers > CPU Registers™. Deselect
“Allow Docking’ and move/resize the window as needed. Check to see if the
program is working as expected.

End of Exercise

B-16 C2000 Piccolo Workshop - Appendix B - Addressing Modes

OPTIONAL Lab B-C: Array Initialization in C

OPTIONAL Lab B-C: Array Initialization in C

Note:

The lab linker command file is based on the F28035 memory map — modify as needed, if
using a different F28xx device memory map.

» Objective

The objective of this lab is to practice and verify the mechanics of initialization using C.
Additionally, we learn how to run and observe the operation of C code using Code Composer
Studio. In this lab, we will initialize the ““vars’ arrays with the contents of the ““const” table.

> Procedure

Create Project File

1.

In Code Composer Studio create a new project called LabB-C.pjtin
C:\C28x\Labs\Appendix\LabB\LabB-C and add LabB-C.c and Lab.cmd to
it. Check your file list to make sure all the files are there. Open the Build Options and
select the Linker tab. Select the “Libraries” Category and enter rts2800_ml_Libin
the “Incl. Libraries (-1):” box. Do not setup any other Build Options. The
default values will be used. In Appendix Lab D exercise, we will experiment and explore
the various build options when working with C.

Initialize Allocated RAM Array from ROM Initialization Table
2. Edit LabB-C. c and modify the “main” routine to copy table[9] to the allocated arrays

of data[4], coeff[4], and result[1]. (Note: data[9] consists of the allocated arrays of
data, coeff, and result).

Build and Load

3. Click the “Bui 1d” button and watch the tools run in the build window. Debug as

necessary.

Note: Have Code Composer Studio automatically load the output file after a successful build. On
the menu bar click: Option > Customize.. and select the ““Program Load Options”
tab, check “Load Program After Build”, then click OK.

4. Under Debug on the menu bar click “Go Main™. Single-step your routine. While

single-stepping, it is helpful to see the values located in table[9] and data[9] at the same
time. Open two memory windows by using the ““View Memory’” button on the vertical
toolbar and using the address labels table and data. Setting the properties field to
“Hex 16 Bit — TI style” will give you more viewable data in the window. Additionally,
you can watch the CPU registers. Open the CPU registers by using the “View ->
Registers - CPU Registers. Deselect “Allow Docking’ and move/resize
the window as needed. Check to see if the program is working as expected.

End of Exercise

C2000 Piccolo Workshop - Appendix B - Addressing Modes B-17

Solutions

Solutions
Exercise B: Addressing - Solution
Given: DP =4000 DP =4004 DP = 4006
Address/Data (hex) 100030 |0025 100100 (0105 100180 [0100
Fill in the 100031 (0120 100101 (0060 100181 [0030
table below 100032 100102 (0020 100182 10040
Src Mode Program ACC DP XAR1 | XAR2
Imm MOVW DP,#4000h 4000
Imm MOVL XAR1,#100100h 100100
I mm MOVL XAR2,#100180h 100180
Dir MOV AL,@31h 120
1dr ADD AL, *XAR1++ 225 100101
Dir SUB AL,@30h 200
Idr ADD AL ,*XAR1++ 260 100102
Imm MOVW DP,#4006h 4006
Dir ADD AL,@1 290
Idr SUB AL,*XAR1 270
Idr ADD AL, *XAR2 370
Idr SUB AL,*+XAR2[1] 340 100180
Imm ADD AL,#32 360
Idr SUB AL,*+XAR2[2] 320 100180
Dir MOV @32h,AL 1001B2 |0320
Imm: Immediate; Dir: Direct;
Reg: Register; dr: Indirect

B-18 C2000 Piccolo Workshop - Appendix B - Addressing Modes

Appendix C — Assembly Programming

Introduction

Appendix C discusses the details of programming in assembly. It shows you how to use
different instructions that further utilize the advantage of the architecture data paths. It gives
you the ability to analyze the instruction set and pick the best instruction for the application.

Learning Objectives

Learning Objectives

¢ Perform simple program control using
branch and conditional codes

¢ Write C28x code to perform basic
arithmetic

¢ Use the multiplier to implement
sum-of-products equations

¢ Use the RPT instruction (repeat) to
optimize loops

Use MAC for long sum-of-products

Efficiently transfer the contents of one
area of memory to another

¢ Examine read-modify-write operations

¢ o

C2000 Piccolo Workshop - Appendix C - Assembly Programming c-1

Module Topics

Module Topics

Appendix C — AsSembBIY ProgrammMing ..o e sbe e e e e C-1
T LU T=N o o0 C-2
Program CONTFOL.........cooiiii bbb e bbbt b bbb C-3

BIANCINES ... ettt ettt Rt a et R R b e Re Rt et e te b eeenreeneereenes C-3
Program Control INSTIUCTIONScoveiiiiiie ettt sne et C-4
ALU and ACCUMUIALOr OPEIAtIONS........cuiitiiiiiieiiiieie ettt sttt e bbbt e e sb et sbesbe e aneas C-6
SIMPIE Math & SHIfL.......oii et bbb C-7
L] LU0 T OO SOUSO U URRUR C-9
BaSIC MUITIPIIET ...t bbbt C-10
T 0 LCT: Ul L1y 1 (o 1 o] o S PPRRSON C-11
MAC INSTTUCTION......veeiet ettt C-12
DALE IMOVE. ..ottt C-13
[T Tor- I @] oL - L1 o] 1SS C-15
Byte Operations and AGAIESSINGcvierriiiiriiiiiriese sttt bbbt bbbt C-15
Test and Change Memory INSIIUCTIONScuiiriiiiiieiie e C-16
MIN/IMIBX OPRIALIONS. ...ttt sttt bbbk bbb bbbttt nn e C-17
Read Modify WIite OPEIatIONSc..ooviiiieitieieeiee ettt sttt bbbt be b sbesbesbeebesneeneas C-18
Lab C: ASSEMDIY PrOgramiMingc.coooeieiiieiieieieenie sttt see sttt be e e e sbesbesbesbessesneeneas C-20
OPTIONAL Lab C-C: SUM-0f-Products iN C........cccveiiiiieirieiee e C-22

C2000 Piccolo Workshop - Appendix C - Assembly Programming

Program Control

Program Control

The program control logic and program address generation logic work together to provide proper
program flow. Normally, the flow of a program is sequential: the CPU executes instructions at
consecutive program memory addresses. At times, a discontinuity is required; that is, a program
must branch to a nonsequential address and then execute instructions sequentially at that new
location. For this purpose, the C28x supports interrupts, branches, calls, returns, and repeats.
Proper program flow also requires smooth flow at the instruction level. To meet this need, the
C28x has a protected pipeline and an instruction-fetch mechanism that attempts to keep the

pipeline full.
Branches
Branch Types and Range
» 3 Branch Types
0x000000
! | Long
Short Branch Branch Branch
Program offset +127/- offset +/-32K
v . 128d 2word absolute 4M
emor -wor -2)
i instruction instruction ingfm%rt.?on
* |
~—PC
Ox3FFFFF

The PC can access the entire 4M words (8M bytes) range. Some branching operations offer 8-
and 16-bit relative jumps, while long branches, calls, and returns provide a full 22-bit absolute
address. Dynamic branching allows a run-time calculated destination. The C28x provides the fa-
miliar arithmetic results status bits (Zero, oVerflow, Negative, Carry) plus a Test Control bit
which holds the result of a binary test. The states of these bits in various combinations allow a
range of signed, unsigned, and binary branching conditions offered.

C2000 Piccolo Workshop - Appendix C - Assembly Programming c-3

Program Control

Program Control Instructions

Program Control - Branches

Function Instruction Cycles T/F|Size
Short Branch SB 8bit,cond 7/74 1
Fast Short Branch SBF 8bit,EQINEQ]JTC|INTC 4/4 1
Fast Relative Branch| B 16bit,cond 7/4 2
Fast Branch BF 16bit,cond 4/4 2
Absolute Branch LB 22bit 4 2
Dynamic Branch LB *XAR7 4 1
Branch on AR BANZ 16bit,ARn-- 4/2 2
Branch on compare | BAR 16bit,ARn,ARn,EQ]NEQ 4/2 2

Condition Code

NEQ LT LO(NC) NTC € Condition flags are set on
EQ LEQ LOS TC the prior use of the ALU
GT HI NOV UNC . o
@ The assembler will optimize
GE HI \Y . .
© S© o NBIO B to SB if possible

Program Control - Call/Return
Function Call Code Cycles | Return code Cycles
Call LCR 22bit 4 LRETR 4
Dynamic Call LCR *XARn 4 LRETR 4
Interrupt Return IRET 8
& More Call variations LCR Func Stack
in the user guide are LRETR Local
for code backward Var
compatibility RPC | Old RPC [———|22-bit old
New RPC -f-------> Ret Addr J RPC
oC
Ret Addr

c-4 C2000 Piccolo Workshop - Appendix C - Assembly Programming

Program Control

BANZ Loop Control Example

€ Auxiliary register used as loop counter
€ Branch if Auxiliary Register not zero
@ Test performed on lower 16-bits of XARXx only

4
y = Z Xn len .set 5
n=0 Data X .usect “samp”,6
x [x0 |—xar2 | Y LR G
i; % .sect “code”
3) MOVL XAR2 , #X
§4 3 MOV AR3,#len-2
y MOV AL, *XAR2++
sum: ADD AL, *XAR2++
BANZ sum,AR3--
AR3 :
* =
COUNT MOV :y),AL

C2000 Piccolo Workshop - Appendix C - Assembly Programming C-5

ALU and Accumulator Operations

ALU and Accumulator Operations

Product (32)

ALU and Accumulator

16/32 data mem,
16/32 bit registers

MUX | 816 1Imm |

ALU and Barrel Shifter

ACC

AH (31-16)

AL (15-0)

AH.MSB | AH.LSB

AL.MSB| AL.LSB

One of the major components in the execution unit is the Arithmetic-Logical-Unit (ALU). To
support the traditional Digital Signal Processing (DSP) operation, the ALU also has the zero
The enhancement that the C28x has is the additional
data paths added form the ALU to all internal CPU registers and data memory. The connection to
all internal registers helps the compiler to generate efficient C code. The data path to memory
allows the C28x performs single atomic instructions read-modify-write to the memory.

cycle barrel shifter and the Accumulator.

The following slides introduce you to various instructions that use the ALU hardware. Word,

byte, and long word 32-bit operation are supported.

