TMS320C2xx C Source Debugger User’s Gude
Collation List—Electronic Transfer List

TDS Job Number: 65121
Literature Number: SPRU151
Engineering Part Number: D412006-9761 revision *

Number of

Item Pages File Name Page Numbers
Covers — 65121b —
Title Page 1 65121c i
Preface/TOC 21 65121d il — xxii
Chapter 1 22 65121e 1-1—1-22
Chapter 2 22 65121f 2-1 —2-22
Chapter 3 28 65121g 3-1 —3-28
Chapter 4 30 65121h 4-1 —4-30
Chapter 5 24 65121i 5-1 —5-24
Chapter 6 18 65121] 6-1 —6-18
Chapter 7 18 65121k 7-1—7-18
Chapter 8 22 651211 8-1 —8-22
Chapter 9 6 65121m 9-1 —9-6
Chapter 10 12 65121n 10-1 —10-12
Chapter 11 8 651210 11-1 —11-8
Chapter 12 22 65121p 12-1 —12-22
Chapter 13 68 65121q 13-1 — 13-68
Chapter 14 6 65121r 14-1 —14-6
Appendix A 8 65121s A-1 —A-8
Appendix B 2 65121t B-1 —B-2
Appendix C 6 65121u C-1—C-6
Appendix D 26 65121v D-1 —D-26
Appendix E 6 65121w E-1 —E-6
Index 20 65121x Index-1 — Index-20
FSO Listing 2

Total Pages | 398

TMS320C2xx C Source Debugger User’s Gude Page 1 of 2

[_Add as many rows as necessary for chapters, filenames, etc.

[_1f we’re printing a blue & yellow cover, do not count the covers, reference cards, etc. in the
Total Pages.

[_1f we’re printing a self-cover document, count the front and back cover as 4 pages.

Additional Information for Printer

[Note that all possible fonts are listed below. Before sending this book to print, delete fonts
from the list that aren’t used in this book.
Fonts Used: Helvetica
Helvetica Narrow
Courier

Symbol A
Symbol B

Symbols
Math A

Operating System: SunOS 4.1.3

Authoring/Word Processing Software: __Interleaf 5.4.1

Media: 1/4” tape cartridge (DC6150)

PostScript Information: ___All fonts should be self-contained in the PostScript files. PostScript
files are FTPs or written to tape in UNIX TAR format by default; other
formats can be arranged with prior conditions

TMS320C2xx C Source Debugger User’s Gude Page 2 of 2

N\’

PRINTED WITH
SOY INK|_

TMS320C2xx
C Source Debugger
User’s Guide

Literature Number: SPRU151A
Manufacturing Part Number: D412006-9761 revision A
October 1996

3 Texas 2s

INSTRUM ENTS Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments (T1) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

Tl warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of Tl products in such applications is understood to be fully at the risk of the customer.
Use of Tl products in such applications requires the written approval of an appropriate Tl officer.
Questions concerning potential risk applications should be directed to Tl through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

Tl assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does Tl warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of Tl covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated

About This Manual

Preface

Read This First

This book tells you how to use the TMS320C2xx C source debugger with these
debugging tools:

J Emulator
J Simulator

Each tool has its own version of the debugger. These versions operate almost
identically; however, the executable files that invoke them are very different.
For example, the simulator version won’t work with the emulator, and vice
versa. Separate commands are provided for invoking each version of the de-
bugger.

For the simulator version of the debugger, there are two debugger environ-
ments: the basic debugger environment and the profiling environment. The
basic debugger environment is a general-purpose debugging environment.
The profiling environment is a special environment for collecting statistics
about code execution. Both environments have the same interface.

In addition to the debugger environment, you can use the parallel debug man-
ager (PDM) with the emulator version of the debugger. The PDM allows you
to control and coordinate multiple debuggers, giving you the flexibility and
power to debug your entire application for your multiprocessing system. The
PDM and its functions and features are described in this book.

Before you use this book, you should use the appropriate installation guide to
install the C source debugger and any necessary hardware.

How to Use This Manual

How to Use This Manual

The goal of this book is to help you learn to use the Texas Instruments standard
programmer’s interface for debugging. This book is divided into three distinct
parts:

(1 PartI: Hands-On Information is presented first so that you can start us-
ing your debugger the same day you receive it.

B Chapter 1 lists the key features of the debugger, describes additional
'C2xx software tools, tells you how to prepare a *C2xx program for de-
bugging, and provides instructions and options for invoking the de-
bugger and the PDM.

B Chapter 2 describes the PDM and the commands that you can use to
control multiple debuggers.

B Chapter 3 is a tutorial that introduces you to many of the debugger fea-
tures.

(1 Part ll: Debugger Description contains detailed information about using
the debugger.

The chapters in Part |l detail the individual topics that are introduced in the
tutorial. For example, Chapter 4 describes all of the debugger’s windows
and tells you how to move them and size them; Chapter 5 describes every-
thing you need to know about entering commands.

(O Part lll: Reference Material provides supplementary information.

W Chapter 5 gives a complete reference to all the tasks introduced in
Parts | and II. This includes a functional and an alphabetical reference
of the debugger commands and a topical reference of function key ac-
tions.

W Chapter 14 provides information about C expressions. The debugger
commands are powerful because they accept C expressions as pa-
rameters; however, the debugger can also be used to debug assem-
bly language programs. The information about C expressions will aid
assembly language programmers who are unfamiliar with C.

W Part il also includes a glossary and an index.

The way you use this book should depend on your experience with similar
products. As with any book, it would be best for you to begin on page 1 and
read to the end. Because most people don'’t read technical manuals from cover
to cover, here are some suggestions about what you should read.

How to Use This Manual / Notational Conventions

[d If you have used Tl development tools or other debuggers before, then you
mighy want to:

B Read the introductory material in Chapter 1.

W If you plan to debug an application for a multiprocessing system, read
Chapter 2.

B Complete the tutorial in Chapter 3.

B Read the alphabetical command reference in Chapter 5.

(g If this is the first time that you have used a debugger or similar tool, then
you might want to:

B Read the introductory material in Chapter 1.

W If you plan to debug an application for a multiprocessing system, read
Chapter 2.

B Complete the tutorial in Chapter 3.
B Read all of the chapters in Part Il.

Notational Conventions
This document uses the following conventions.

(1 The TMS320C203 and TMS320C209 are referred to collectively as the
'C2xx. 'C2xx also refers to any other cDSP that uses the LP25 core.

(1 The C source debugger has a very flexible command-entry system; there
are usually a variety of ways to perform any specific action. For example,
you may be able to perform the same action by typing in a command, using
the mouse, or using function keys. This document uses three symbols to
identify the methods that you can use to perform an action:

Symbol Description

Identifies an action that you perform by using the mouse.

v

Identifies an action that you perform by using function keys.

2|
=

- Identifies an action that you perform by typing in a com-
»@ mand.
X

Read This First Y

Notational Conventions

v

[The following symbols identify mouse actions. For simplicity, these sym-

bols represent a mouse with two buttons. However, you can use a mouse
with only one button or a mouse with more than two buttons.

Symbol Action

= Point. Without pressing a mouse button, move the mouse to
point the cursor at a window or field on the display. (Note that
the mouse cursor displayed on the screen is not shaped like an
arrow; it's shaped like a block.)

1 Press and hold. Press a mouse button. If your mouse has only
one button, press it. If your mouse has more than one button,
press the left button.

0l Release. Release the mouse button that you pressed.

ID Click. Press a mouse button and, without moving the mouse,
release the button.

E 1l Drag. While pressing the left mouse button, move the mouse.

Debugger commands are not case sensitive; you can enter them in lower-
case, uppercase, or a combination of both. To emphasize this fact, com-
mands are shown throughout this user’s guide in both uppercase and low-
ercase.

Program listings, program examples, and interactive displays are shown
inaspecial typeface similarto a typewriter’'s. Examples use a bold
version of the special typeface for emphasis; interactive displays use a
bold version of the special typeface to distinguish commands that you
enter from items that the system displays (such as prompts, command
output, error messages, etc.). Here is an example:

Command Result displayed in the COMMAND window
whatis aai int aai[10][5];
whatis xxx struct xxx {

int a;

int b;

int c;

int f1 : 2;

int £2 : 4;

struct xxx *£3;

int £4[10];

}

In this example, the left column identifies debugger commands that you
type in. The right column identifies the result that the debugger displays in
the display area of the COMMAND window.

Notational Conventions / Information About Cautions and Warnings

(1 In syntax descriptions, the instruction, command, or directive is in a bold
typeface font and parameters are in an italic typeface. Portions of a syntax
that are in bold should be entered as shown; portions of a syntax that are
in italics describe the type of information that should be entered. Here is
an example of a command syntax:

mem expression [, display format]

mem is the command. This command has two parameters, indicated by
expression and display format. The first parameter must be an actual C
expression; the second parameter, which identifies a specific display for-
mat, is optional.

(1 Square brackets ([and]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
don’t enter the brackets themselves. Here’s an example of a command
that has an optional parameter:

run [expression]

The RUN command has one parameter, expression, which is optional.

[Braces({and}) indicate a list. The symbol | (read as or) separates items
within the list. Here’s an example of a list:

sound {on | off}
This provides two choices: sound on or sound off.

Unless the list is enclosed in square brackets, you must choose one item
from the list.

