

C2000 Systems and Applications v0.2 1

 Texas Instruments, Inc.

 C2000 Systems and Applications

2014

Digital Motor Control –
Resolver Interface

Software Library

C2000 Systems and Applications v0.2 2

Contents

INTRODUCTION ... 3

Resolver Library .. 4

C2000 Systems and Applications v0.2 3

Introduction

 The digital motor control library is composed of C functions (or macros) developed for C2000 motor
control users. These modules are represented as modular blocks in C2000 literature in order to explain
system-level block diagrams clearly by means of software modularity. The DMC library modules cover
nearly all of the target-independent mathematical macros and target-specific peripheral configuration
macros, which are essential for motor control. These modules can be classified as:

Transformation and
Observer Modules

Clarke, Park, Phase Voltage Calculation, Sliding Mode Observer, BEMF
Commutation, Direct Flux Estimator, Speed Calculators and Estimators,
Position Calculators and Estimators etc.

Signal Generators and
Control Modules

PID, Commutation Trigger Generator, V/f Controller, Impulse Generator,
Mod 6 Counter, Slew Rate Controllers, Sawtooth & Ramp generators,
Space Vector Generators etc.

Peripheral Drivers PWM abstraction for multiple topologies and techniques, ADC Drivers,
Hall Sensor Driver, QEP Driver, CAP Driver etc.

Real-Time Debugging
Modules

DLOG module for CCS graph window utility, PWMDAC module for
monitoring the control variables through socilloscope

 In the DMC library, each module is separately documented with source code, use, and background
technical theory. All DMC modules allow users to quickly build, or customize their own systems.

 This particular document is all about using resolver interface software library modules. The data types

used by the library are presented and the use case description of library functions is outlined.

DIGITAL MOTOR CONTROL
Resolver Interface

Software Library

C2000 Systems and Applications v0.2 4

RESOLVER LIBRARY Resolver Interface Library Functions

This document covers the software structure of the Resolver Interface Library. It has a couple of functions
and uses a couple of data types to interface to the main project.

The function names are

- Init_resolver_xxx(void)
- Resolver_algo_xxx(void)

and the data types are
- RESOLVER_INPUT
- RESOLVER_OUTPUT

They will be explained in the sections below.

‘xxx’ in function names represents if it is a CLA function, or FIXED CPU function or FLOAT CPU function.
For example, ‘init_resolver_Fixed’() is an initializing function used in FIXED CPU based projects.

The available .lib files are given below and are supposed to be included by the linker depending on the
CPU / CLA being used to run the resolver functions

Library file names Intended Projects Use

Resolver_Lib_fixed.lib Fixed CPU

Resolver_Lib_CLA_fixed.lib CLA project on Fixed CPU

Resolver_Lib_CLA_float.lib CLA project on Float CPU

Resolver_Lib_float.lib Float CPU

Resolver_Lib_float_TMU0.lib CPUs with TMU (Trigonometric and Math Unit)

C2000 Systems and Applications v0.2 5

Data Type Definitions:

RESOLVER_INPUT :

This data type makes it convenient to instance an input interface to resolver library modules. To
create multiple instances of the same, simply declare variables of type RESOLVER_INPUT. This
structure contains all variables that feed a value into the library, and is given below

// Input variables
typedef struct {
 // variables to set up basic functions
 Uint16 firLag, // lag between sine index and FIR index
 FIR32, // select-1 / deselect-0 FIR32 function
 TUNING, // select-1 / deselect-0 TUNING function
 TABLE_LENGTH; // set up FIR filter length

 float** offsetS, // dc offset of sine fbk analog channel
 offsetC, // dc offset of cosine fbk analog channel
 testAngle, // test Angle used for tuning the PI coefficients
 SAMPLING_TIME, // loop decimation sampling time (carrier cycle time)

 // control loop parameters (can be replaced with MACROs)
 errorWfT, // error filter constant, internally computed using filter coefficients
 picon_K0, // PI controller constant
 picon_K1, // PI controller constant
 rpsMax; // max resolver speed in eqvt elec freq

} RESOLVER_INPUT;

Item Name Description Format
*

Range(Hex)

Flag Inputs FIR32 Select 32 order FIR filter Q0 0000-FFFF

TUNING Select loop tuning function Q0 0000-FFFF

Parameter
Inputs

firLag Lag of feedback sample wrt to
sine excitation

Q0 0000-FFFF

TABLE_LENGTH Exc Sine table length Q0 0000-FFFF

OffsetS Residual offset of sine fbk signal **

OffsetC Residual offset of cosine fbk
signal

**

testAngle Angle to test the transient
performance of observer

**

SAMPLING_TIME Loop sampling time **

errorWfT Error filter constant **

picon_k0 PI controller coefficient **

picon_k1 PI controller coefficient **
*
GLOBAL_Q valued between 1 and 30 is defined in the IQmathLib.h header file.

**These variables are declared as ‘float’ in floating point CPU projects. Whereas, in fixed point CPU
projects, they are declared as int32 or _iq, used in Q20 format, and have a range of 80000000-7FFFFFFF

The names of most variables in the structure are self explanatory. Some of them need
a bit explaining to do. ‘firLag’ is used to position the FIR filter coefficients to
appropriate feedback samples from resolver such that the first and last samples of
the FIR filter coincide with the peak of excitation carrier wave. This helps to
decimate the feedback signals at their max thereby getting higher SNR.

Availability C interface version

Module Properties Type: Target Independent
 Target Devices: 28x Fixed or Floating Point

C Version File Names: resolver_Fixed.h / resolver_CLA.h / resolver_Float.h
Library files for C: IQmathLib.h, IQmath.lib // CLAmath.h, CLAmath.lib

C2000 Systems and Applications v0.2 6

Module Usage

Instantiation

 The following example instance a RESOLVER_INPUT objects
 RESOLVER_INPUT rslvrIn;

Example

The following pseudo code provides the information about the module usage.

main()
{

rslvrIn.FIR32 = 1; // select 32 order FIR filter
rslvrIn.TABLE_LENGTH = 32; // excitation sinetable is 32 words long
.
.
.