C2000 Piccolo Workshop - Appendix C - Assembly Programming

ALU and Accumulator Operations

Simple Math & Shift

Accumulator - Basic Math Instructions
g XXX Ax, #16b ;word | xxx=instruction: MOV, ADD, SUB, ...
= | xxxB Ax, #8b ;byte | Ax= AHorAL .

o Assembler will automatically convert to 1
L | XxXL ACC, #32b ;long word instruction.
< | ADD ACC, #01234h<<4 Two word instructions with shift option
W | ADDB AL, #34h One word instruction, no shift
Ax = AH or AL Operations
ACC Operations MOV ~ Ax, locl6
= | MOV 5 AcC, loc16<<shift ADY 5%, el
O | ADD }from memory (left shift = L5 0ElD
"(-_U' SUB 0ptiona|) AND AX, locl6
= - OR Ax loc16
© [MOV ACC,#16b<<shift ?
> | sop } sht XOR Ax, locl6
16-bit constant (left shift
SUB optional) AND Ax, locl6,#16b
NOT AX
MOV loc16,ACC <<shift ;AL NEG AX
MOVH loc16,ACC <<shift ;AH MOV locl6,Ax
Shift the Accumulator
Shift full ACC 31......... 0
LSL ACC <<shift (1-16) C ACC 0 LSt
SFR ACC >>shift
LSL ACC <<T (0-15) 31......... 0
SFR ACC >>T SXM ACC |——C |SFR
15 ... 0

LSL AX <<shift

LSR AX <<shift 15........ 0

ASR AX >>shift sx|v|—>C ASR
LSL AX <<T

LSR AX <<T 15 0

ASR AX >>T o—c LSR

C2000 Piccolo Workshop - Appendix C - Assembly Programming Cc-7

ALU and Accumulator Operations

32 Bit Shift Operations [ACC]

K 0
C ACC 0
Examples:
Logical Shift Left —Long: LSLL LSLL ACC. T
2 0 LSRL ACC, T
0 C ASRL ACC, T
Logical Shift Right —Long: LSRL Note: T(4:0) are used;
other bits are ignored
31......... 0
Oorl ACC |—C
based on SXM

Arithmetic Shift Right —Long: ASRL

C2000 Piccolo Workshop - Appendix C - Assembly Programming

Multiplier

Multiplier
Multiply Unit
XT Register ()Dralgis?sig'
T Register | |
32x32 Multiply Unit
&\\\\\\\\\\\\% | Prog I\élfm (16)
Immed (8,16)

P Register (32)

Shift (PM)

ACC (32)

Digital signal processors require many multiply and add math intensive operations. The single
cycle multiplier is the second major component in the execution unit. The C28x has the
traditional 16-bit-by-16-bit multiplier as previous TI DSP families. In-addition, the C28x has a
single cycle 32-bit-by-32-bit multiplier to perform extended precision math operations. The large
multiplier allows the C28x to support higher performance control systems requirement while
maintaining small or reduce code.

The following slides introduce instructions that use the 16-bit-by-16-bit multiplier and multiply
and add (MAC) operations. The 32-bit-by-32-bit multiplication will be covered in the appendix.

C2000 Piccolo Workshop - Appendix C - Assembly Programming Cc-9

Multiplier

Basic Multiplier

Multiplier Instructions

Instruction Execution Purpose

MOV T,locl6 T

MPY ACC,T,loc16|ACC = T*locl6 For single or first product
MPY P,T,locl6é |P T*locl6 For nt product
MPYB ACC,T,#8bu |ACC = T*8bu Using 8-bit unsigned const

loc16 Get first operand

MPYB P,T,#8bu B = T*8bu Using 8-bit unsigned const
MOV ACC,P ACC =P Move 15t product<<PMto ACC
ADD ACC, P ACC += P Add nt" product<<PM to ACC
SUB ACC, P ACC -= P Sub nt" product<<PM fr. ACC
Instruction Execution

MOVP T, locl6 ACC =P<<PM T =loc16

MOVA T, locl6 ACC += P<<PM T =loc16

MOVS T, locl6 ACC - = P<<PM T =loc16

MPYA P, T, #16b ACC += P<<PM then P =T*#16b

MPYA P, T, locl6 ACC += P<<PM then P =T*loc16

MPYS P, T, locl6 ACC - = P<<PM then P =T*loc16

Sum-of-Products

Y = A*X1 + B*X2 + C*X3 + D*X4

ZAPA ;ACC =P =0VC =0

MOV T,@X1 ;T = X1

MPY P,T,@A ;P = A*X1

MOVA T,@X2 ;T = X2 ;ACC = A*X1

MPY P,T,@B ;P = B*X2

MOVA T,@X3 ;T = X3 ;ACC = A*X1 + B*X2

MPY P,T,@C ;P = C*X3

MOVA T,@X4 ;T = X4;ACC = A*X1 + B*X2 + C*X3
MPY P,T,@D ;P = D*X4

ADDL ACC,P<<PM ;ACC =Y

MOVL @y,ACC

C-10 C2000 Piccolo Workshop - Appendix C - Assembly Programming

Multiplier

32x32 Long Multiplication

QMPYAL ACC,XT,loc32| ACC = (XT)*(loc32)

Lx | |
x Ly | |
TR ____ Integer long multiplication
| | u(long) = u(long) * u(long)
— PR Fraction long multiplication:
[vi X1 | (long) = (long) * (long)
| z3 | z2 | z1 | z0]<----(long) 64 = (long) 32 * (long) 32
| Accumulator | P-register |
IMPYAL P,XT, loc32 P = u(XT)*u(loc32)

IMACL P,10c32,*XAR7 | ACC +=P; P = u(loc32)*u(loc32)
QMACL P,loc32,*XAR7 | ACC +=P; P = (loc32)*(loc32)

Repeat Instruction

Repeat Next: RPT

> Next instruction iterated N+1 times

¢ Options:
> RPT #8bit up to 256 iterations
> RPT locl6 location “loc16” holds count value
& Features: Example :

int x[5]={0,0,0,0,0};

> Saves code space - 1 word
» Low overhead -1 cycle

> Easy to use

» Non-interruptible

» Requires use of || before next line

X

.usect “samp”,5
MOV ARL,#x

RPT #4

MOV *XAR1++,#0

» May be nested within BANZ loops

Refer to User Guide for more repeatable instructions

Instruction |Cycles
RPT 1
BANZ 4-N

C2000 Piccolo Workshop - Appendix C - Assembly Programming

Multiplier

Single repeat instruction (RPT) is used to reduce code size and speed up many operations in the
DSP application. Some of the most popular operations that use the RPT instruction to perform
multiple taps digital filters or perform block of data transfer.

MAC Instruction
Sum-of- Products RPT / MAC

.usect “sample”,20
19 y .usect “result”,2
= X a .sect *“coefficient”
y n*n
a0: .word 0x0101
n=0 .word 0x0202

XAR1++ X0 .word 0x2020
X1 .sect “‘code”
SOP: SPM 0
MOVW DP,#y
MOVL XAR1, #X

MOVL XAR7,#a0
ZAPA < Zero ACC & P

XART++ A0 RPT #19 Repeat single
Second operand Al Il MAC P,*XAR1++,*XAR7++ - Dual operand
ADDL ACC,P<<PM «——— last ADD
MOVL @y,ACC
A19 B SOP,UNC

MOV T,Ioch} MOVA T,loc16 ined |
ADD ACC,P MPY P,T,locl6 P=T*(*ARN++)

X19

C-12 C2000 Piccolo Workshop - Appendix C - Assembly Programming

Data Move

Data Move
Data Move Instructions

DATA & DATA (4G « 64K) DATA & PGM (4G & 4M)
MOV locl6, *(0:16bit) PREAD) locl6 , *XAR7
MoV :(0 :16bit), locl6 | PWRITE // *XAR7, I0016\\

-7 B S / \

16-bit address concatenated 32-bit address memory pointer with a 22-bit
with 16 leading zeros location program memory address
.sect “.code”

START: MOVL XAR5,#x
MOVL XAR7,#TBL
RPT #len-1
11 PREAD *XAR5++ ,*XAR7

X :l:léect “_samp”,4

.sect “_.coeff”
TBL: .word 1,2,3,4
len .set $-TBL

¢ Optimal with RPT (speed and code size) & Faster than Load / Store, avoids

¢ In RPT, non-mem address is auto- accumulator
incremented in PC & Allows access to program memory

Conditional Moves

Instruction Execution (if COND is met)

MOV locl6,AX,COND [locl6] = AX

MOVB locl16,#8bit,COND | [locl6] = 8bit

Instruction Execution (if COND is met)

MOVL loc32,ACC,COND [loc32] = AX
Example

If A<B, Then B=A
Accumulator

A .usect “var”,2,1 oo oofo12o0]

B .set A+l
-sect code Data Memory Data Memory
MOVW DP, #A
MOV AL. @A 0120A 0120|A
CMP AL, 0B 0320B 0120B
MOV @B, AL, LT Before After

The conditional move instruction is an excellent way to avoid a discontinuity (branch or call)
based upon a condition code set prior to the instruction. In the above example, the 1% step is to

C2000 Piccolo Workshop - Appendix C - Assembly Programming C-13

Data Move

place the contents of A into the accumulator. Once the Ax content is tested, by using the CMP
instruction, the conditional move can be executed.

If the specified condition being tested is true, then the location pointed to by the “loc16” address-
ing mode or the 8-bit zero extended constant will be loaded with the contents of the specified AX
register (AH or AL): if (COND ==true) [loc16] = AX or 0:8bit;

Note: Addressing modes are not conditionally executed. Hence, if an addressing mode performs a
pre or post modification, it will execute regardless if the condition is true or not. This instruction
is not repeatable. If this instruction follows the RPT instruction, it resets the repeat counter
(RPTC) and executes only once.

Flags and Modes

N - If the condition is true, then after the move, AX is tested for a negative condition. The nega-
tive flag bit is set if bit 15 of AX is 1, otherwise it is cleared.

Z - If the condition then after the move, AX is tested for a zero condition. The zero flag bit is set
if AX =0, otherwise it is cleared.

V - If the V flag is tested by the condition, then V is cleared.

C-Example
;if (VarA>20)
:VarA =0;

CMP @VarA #20 ; Set flags on (VarA - 20)
MOVB @VarA #0,GT ; Zero VarA if greater then

C2000 Piccolo Workshop - Appendix C - Assembly Programming

Logical Operations

Logical Operations

Byte Operations and Addressing

MOVB AX.LSB,loc16

MOVB AX.MSB,loc16

MOVB locl6, AX.LSB

MOVB locl6, AX.MSB

For loc16 = *+XARN[Offset]

Byte Operations

0000 0000 Byte AX
Byte No change AX

No change Byte loc16

No change Byte loc16

Byte =1. Low byte for register addressing

2. Low byte for direct addressing
3. Selected byte for offset indirect addressing

Odd Offset | Even Offset loc16

Byte Addressing

AHMSB AH.LSB ALMSB AL.LSB

12

|34|56

| B |
LlG bit memory
78 | 00 [AR2 |
03 56
34 04
B 12

Example of Byte Un-Packing

Example of Byte Packing

MOVL
MOVB
MOVB
MOVB
MOVB

XAR?2, #MemA
*+XAR2[1], AL.LSB
*+XAR2[2], AL.MSB
*+XAR2[5], AH.LSB
*+XAR2[6], AH.MSB

MOVL XAR2, #MemA
MOVB AL.LSB*+XAR2[1]
MOVB AL.MSB,*+XAR2[2]
MOVB AH.LSB,*+XAR2[4]
MOVB AH.MSB,*+XAR2[7]

C2000 Piccolo Workshop - Appendix C - Assembly Programming

Logical Operations

Test and Change Memory Instructions

The compare (CMPx) and test (TxxXx) instructions allow the ability to test values in memory. The
results of these operations can then trigger subsequent conditional branches. The CMPXx instruc-
tion allows comparison of memory with respect to a specified constant value, while the Txxx in-
structions allow any single bit to be extracted to the test control (TC) field of status register 0.
The contents of the accumulator can also be non-destructively analyzed to establish branching
conditions, as seen below.