Information About Cautions

This book contains cautions.

This is an example of a caution statement.

A caution statement describes a situation that could potentially
damage your software or equipment.

The information in a caution is provided for your protection. Please read each
caution carefully.

Read This First Vii

Related Documentation From Texas Instruments / Related Documentation

Related Documentation From Texas Instruments

The following books describe the TMS320C2xx DSPs and related support
tools. To obtain a copy of any of these Tl documents, call the Texas Instru-
ments Literature Response Center at (800) 477-8924. When ordering, please
identify the book by its title and literature number.

TMS320C1x/C2x/C2xx/C5x Assembly Language Tools User’s Guide (lit-
erature number SPRU018) describes the assembly language tools (as-
sembler, linker, and other tools used to develop assembly language
code), assembler directives, macros, common object file format, and
symbolic debugging directives for the 'C1x, 'C2x, ’C2xx, and 'C5x gen-
erations of devices.

TMS320C2x/C2xx/C5x Optimizing C Compiler User’s Guide (literature
number SPRUO024) describes the 'C2x/C2xx/C5x C compiler. This C
compiler accepts ANSI standard C source code and produces TMS320
assembly language source code for the 'C2x, 'C2xx, and 'C5x genera-
tions of devices.

TMS320C2xx User’s Guide (literature number SPRU127) discusses the
hardware aspects of the ’C2xx fixed-point digital signal processors. It de-
scribes pin assignments, architecture, instruction set, and software and
hardware applications. It also includes electrical specifications and pack-
age mechanical data for all ‘C2xx devices. The book features a section
comparing instructions from 'C2x to ’C2xx.

Related Documentation

viii

If you are an assembly language programmer and would like more information
about C or C expressions, you may find these books useful:

American National Standard for Information Systems—Programming
Language C X3.159-1989, American National Standards Institute
(ANSI standard for C)

Programming in C, Kochan, Steve G., Hayden Book Company

The C Programming Language (second edition, 1988), by Brian W. Kernig-
han and Dennis M. Ritchie, published by Prentice-Hall, Englewood Cliffs,
New Jersey.

FCC Warning

Trademarks

FCC Warning / Trademarks

This equipment is intended for use in a laboratory test environment only. It gen-
erates, uses, and can radiate radio frequency energy and has not been tested
for compliance with the limits of computing devices pursuant to subpart J of
part 15 of FCC rules, which are designed to provide reasonable protection
against radio frequency interference. Operation of this equipment in other en-
vironments may cause interference with radio communications, in which case
the user at his own expense will be required to take whatever measures may
be required to correct this interference.

MS-DOS is a registered trademark of Microsoft Corporation.
OpenWindows and SunOS are trademarks of Sun Microsystems, Inc.

0S/2, PC, and PC-DOS are trademarks of International Business Machines
Corporation.

SPARCstation is trademark of SPARC International, Inc., but licensed exclu-
sively to Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries,
licensed exclusively through X/Open Company Limited.

Windows is a trademark of Microsoft Corporation.

X Window System is a trademark of the Massachusetts Institute of Technolo-
gy.

Read This First ix

If You Need Assistance

If You Need Assistance . . .

If youwantto...

Contact Texas Instruments at

Visit Tl online

World Wide Web:

http://www.ti.com

Receive general information
or assistance

World Wide Web:
North America, South America:

Europe, Middle East, Africa
Dutch:

English:

French:

Italian:

German:

Japan (Japanese or English)
Domestic toll-free:
International:

Korea (Korean or English):
Taiwan (Chinese or English):

http://www.ti.com/sc/docs/pic/home.htm
(214) 644-5580

33-1-3070-1166
33-1-3070-1165
33-1-3070-1164
33-1-3070-1167
33-1-3070-1168

0120-81-0026
81-3-3457-0972 or
81-3-3457-0976

82-2-551-2804
886-2-3771450

Ask questions about Digital
Signal Processor (DSP)
product operation or report
suspected problems

Hotline:

Fax:

Fax Europe:

Email:

World Wide Web:
BBS North America:
BBS Europe:

320 BBS Online:

(713) 274-2320

(713) 274-2324
+33-1-3070-1032
dsph@ti.com
http://www.ti.com/dsps

(713) 274-2323 8-N-1
+44-2-3422-3248
ftp.ti.com:/mirrors/tms320bbs
(192.94.94.53)

Request tool updates

Software:
Software fax:
Hardware:

(214) 638-0333
(214) 638-7742

Order Texas Instruments
documentation (see Note 1)

Literature Response Center:

)

)
(713) 274-2285
(800) 477-8924

Make suggestions about or
report errors in documenta-
tion (see Note 2)

Email:
Mail:

comments@books.sc.ti.com

Texas Instruments Incorporated
Technical Publications Manager, MS 702
P.O. Box 1443

Houston, Texas 77251-1443

Notes:

2) Please mention the full title of the book, the literature number from the lower-right corner of the back cover, and the

publication date from the spine or front cover.

1) The literature number for the book is required; see the lower-right corner on the back cover.

Part I: Hands-On Information

Part Il: Debugger Description

Part Ill: Reference Material

Contents

xi

Figures

Tables

Examples

Map monitor? Something that prevents you from setting breakpoints?? Ro-
land mentioned it to Mary. Dave Matt knows something about it.

Chapter 1

Overview of a Code
Development and Debugging System

The TMS320C2xx C source debugger is an advanced programmer’s interface
that helps you to develop, test, and refine '‘C2xx C programs (compiled with
the "C2x/'C2xx/'C5x optimizing ANSI C compiler) and assembly language
programs. The debugger is the interface to the 'C2xx simulator and scan-
based emulator.

This chapter gives an overview of the programmer’s interface, describes the
’C2xx code development environment, and provides instructions and options
for invoking the debugger.

Topic Page
1.1 Description of the C Source Debuggert 1-2
1.2 Description of the Analysis Interface (Emulator Only) 1-5
1.3 Description of the Profiling Environment (Simulator Only) 1-6
1.4 Description of the Parallel Debug Manager (Emulator Only) 1-8
1.5 Developing Code forthe ’C2xXccoiiiiiiiiiininnnrennnnns 1-9
1.6 Preparing Your Program for Debuggingcu0 1-12
1.7 Invoking the Debuggers andthe PDMc.00 1-14
1.8 Debugger Optionscciiiiiiiiininnnnnrnnnnnrennnnns 1-17
1.9 Exiting a Debuggerorthe PDMc.ccoiiiiiiiiiinnnnns 1-22
1.10 Debugging ’C2xX Programsccevuuunnrrnrrnnennnnnns 1-23

1-1

Description of the C Source Debugger

1.1

Description of the C Source Debugger

The "C2xx C source debugging interface improves productivity by allowing you
to debug a program in the language it was written in. You can choose to debug
your programs in C, assembly language, or both. And, unlike many other de-
buggers, the 'C2xx debugger’s higher level features are available even when
you’re debugging assembly language code.

The Texas Instruments advanced programmer’s interface is easy to learn and
use. Its friendly window-, mouse-, and menu-oriented interface reduces learn-
ing time and eliminates the need to memorize complex commands. The
debugger’s customizable displays and flexible command entry let you develop
a debugging environment that suits your needs. A shortened learning curve
and increased productivity reduce the software development cycle, so you'll
get to market faster.

Figure 1-1 identifies several features of the debugger display.

Figure 1-1. The Basic Debugger Display
Pulldown——F Load

Break Watch Memory Color MoDe Analysis Run=F5 Step=F8 Next=F10
menus —DISASSEMBLY CALLS —— [CPU
008f 8aal call: POPD *+ A | 2: call() € Ace Function call
0090 80a0 SAR ARO, *+ 1: A PREG 00000000
] 0091 8180 SAR ARL,* 8 e PC 000f traceback
Disassembly—pp 0092 boo1l LAR ARO, #1 I [TOS 0060
) 0093 00e0 LAR ARO, *0+ WATCH ————— | STO 2e00
display 0094 7980 B call+44 (0Obbh) 1:str.a 0 <—rSEt—2dfc Natural-format
0096 8b8a LARP AR2 2: FO 1.000000e g IMR bff8 .
0097 bf0a LAR AR2,#£fffdh 3: color GREEN [[IFR 0000 data displays
0099 8beO MAR *0+ || TREG 0000
009a ~FILE: sample.c ARO 00f0
009b | 00008 Yi A AR1 0000
009c | 00009 AR2 0000
0094 | 00010 extern struct xxx str; AR3 00f0
009f | 00011 AR4 0000
C source 00a0 | 0§012 call(newvalue) AR5 0000 v
. 00a2 | 00013 int newvalue; AR6 0000
display 00a3 | 00014 { . AR7 0000
00015 static int value = 0;
00016
00017 switch (newvalue & 3) “MEMORY [PROG}—;
00018 —DISP: astr[7] 0107 bfog 09f5 A
00019 case 0 : str.a :| a 123 k;
! 0109 bf09 09£5
00020 case 1 : str.b :| b 555 rn 010b b£00 bed7
00021 case 2 : str.c :| ¢ 75435 —DISP: astr[7].f4—
00022 case 3 : xcall(1| £1 3 0] 0 OB D Ol
: & & {1} & 010f b801 e388 .
£3 0x00£000{ [2] 7 gﬁ; gﬂg ;:gg - Scrolling data
88 [lloool {Z} 34 0115 0040 8a89 displays with
i __ 0017 0163 7802
Interactive :OtmdAN. Dt [5] 3 0019 bSO 017c on-screen,
command wharis stx R Y |001b sbss asa0 interactive
struct xxx str; [8] 1 001d b801 a680
entry and [8] 001f 0290 038b editing
hi ind step [91 789 0121 7b9a 0126 ¥
istory window »>> Il 0123 8b89 7c02
0125 ef00 b801 /

1-2

Description of the C Source Debugger

Key features of the debugger

U

Multilevel debugging. The debugger allows you to debug both C and
assembly language code. If you’re debugging a C program, you can
choose to view just the C source, the disassembly of the object code
created from the C source, or both. You can also use the debugger as an
assembly language debugger.