}

C2000 Systems and Applications v0.2 7

RESOLVER_OUTPUT :
This data type makes it convenient to instance an output interface to resolver library modules. To
create multiple instances of the same, simply declare variables of type RESOLVER_OUTPUT.
This structure contains all variables that are output from the library and is given below

// Output variables
typedef struct {
 // variables for outputting results in float
 float** angleRaw, // raw angle estimate from arctan
 angleObs, // observer angle estimate w/o FIR delay compensation
 angleOut, // final angle estimate after FIR delay compensation
 rpsObs, // shaft speed estimate by the observer
 errorNew, // new angle error estimated by the observer
 resMag, // resolver fbk mag

 // debug variables - can be commented out
 sinFIRout, // FIR band pass filter output of sine feedback signal
 cosFIRout; // FIR band pass filter output of cosine feedback signal

#ifndef FLOAT_CPU_RESOLVER_CLA_LIB
 // variables for outputting results in Q20
 int32 angleRaw20, // arctan angle estimate in pu
 angleObs20, // observer angle estimate in pu
 angleOut20, // final estimated angle in pu
 rpsObs20, // shaft speed estimate
 errorNew20, // PLL loop error in pu

 // variables for data analysis
 resMag20; // resolver magnitude in Q20
#endif

 // variables used within library
 float** sin_input, // sine input from resolver
 cos_input; // cosine input from resolver
 Uint16 sineIndex; // index to element within sine table
} RESOLVER_OUTPUT;

Item Name Description Format
*

Range(Hex)

Observer
outputs

angleRaw Raw angle estimate **

angleObs Observer angle estimate **

angleOut Compensated angle estimate **

rpsObs Rps estimate by observer **

errorNew Latest angle error **

resMag Resolver fbk magnitude **

sinFIRout Output of sine FIR **

cosFIRout Output of cosine FIR **

angleRaw20 Raw angle estimate in Q20 Q20 80000000-7FFFFFFF

angleObs20 Observer angle estimate in Q20 Q20 80000000-7FFFFFFF

angleOut20 Compensated angle estimate in
Q20

Q20 80000000-7FFFFFFF

rpsObs20 RPS estimate by observer in Q20 Q20 80000000-7FFFFFFF

errorNew20 Latest angle error in Q20 Q20 80000000-7FFFFFFF

resMag20 Resolver fbk magnitude in Q20 Q20 80000000-7FFFFFFF

sin_input Sine fbk sample from ADC **

cos_input Cosine fbk sample from ADC **

sineIndex Index through the exc sine table Q0 0000-FFFF
*
GLOBAL_Q valued between 1 and 30 is defined in the IQmathLib.h header file.

C2000 Systems and Applications v0.2 8

**These variables are declared as ‘float’ in floating point CPU projects. Whereas, in fixed point CPU
projects, they are declared as int32 or _iq, used in Q20 format, and have a range of 80000000-7FFFFFFF

The variables suffixing with 20 carry the content in Q20 format for use by a receiving CPU that is fixed
point.

Compiler switch FLOAT_CPU_RESOLVER_CLA_LIB should be set up if the CPU is a floating point device
where _IQ variables are redundant to define.

Availability C interface version

Module Properties Type: Target Independent
 Target Devices: 28x Fixed or Floating Point

C Version File Names: resolver_Fixed.h / resolver_CLA.h / resolver_Float.h
Library files for C: IQmathLib.h, IQmath.lib // CLAmath.h, CLAmath.lib

Module Usage

Instantiation

 The following example instance a RESOLVER_OUTPUT objects
 RESOLVER_OUTPUT rslvrOut;

Example

The following pseudo code provides the information about the module usage.

main()
{

.

.

.
RotorPosition = rslvrOut.angleOut; // get latest angle from resolver observer
RotorSpeed = rslvrIn.rpsObs; // get latest speed from resolver observer

}

C2000 Systems and Applications v0.2 9

Function Description:

init_resolver_xxx(void)

- This function initializes the variables used by resolver_algo_xxx()

resolver_algo_xxx(void)

- This function does the FIR band pass filter action and the observer
loop as explained in the technical reference document. When a new
position data is available, it returns a 1 or else a 0.

Notes:
When using CLA lib files

- if CPU is fixed type (such as F28035), use
Resolver_Lib_CLA_fixed.lib

- if CPU is float type (such as F28069), use
Resolver_Lib_CLA_float.lib

Availability C interface version

Module Properties Type: Target Independent

 Target Devices: 28x Fixed or Floating Point

C Version File Names: resolver_source_CLA.cla // resolver_source_fixed.c //
 resolver_source_float.c

 Library files for C: IQmathLib.h, IQmath.lib // CLAmath.h, CLAmath.lib

C2000 Systems and Applications v0.2 10

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue any
product or service without notice. Customers should obtain the latest relevant information before placing orders and
should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of
sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with
TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to
support this warranty. Except where mandated by government requirements, testing of all parameters of each product is
not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their
products and applications using TI components. To minimize the risks associated with customer products and
applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in
which TI products or services are used. Information published by TI regarding third-party products or services does not
constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such
information may require a license from a third party under the patents or other intellectual property of the third party, or a
license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and
is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with
alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.
Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or
service voids all express and any implied warranties for the associated TI product or service and is an unfair and
deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product
would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an
agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and
regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal,
regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical
applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers
must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-
critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI
products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as
military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has
not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all
legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI
products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if
they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such
requirements.