Test and Change Memory

Instruction Execution Affects
TBIT locl6,#(0-15) | STO(TC) =locl6(bit_no) TC
TSET locl6,#(0-15) | Test (loc16(bit)) then set bit TC

| TCLR locl6,#(0-15) | Test (locl6(bit)) then clr bit TC

CMPB AX, #8bit Test (AX - 8bit unsigned) CN,Z
CMP AX, locl6 Test (AX - locl6) CN,Z
CMP locl6,#16b Test (locl6 - #16bit signed) CN,Zz
CMPL ACC, @P Test (ACC - P << PM) CN,Z

C-16 C2000 Piccolo Workshop - Appendix C - Assembly Programming

Logical Operations

Min/Max Operations

MIN/MAX Operations

MAXCUL P,loc32
(for 64 bit math)

P <

loc32, P = loc32

P >= loc32, do nothing

MINCUL P,loc32
(for 64 bit math)

P > loc32, P = 1oc32
P <= loc32, do nothing

Instruction Execution
MAX ACC, locl6 if ACC < locl1l6, ACC = locl6
if ACC >= locl6, do nothing
MIN ACC, locl6 if ACC > locl1l6, ACC = locl6
ifT ACC <= locl6, do nothing
MAXL ACC,loc32 if ACC < loc32, ACC = loc32
iT ACC >= loc32, do nothing
MINL ACC,loc32 if ACC > loc32, ACC = loc32
if ACC <= loc32, do nothing
f
f
f
f

Find the maximum 32-bit number in a table:

MOVL
MOVL
RPT

MAXL

ACC#0

XAR1 #table
#(table_length — 1)
ACC,*XAR1++

C2000 Piccolo Workshop - Appendix C - Assembly Programming

Read Modify Write Operations

Read Modify Write Operations

The accumulator (ACC) is the main working register for the C28x. It is the destination of all
ALU operations except those, which operate directly on memory or registers. The accumulator
supports single-cycle move, add, subtract and compare operations from 32-bit-wide data memory.
It can also accept the 32-bit result of a multiplication operation. These one or two cycle
operations are referred to as read-modify-write operations, or as atomic instructions.

Read-Modify-Write Instructions

€ Work directly on memory — bypass ACC
€ Atomic Operations — protected from interrupts

AND locl6,AX AND locl6,#16b

OR loc16,AX OR locl6, #16b

XOR locl6,AX AH XOR 1locl6,#16b 16- bit
AL constant

ADD locl6,AX ADD locl6,#16b

SUB 1ocl6,AX SUBR locl6,#16b
SUBR loci6,AX | | bt h

INC locl6 TSET locl6,#bit
DEC 1locl6 TCLR locl6,#bit

C2000 Piccolo Workshop - Appendix C - Assembly Programming

Read Modify Write Operations

Read-Modify-Write Examples

update with a mem update with a constant update by 1

VarA +=VarB | VarA +=100 VarA +=1

SETC INTM SETC INTM SETC INTM

MOV AL, @VarB MOV AL, @VarA MOV AL, @VarA
ADD AL, @VarA ADD AL, #100 ADD AL, #1
MOV @VarA, AL MOV @VarA, AL MOV @varA, AL
CLRC INTM CLRC INTM CLRC INTM

MOV AL, @VarB ADD @varA,#100 INC @varA

ADD @varA, AL

Y

Benefits of Read-Modify-Write Instructions

C2000 Piccolo Workshop - Appendix C - Assembly Programming

Lab C: Assembly Programming

Lab C: Assembly Programming

Note: The lab linker command file is based on the F28035 memory map — modify as needed, if
using a different F28xx device memory map.

Objective

The objective of this lab is to practice and verify the mechanics of performing assembly language
programming arithmetic on the TMS320C28x. In this exercise, we will expand upon the .asm
file from the previous lab to include new functions. Code will be added to obtain the sum of the
products of the values from each array.

Perform the sum of products using a MAC-based implementation. In a real system application,
the coeff array may well be constant (values do not change), therefore one can modify the
initialization routine to skip the transfer of this arrays, thus reducing the amount of data RAM and
cycles required for initialization. Also there is no need to copy the zero to clear the result
location. The initialization routine from the previous lab using the load/store operation will be
replaced with a looped BANZ implementation.

As in previous lab, consider which addressing modes are optimal for the tasks to be performed.
You may perform the lab based on this information alone, or may refer to the following
procedure.

Procedure

Copy Files, Create Project File

1. Create a new project called LabC.pjtin C:\C28x\Labs\Appendix\LabC and
add LabC.asmand Lab.cmd to it. Check your file list to make sure all the files are
there. Be sure to setup the Build Options by clicking: Project - Build
Options onthe menu bar. Select the Linker tab. In the middle of the screen select
“No Autoinitialization” under “Autoinit Model:". Enter startinthe
“Code Entry Point (-e):” field. Next, select the Compiler tab. Note that
“Full Symbolic Debug (-g)” under “Generate Debug Info:"is
selected. Then select OK to save the Build Options.

Initialization Routine using BANZ

2. Edit LabC.asm and modify it by replacing the initialization routine using the load/store
operation with a BANZ process. Remember, it is only necessary to copy the first four
values (i.e. initialize the data array). Do you still need the coeff array in the vars section?

3. Save your work. If you would like, you can use Code Composer Studio to verify the
correct operation of the block initialization before moving to the next step.

C2000 Piccolo Workshop - Appendix C - Assembly Programming

Lab C: Assembly Programming

Sum of Products using a RPT/MAC-based Implementation

4. Edit LabC.asmto add a RPT/MAC-based implementation to multiply the coeff array by
the data array and storing the final sum-of-product value to result.

Build and Load

5. Click the “Bui 1d” button and watch the tools run in the build window. Debug as
necessary. To open up more space, close any open files or windows that you do not need.

6. Ifthe “Load program after build” option was not selected in Code Composer
Studio, load the output file onto the target. Click: File - Load Program..

If you wish, right click on the source window and select Mixed Mode to debug using
both source and assembly.

7 . Single-step your routine. While single-stepping, open memory windows to see the values
located in table [9] and data [9]. Open the CPU Registers. Check to see if the program
is working as expected. Debug and modify, if needed.

Optional Exercise

After completing the above, edit LabC.asm and modify it to perform the initialization
process using a RTP/PREAD rather than a load/store/BANZ.

End of Exercise

C2000 Piccolo Workshop - Appendix C - Assembly Programming c-21

OPTIONAL Lab C-C: Sum-of-Products in C

OPTIONAL Lab C-C: Sum-of-Products in C

Note: The lab linker command file is based on the F28035 memory map — modify as needed, if
using a different F28xx device memory map.

» Objective

The objective of this lab is to practice and verify the mechanics of performing C programming
arithmetic on the TMS320C28x. The objective will be to add the code necessary to obtain the
sum of the products of the n-th values from each array.

» Procedure
Create Project File
1. In Code Composer Studio create a new project called LabC-C.pjtin
C:\C28x\Labs\Appendix\LabC\LabC-C and add LabC-C.c and Lab.cmd to
it. Check your file list to make sure all the files are there. Open the Build Options and
select the Linker tab. Select the “Libraries” Category and enter rts2800_ml_Libin
the “Incl. Libraries (-1):” box. Do not setup any other Build Options. The
default values will be used. In Appendix Lab D exercise, we will experiement and
explore the various build options when working with C.
Sum of Products using a MAC-based Implementation
2. Edit LabC-C.c and modify the “main” routine to perform a MAC-based
implementation in C. Since the MAC operation requires one array to be in program
memory, the initialization routine can skip the transfer of one of the arrays, thus reducing
the amount of data RAM and cycles required for initialization.
Build and Load
3. Click the “Bui 1d” button and watch the tools run in the build window. Debug as
necessary.
Note: Have Code Composer Studio automatically load the output file after a successful build. On
the menu bar click: Option > Customize.. and select the “Program Load Options”
tab, check “Load Program After Build”, then click OK.
4. Under Debug on the menu bar click “Go Main”. Single-step your routine. While
single-stepping, open memory windows to see the values located in table [9] and data
[9] . (Note: data[9] consists of the allocated arrays of data, coeff, and result). Open the
CPU Registers. Check to see if the program is working as expected. Debug and modify,
if needed.
End of Exercise
C-22 C2000 Piccolo Workshop - Appendix C - Assembly Programming

Appendix D — C Programming

Introduction

The C28x architecture, hardware, and compiler have been designed to efficiently support C code
programming.

Appendix D will focus on how to program in C for an embedded system. Issues related to
programming in C and how C behaves in the C28x environment will be discussed. Also, the C
compiler optimization features will be explained.

Learning Objectives

Learning Objectives

Learn the basic C environment for
the C28x family

How to control the C environment
How to use the C-compiler optimizer
Discuss the importance of volatile
Explain optimization tips

*

*® & ¢ o

C2000 Piccolo Workshop — Appendix D — C Programming D-

1

Module Topics

Module Topics

APPENIX D — C PrOGFaMIMING......ccoveiteieietiiteeieeeeie it steste st sie et eseeasesbestesbesbesseeseeseesbeseesbesbessessesnsaneessens D-1
T LU T=TN o ot PSS D-2
Linking Boot code from RTS2800.11Dcoiiriiiiiie e D-3
SEEUP TNE SEACK ...t b e bbbt b e et eb e et nr et D-4
C28X DIALA TYPES ...ttt sttt ettt b ket r bt h R bbb r R R r et D-5
AccessSing INtErrupts / SLATUS REGISTENcuiiiie ettt et bbb D-6
Using EMDedded ASSEMDIY ..o e e bbbt D-7
USING PIAGMA ...ttt ettt bttt a bt e e e b e bt bt s bt bt e b e et e n b e eee s b e st e bt et e e neeneenreeas D-8
OPLIMIZALION LEVEIS ...t sttt te e e ae e e et e be st e s teeneene e e et es D-9

V0] P L] Lo U o= SSSRSS D-11
Compiler AAVANCEA OPLIONSc.eiueieiiie et be st reaneeree e eneees D-12
Optimization TIPS SUMMAIY.....cc.cieiieeieeieriesesestesesreeseeeesee e seestesaesseeseesseseessessesressesresseeseessensenes D-13
(=10 I B O @ o] 0412 o o PSSR S D-14
OPTIONAL Lab D2: C Callable ASSEMDIY ..ottt D-17
SOULIONS ...t b bbbttt bbbt bbb bbbtk bbbt b b D-20

C2000 Piccolo Workshop — Appendix D — C Programming

Linking Boot code from RTS2800.lib

Linking Boot code from RTS2800.lib
Boot.ASM - Invoked With ““-C”

| Reset : PC <- *Ox3F FFCO |

vectors.asm l
.ref _c int00

Reset:
-long _c_int00

_c_int00 '

Al locate stack

Init SP to top of stack

Initialize status bits

Copy .cinit to .bss (skip if “-cr”)
Call “_main”

a s~ wDdNPRP

The boot routine is used to establish the environment for C before launching main. The boot
routine begins with the label _c_int00 and the reset vector should contain a ".long" to this address
to make boot.asm the reset routine. The contents of the boot routine have been extracted and
copied on the following page so they may be inspected. Note the various functions performed by
the boot routine, including the allocation and setup of the stack, setting of various C-requisite
statuses, the initialization of global and static variables, and the call to main. Note that if the link
was performed using the "—cr" option instead of the "—c" option that the global/static variable
initialization is not performed. This is useful on RAM-based C28x systems that were initialized
during reset by some external host processor, making transfer of initialization values unnecessary.
Later on in this chapter, there is an example on how to do the vectors in C code rather than
assembly.