Fully configurable, state-of-the-art, window-oriented interface. The
C source debugger separates code, data, and commands into manage-
able portions. Use any of the default displays. Or, select the windows you
want to display, size them, and move them where you want them.

Comprehensive data displays. You can easily create windows for
displaying and editing the values of variables, arrays, structures, point-
ers—any kind of data—in their natural format (float, int, char, enum, or
pointer). You can even display entire linked lists.

/ DISP: str WATCH \
a 123 1: str.a O
b 0 } 2: FO 1.000000e
75435 —DISP: *str.f3 3: color GREEN
3 a 8327 } d
b 666

¢ 87213 -DISP: *str.f3->£3
£1 45 a 15
£2 27 b 3212
£3 O0x00f| c 782
f4 [...]| f1 7
£2 9
£3 0x00£000a

A

On-screen editing. Change any data value displayed in any window—
just point the mouse, click, and type.

Continuous update. The debugger continuously updates information on
the screen, highlighting changed values.

Powerful command set. Unlike many other debugging systems, this
debugger doesn’t force you to learn a large, intricate command set. The
'C2xx C source debugger supports a small but powerful command set that
makes full use of C expressions. One debugger command performs
actions that would take several commands in another system.

Overview of a Code Development and Debugging System 1-3

Description of the C Source Debugger

1-4

a

Flexible command entry. There are a variety of ways to enter com-
mands. You can type commands or use a mouse, function keys, or the
pulldown menus; choose the method that you like best. Want to reenter
a command? No need to retype it—simply use the command history.

Create your own debugger. The debugger display is completely config-
urable, allowing you to create the interface that is best suited for your use.

W If you're using a color display, you can change the colors of any area
on the screen.

B You can change the physical appearance of display features such as
window borders.

B You can interactively set the size and position of windows in the
display.

Create and save as many custom configurations as you like, or use the
defaults. Use the debugger with a color display or a black-and-white
display. A color display is preferable; the various types of information on
the display are easier to distinguish when they are highlighted with color.

Variety of screen sizes. The debugger’s default configuration is set up
for a typical PC display, with 25 lines by 80 characters. If you use a sophis-
ticated graphics card, you can take advantage of the debugger’s addi-
tional screen sizes. A larger screen size allows you to display more infor-
mation and provides you with more screen space for organizing the
display— bringing the benefits of workstation displays to your PC.

All the standard features you expect in a world-class debugger. The
debugger provides you with complete control over program execution with
features like conditional execution and single-stepping (including
single-stepping into or over function calls). You can set or clear a break-
point with a click of the mouse or by typing commands. You can define a
memory map that identifies the portions of target memory that the debug-
ger can access. You can choose to load only the symbol table portion of
an object file to work with systems that have code in ROM. The debugger
can execute commands from a batch file, providing you with an easy
method for entering often-used command sequences.

Description of the Analysis Interface (Emulator Only)

1.2 Description of the Analysis Interface (Emulator Only)

In addition to the basic debugger features, the 'C2xx has an analysis module
on the chip that allows the emulator to monitor the operations of your target
system. This expands your debugging capabilities beyond simple software
breakpoints.

The interface to the analysis module provides you with easy-to-use windows,
dialog boxes, and commands that give you a detailed look into the operations
of your target system.

Key features of the analysis interface include:

(1 Hardware breakpoints. You can also set up the analysis interface to halt
the processor during execution of your program. The events that cause
the processor to stop are called break events. A break event can define
a variety of conditions, including:

B Bus accesses
B Low levels on EMUO/1 pins

[Set up EMUO/1 pins. In a system of multiple 'C2xx processors connected
by EMUO/1 (emulation event) pins, setting up the EMUO/1 pins allows you
to create global breakpoints. Whenever one processor in your system
reaches a breakpoint (software or hardware), all processors in the system
can be halted.

Overview of a Code Development and Debugging System 1-5

Description of the Profiling Environment (Simulator Only)

1.3 Description of the Profiling Environment (Simulator Only)

In addition to the basic debugging environment, a second environment—the
profiling environment—is available for the simulator version of the debugger.
The profiling environment provides a method for collecting execution statistics
about specific areas in your code. This gives you immediate feedback on your
application’s performance.

Figure 1-2 identifies several features of the debugger display within the profil-
ing environment.

Figure 1-2. The Profiling-Environment Display

Profiling areas
are clearly
marked

PROFILE —|||c

window
displays
execution
statistics

/ Load mAp Mark Enable Disable Unmark View Stop-points Profile

—DISASSEMBLY:
£0000.1 nnnknnwl# RE> LDI SP,AR3 ‘k
£00002 02750002 ADDI 2,SP — Pulldown menu
£00003 0£240000 PUSH R4 :
£00004 08620000 LDI O,R4 provides ac-
£00005 15440301 STI R4, *+AR3 (1) cess to often-
£00006 15440302 STI R4, *+AR3 (2) :
£00007 62£00057 CALL meminit used basic
£00008 08640000 LDI O,R4 debugger com-
£00009 0£240000 << LDI 0,R4
£0000a 62£00020 PUSH R4 mands plus
PROFILE special profiling
Area Name Count Inclusive Incl-Max Exclusive Excl-Max A commands
AR 00£00001-00£00008 1 65 65 19 19
<sample>#58 1 50 50 7 7
CR <sample>#59-64 1 87 87 44 44
CF call() 24 1623 99 1089 55
AL meminit 1 3 3 3 3 Y
AL 00£00059 disabled
~FILE: sample.c—
00053 main() A
00054 {
00055 register int i = 0;
00056 int j =0, k = 0;
00057
ggggg :gi ;‘emh(l%t()(;) i< ogsoooo Profiling areas
— or 1= 7 1 X. ;
- CC 00060 { ! ! are clearly
65 symbols loaded 00061 call(i); marked
DORe 00062 if (i & §) § += i;
. 00063 aaif[k][k] = j;
file sample.c 00064 << if (!(i & OXFFFF)) A 4
00065 }
\:»l 00066 e (pp)8 /

Key features of the profiling environment

1-6

The profiling environment builds on the same easy-to-use interface available
in the basic debugging environment and has these additional features:

(1 More efficient code. Within the profiling environment, you can quickly
identify busy sections in your programs. This helps you to direct valuable
development time toward streamlining the sections of code that most dra-
matically affect program performance.

Description of the Profiling Environment (Simulator Only)

Statistics on multiple areas. You can collect statistics about individual
statements in disassembly or C, about ranges in disassembly or C, and
about C functions. When you are collecting statistics on many areas, you
can choose to view the statistics for all the areas or a subset of the areas.

Comprehensive display of statistics. The profiler provides all the infor-
mation you need for identifying bottlenecks in your code:

B The number of times each area was entered during the profiling
session.

B The total execution time of an area, including or excluding the execu-
tion time of any subroutines called from within the area.

B The maximum time for one iteration of an area, including or excluding
the execution time of any subroutines called from within the area.

Statistics may be updated continuously during the profiling session or at
selected intervals.

Configurable display of statistics. Display the entire set of data, or
display one type of data at a time. Display all the areas you're profiling, or
display a selected subset of the areas.

Visual representation of statistics. When you choose to display one
type of data at a time, the statistics will be accompanied by histograms for
each area, showing the relationship of each area’s statistics to those of the
other profiled areas.

Disabled areas. In addition to identifying areas that you can collect
statistics on, you can also identify areas that you don’t want to affect the
statistics. This removes the timing impact from code such as a standard
library function or a fully optimized portion of code.

Special profiling commands. The profiling environment supports a rich
set of commands to help you select areas and display information. Some
of the basic debugger commands—such as the memory map
commands—may be necessary during profiling and are available within
the profiling environment. Other commands—such as breakpoint
commands and run commands—are not necessary and are therefore not
available within the profiling environment.

Overview of a Code Development and Debugging System 1-7

Description of the Parallel Debug Manager (Emulator Only)

1.4 Description of the Parallel Debug Manager (Emulator Only)

The TMS320C2xx emulation system is a true multiprocessing debugging sys-
tem. It allows you to debug your entire application by using the parallel debug
manager (PDM). The PDM is a command shell that controls and coordinates
multiple debuggers, providing you with the ability to:

Create and control debuggers for one or more processors
Organize debuggers into groups

Send commands to one or more debuggers

Synchronously run, step, and halt multiple processors in parallel
Gather system information in a central location

Uoooo

You can operate the PDM only on a PC™ running OS/2™ or a SPARCstation™
running SunOS™. The PDM is invoked and PDM commands are executed
from a command shell window under the host windowing system. From the
PDM, you can invoke and control debuggers for each of the processors in your
multiprocessing system.