C2000 Piccolo Workshop — Appendix D — C Programming D-3

Set up the Stack

Set up the Stack

The Stack
Data Memory
The C/C++ compiler uses a
stack to:
o ¢ Allocate local variables
— 0x400 7
(resen) Ao i) ¢ Pass arguments to
Arguments functions
passed on & Save the processor status
Return stack® Save the function return
address . address
Function
return addr ¢ Save temporary results
i elkesulis The compiler uses the hardware
stack pointer (SP) to
64K manage the stack.
SP defaults to 0x400 at reset.
AM The run-time stack grows from
low addresses to higher
addresses.

The C28x has a 16-bit stack pointer (SP) allowing accesses to the base 64K of memory. The stack
grows from low to high memory and always points to the first unused location. The compiler
uses the hardware stack pointer (SP) to manage the stack. The stack size is set by the linker.

Setting Up the Stack

Boot.asm sets up SP to
point at .stack

Linker command file: & The .stack section has to

SECTIONS { be linked into the low 64k
-stack :> RAM align=2 of data memory. The SPis
3} a 16-bit register and cannot
access addresses beyond
64K.

& Stack sizeis set by the
linker. The linker creates a

Note: The compiler provides no
means to check for stack
overflow during compilation or at
runtime. A stack overflow
disrupts the run-time
environment, causing your
program to fail. Be sureto allow
enough space for the stack to
grow.

global symbol,
--STACK-SIZE, and assigns
it a value equal to the size
of the stack in bytes.
(default 1K words)

¢ You can change stack size
at link time by using the
-stack linker command
option.

In order to allocate the stack the linker command file needs to have “align = 2.”

C2000 Piccolo Workshop — Appendix D — C Programming

C28x Data Types

C28x Data Types
C28x C-Language Data Types

Type Bit Value Range

char 16 Usually 0 .. 255, but can hold 16 bits
int (natural size CPU word) 16 -32K .. 32K, 16 bits signed
unsigned int 16 0..64K, 16 bits unsigned
short (same as int or smaller) 16 same as int

unsigned short 16 same as unsigned int
long (same as int or larger) 32 -2M .. 2M, 32 bits signed
unsigned long 32 0..4M, 32 bits unsigned
float 32 |IEEE single precision
double 64 |EEE double precision
long double 64 |IEEE double precision

Suggestion: Group all longs together, group all pointers together

Data which is 32-bits wide, such as longs, must begin on even word-addresses (i.e. 0x0,
0x2, etc). This can result in “holes” in structures allocated on the stack.

C2000 Piccolo Workshop — Appendix D — C Programming D-5

Accessing Interrupts / Status Register

Accessing Interrupts / Status Register
Accessing Interrupts / Status Register

Initialize via C :
extern cregister volatile unsigned int IFR;
extern cregister volatile unsigned int IER;

IER &= ~Mask; //clear desired bits
IER |= Mask; //set desired bits
IFR = 0x0000; //clear prior interrupts

¢ Interrupt Enable & Interrupt Flag Registers (IER, IFR) are not
memory mapped

¢ Only limited instructions can access IER & IFR (more in interrupt
chapter)

& The compiler provides extern variables for accessing the IER & IFR

D- 6 C2000 Piccolo Workshop — Appendix D — C Programming

Using Embedded Assembly

Using Embedded Assembly

Embedding Assembly in C

¢ Allows direct access to assembly language from C

& Useful for operating on components not used by C, ex:

asm (“ CLRC INTM ;enableglobal interrupt”);

#define EINT asm (“CLRC INTM”)

& Note: first column after leading quote is label field -if no label,
should be blank space.

¢ Avoid modifying registers used by C

¢ Lengthy code should be written in ASM and called from C
» main C file retains portability
» yields more easily maintained structures
» eliminates risk of interfering with registers in use by C

The assembly function allows for C files to contain 28x assembly code. Care should be taken not
to modify registers in use by C, and to consider the label field with the assembly function. Also,
any significant amounts of assembly code should be written in an assembly file and called from
C.

There are two examples in this slide — the first one shows how to embed a single assembly
language instruction into the C code flow. The second example shows how to define a C term that
will invoke the assembly language instruction.

C2000 Piccolo Workshop — Appendix D — C Programming D-7

Using Pragma

Using Pragma

Pragma is a preprocessor directive that provides directions to the compiler about how to treat a
particular statement. The following example shows how the DATA_SECTION pragma is used
to put a specific buffer into a different section of RAM than other buffers.

The example shows two buffers, bufferA and bufferB. The first buffer, bufferA is treated
normally by the C compiler by placing the buffer (512 words) into the ".bss" section. The second,
bufferB is specifically directed to go into the “my_sect” portion of data memory. Global
variables, normally ".bss", can be redirected as desired.

When using CODE_SECTION, code that is normally linked as ".text", can be identified
otherwise by using the code section pragma (like .sect in assembly).

Pragma Examples

& User defined sections from C :

#pragma CODE_SECTION (func, section name”)
#pragma DATA _SECTION (symbol, “section name’)

¢ Example - using the DATA_SECTION Pragma
& Csourcefile

char bufferA[512];
#pragma DATA_SECTION(bufferB, “my_sect™)
char bufferB[512];

¢ Resulting assembly file
-.global bufferA, bufferB
-bss __bufferA,512
_bufferB: _.usect “my_sect”,512

More #pragma are defined in the C compiler UG

D-8 C2000 Piccolo Workshop — Appendix D — C Programming

Optimization Levels

Optimization Levels

Optimization Scope
FILEl1.C
‘ -00, -01 -02 -03 -pm -03
SESE
} LOCAL
single block
{— d- FuNCTION
e . . . across FILE
} SESE: Single Eptry, Single Exit blocks ACTOSS
} 1 functions PROGRAM
________________________________ across files
{
L e 1
FILE2.C
{
R .

Optimizations fall into 4 categories. This is also a methodology that should be used to invoke the
optimizations. It is recommended that optimization be invoked in steps, and that code be verified
before advancing to the next step. Intermediate steps offer the gradual transition from fully sym-
bolic to fully optimized compilation. Compiler switched may be invoked in a variety of ways.

Here are 4 steps that could be considered:
1% use —g
By starting out with —g, you do no optimization at all and keep symbols for debug.

2" use —-g —03
The option —03 might be too big a jump, but it adds the optimizer and keeps symbols.

3" use —g —03 -mn
This is a full optimization, but keeps some symbols

4™ use —03
Full optimization, symbols are not kept.

C2000 Piccolo Workshop — Appendix D — C Programming D-9

Optimization Levels

Optimization Performance

—00 Performs control-flow-graph simplification
Allocates variables to registers
LOCAL Performs loop rotation
Eliminates unused code
Simplifies expressions and statements
Expands calls to functions declared inline
-0l Performs local copy/constant propagation
Removes unused assignments
Eliminates local common expressions

—02 Default (-0)
Performs loop optimizations

FUNCTION

1 Eliminates global common sub-expressions
Eliminates global unused assignments
I -03 Removes all functions that are never called
FILE Simplifies functions with return values that are never used
l Inlines calls to small functions
Identifies file-level variable characteristics

PROGRAM 03 —pm
v

Optimizer levels zero through three, offer an increasing array of actions, as seen above. Higher
levels include all the functions of the lower ones. Increasing optimizer levels also increase the
scope of optimization, from considering the elements of single entry, single-exit functions only,
through all the elements in a file. The “-pm” option directs the optimizer to view numerous input
files as one large single file, so that optimization can be performed across the whole system.

D-10

C2000 Piccolo Workshop — Appendix D — C Programming

Optimization Levels

Volatile Usage

Optimization Issue: “Volatile” Variables

Problem: The compiler does not know that this pointer may refer to a
hardware register that may change outside the scope of the C program.
Hence it may be eliminated (optimized out of existence!)

Wrong: Wait loop for a hardware signal Optimizer removes
unsigned int *CTRL emPBHOQL
while (*CTRL !=1); 7

m

Solution: ! empty)

loop
volatile unsigned int *CTRL .
while (*CTRL !=1);

¢ When using optimization, it is important to declare variables as
volatile when:

» The memory location may be modifed by something other than the
compiler (e.g. it’sa memory-mapped peripheral register).

» The order of operations should not be rearranged by the compiler
¢ Define the pointer as “volatile” to prevent the optimizer from optimizing

C2000 Piccolo Workshop — Appendix D — C Programming D-11

Optimization Levels

Compiler Advanced Options

To get to these options, go to Project > Build Options in Code Composer Studio.

In the category, pick Advanced.

The first thing to notice under advanced options is the Auto Inlining Threshold.

- Used with —03 option

- Functions > size are not auto inlined

Note: To prevent code size increases when using —03, disable auto inlining with -0i0

The next point we will cover is the Normal Optimization with Debug (-mn).

- Re-enables optimizations disabled by “~g” option (symbolic debug)

- Used for maximum optimization

Note: Some symbolic debug labels will be lost when —mn option is used.

Optimizer should be invoked incrementally:

-g test Symbols kept for debug

-g -03 test Add optimizer, keep symbols

-g -03 -mn test More optimize, some symbols

-03 test Final rev: Full optimize, no symbols

[-mf] : Optimize for speed instead of the default optimization for code size

[-mi] : Avoid RPT instruction. Prevent compiler from generating RPT instruction. RPT instruc-
tion is not interruptible

[-mt] : Unified memory model. Use this switch with the unified memory map of the 281x &
280x. Allows compiler to generate the following:
-RPT PREAD for memory copy routines or structure assignments

-MAC instructions
-Improves efficiency of switch tables

D- 12 C2000 Piccolo Workshop — Appendix D — C Programming

Optimization Levels

Optimization Tips Summary

Summary: Optimization Tips

¢ Within C functions :
Use const with variables for parameter constants
Minimize mixing signed & unsigned ops : SXM changes
Keep frames <= 64 (locals + parameters + PC) : *-SP[6bit]
Use structures <= 8 words : use 3 bit index mode
Declare longs first, then declare ints : minimize stack holes
Avoid: long = (int *int) : yields unpredictable results
¢ Optimizing : Use -00, -01, -02, -03 when compiling
Inline short/key functions
Pass inlines between files : static inlines in header files
Invoke automatic inlining : -03 -oi

» Give compiler project visibility : use -pm and -03
¢ Tune memory map via linker command file
& Re-write key code segments to use intrinsics or in assembly

App notes 3rd Parties

YV V. V VYV V V

YV VYV V

The list above documents the steps that can be taken to achieve increasingly higher coding effi-
ciency. It is recommended that users first get their code to work with no optimization, and then

add optimizations until the required performance is obtained.

C2000 Piccolo Workshop — Appendix D — C Programming

Lab D: C Optimization

Lab D: C Optimization

Note: The lab linker command file is based on the F28035 memory map — modify as needed, if
using a different F28xx device memory map.

» Objective

The objective of this lab is to practice and verify the mechanics of optimizing C programs. Using
Code Composer Studio profile capabilities, different routines in a project will be benchmarked.
This will allow you to analyze the performance of different functions. This lab will highlight the
profiler and the clock tools in CCS.

> Procedure

Create Project File

1. Create a new project in C:\C28x\Labs\Appendix\LabD called LabD.pjt and
add LabD.c, Lab.cmd, and sop-c.ctoit. (Note that sop—asm.asm will be used in
the next part of the lab, and should not be added now).

2. Setup the Build Options. Select the Linker tab and notice that “Run-time
Autoinitialization” under “Autoinit Model :”is selected. Do not enter
anything in the “Code Entry Point (-e):” field (leave it blank). Set the stack
size to 0x200. In the Linker options select the “Libraries” Category and enter
rts2800 _ml.libinthe “Incl. Libraries (-1):" box. Next, selectthe
Compiler tab. Note that “Full Symbolic Debug (-g)” under “Generate
Debug Info:” inthe Basic Category is selected. On the Feedback Category pull
down the interlisting options and select “C and ASM (-ss)”. On the Assembly
Category check the Keep generated .asm Files (-k), Keep Labels as
Symbols (-as) and Generate Assembly Listing Files (-al). The-as
will allow you to see symbols in the memory window and the —al will generate an
assembly listing file (.Ist file). The listing file has limited uses, but is sometime helpful to
view opcode values and instruction sizes. (The .Ist file can be viewed with the editor).
Both of these options will help with debugging. Then select OK to save the Build
Options.

Build and Load

3. Click the “Bui 1d” button and watch the tools run in the build window. Be sure the
“Load program after build” option is selected in Code Composer Studio. The
output file should automatically load. The Program Counter should be pointing to
_c_int00 in the Disassembly Window.

Set Up the Profile Session

4. Restart the DSP (debug - restart) andthen “Go Main’. This will run
through the C initialization routine in Boot.asm and stop at the main routine in
LabD.c.

D- 14 C2000 Piccolo Workshop — Appendix D — C Programming

Lab D: C Optimization

5. Set a breakpoint on the NOP in the while(1) loop at the end of main() in LabD.c.

6. Set up the profile session by selecting Profiller - Start New Session. Enter
a session name of your choice (i.e. LabD).

7. In the profiler window, hover the mouse over the icons on the left region of the window
and select the icon for Profille AIl Functions. Click onthe “+” to expand the
functions. Record the “Code Size” of the function sop C code in the table at the end of
this lab. Note: If you do not see a “+” beside the .out file, press “Profile All Functions”
on the horizontal tool bar. (You can close the build window to make the profiler window
easier to view by right clicking on the build window and selecting “hide”’).

8. Select F5 or the runicon. Observe the values present in the profiling window. What do
the numbers mean? Click on each tab to determine what each displays.

Benchmarking Code

9. Let’s benchmark (i.e.count the cycles need by) only a portion of the code. This requires
you to set a breakpoint pair on the starting and ending points of the benchmark. Open the
file sop-c.c and set a breakpoint on the “for’” statement and the “return”
statement.

10. In CCS, select Profile > Setup. Check “Profile all Functions and
Loops for Total Cycles” and click “Enable Profiling”. Then select
Profile > viewer.

11. Now ““Restart” the program and then ““Run’’ the program. The program should be
stopped at the first breakpoint in sop. Double click on the clock window to set the clock
to zero. Now you are ready to benchmark the code. “Run” to the second breakpoint.
The number of cycles are displayed in the viewer window. Record this value in the table
at the end of the lab under “C Code - Cycles”.

C Optimization

12. To optimize C code to the highest level, we must set up new Build Options for our
Project. Select the Compiler tab. In the Basic Category Panel, under ““Opt Level”
select File (-03). Then select OK to save the Build Options.

13. Now “Rebui I1d” the program and then ““Run”’ the program. The program should be
stopped at the first breakpoint in sop. Double click on the clock window to set the clock
to zero. Now you are ready to benchmark the code. “Run” to the second breakpoint.
The number of cycles are displayed in the clock window. Record this value in the table
at the end of the lab under “Optimized C (-03) - Cycles”.

14. Look in your profile window at the code size of sop. Record this value in the table at the
end of this lab.

Benchmarking Assembly Code

15. Remove sop-c.c from your project and replace it with sop-asm.asm. Rebuild
and set breakpoints at the beginning and end of the assembly code (MOVL & LRETR).

C2000 Piccolo Workshop — Appendix D — C Programming D-15

Lab D: C Optimization

16. Start a new profile session and set it to profile all functions. Run to the first breakpoint
and study the profiler window. Record the code size of the assembly code in the table.

17. Double Click on the clock to reset it. Run to the last breakpoint. Record the number of
cycles the assembly code ran.

18. How does assembly, C code, and optimized C code compare on the C28x?

C Code Optimized C Code (-03) Assembly Code

Code Size

Cycles

End of Exercise

D- 16 C2000 Piccolo Workshop — Appendix D — C Programming

OPTIONAL Lab D2: C Callable Assembly

OPTIONAL Lab D2: C Callable Assembly

Note: The lab linker command file is based on the F28035 memory map — modify as needed, if
using a different F28xx device memory map.

» Objective

The objective of this lab is to practice and verify the mechanics of implementing a C callable
assembly programming. In this lab, a C file will be used to call the sum-of-products (from the
previous Appendix LabC exercise) by the “main” routine. Additionally, we will learn how to use
Code Composer Studio to configure the C build options and add the run-time support library to
the project. As in previous labs, you may perform the lab based on this information alone, or may
refer to the following procedure.

> Procedure

Copy Files, Create Project File

1. Create a new project in C:\C28x\Labs\Appendix\LabD2 called LabD2 .pjt and
add LabD2.c, Lab.cmd, and sop-c.c toit.

2. Do not add LabC.asm to the project (copy of file from Appendix Lab C). Itis only
placed here for easy access. Parts of this file will be used later during this lab exercise.

3. Setup the Build Options. Select the Linker tab and notice that ““Run-time
Autoinitialization” under “Autoinit Model :”is selected. Do not enter
anything in the ““Code Entry Point (-e):” field (leave it blank). Set the stack
size to 0x200. In the Linker options select the “Libraries” Category and enter
rts2800_ml.libinthe “Incl. Libraries (-1):” box. Next, select the
Compiler tab. Note that “Fulll Symbolic Debug (-g)’ under “Generate
Debug Info:” inthe Basic Category is selected. On the Feedback Category pull
down the interlisting options and select “C and ASM (-ss)”’. On the Assembly
Category check the Keep generated .asm Files (-k), Keep Labels as
Symbols (-as) and Generate Assembly Listing Files (-al). The-as
will allow you to see symbols in the memory window and the —al will generate an
assembly listing file (.Ist file). The listing file has limited uses, but is sometime helpful to
view opcode values and instruction sizes. (The .Ist file can be viewed with the editor).
Both of these options will help with debugging. Then select OK to save the Build
Options.

Build and Load

4 _ Click the ““Bui 1d”” button and watch the tools run in the build window. Be sure the
“Load program after build” option is selected in Code Composer Studio. The
output file should automatically load. The Program Counter should be pointing to
_c_int00 in the Disassembly Window.

5. Under Debug on the menu bar click ““Go Main”’. This will run through the C
initialization routine in Boot.asm and stop at the main routine in LabD2 . c.

C2000 Piccolo Workshop — Appendix D — C Programming D-17

OPTIONAL Lab D2: C Callable Assembly

Verify C Sum of Products Routine

6. Debug using both source and assembly (by right clicking on the window and select
Mixed Mode orusing View — Mixed Source/ASM).

7. Open a memory window to view result and data.

8. Single-step through the C code to verify that the C sum-of-products routine produces the
results as your assembly version.

Viewing Interlisted Files and Creating Assembly File

9. Using File — Openview the LabD2.asm and sop-c.asm generated files. The
compiler adds many items to the generated assembly file, most are not needed in the C-
callable assembly file. Some of the unneeded items are .func / .endfunc. .sym, and .line.

10. Look for the _sop function that is generated by the compiler. This code is the basis for
the C-callable assembly routine that is developed in this lab. Notice the comments
generated by the compiler on which registers are used for passing parameters. Also,
notice the C code is kept as comments in the interlisted file.

11. Create a new file (File — New, or clicking on the left most button on the horizontal
toolbar “New”) and save it as an assembly source file with the name sop-asm.asm.
Next copy ONLY the sum of products function from LabC.asm into this file. Add a
_sop label to the function and make it visible to the linker (. de¥). Also, be sure to add a
.sect directive to place this code in the “code” section. Finally, add the following
instruction to the end:

LRETR ; return statement

12. Next, we need to add code to initialize the sum-of-products parameters properly, based
on the passed parameters. Add the following code to the first few lines after entering the
_sop routine: (Note that the two pointers are passed in AR4 and AR5, but one needs to
be placed in AR7. The loop counter is the third argument, and it is passed in the
accumulator.)

MOVL XAR7,XAR5 ;XAR7 points to coeff [0]
MOV AR5,AL ;move n from ACC to AR5 (loop counter)
SUBB XAR5,#1 ;subtract 1 to make loop counter = n-1

Before beginning the MAC loop, add statements to set the sign extension mode, set the
SPM to zero, and a ZAPA instruction. Use the same MAC statement as in Lab 4, but use
XAR4 in place of XAR2. Make the repeat statement use the passed value of n-1 (i.e.
ARb).

RPT AR5 ;repeat next instruction AR5 times

D- 18 C2000 Piccolo Workshop — Appendix D — C Programming

OPTIONAL Lab D2: C Callable Assembly

Now we need to return the result. To return a value to the calling routine you will need to
place your 32-bit value in the ACC. What register is the result currently in? Adjust your
code, if necessary.

13. Save the assembly file as sop-asm.asm. (Do not name it LabD2 . asm because the

compiler has already created with that name from the original LabD2 . c code).

Defining the Function Prototype as External

14. Note in LabD2 . c an “extern” modifier is placed in front of the sum-of-products function
prototype:

extern int sop(int*,int*,int); //sop function prototype

Verify Assembly Sum of Products Routine

15. Remove the sop-c. c file from the project and add the new sop-asm.asm assembly
file to the project.

16. Rebuild and verify that the new assembly sum-of-products routine produces the same
results as the C function.

End of Exercise

C2000 Piccolo Workshop — Appendix D — C Programming D-19

Solutions

Solutions
Lab D Solutions
C Code |Optimized|Assembly
C Code Code
(-03)
Code Size 27 12 11
Cycles 118 32 22
D- 20 C2000 Piccolo Workshop — Appendix D — C Programming

Appendix E — Control Law Accelerator

Introduction

Appendix E discusses the details of the Piccolo™ TMS320F2803x Control Law Accelerator
(CLA). The floating-point number format and the CLA registers will be discussed. Details of the
CLA instruction set and pipeline will be explained. Additionally, system configuration and a
comparison to the Delfino™ floating-point unit (FPU) will be covered.