As Figure 1-3 shows, you can run multiple debuggers under the control of the
PDM.

Figure 1-3. The PDM Environment

PDM

))

[

CPU_A
debugger

) (

CPU_B CPU_C CPU_D CPU_E CPU_x
debugger debugger debugger debugger debugger

1-8

Developing Code for the ‘C2xx

1.5 Developing Code for the ’C2xx

The 'C2xx is well supported by a complete set of hardware and software
development tools, including a C compiler, assembler, and linker. Figure 1-4
illustrates the ’‘C2xx code development flow. The most common paths of soft-
ware development are highlighted in grey; the other portions are optional.

Figure 1-4. 'C2xx Software Development Flow

. . -
. C .
. source .
: files ¢
—
C compiler
\——
. .
. Assembler o
. .
. source
. .
. .
P— > f_\v
+ library Assembler
. .
. . .
o Library .
. - .
. ofobject « N -
M files : >] 0 Runtime- D
> Linker ‘ . sgpport .
¢ library ¢

. + Executable «
Hex conversion . .
ity AT m—
° ° Debugging
S S tools
E Hexadecimal E
. Objectfile .
"C2xx
EPROM
programmer > target
system

Overview of a Code Development and Debugging System 1-9

Developing Code for the 'C2xx

These tools use common object file format (COFF), which encourages
modular programming. COFF allows you to divide your code into logical
blocks, define your system’s memory map, and then link code into specific
memory areas. COFF also provides rich support for source-level debugging.

The following list describes the tools shown in Figure 1-4.

The *C2x/'C2xx/'C5x optimizing ANSI C compiler is a full-featured optimizing
compiler that translates standard ANSI C programs into ’C2xx assembly lan-
guage source. Key characteristics include:

(1 Standard ANSI C. The ANSI standard is a precise definition of the C
language, agreed upon by the C community. The standard encompasses
most of the recent extensions to C. To an increasing degree, ANSI confor-
mance is a requirement for C compilers in the DSP community.

(O Optimization. The compiler uses several advanced techniques for
generating efficient, compact code from C source.

(1 Assembly language output. The compiler generates assembly lan-
guage source that you can inspect (and modify, if desired).

(1 ANSI standard runtime support. The compiler package comes with a
complete runtime library that conforms to the ANSI C library standard. The
library includes functions for string manipulation, dynamic memory alloca-
tion, data conversion, timekeeping, trigonometry, exponential operations,
and hyperbolic operations. Functions for I/O and signal handling are not
included, because they are application specific.

(O Flexible assembly language interface. The compiler has straightfor-
ward calling conventions, allowing you to easily write assembly and C
functions that call each other.

[Shell program. The compiler package includes a shell program that
enables you to compile, assemble, and link programs in a single step.

(1 Source interlist utility. The compiler package includes a utility that inter-
lists your original C source statements into the assembly language output
of the compiler. This utility provides you with an easy method for inspecting
the assembly code generated for each C statement.

assembler

linker

debugging
tools

hex
conversion
utility

Developing Code for the ‘C2xx

The assembler translates ‘C2xx assembly language source files into machine
language object files.

The linker combines object files into a single, executable object module. As
the linker creates the executable module, it performs relocation and resolves
external references. The linker is a tool that allows you to define your system’s
memory map and to associate blocks of code with defined memory areas.

The main purpose of the development process is to produce a module that can
be executed in a ’"C2xx target system. You can use a debugging tool to re-
fine and correct your code. Available products include:

1 A scan-based emulator
O A software simulator

Each of these tools uses the 'C2xx debugger as a software interface.

A hex conversion utility is also available; it converts a COFF object file into
an ASCII-Hex, Intel, Motorola-S, Tektronix, or TI-tagged object-format file that
can be downloaded to an EPROM programmer.

Overview of a Code Development and Debugging System 1-11

Preparing Your Program for Debugging

1.6 Preparing Your Program for Debugging

Figure 1-5 illustrates the steps you must go through to prepare a program for

debugging.

Figure 1-5. Steps You Go Through to Prepare a Program

If you’re working with a C ~|—>

program, start here.

If you’re working with an
assembly language
program, start here.

This is the file that you load
when you invoke the
debugger.

>

source

se 0000

.
.
Cc .
.
.
.

: assembly
. language
: code

se co0 00

object
code

se 0000
se 0000

Assembler

. .

.executable:
object code;

If you'’re preparing to
debug a C program. ..

1) Compile the program; use the —g option. If you
plan to use the profiler, compile the program with
the —as option.

2) Assemble the resulting assembly language pro-

gram. (The compiler does this automatically.)

3) Link the resulting object file.

This produces an object file that you can load into the

debugger.

If you'’re preparing to
debug an assembly
language program. . .

1) Assemble the assembly language source file.
2) Link the resulting object file.

This produces an object file that you can load into the
debugger.

You can compile, assemble, and link a program by invoking the compiler,
assembler, and linker in separate steps; or you can perform all three actions
in a single step by using the dspcl shell program. The TMS320C1x/
C2x/C2xx/C5x Assembly Language Tools User’s Guide and the TMS320C2x/
C2xx/C5x Optimizing C Compiler User’s Guide contain complete instructions
for invoking the tools individually and for using the shell program.

Preparing Your Program for Debugging

For your convenience, here’s the command for invoking the shell program
when preparing a program for debugging:

dspcl [-options] -g filenames [-z [link options]]

dspcl

options

-9

filenames

-Z

link options

invokes the compiler and assembler.

affect the way the shell processes input files. If you plan to use
the debugger’s profiling environment, include the -as option.

tells the C compiler to produce symbolic debugging informa-
tion. When preparing a C program for debugging, you must use
the —g option, or you won’t be able to access symbolic debug-
ging information (such as C labels, variables, etc.).

are one or more C source files, assembly language source
files, or object files. Filenames are not case sensitive.

invokes the linker. After compiling/assembling your programs,
you can invoke the linker in a separate step. If you want the
shell to automatically invoke the linker, however, use -z.

affect the way the linker processes input files; use these options
only when you use -z.

Options and filenames can be specified in any order on the command line, but

if you use -z,

it must follow all C/assembly language source filenames and

compiler options, and it must precede all linker options.

The shell identifies a file’s type by the filename’s extension.

Extension File type The shell will...

.C C source Compile, assemble, and
link the file

.asm Assembly language Assemble and link the file

source

.S (any extension that Assembly language Assemble and link the file

begins with s) source

.0+ (extension begins Object file Link the file

with 0)

none (.c assumed) C source Compile, assemble, and
link the file

Note: The shell links files only if you specify the -z option.

Overview of a Code Development and Debugging System 1-13

Invoking the Debuggers and the PDM

1.7

Invoking the Debuggers and the PDM

If you are using an emulator, there are two ways to invoke the debugger:

[You can invoke a standalone debugger that is not controlled by the parallel
debug manager (PDM).

[You can invoke several debuggers that are under control of the PDM.
If you are using a simulator, you can invoke only a standalone debugger.

This section describes how to invoke any version of the debugger and how to
invoke the PDM.

Invoking a standalone debugger

Here’s the basic format for the command that invokes a standalone debugger:

emulator: emu2xx [filename] [options]
simulator: sim2xx [filename] [options]

emu2xx and Invoke the debugger. Enter one of these commands from the

sim2xx operating-system command line. Note that emu2xx refers
to the emu2xx, emu2xxo, emu2xxw, and emu2xxwm
executables.

filename An optional parameter that names an object file that the
debugger loads into memory during invocation. The debug-
ger looks for the file in the current directory; if the file isn’t in
the current directory, you must supply the entire pathname.
If you don’t supply an extension for the filename, the debug-
ger assumes that the extension is .out.

options Supply the debugger with additional information. See Sec-
tion 1.8, page 1-17, for a complete list of debugger options.

Invoking the Debuggers and the PDM

Invoking multiple debuggers (emulator only)

Before you can invoke multiple debuggers in a multiprocessing environment,
you must first invoke the parallel debug manager (PDM). The PDM is invoked
and PDM commands are executed from a command shell window under the
host windowing system. The format for invoking the PDM is:

pdm [-t filename]

Once the PDM is invoked, you will see the PDM command prompt (PDM:1>>)
and can begin entering commands.

When you invoke the PDM, it looks for a file called init.pdm. This file contains
initialization commands for the PDM. The PDM searches for the init.pdm file
in the current directory and in the directories you specify with the D_DIR envi-
ronment variable. If the PDM can’t find the initialization file, you will see this
message: Cannot open take file.

Note:

The PDM environment uses the interprocess communication (IPC) features
of UNIX™ (shared memory, message queues, and semaphores) to provide
and manage communications between the different tasks. If you are not sure
whether the IPC features are enabled, see your system administrator. To use
the PDM environment, you should be familiar with the IPC status (ipcs) and
IPC remove (ipcrm) UNIX commands. If you use the UNIX task kill (kill) com-
mand to terminate execution of tasks, you will also need to use the ipcrm
command to terminate the shared memory, message queues, and sema-
phores used by the PDM.

When you debug a multiprocessing application, each processor must have its
own debugger. These debuggers can be invoked individually from the PDM
command line.

Overview of a Code Development and Debugging System 1-15

Invoking the Debuggers and the PDM

To invoke a debugger, use the SPAWN command. Here’s the basic format for
this command:

spawn emu2xx [filename] [options]

emu2xx Invokes the debugger. Note that emu2xx refers to the
emu2xx, emu2xxo, emu2xxw, and emu2xxwm executables.

In order to invoke a debugger, the PDM must be able to find
the executable file for that debugger. The PDM will first
search the current directory and then search the directories
listed with the PATH statement or path environment variable.

—-n processor Supplies a processor name. You must use the —n option be-

name cause the PDM uses processor names to identify the various
debuggers that are running. The processor name can con-
sist of up to eight alphanumeric characters or underscore
characters and must begin with an alphanumeric character.
Note that the name is not case sensitive.

The processor name must match one of the names defined
in your board configuration file (see Appendix B, Describing
Your Target System to the Debugger). For example, to in-
voke a debugger for a ’C2xx that you had defined as CPU_A,
you would enter:

spawn emu2xx -n CPU_A

filename An optional parameter that names an object file that the
debugger loads into memory during invocation. The debug-
ger looks for the file in the current directory; if the file isn’t in
the current directory, you must supply the entire pathname.
If you don’t supply an extension for the filename, the debug-
ger assumes that the extension is .out.

options Supply the debugger with additional information. See Sec-
tion 1.8, page 1-17, for a complete list of debugger options.

1.8 Debugger Options

Debugger Options

Table 1-1 lists the debugger options that you can use when invoking a debug-
ger, and the subsections that follow the table describe these options. You can
also specify filename and option information with the D_OPTIONS environ-
ment variable (see Setting up the environment variables in your installation

guide).

Table 1-1. Summary of Debugger Options

Option Brief Description Debugger Tools See Page
-@ Recognize commands from the BTT software Emulator |:1|-1 7
-b Select a preset screen size All |:1|-1 8
-bb Select a preset screen size All |-_1|-1 8
-bl Select the screen length All |:1|—1 8
-bw Select the screen width All |:1|-1 8
-C Clear the .bss section All 19
-d machinename Display the debugger on different machine All (X Window |:1|-19
System™ only)
~f filename Identify a new board configuration file Emulator |-_1|-19
-i pathname Identify additional directories All |:1|—1 9
-min Select the minimal debugging mode All |:t|-20
-mv Select the device version to simulate Simulator |:t|-20
—-n processor name Identify processor for debugging Emulator |:1|-20
—p port address Identify the port address Emulator |-_1|-21
—profile Enter the profiling environment Simulator |:1|—21
-r Use the debugger in real-time mode Emulator |:t|-21
-S Load the symbol table only All |:1|-22
-t filename Identify a new initialization file All |:I|-22
-V Load without the symbol table All |-_1|-22
-X Ignore D_OPTIONS All |:1|—22

Recognizing commands from the BTT software (-@ option)

This option is valid only when you are using the emulator. The —-@ option
allows the debugger to recognize commands that you send from the XDS522A
BTT software. If you do not invoke the debugger with the -@ option, the
debugger will not respond to commands from the BTT software.

Overview of a Code Development and Debugging System 1-17

Debugger Options

Selecting the screen size (-b, -bb, -bl, -bw options)

By default, the debugger uses an 80-character-by-25-line screen. If you'd like
to use a different screen size, the method for doing so varies, depending on
the type of system that you’re using:

[PC systems. You can change the default screen size by using one of the
-b options, which provides a preset screen size, or specifies the screen
size at startup.

W Using a preset screen size. Use the —b or —bb option to select one of
these preset screen sizes:

-b Screen size is 80 characters by 37 lines for EGA or VGA
displays.

-bb Screen size is 80 characters by 50 lines for a VGA display
only.

B Resizing the screen at startup. Use the -bl or -bw option to specify
the screen length or width. The maximum size of the debugger screen
is 132 characters by 60 lines.

-bl Screen length in lines equals the number entered. If the
setting you specify is too long, the default length of 25 lines is
used.

-bw Screen width in characters equals the number entered. If the
setting you specify is too wide, the default width of 80 charac-
ters is used.

[SPARCstations. When you run multiple debuggers, the default screen
size is a good choice because you can easily fit up to five default-size
debuggers on your screen. However, you can change the default screen
size by using one of the -b options, which provides a preset screen size,
or by resizing the screen at run time. (Note that when you are running a
standalone debugger, you can also change the screen size by using one
of these methods.)

B Using a preset screen size. Use the —b or —bb option to select one of
these preset screen sizes:

-b Screen size is 80 characters by 43 lines.
-bb Screen size is 80 characters by 50 lines.

B Resizing the screen at run time. You can resize the screen at run
time by using your mouse to change the size of the operating-system
window that contains the debugger. The maximum size of the debug-
ger screen is 132 characters by 60 lines.

Debugger Options

Clearing the .bss section (-c option)

The —c option clears the .bss section when the debugger loads code. You can
use this option when you have C programs that use the RAM initialization mod-
el (specified with the —cr linker option).

Displaying the debugger on a different machine (-d option)

If you are using the X Window System, you can use the -d option to display the
debugger on a different machine than the one the program is running on. For
example, if you are running a debugger on a machine called opie and you want
the debugger display to appear on a machine called barney, use the following
command to invoke the debugger:

emu2xx —d barney:0

You can also specify a different machine by using the DISPLAY environment
variable (see the appropriate installation guide for more information). If you
use both the DISPLAY environment variable and -d, the —d option overrides
DISPLAY.

Identifying a new board configuration file (-f option)

This option is valid only when you are using the emulator. The -f option allows
you to specify a board configuration file that will be used instead of board.dat.
The format for this option is:

-f filename

Identifying additional directories (-i option)

The -i option identifies additional directories that contain your source files.
Replace pathname with an appropriate directory name. You can specify sev-
eral pathnames; use the —i option as many times as necessary. For example:

emu2xx —i pathname; -i pathname, —i pathnames . . .

Using i is similar to using the D_SRC environment variable (see Setting up
the environment variables in the appropriate installation guide). If you name
directories with both —i and D_SRC, the debugger first searches through direc-
tories named with —i. The debugger can track a cumulative total of 20 paths
(including paths specified with —i, D_SRC, and the debugger USE command).

Overview of a Code Development and Debugging System 1-19

Debugger Options

Selecting the minimal debugging mode (-min option)

The debugger automatically displays whatever code is currently running: as-
sembly language or C. Depending on the code that is currently running, the
debugger displays various windows, such as the DISASSEMBLY, COM-
MAND, CPU, MEMORY, or CALLS window.

The debugger has a minimal debugging mode that displays the COMMAND,
WATCH, and DISP windows only. The WATCH and DISP windows are dis-
played only if you cause them to display (by entering the WA or DISP com-
mands). Minimal mode may be useful when you need to debug a memory pro-
blem.

To invoke the debugger and enter minimal mode, use the —min option:
emu2xx -min . . .

For more information about the windows in the debugger interface, see Sec-
tion 4.2, Descriptions of the Different Kinds of Windows and Their Contents.

Selecting the device version (-mv option)

The —mv option specifies which memory map the simulator loads. By default,
the simulator loads the siminit.cmd file, which is a generic memory map. Each
of the provided memory maps simulates a different ‘C2xx device, as described
in the following table:

Device Initialization
Option Simulated File Used Peripherals Simulated

-mv203 TMS320C203 sim203.cmd Synchronous serial port, asynchro-
nous serial port, timer, wait-state
generator

-mv209 TMS320C209 sim209.cmd Timer, wait-state generator

Identifying the processor that will be debugged (-n option)

1-20

The —-n option is valid only when using the emulator. The —n option allows you
to specify which particular ‘C2xx you plan to debug. The processor name must
match one of the names defined in your board.cfg file. For example, if you
wanted to debug a 'C2xx that you defined as cpu_a, you would specify:

spawn emu2xx —-n cpu_a

Processor names can be any string less than 32 characters long; however,
they cannot contain double quotes, a line feed, or a newline character. For
more information about the board.cfg file, see Appendix B, Describing Your
Target System to the Debugger.

Debugger Options

Identifying the port address (-p option)

The —p option is valid only when you are using the emulator. The —p option
identifies the I/O port address that the debugger uses for communicating with
the emulator. If you used the default switch settings, you don’t need to use the
—p option. If you used nondefault switch settings, you must use -p. Refer
to your entries in the Your Settings table in the appropriate installation guide;
depending on your switch settings, replace port address with one of these

values:
Switch 1 Switch 2 Option
on on -p 240 (optional)
on off -p 280
off on -p 320
off off -p 340

If you didn’t note the I/O switch settings, you can use a trial-and-error approach
to find the correct —p setting. If you use the wrong setting, you will see an error
message when you invoke the debugger. (See the appropriate installation
guide for more information.)

Entering the profiling environment (-profile option)

This option is valid only when you are using the simulator. The —profile option
allows you to bring up the debugger in a profiling environment so that you can
collect statistics about code execution. Note that only a subset of the basic
debugger features is available in the profiling environment.

Using the debugger in real-time mode (-r option)

The -r option is valid only when you are using the emulator. By default, the
debugger operates in stop mode, which causes the processor to stop when
you want to view register or memory contents. To use the real-time mode and
prevent the processor from stopping, do the following:

(1 Load the real-time monitor program into your target memory or embed the
monitor program in your application code.

d Invoke the debugger with the -r option.