Learning Objectives

Learning Objectives

¢ Floating-point format

¢ CLA registers and execution flow
¢ Instructions

¢ Pipeline

¢ System configuration

¢ Summary

C2000 Piccolo Workshop - Appendix E - Control Law Accelerator E-1

Module Topics

Module Topics

AppendixX E — Control LawW ACCEIEIALONcoiiiiii ettt e E-1
T LU T=TN I o ot PSSP E-2
CONLIOl LAW ACCEIEIALON ... ettt ettt st et st be e e ene e e e es E-3

FIOAtING-POINT FOIMAL.......cviiiiiiitiieiite ettt b e et b e et ebe e b b et E-3
CLA Registers and EXECULION FIOWccoiuiiiiriiiniiiiisieeesi et E-4
CLA INSIIUCTIONS ...ttt b bbb bbbt bbbt bt E-5
Status RegiSter aNd PIPEIINEooi it bbb bt E-6
CLA SyStem CONFIQUIALIONoiuiitiiiiiieiieeeie ettt bbbttt b e b bbbt e e e e e E-9
CLA Compared t0 C28X+HFPU ..ottt sttt e e e E-11
SUIMIMAIY ittt e sttt e e e bt e e s b e e sa bt e e st e e eh bt e oA be e e R bt e o st eenb bt e anbeenb bt e s nbeenbbeenbeeenbneens E-12

C2000 Piccolo Workshop - Appendix E - Control Law Accelerator

Control Law Accelerator

Control Law Accelerator

Floating-Point Format

IEEE Single-Precision Floating-Point
Format

1 Sign Bit (0 = Positive, 1 = Negative) | S | E ‘ M I
8-bit Exponent (Biased)
23-bit Mantissa (Implicit Leading Bit + Fraction Bits)

S E M Value
0 1 0 0 Positive or Negative Zero
0| 1 0 Non-Zero |Denormalized Number
0| 1 1-254 0-Ox7FFFF | Positive or Negative Values*
0 | 1 |255(max) 0 Positive or Negative Infinity
0 | 1 |255(max) | Non-Zero |Nota Number (NaN)

* Normal Positive and Negative Values are Calculated as:
(-1)sx2ER2Dx 1.M
+/-~1.7 x 10 %8 to +/- ~3.4 x 10 %8

The Normalized IEEE numbers have a hidden 1; thus the equivalent
signed integer resolution is the number of mantissa bits + sign + 1

IEEE Single-Precision Floating-Point
Format (eee 7s4)

¢ Most widely used standard for floating-point
+ Standard number formats, Special values (NaN, Infinity)
+ Rounding modes & floating-point operations
« Used on many CPUs

¢ Simplifications for the C28x floating-point unit
+ Flags & Compare Operations:
« Negative zero is treated as positive zero
+ Denormalized values are treated as zero
« Not-a-number (NaN) is treated as infinity
« Round-to-Zero Mode Supported (truncate)
+ Round-to-Nearest Mode Supported (even)

¢ These formats are commonly handled this way on
embedded processors

C2000 Piccolo Workshop - Appendix E - Control Law Accelerator E-3

Control Law Accelerator

CLA Registers and Execution Flow

CLA gor{fi?waﬁon CLA Configuration Registers:
CYEIES CSM and EALLOW Protected
Interru pt/TaSk Control [MIER_] Main CPU has Read and Write Access
MIFR: Flag
MICLR: Clear MIER: Interrupt enable/disable
MIFRC: Force MIRUN: Which task is running
MIOVF: Overflow flag .
MICLROVE: Overflow clear “ M “"- Interrupt/Task Source Selection
e — MPISRCSEL 1:

. f Taskl: ADCINT1 or EPWM1_INT
Configuration and Control [ENcEG] Task2: ADCINT2 or EPWM2_ INT
MEMCFG: Memory config
MCTL: CLA control Task7: ADCINT7 or EPWM7_INT

MVECT L Task8: ADCINT8 or CPU Timer 0
Eight Interrupt (Task) Vectors =
MVECT1 to MVECTS8 CLA Execution Registers:
Offset from the start of CLA Program MVECTS CSM Protected
Memory to the beginning of the task Main CPU has Read Only Access

CLA Execution .
Registers MSTF: Status Register
. X RO (32) Zero, negative, overflow, underflow
Four 32-bit Result Registers R1(30) Rounding mode
MRO — MR3 R2 (32) RPC: Return PC
R3 (32) MEALLOW
[MSTE@R2)]

Two 16-bit Auxiliary Registers I MPC: 12-bit Program Counter
MARO, MAR1 — Offset from the start of CLA program memory
Used forindirect addressing Indicates instruction in the D2 phase

CLA Execution Flow

Task request is via software or
interrupt assigned in MPISRCSEL1:

Taskl: ADCINT1 or EPWM1_INT
Task2: ADCINT2 or EPWM2_INT

;fask7: ADCINT7 or EPWM7_INT
Task8: ADCINT8 or CPU Timer O

x = Highest priority
task both enabled
and pending

Priority
Task1: Highest

Task
Pending?

Task
Enabled?

Tasks: Lowest
Task Clear MIFR.x bit The task runs to
Request Set MIRUN.x bit completion '
“ MPC == MVECTx (No task nesting)
Run CLA
The main CPU
continues code
Set MIFR bit execution in
(Task Pending) parallel with the
CLA
- When a task
| Set MIOVF Bit completes a task-
(Overflow Hlagged) - specific interrupt is
|| Clear MIRUN.x bit sent to the PIE
Note: Software task requests will not set MIOVF Task x Interrupt to PIE

E-4 C2000 Piccolo Workshop - Appendix E - Control Law Accelerator

Control Law Accelerator

CLA Instructions

+« Example: Add

CLA Parallel Instructions

¢ Parallel bars indicate a parallel instruction

¢ Parallel instructions operate as a single instruction with
a single opcode and performs two operations

+ Parallel Store

MADDF32 MR3, MR3, MR1
MMOV32 @_Var, MR3

Instruction Example Cycles
Multiply MMPYF32 MRa,MRb,MRc 1
& Parallel Add/Subtract I VSUBF32 MRd,MRe, NRT
Multiply, Add, Subtract MADDF32 MRa,MRb,MRc
& Parallel Store |1 MMOV32 mem32,MRe 1
Multiply, Add, Subtract, MAC MADDF32 MRa,MRb,MRc
& Parallel Load Il MMOV32 MRe, mem32 1

Both

operations complete in a single cycle

Multiply and Store Parallel Instruction

; Before: MRO = 2

MMPYF32 MR2, M
Il MMOV32 @ X, M

<any instructi
; After: MR2 = MR
@ X = 10

.0, MR1 = 3.0, MR2 = 10.0

R1, MRO ; 1/1 instruction
R2

on>

1 * MRO
.0

3.0* 2.0

¢ Both the math operation and store
complete in 1 cycle

& Parallel Instruction:

+ MMOV32 uses the value of MR2 before
the MMPY32 updates

C2000 Piccolo Workshop - Appendix E - Control Law Accelerator

Control Law Accelerator

Status Register and Pipeline

CLA Status Flags
CLA Status Register MSTF (32-bits)
| RPC |MEALLOW rsvd TZ';IZD rsvd TF| rsvd | ZF | NF |LUF|LVF|
LVF Latched Overflow | Float math: MMPYF32, MADDF32, 1/x etc.
LUE and Underflow Connected to the PIE for debug
ZF Negative Float move operations to registers.
NF and Zero Result of compare, min/max, absolute,
negative
Integer result of integer operations
(MAND32, MOR32, SUB32, MLSR32 etc.)
TF Test Flag MTESTTF Instruction
RNDF32 Rounding Mode [To Zero (truncate) or To Nearest (even)
MEALLOW | Write Protection | Enable/disable CLA writes to “EALLOW”
protected registers
RPC Return Program Call and return: MCNDD, MRCNDD
Caunter Use store/load MSTF instructions to nest calls

CLA Pipeline Stages

Fetch Decode Read Exe Write

CLAPipeline [Fi|r[p1] b2 [rifre|[E | w |
Independent 8 Stage Pipeline
Fetchl: Program read address generated
Fetch2: Read Opcode via CLA program data bus
Decodel: Decode instruction
Decode2: Generate address

Conditional branch decision made

MARO/MAR1 update due to indirect addressing post increment
Read1: Dataread address via CLA data read address bus
Read2: Read data via CLA data read data bus
Execute: Execute operation

MARO/MAR1 update due to load operations
Write: Write
All Instructions are single cycle (except for Branch/Call/Return)
Memory conflicts in F1, R1 and W stall the pipeline

C2000 Piccolo Workshop - Appendix E - Control Law Accelerator

Control Law Accelerator

Write Followed-by-Read

Fetch Decode Read Exe Write

CLAPipeIine|F1|F2|m| D2 |R1|R2| E | w |
MMOV32 @_Regl, MR3 ; Write Reg1
MMOV32 MRO, @_Reg2 ; Read Reg2

Due to the pipeline order, the read of Reg2 occurs before the Regl write

This is only an issue if the location written to can affect the location read
Some peripheral registers
Write to followed by read from the same location

Insert 3 other instructions or MNOPs to allow the write to occur first

Note: This behavior is different for the main C28 CPU:

The C28x CPU protects write followed by read to the same location
Blocks of peripheral registers have write-followed-by read protection

Loading MARO and MAR1

Fetch Decode Read Exe Write
CLAPipeline[F [r2 [p1 | b2 [ri[re[E] w |

D2: Update to MARO/MAR1 due to indirect addressing post increment
EXE: Update to MARO/MARL1 due to load operation

Assume MAROis 50 and # Xis 20

MMOV16 MARO, # X ; 11 Load MARO with 20

MMOV32 MAR1, *MARO[0]++ ; I2 Uses old MARO Value (50)
MMOV32 MAR1, *MARO[0]++ ; I3 Uses old MARO Value (50)

<Instruction 4> ; 14 Can not use MARO
MMOV32 MAR1, *MARO[O]++ ; I5 Uses new MARO Value (20)

When instruction I1 is in EXE instruction 14 isin D2
If 14 uses MARO, then a conflict will occur and MARO will not be loaded

C2000 Piccolo Workshop - Appendix E - Control Law Accelerator

Control Law Accelerator

Branch, Call, Return Delayed Conditional

CLAPipeline[F1|r2[o1| b2 [ri|r2| E |

Fetch Decode

Read Exe Write

w

D2:
EXE:

Decide whether or not to branch

Branch taken (or not)

<Instruction 1>

<Instruction 2>
<Instruction 3>
<Instruction 4>

Branch, CND

<Instruction 5>
<Instruction 6>
<Instruction 7>

; 11 Last instruction to affect flags for branch

012
K]
214

Can not be branch or stop *
Do not change flags in time to affect branch

; MBCNDD, MCCNDD or MRCNDD

)
;16
17

Can not be branch or stop *
Always executed whether branch is taken or not

* Can not be MSTOP (end of task), MDEBUGSTOP (debug halt), MBCNDD
(branch), MCCNDD (call), or MRCNDD (return)

Optimizing Delayed Conditional Branch

6 instruction
slots are
executed on
every branch

Use these
slots to
improve

performance

Cycle count varies
depending on delay
slot usage

Taken Not Taken
7 7
1 7
4 4

MSTOP
MDEBUGSTOP
MBCNDD, MCCNDD
MRCNDD are not
allowed in delay
slots

Skipl:

Skip2:

MCMPF32 MRO,#0.1

MNOP
MNOP
MNOP

MBCNDD Skipl,NEQ

MNOP

MNOP

MNOP

MMOV32 MR1,@ Ramp
MMOVX1 MR2,#RAMP_MASK
MOR32 MR1,MR2

MMOV32 @ Ramp, MR1
MSTOP

MCMPF32 MRO,#0.01

MNOP

MNOP

MNOP

MBCNDD Ski p2,NEQ

MNOP

MNOP

MNOP

MMOV32 MR1,@_Coast
MMOVX1 MR2 ,#COAST_MASK
MOR32 MR1,MR2

MMOV32 @_Coast,MR1
MSTOP

MMOV32 MR3,@_Steady
MMOVX1 MR2 ,#STEADY_MASK
MOR32 MR3,MR2

MMOV32 @_Steady,MR3

MSTOP

Skip2:

Optimized Code

MCMPF32
MCMPF32
MTESTTF
MNOP
MBCNDD
MMOV32
MMOVX1
MOR32
MMOV32

MSTOP

MMOV32
MMOVX1
MOR32

MBCNDD
MMOV32
MMOVX1
MOR32

MMOV32

MSTOP
MMOV32

MSTOP

MRO, #0.1
MRO, #0.01
EQ

Skip1,NEQ
MR1, @ Ramp
MR2, #RAMP_MASK
MR1, MR2
@_Ramp,MR1

MR3, @_Steady
MR2, #STEADY_ MASK
MR3, MR2
Skip2,NTF
MR1, @ Coast

MR2, #COAST_MASK
MR1, MR2

@ _Coast,MR1

@_Steady,MR3

C2000 Piccolo Workshop - Appendix E - Control Law Accelerator

Control Law Accelerator

CLA System Configuration

Code Partitioning

CLA and Main CPU System initialization by
communication via C28 the main CPUin C
shared message RAMs Run
and interrupts Time
Code Acpess peripheral
Main CPU performs = registers & memory

communication,
diagnostics, /0 in C

C28+ CLA

System Configure Perlpgr:erals
Initialization
Code Memory
C Code
Assembly Code o
Access peripheral
CLA registers & memory
Run
CLA concurrently Time
services time-critical Code
control loops

“Just in Time” ADC Sampling Using CLA

ADC . ; ;
ADC's sample The ADC early interrupt occurs at the end of the sampling window
Window
garly 7 Cycles The CLA can read the result register as soon as it is latched
interrupt e
(minimum)
ADC ADC to CLA 7 cycles after the early interrupt, the first CLA
Conversion 'me’”‘L’;‘t;ecsyponse instruction is in the D2 phase of the pipeline
RESULT 6 Cycles
11in D2 Register <Instruction 1> ;11 Perform
Updates pre-calculations
After .- using the first 7
15 Cycles ") instructions
< <Instruction 7> - 4 (7 cycles)
ES MUI16TOF32 MRO,®@ AdcRegs.RESULT1
o N
i ©
kel 2 o The 8th instruction
£ is “just-in-time” to
- ’ ’§ Assume 12 instructions read the ADC
RESULT register is] 12 cycles RESULT register
latched and ready 8 (1 cycle)
I y
to be read x
=
5 MSTOP T T cycle
Enables low ADC Ol O _—
sample to output delay H— Minimum CLA Next Task Response Timing shown
] 5cycles for 2803x

| Pre Calc (7 instructions)...

C2000 Piccolo Workshop - Appendix E - Control Law Accelerator E-9

Control Law Accelerator

CLA Interrupts Improved Control Loop
Timing

SOCAB— ePWM1
SOCAB ePWM7
C28x
ADC CPU
|_ADCINT1 : —EPWM1_INT/EPWM1_TZINT—$
L_ADCINTS i PIE L EPWM7_INTZ/EPWM7_TZINT——¢
L ADCINT9
— I
— [oe]
E E
Z Zuuw
Piccolo ADC & CLA 4 433
interrupt structure S 5
enables handling of L|) ('I)
multi-channel systems e EPWML_INT.
with different CLA
frequencies and/or : ——EPWM7_INT
phases

Anatomy of CLA Code

Using a shared C-code header file

approach provides easy access to Declare shared constants and variables in C

variables and constants in both

C28x C and CLA assembly Ipclude DSP2803x_Device.h to define register bit-
field structures

// File: C28x_Project.h
Assign variables to message RAMs or CLA data

#include “DSP2803x_Device.h” memory sections using DATA_SECTION pragma
#include “DSP2803x_Examples.h”

// File: CLAShared.h\
#include “DSP28x_Project.h” \‘ // File main.c
#define PERIOD 100.0 p#include “CLAShared.h”

struct PI_CTRL

#pragma DATA_SECTION(PIVars, " CpuToClalMsgRAM™);

float KP; struct PI_CTRL PlVars;
float KI; .- B B ;
float 1I; // Use Symbols defined in the CLA asm file
float Ref; ClalRegs.MVECT1 = (Uintl6) (&ClalTaskl \
3 - &ClalProg_Start)*sizeof(Uint32);
extern struct PI_CTRL PlVars;
Initialize variables
extern Uint32 ClalProg_Start; Plvars.KP = 1.234;
extern Uint32 ClalTaskl; PIVars.Kl = 0.92367;
extern Uint32 ClalTask2; PIVars.Ref = 2048.0;
etc .. PIVars.l = Plvars.KP*PlIVars.Ref;
\ // Initialize Peripherals:
Add symbols defined in CLA assembly Epwm3Regs.PRD = (Uintl16) PERIOD;

to make them global and usablein C

E-10 C2000 Piccolo Workshop - Appendix E - Control Law Accelerator

Control Law Accelerator

Anatomy of CLA Code

| CLA assembly and C28 code reside in the same project |

Use .cdecls to include the
shared C header filein the

CLA assembly file of

// File: CLAShared.h «~ .sect
_ClalProg_Start:

#include “DSP28x_Project.h” | | ..
#define PERIOD 100.0
struct PI_CTRL

float KP;

float KI; MMOV32 MRO, @ PlVars.Ref

float 1; MUI16TOF32 MR1,@ AdcResult.ADCRESULTO
float Ref; MSUBF32 MR2,MR1,MRO

; File: cla.asm
; Include C Header File:
.cdecls C,LIST,”CLAShared.h”

; Add linker directives:

_ClalTask2:
MDEBUGSTOP ; breakpoint

; Read memory or register:

Place CLA code
into its own
assembly section

“ClalProg” g

} -- Use C header file
extern struct PI1_CTRL PlVars|; ; Use constants defined in C referen in
MMPYF32 MRl,MRZ,#PERIOD/ ererences
3 i CLA assembly
extern Uint32 ClalProg_Start; --
extern Uint32 ClalTask1; ; Write to memory or register
extern Uint32 ClalTask2; MMOV32 @_PIvars.l, MR3
etc .. MMOV32 @_EPwmlRegs.CMPA_all, MR2
s0d oF sk Put an MSTOP
at the end of
_ClalTaska: the task

CLA Compared to C28x+FPU

CLA Compared to C28x+FPU

Control Law Accelerator

C28x + Floating-Point Unit

Independent 8 Stage Pipeline

F1-D2 Shared with the C28x Pipeline

Single Cycle Math and Conversions

Math and Conversions are 2 Cycle

No Data Page Pointer; Only uses
Direct & Indirect with Post-Increment

Uses C28x Addressing Modes

4 Result Registers]
2 Independent Auxiliary Registers
No Stack Pointer or Nested Interrupts

8 Result Registers)
Shares C28x Auxiliary Registers
Supports Stack, Nested Interrupts

Native Delayed Branch, Call & Return
Use Delay Slots to Do Extra Work
No repeatable instructions

Uses C28x Branch, Call and Return
Copy flags from FPU STF to C28x STO
Repeat MACF32 & Repeat Block

Self-Contained Instruction Set
Data is Passed Via Message RAMs

Instructions Superset on Top of C28x Pass
Data Between FPU and C28x Regs

Supports Native Integer Operations:
AND, OR, XOR, ADD/SUB, Shift

C28x Integer Operations

Programmed in Assembly

Programmed in C/C++ or Assembly

Single step moves the pipe one cycle

Single step flushes the pipeline

C2000 Piccolo Workshop - Appendix E - Control Law Accelerator

Control Law Accelerator

Summary

Summary

CLA is an independent 32-bit floating-point math
accelerator

+ robust, self saturating, and easy to program

System and CLA initialization is done by the
CPUInC

The CLA can directly access:

+ ADC Result, ePWM+HRPWM and comparator registers
The CLA is interrupt driven and has a low

interrupt response time (no nesting of
interrupts)

By using the ADC early interrupt, the CLA can
read the sample “Just-in-time”

+ Reduced ADC sample to output delay

« Faster system response and higher MHz control loops
+ Support for multi-channel loops

C2000 Piccolo Workshop - Appendix E - Control Law Accelerator

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard
warranty. Testing and other quality control techniques are used to the extent Tl deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other Tl intellectual property right relating to any combination, machine, or process in which Tl products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of Tl information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. Tl is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of Tl products or services with statements different from or beyond the parameters stated by Tl for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not
responsible or liable for any such statements.

Tl products are not authorized for use in safety-critical applications (such as life support) where a failure of the Tl product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of Tl products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in
such safety-critical applications.

Tl products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by Tl as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of Tl products which Tl has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Tl products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are
designated by Tl as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DLP® Products www.dlp.com Communications and www.ti.com/communications
Telecom

DSP dsp.ti.com Computers and www.ti.com/computers
Peripherals

Clocks and Timers www.ti.com/clocks Consumer Electronics www.ti.com/consumer-apps

Interface interface.ti.com Energy www.ti.com/energy

Logic logic.ti.com Industrial www.ti.com/industrial

Power Mgmt power.ti.com Medical www.ti.com/medical

Microcontrollers microcontroller.ti.com Security www.ti.com/security

RFID www.ti-rfid.com Space, Avionics & www.ti.com/space-avionics-defense
Defense

RF/IF and ZigBee® Solutions www.ti.com/lprf Video and Imaging www.ti.com/video
Wireless www.ti.com/wireless-apps

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2010, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://www.dlp.com
http://www.ti.com/communications
http://dsp.ti.com
http://www.ti.com/computers
http://www.ti.com/clocks
http://www.ti.com/consumer-apps
http://interface.ti.com
http://www.ti.com/energy
http://logic.ti.com
http://www.ti.com/industrial
http://power.ti.com
http://www.ti.com/medical
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/space-avionics-defense
http://www.ti.com/lprf
http://www.ti.com/video
http://www.ti.com/wireless-apps

	Important Notice
	Revision History
	Mailing Address

	C2000™ Piccolo™ Workshop
	Introductions
	 C2000™ Piccolo™ Workshop Outline
	C2000™ Experimenter Kit

	Architecture Overview
	Introduction
	Learning Objectives
	Module Topics
	What is the TMS320C2000™?
	 TMS320C2000™ Internal Bussing