For more information about stop mode and real-time mode, see Section 1.11,
Understanding the Operating Modes of the Debugger, on page 1-24.

Overview of a Code Development and Debugging System 1-21

Debugger Options / Exiting the Debugger or the PDM

Loading the symbol table only (-s option)

If you supply a filename when you invoke the debugger, you can use the -s
option to tell the debugger to load only the file’s symbol table (without the file’s
object code). This option is useful in a debugging environment in which the
debugger cannot, or need not, load the object code (for example, if the code
is in ROM). Using this option is similar to loading a file by using the debugger’s
SLOAD command.

Identifying a new initialization file (-t option)

The -t option allows you to specify an initialization command file that will be
used instead of siminit.cmd, emuinit.cmd, or init.cmd. The format for this
option is:

-t filename

Loading without the symbol table (-v option)

The -v option prevents the debugger from loading the entire symbol table
when you load an object file. The debugger loads only the global symbols and
later loads local symbols as it needs them. This speeds up the loading time and
consumes less memory.

The -v option affects all loads, including those performed when you invoke the
debugger and those performed with the LOAD command within the debugger
environment.

Ignoring D_OPTIONS (-x option)

The -x option tells the debugger to ignore any information supplied with the
D_OPTIONS environment variable (described in the installation guide).

1.9 Exiting a Debugger or the PDM

1-22

To exit any version of the debugger, enter the following command from the
COMMAND window of the debugger you want to close:

quit

You don’'t need to worry about where the cursor is in the debugger
window—ijust type. If a program is running, press to halt program execu-
tion before you quit the debugger.

If you’re running a standalone debugger under Windows™, you can exit the
debugger by selecting the close option from the Windows menu bar.

You can also enter QUIT from the command line of the PDM to quit all of the
debuggers (and also close the PDM).

Debugging 'C2xx Programs

1.10 Debugging 'C2xx Programs

Debugging a program is a multiple-step process. These steps are described
below, with references to parts of this book that will help you accomplish each

step.
Prepare a C program or assem- See Section 1.6, Preparing
—N bly language program for de- Your Program for Debugging,
nd bugging. page 1-12.

m ¥

Ensure that the debugger has a See Chapter 6, Defining a
valid memory map. Memory Map.
Load the program’s object file. See Section 8.3, Loading Ob-

ject Code, page 8-10.

Em \/

Run the loaded file. You can run See Section 7.5, Running Your
the entire program, run parts of Programs, page 8-13.

the program, or single-step

through the program.

e <

Stop the program at critical
points and examine important
information.

See Chapter 10, Using Soft-

ware Breakpoints, and Chapter
9, Managing Data.

If you find minor problems in See Modifying assembly lan-
your code, you can temporarily guage code on page 8-5.

solve them with patch assem-

bly.

-. \/

Once you have decided what changes must be made to your program,
exit the debugger, edit your source file, and return to Step 1.

Overview of a Code Development and Debugging System 1-23

Understanding the Operating Modes of the Debugger

1.11 Understanding the Operating Modes of the Debugger

By default, the ’C2xx debugger operates in stop mode. When you use the de-
bugger in stop mode and you want to view information about memory or regis-
ter contents, the debugger stops the 'C2xx processor and causes the proces-
sor to execute instructions that provide memory or register values to the de-
bugger. When the processor is providing information to the debugger, the
'C2xx processor is halted from executing code, and the processor cannot re-
spond to interrupts or execute interrupt-driven real-time tasks.

If you are debugging a system that requires the 'C2xx processor to respond
to interrupt-driven tasks or you do not want to stop the processor to view regis-
ter or memory contents, you can use the debugger in real-time mode. In real-
time mode, the processor is never halted and is able to respond to interrupts
and execute interrupt-driven real-time tasks.

Switching to the real-time mode

1-24

To use real-time mode, you must load the real-time monitor program
(c200mnrt.out) into target memory or embed the monitor program in your ap-
plication code. The monitor program is included in the debugger package. You
can load the monitor program at any time. However, you cannot use the real-
time mode before the monitor program is loaded into memory or embedded
in your application code.

The steps for entering the real-time mode vary according when or how you
load the monitor program:

1 If you do not embed the monitor program in your application code or load
the monitor program into target memory before you invoke the debugger,
follow these steps to use the real-time mode:

1) Invoke the debugger without the -r option. (The —r option selects real-
time mode.)

2) Load the monitor program into target memory:
load c200mnrt.out

3) Run the monitor program to the MON_GO label:
go MON_GO

In order to use the debugger in real-time mode, the processor must
execute the monitor program up to the MON_GO label.

Understanding the Operating Modes of the Debugger

4) Switch to the real-time mode:
realtime

The REALTIME command switches the debugger from stop mode to
real-time mode. When you use the REALTIME command, the debug-
ger deletes all breakpoints that you might have set in stop mode.

5) Load your application code.

g If you embeded the monitor program in your application code or loaded
into target memory before you invoked the debugger, follow these steps
to enter the real-time mode:

1) Invoke the debugger with the -r (real-time mode) option.

2) Load your application code.

Note:

If you have the monitor program embedded in your application code, your
target system is running, and use use —r when you invoke the debugger, the
'C2xx processor is halted momentarily until the debugger completes a short
initialization sequence.

To return to stop mode, use the STOPMODE command. When you enter this
command, the debugger deletes all breakpoints that you might have set in
real-time mode.

Optimizing performance in real-time mode

Overview of a Code Development and Debugging System 1-25

1-26

Chapter 2

Using the Parallel Debug Manager

The TMS320C2xx emulation system is a true multiprocessing debugging
system. It allows you to debug your entire application by using the parallel
debug manager (PDM). The PDM is a command shell that controls and coordi-
nates multiple debuggers. This chapter describes the functions that you can
perform with the PDM. You can operate the PDM only with the emulator
version of the debugger on a PC running OS/2 or a SPARCstation running
SunOS.

Refer to Chapter 1, Overview of a Code Development and Debugging System,
for information about invoking the PDM and debuggers.

Topic Page
2.1 Identifying Processors and Groupsccouiiiinnnnnnnnnns 2-2
2.2 Sending Debugger Commands to One or More Debuggers 2-6
2.3 RunningandHaltingCodecciiiiiiiiiiiiiiinnennns 2-7
2.4 EnteringPDM Commandsc.cuviummnnnnnnnnnnnnnnnns 2-9
2.5 Defining Your Own Command Stringsccccvunnn 2-15
2.6 Entering Operating-System Commandsc.couttn 2-16
2.7 Understanding the PDM’s Expression Analysis 2-17
2.8 Using System Variablescccciiiiiiiiiiiiia, 2-18
2.9 Evaluating EXpressionsccciiiiiiiiiinnnnnnnnnns 2-21

2-1

Identifying Processors and Groups

2.1

Identifying Processors and Groups

You can send commands to an individual processor or to a group of proces-
sors. To do this, you must assign names to the individual processors or to
groups of processors. Individual processor names are assigned when you in-
voke the individual debuggers; you can assign group names with the SET
command after the individual processor names have been assigned.

Note:

Each debugger that runs under the PDM must have a unique processor
name. The PDM does not keep track of existing processor names. When you
send a command to a debugger, the PDM will validate the existence of a de-
bugger invoked with that processor name.

Assigning names to individual processors

2-2

You must associate each debugger within the multiprocessing system with a
unique name, referred to as a processor name. The processor name is used
for:

(1 Identifying a processor to send commands to.
[Assigning a processor to a group.

(O Setting the default prompts for the associated debuggers. For example,
if you invoke a debugger with a processor name of CPU_A, that debug-
ger’s prompt will be CPU_A>.

O Identifying the individual debuggers on the screen (SPARCstations only).
The processor name that you assign will appear at the top of the operating-
system window that contains the debugger. Additionally, if you turn one of
the windows into an icon, the icon name is the same as the processor
name that you assigned.

To assign a processor name, you can use the —n option when you invoke a
debugger. For example, to name one of the 'C2xx processors CPU_B, use the
following command to invoke the debugger:

spawn emu2xx -n CPU_B

From this point onward, whenever you need to identify this debugger, you can
identify it by its processor name, CPU_B.

The processor name that you supply can consist of up to eight alphanumeric
characters or underscore characters and must begin with an alphabetic char-
acter. Note that the name is not case sensitive. The processor name must
match one of the names defined in your board configuration file (see Appen-
dix B, Describing Your Target System to the Debugger).

Organizing processors into groups

Identifying Processors and Groups

Processors can be organized into groups; these groups are identified by
names defined with the SET command. Each processor can belong to any
group, all groups, or a group of its own. Figure 2-1 (a) shows an example of
processors that could exist in a system, and Figure 2-1 (b) illustrates three
examples of named groups. GROUP1 contains two processors, GROUP2
contains four processors, and GROUP3 contains five processors.