	F28x CPU
	 Special Instructions
	 Pipeline Advantage

	Memory
	Memory Map
	 Code Security Module (CSM)
	Peripherals

	Fast Interrupt Response
	F28x Mode
	Reset
	Summary

	Programming Development Environment
	Introduction
	Learning Objectives
	Module Topics
	Code Composer Studio
	Software Development and COFF Concepts
	 Projects
	 Build Options

	Creating a Linker Command File
	Sections
	Program Code (.text)
	Constants (.cinit – initialized data)
	Variables (.ebss – uninitialized data)

	 Linker Command Files (.cmd)
	Memory-Map Description
	 Section Placement

	Exercise 2
	Summary: Linker Command File

	Lab 2: Linker Command File
	System Description
	Placement of Sections:
	Create a New Project
	Project Build Options
	End of Exercise

	Solutions

	Peripherial Registers Header Files
	Introduction
	 Learning Objectives
	Module Topics
	Traditional and Structure Approach to C Coding
	Naming Conventions
	F2803x C-Code Header Files
	 Global Variable Definitions File
	 Mapping Structures to Memory
	Linker Command File
	 Peripheral Specific Routines

	Summary

	Reset and Interrupts
	Introduction
	Learning Objectives
	Module Topics
	Reset
	Reset - Bootloader
	 Emulation Boot Mode
	Stand-Alone Boot Mode
	 Reset Code Flow – Summary

	Interrupts
	Interrupt Processing
	 Interrupt Flag Register (IFR)
	Interrupt Enable Register (IER)
	 Interrupt Global Mask Bit (INTM)
	Peripheral Interrupt Expansion (PIE)
	 PIE Interrupt Vector Table
	Interrupt Response and Latency

	System Initialization
	Introduction
	Learning Objectives
	Module Topics
	Oscillator/PLL Clock Module
	Watchdog Timer
	General-Purpose Digital I/O
	External Interrupts
	Low Power Modes
	Register Protection
	Lab 5: System Initialization
	Create Project File
	Project Build Options
	Modify Memory Configuration
	Setup System Initialization
	Build and Load
	Run the Code – Watchdog Reset
	Setup PIE Vector for Watchdog Interrupt
	Build and Load
	Run the Code – Watchdog Interrupt
	End of Exercise

	Analog-to-Digital Converter and Comparator
	Introduction
	Learning Objectives
	Module Topics
	Analog-to-Digital Converter
	ADC Block and Functional Diagrams
	 ADC Triggering
	 ADC Conversion Priority
	 ADC Clock and Timing
	ADC Converter Registers
	ADC Calibration and Reference

	Comparator
	Comparator Block Diagram
	 Comparator Registers

	Lab 6: Analog-to-Digital Converter
	Notes
	Project File
	Setup ADC Initialization and Enable Core/PIE Interrupts
	Build and Load
	Run the Code
	Using Real-time Emulation
	End of Exercise

	Control Peripherals
	Introduction
	Learning Objectives
	Module Topics
	PWM Review
	ePWM
	 ePWM Time-Base Sub-Module
	 ePWM Compare Sub-Module
	 ePWM Action Qualifier Sub-Module
	Asymmetric and Symmetric Waveform Generation using the ePWM
	 PWM Computation Example
	 ePWM Dead-Band Sub-Module
	ePWM PWM Chopper Sub-Module
	 ePWM Digital Compare Sub-Module
	 ePWM Trip-Zone Sub-Module
	ePWM Event-Trigger Sub-Module
	 Hi-Resolution PWM (HRPWM)

	eCAP
	eQEP
	Lab 7: Control Peripherals
	Project File
	Setup Shared I/O and ePWM1
	Build and Load
	Run the Code – PWM Waveform
	Frequency Domain Graphing Feature of Code Composer Studio
	Setup eCAP1 to Measure Width of Pulse
	Build and Load
	Run the Code – Pulse Width Measurement
	End of Exercise

	Numerical Concepts
	Introduction
	Learning Objectives
	Module Topics
	Numbering System Basics
	Binary Numbers
	Examples:

	Two's Complement Numbers
	Examples:
	 To load small two's complement numbers into larger registers:
	Examples:

	Integer Basics
	 Sign Extension Mode

	Binary Multiplication
	Binary Fractions
	Representing Fractions in Binary
	Fraction Basics
	 Multiplying Binary Fractions

	Fraction Coding
	Fractional vs. Integer Representation
	Floating-Point
	IQmath
	IQ Fractional Representation
	Traditional “Q” Math Approach
	IQmath Approach

	IQmath Library
	 16 vs. 32 Bits

	Converting ADC Results into IQ Format
	AC Induction Motor Example
	IQmath Summary
	Lab 8: IQmath & Floating-Point FIR Filter
	Project File
	Project Build Options
	Include IQmathLib.h
	Inspect Lab_8.cmd
	Select a Global IQ value
	IQmath Single-Sample FIR Filter
	Build and Load
	Run the Code – Filtered Waveform
	End of Exercise
	 Lab 8 Reference: Low-Pass FIR Filter

	Control Law Accelerator
	Introduction
	Learning Objectives
	Module Topics
	Control Law Accelerator (CLA)
	CLA Block Diagram
	 CLA Memory and Register Access
	CLA Tasks
	Control and Execution Registers
	 CLA Registers
	CLA Initialization
	CLA Task Programming
	 CLA Instruction Set
	 CLA Addressing Modes
	CLA Code Example
	CLA Code Debugging

	Lab 9: CLA Floating-Point FIR Filter
	Project File
	Enabling CLA Support in CCS
	Inspect Lab_9.cmd
	Setup CLA Initialization
	Setup PIE Interrupt for CLA
	Build and Load
	Run the Code – Test the CLA Operation
	End of Exercise

	System Design
	Introduction
	Learning Objectives
	Module Topics
	Emulation and Analysis Block
	Flash Configuration and Memory Performance
	Flash Programming
	Code Security Module (CSM)
	Lab 10: Programming the Flash
	Project File
	Link Initialized Sections to Flash
	Compiler Sections
	Copying Interrupt Vectors from Flash to RAM
	Initializing the Flash Control Registers
	Code Security Module and Passwords
	Executing from Flash after Reset
	Initializing the CLA
	Build – Lab.out
	CCS Flash Plug-in
	Running the Code – Using CCS
	Running the Code – Stand-alone Operation (No Emulator)
	End of Exercise

	 Lab 10 Reference: Programming the Flash

	Communications
	Introduction
	Learning Objectives
	Module Topics
	Communications Techniques
	Serial Peripheral Interface (SPI)
	SPI Transmit / Receive Sequence
	 SPI Registers
	SPI Summary

	Serial Communications Interface (SCI)
	Multiprocessor Wake-Up Modes
	 SCI Registers
	SCI Summary

	Local Interconnect Network (LIN)
	 LIN Message Frame and Data Timing
	 LIN Summary

	Inter-Integrated Circuit (I2C)
	 I2C Operating Modes and Data Formats
	I2C Summary

	Enhanced Controller Area Network (eCAN)
	 CAN Bus and Node
	Principles of Operation
	 Message Format and Block Diagram
	eCAN Summary

	DSP/BIOS
	Introduction
	Learning Objectives
	Module Topics
	Introduction to DSP/BIOS
	DSP/BIOS Configuration Tool
	 1. Creating a New Memory Region (Using MEM)
	 2. Placing Sections – MEM Manager Properties
	 3. PIE Interrupts – HWI Interrupts
	 4. Running the Linker

	Scheduling DSP/BIOS threads
	Periodic Functions
	Real-Time Analysis Tools
	Lab 12: DSP/BIOS
	Project File
	Edit Lab.h File
	Remove “rts2800_ml.lib” and Inspect Lab_12.cmd
	Using the DSP/BIOS Configuration Tool
	Create New Memory Sections Using the TCF File
	BIOS Data tab
	BIOS Code tab
	Compiler Sections tab
	End of Exercise

	Development Support
	Introduction
	Learning Objectives
	Module Topics
	TI Support Resources
	C28x Signal Processing Libraries
	 Experimenter’s Kits
	 F28335 Peripheral Explorer Kit
	C2000 ControlCARD Application Kits
	 Product Information Resources

	Appendix A – Experimenter’s Kit
	Module Topics
	F28035 ControlCARD
	F28035 PCB Outline (Top View)
	LD1 / LD2 / LD3
	SW1
	 SW2
	SW3

	F28335 ControlCARD
	F28335 PCB Outline (Top View)
	LD1 / LD2 / LD3

	Docking Station
	SW1 / LD1
	JP1 / JP2
	J1 / J2 /J3 / J8 / J9
	F2833x Boot Mode Selection
	F280xx Boot Mode Selection
	 J3 – DB-9 to 4-Pin Header Cable

	Appendix B – Addressing Modes
	Introduction
	Learning Objectives
	Module Topics
	Labels, Mnemonics and Assembly Directives
	Addressing Modes
	Instruction Formats
	Register Addressing
	Immediate Addressing
	Direct Addressing
	Indirect Addressing
	Review
	Exercise B

	Lab B: Addressing
	Copy Files, Create Project File
	Initialize Allocated RAM Array from ROM Initialization Table
	Build and Load
	End of Exercise

	OPTIONAL Lab B-C: Array Initialization in C
	Create Project File
	Initialize Allocated RAM Array from ROM Initialization Table
	Build and Load
	End of Exercise

	Solutions

	Appendix C – Assembly Programming
	Introduction
	Learning Objectives
	Module Topics
	Program Control
	Branches
	Program Control Instructions

	ALU and Accumulator Operations
	 Simple Math & Shift

	Multiplier
	Basic Multiplier
	Repeat Instruction
	MAC Instruction

	Data Move
	Logical Operations
	Byte Operations and Addressing
	 Test and Change Memory Instructions
	 Min/Max Operations

	Read Modify Write Operations
	Lab C: Assembly Programming
	Copy Files, Create Project File
	Initialization Routine using BANZ
	Sum of Products using a RPT/MAC-based Implementation
	Build and Load
	Optional Exercise
	End of Exercise

	OPTIONAL Lab C-C: Sum-of-Products in C
	Create Project File
	Sum of Products using a MAC-based Implementation
	Build and Load
	End of Exercise

	Appendix D – C Programming
	Introduction
	Learning Objectives
	Module Topics
	Linking Boot code from RTS2800.lib
	Set up the Stack
	C28x Data Types
	Accessing Interrupts / Status Register
	Using Embedded Assembly
	Using Pragma
	Optimization Levels
	Volatile Usage
	 Compiler Advanced Options
	Optimization Tips Summary

	Lab D: C Optimization
	Create Project File
	Build and Load
	Set Up the Profile Session
	Benchmarking Code
	C Optimization
	Benchmarking Assembly Code
	End of Exercise

	OPTIONAL Lab D2: C Callable Assembly
	Copy Files, Create Project File
	Build and Load
	Verify C Sum of Products Routine
	Viewing Interlisted Files and Creating Assembly File
	Defining the Function Prototype as External
	Verify Assembly Sum of Products Routine
	End of Exercise

	Solutions

	Appendix E – Control Law Accelerator
	Introduction
	Learning Objectives
	Module Topics
	Control Law Accelerator
	Floating-Point Format
	 CLA Registers and Execution Flow
	 CLA Instructions
	 Status Register and Pipeline
	 CLA System Configuration
	CLA Compared to C28x+FPU
	 Summary