Figure 2-1. Grouping Processors

(a) All possible processors in a system

CPU_A CPU B CPU_C CPU_D CPU_E
debugger debugger debugger debugger debugger
(b) Examples of how processors could be grouped
r-———— | r——-————— | r T
GROUP1		GROUP2		GROUP3
CPU_A		CPU_A		CPU_A
debugger		debugger		debugger
CPU_C		CPU B [CPU_B I		
debugger		debugger		debugger
L 4+ 1 Jeun	!	[Tcruc]		
debugger : I debugger :				
CPU_E		CPU_D		
debugger		debugger		
L— -	CPU_E			
debugger				
N — |
To define and manipulate software groupings of named processors, use the
SET and UNSET commands.
Using the Parallel Debug Manager 2-3

Identifying Processors and Groups

2-4

a

Defining a group of processors
To define a group, use the SET command. The format for this command is:
set [group name |[= list of processor names] |

This command allows you to specify a group name and the list of proces-
sors you want in the group. The group name can consist of up to 128 alpha-
numeric characters or underscore characters.

For example, to create the GROUP1 group illustrated in Figure 2-1 (b),
you could enter the following on the PDM command line:

set GROUP1 = CPU_A CPU_C

The result is a group called GROUP1 that contains the processors named
CPU_A and CPU_C. Note that the order in which you add processors to a
group is the same order in which commands will be sent to the members of
that group.

Setting the default group

Many of the PDM commands can be sent to groups; if you often send com-
mands to the same group and you want to avoid typing the group name
each time, you can assign a default group.

To set the default group, use the SET command with a special group name
called dgroup. For example, if you want the default group to contain the
processors called CPU_B, CPU_D, and CPU_E, enter:

set dgroup = CPU_B CPU_D CPU_E

The PDM will automatically send commands to the default group when
you don’t specify a group name.

Modifying an existing group or creating a group based on another
group

Once you’ve created a group, you can add processors to it by using the
SET command and preceding the existing group name with a dollar sign
($) in the list of processors. You can also use a group as part of another
group by preceding the existing group’s name with a dollar sign. The dollar
sign tells the PDM to use the processors listed previously in the group as
part of the new list of processors.

Suppose GROUPA contained CPU_C and CPU_D. If you wanted to add
CPU _E to the group, you'd enter:
set GROUPA = $GROUPA CPU_E

After entering this command, GROUPA would contain CPU_C, CPU_D,
and CPU_E.

Identifying Processors and Groups

If you decided to send numerous commands to GROUPA, you could make
it the default group:

set dgroup = $GROUPA

(1 Listing all groups of processors

To list all groups of processors in the system, use the SET command with-
out any parameters:

set
The PDM lists all of the groups and the processors associated with them:

GROUP1 "CPU_A CPU_C”
GROUPA "CPU_C CPU_D CPU_E”
dgroup "CPU_C CPU_D CPU_E”

You can also list all of the processors associated with a particular group by
supplying a group name:

set dgroup
dgroup "CPU C CPU D CPU E”

(] Deleting a group

To delete a group, use the UNSET command. The format for this com-
mand is:

unset group name

You can use this command in conjunction with the SET command to
remove a particular processor from a group. For example, suppose
GROUPB contained CPU_A, CPU_C, CPU_D, and CPU_E. If you wanted
to remove CPU_E, you could enter:

unset GROUPB
set GROUPB = CPU_A CPU_C CPU_D

If you want to delete all of the groups you have created, use the UNSET
command with an asterisk instead of a group name:

unset *

Note that the asterisk does not work as a wild card.

Note:

When you use UNSET * to delete all of your groups, the default group
(dgroup) is also deleted. As a result, if you issue a command such as PRUN
and don’t specify a group or processor, the command will fail because the
PDM can't find the default group name (dgroup).

Using the Parallel Debug Manager 2-5

Sending Debugger Commands to One or More Debuggers

2.2 Sending Debugger Commands to One or More Debuggers

2-6

The SEND command sends a debugger command to an individual processor
or to a group of processors. The command is sent directly to the command
interpreter of the individual debuggers. You can send any valid debugger com-
mand string.

The syntax for the SEND command is:
send [-r] [-g{group | processor name}] debugger command

(1 The —g option specifies the group or processor that the debugger com-
mand should be sent to. If you don’t use this option, the command is sent
to the default group (dgroup).

[The -r (return) option determines when control returns to the PDM com-
mand line:

B Without -r, control is not returned to the command line until each
debugger in the group finishes running code. Any results that would be
printed in the COMMAND window of the individual debuggers will also
be echoed in the PDM command window. These results will be dis-
played by processor. For example:
send ?pc
[CPU_C] 0x400A
[CPU D] 0x4010
If you want to break out of a synchronous command and regain control
of the PDM command line, press in the PDM window. This
will return control to the PDM command line. However, no debugger
executing the command will be interrupted.

W With -r, control is returned to the command line immediately, even if a
debugger is still executing a command. When you use -r, you do not
see the results of the commands that the debuggers are executing.

The -r option is useful when you want to exit from a debugger but not
from the PDM. When you send the QUIT command to a debugger or
group of debuggers without using the —r command, you will not be able
to enter another PDM command until all debuggers to which QUIT
was sent to finish quitting; the PDM waits for a response from all of the
debuggers have finished quitting. By using -r, you can gain immediate
control of the PDM and continue sending commands to the remaining
debuggers.

The SEND command is useful for loading a common object file into a group
of debuggers. For example, to load a file called test.out into the debuggers
contained in GROUP_A, you could use the following command:

send —-g GROUP_A load test.out

Running and Halting Code

2.3 Running and Halting Code

The PRUN, PRUNF, and PSTEP commands synchronize the debuggers to
cause the processors to begin execution at the same real time.

(1 PRUNEF starts the processors running free, which means they are discon-
nected from the emulator.

(1 PRUN starts the processors running under the control of the emulator.

[PSTEP causes the processors to single-step synchronously through
assembly language code with interrupts disabled.

The formats for these commands are:

prunf [-g {group | processor name}]

prun [-r] [-g{group | processor name}]
pstep [-g{group | processor name}] [count]

(1 The -g option identifies the group or processor that the command should
be sent to. If you don’t use this option, the command is sent to the default

group (dgroup).

(1 The -r (return) option for the PRUN command determines when control
returns to the PDM command line:

B Without -r, control is not returned to the command line until each
debugger in the group finishes running code. If you want to break out
of a synchronous command and regain control of the PDM command
line, press in the PDM window. This will return control to
the PDM command line. However, no debugger executing the com-
mand will be interrupted.

B With —r, control is returned to the command line immediately, even if a
debugger is still executing a command. You can type new commands,
but the processors can’t execute the commands until they finish with
the current command; however, you can perform PHALT, PESC, and
STAT commands when the processors are still executing.

[You can specify a count for the PSTEP command so that each processor
in the group will step for count number of times.

Note:

If the current statement that a processor is pointing to has a breakpoint, that
processor will not step synchronously with the other processors when you
use the PSTEP command. However, that processor will still single-step.

Using the Parallel Debug Manager 2-7

Running and Halting Code

Halting processors at the same time

Sending ESCAPE to

You can use the PHALT command after you enter a PRUNF command to stop
an individual processor or a group of processors (global halt). Each processor
in the group is halted at the same real time. The syntax for the PHALT com-
mand is:

phalt [-g {group | processor name}]

all processors

Use the PESC command to send the escape key to an individual processor
or to a group of processors after you execute a PRUN command. Entering
PESC is essentially like typing an escape key in all of the individual debuggers.
However, the PESC command is asynchronous; the processors don’t halt at
the same real time. When you halt a group of processors, the individual pro-
cessors are halted in the order in which they were added to the group.

The syntax for this command is:

pesc [-g {group | processor name}]

Finding the execution status of a processor or a group of processors

2-8

The STAT command tells you whether a processor is running or halted. If a pro-
cessor is halted when you execute this command, then the PDM also lists the
current PC value for that processor. The syntax for the command is:

stat [-g {group | processor name}]

For example, to find the execution status of all of the processors in GROUP_A
after you've executed a global PRUN, enter:

stat —-g GROUP_A

After entering this command, you’ll see something similar to this in the PDM
window:

[CPU_C] Running
[CPU_D] Halted PC=201A
[CPU_E] Running

Entering PDM Commands

2.4 Entering PDM Commands
The PDM provides a flexible command-entry interface that allows you to:

Execute PDM commands from a batch file

Record the information shown in the PDM display area
Conditionally execute or loop through PDM commands

Echo strings to the PDM display area

Pause command execution

Repeat previously entered commands (use the command history)

Uoouooo

This section describes the PDM commands that you can use to perform these
tasks.

Executing PDM commands from a batch file

The TAKE command tells the PDM to execute commands from a batch file.
The syntax for the PDM version of this command is:

take batch filename

The batch filename must have a .pdm extension, or the PDM will not be able
to read the file. If you don’t supply a pathname as part of the filename, the PDM
first looks in the current directory and then searches directories named with
the D_DIR environment variable.

The TAKE command is similar to the debugger version of this command (de-
scribed on page 5-17). However, there are some differences when you enter
TAKE as a PDM command instead of a debugger command.

(1 Similarities. As with the debugger version of the TAKE command, you
can nest batch files up to 10 deep.

[Differences. Unlike the debugger version of the TAKE command:

W There is no suppress-echo-flag parameter. Therefore, all command
output is echoed to the PDM window, and this behavior cannot be
changed.

B To halt batch-file execution, you must press instead of
ESC) .

B The batch file must contain only PDM commands (no debugger com-
mands).

The TAKE command is advantageous for executing a batch file in which you
have defined often-used aliases. Additionally, you can use the SET command
in a batch file to set up group configurations that you use frequently, and then
execute that file with the TAKE command. You can also put your flow-control
commands (described on pagqj-ﬁ) in a batch file and execute the file with
the TAKE command.

Using the Parallel Debug Manager 2-9

Entering PDM Commands

Recording information from the PDM display area

2-10

By using the DLOG command, you can record the information shown in the
PDM display area into a log file. This command is identical to the debugger
DLOG command (described on page 5-6).

(O To begin recording the information shown in the PDM display area, use:
dlog filename

This command opens a log file called filename that the information is
recorded into. If you plan to execute the log file with the TAKE command,
the filename must have a .pdm extension.

(O To end the recording session, enter:

dlog close

If necessary, you can write over existing log files or append additional informa-
tion to existing files. The extended format for the DLOG command is:

dlog filename [{a | w}]
The optional parameters control how the log file is created and/or used:

(1 Appending to an existing file. Use the a parameter to open an existing
file and append the information in the display area.

[Writing over an existing file. Use the w parameter to open an existing
file and write over the current contents of the file. Note that this is the
default action if you specify an existing filename without using either the
a or w options; you will lose the contents of an existing file if you don’t use
the append (a) option.

Entering PDM Commands

Controlling PDM command execution

You can control the flow of PDM commands in a batch file or interactively. With
the IF/ELIF/ELSE/ENDIF or LOOP/BREAK/CONTINUE/ENDLOOP flow-
control commands, you can conditionally execute debugger commands or set
up a looping situation, respectively.

[d To conditionally execute PDM commands, use the IF/ELIF/ELSE/ENDIF
commands. The syntax is:

if expression
PDM commands
[elif expression
PDM commands]
[else

PDM commands]
endif

B [f the expression for the IF is nonzero, the PDM executes all com-
mands between the IF and ELIF, ELSE, or ENDIF.

B The ELIF is optional. If the expression for the ELIF is nonzero, the
PDM executes all commands between the ELIF and ELSE or ENDIF.

B The ELSE is optional. If the expressions for the IF and ELIF (if present)
are false (zero), the PDM executes the commands between the ELSE
and ENDIF.

[To set up a looping situation to execute PDM commands, use the LOOP/
BREAK/CONTINUE/ENDLOOP commands. The syntax is:

loop Boolean expression
PDM commands

[break]

[continue]

endloop

The PDM version of the LOOP command is different from the debugger
version of this command (described on page 5-20). Instead of accepting
any expression, the PDM version of the LOOP command evaluates only
Boolean expressions. If the Boolean expression evaluates to true (1), the
PDM executes all commands between the LOOP and BREAK,
CONTINUE, or ENDLOORP. If the Boolean expression evaluates to false
(0), the loop is not entered.

Using the Parallel Debug Manager 2-11

Entering PDM Commands

2-12

HW The optional BREAK command allows you to exit the loop without hav-
ing to reach the ENDLOOP. This is helpful when you are testing a
group of processors and want to exit if an error is detected.

B The CONTINUE command, which is also optional, acts as a goto and
returns command flow to the enclosing LOOP command. CONTINUE
is useful when the part of the loop that follows is complicated, and
returning to the top of the loop avoids further nesting.

You can enter the flow-control commands interactively or include the com-
mands in a batch file that is executed by the TAKE command. When you enter
LOOP or IF from the PDM command line, a question mark (?) prompts you for
the next entry:

PDM:11>>if $i > 10
?echo ERROR IN TEST CASE
?endif

ERROR IN TEST CASE

PDM:12>>

The PDM continues to prompt you for input using the ? until you enter ENDIF
(for an IF command) or ENDLOOP (for a LOOP command). After you enter
ENDIF or ENDLOOP, the PDM immediately executes the IF or LOOP com-
mand.

If you are in the middle of interactively entering a LOOP or IF statement and
want to abort it, type ©.

You can use the IF/ENDIF and LOOP/ENDLOOP commands together to per-
form a series of tests. For example, within a batch file, you can create a loop
like the following (the SET and @ commands are described in Section 2.8,
Using System Variables):

set i = 10 Set the counter (i) to 10
loop $i > 0 Loop while i is greater than 0

test commands

if $k > 500 Test for error condition

echo ERROR ON TEST CASE 8 Display an error message
endif

@ i=%1i-1 Decrement the counter
endloop

You can record the results of this loop in a log file (refer to pagqj—w) to
examine which test cases failed during the testing session.

Entering PDM Commands

Echoing strings to the PDM display area

You can display a string in the PDM display area by using the ECHO command.
This command is especially useful when you are executing a batch file or run-
ning a flow-control command such as IF or LOOP. The syntax for the command
is:

echo string
This displays the string in the PDM display area.

You can also use ECHO to show the contents of a system variable (system
variables are described in Section 2.8):

echo $var_procl
34

The PDM version of the ECHO command works exactly the same as the
debugger version (described on page 5-18), except that you can use the PDM
version outside of a batch file.

Pausing command execution

Sometimes you may want the PDM to pause while it’s running a batch file or
when it's executing a flow control command such as LOOP/ENDLOOP. Paus-
ing is especially helpful in debugging the commands in a batch file.

The syntax for the PAUSE command is:
pause

When the PDM reads this command in a batch file or during a flow control com-
mand segment, the PDM stops execution and displays the following message:

<< pause — type return >>

To continue processing, press &@.

Using the Parallel Debug Manager 2-13

Entering PDM Commands

Using the command history

The PDM supports a command history that is similar to the UNIX command
history. The PDM prompt identifies the number of the current command. This
number is incremented with every command. For example, PDM:12>> indi-
cates that eleven commands have previously been entered, and the PDM is
now ready to accept the twelfth command.

The PDM command history allows you to reenter any of the last twenty com-

mands:
(1 To repeat the last command that you entered, type:
1
(1 To repeat any of the last twenty commands, use the following command:
'number
The number is the number of the PDM prompt that contains the command
that you want to reenter. For example,
PDM:100>>echo hello
hello
PDM:101>>echo goodbye
goodbye
PDM:102>>!1100
echo hello
hello
Notice that the PDM displays the command that you are reentering.
(1 An alternate way to repeat any of the last twenty commands is to use:
Istring
This command tells the PDM to execute the last command that began with
string. For example,
PDM:103>>pstep —g GROUPA
PDM:104>>send —g GROUPA ?pc
[CPU_C] 0x4000
[CPU D] 0x4004
PDM:103>>pstep —g GROUPB
PDM:104>>send —g GROUPB ?pc
[CPU_A] 0x401A
[CPU_E] 0x4014
PDM:105>>!p
pstep —g GROUPB
(1 To see a list of the last twenty commands that you entered, type:

history

The command history for the PDM works differently from that of the debugger
(described on page 5-5); the and keys have no command-history
meaning for the PDM.

Defining Your Own Command Strings

2.5 Defining Your Own Command Strings

The ALIAS command provides a shorthand method of entering often-used
commands or command sequences. The UNALIAS command deletes one or
more ALIAS definitions. The syntax for the PDM version of each of these com-
mands is:

alias [alias name [, "command string”]]
unalias {alias name | *}

The PDM versions of the ALIAS and UNALIAS commands are similar to the
debugger versions of these commands. You can:

(1 Include several commands in the command string by separating the indi-
vidual commands with semicolons.

(1 Define parameters in the command string by using a percent sign and a
number (%1, %2, etc.) to represent a parameter whose value will be sup-
plied when you execute the aliased command.

[Listall currently defined PDM aliases by entering ALIAS with no parame-
ters.

(d Find the definition of a PDM alias by entering ALIAS with only an alias-
name parameter.

Nest alias definitions.

L

] Redefine an alias.

(1 Delete a single PDM alias by supplying the UNALIAS command with an
alias name, or delete all PDM aliases by entering UNALIAS *.

Like debugger aliases, PDM alias definitions are lost when you exit the PDM.
However, individual commands within a PDM command string don’t have an
expanded-length limit.

For more information about these features, see Section 5.5, Defining Your
Own Command Strings, on page 5-21.

The PDM version of this command is especially useful for aliasing often-used
command strings involving the SEND and SET commands.

[d You can use the ALIAS command to create PDM versions of debugger
commands. For example, the ML debugger command lists the memory
ranges that are currently defined. To make a PDM version of the ML com-
mand to list the memory ranges of all the debuggers in a particular group,
enter:

alias ml, ”"send -g %1 ml”

Using the Parallel Debug Manager 2-15

Defining Your Own Command Strings / Entering Operating-System Commands

You could then list the memory maps of a group of processors such as
those in group GROUPA:

ml GROUPA

The ALIAS command can be helpful if you frequently change the default
group. For example, suppose you plan to switch between two groups. You
can set up the following alias:

alias switch, ”set dgroup $%1; set prompt %1”

The %1 parameter will be filled in with the group information that you enter
when you execute SWITCH. Notice that the %1 parameter is preceded by
a dollar sign ($) to set up the default group. The dollar sign tells the PDM to
evaluate (take the list of processor names defined in the group instead of
the actual group name). However, to change the prompt, you don’t want
the PDM to evaluate (use the processors associated with the group name
as the prompt)—you just want the group name. As a result, you don’t need
to use the dollar sign when you want to use only the group name.

Assume that GROUP3 contains CPU_A, CPU_B, and CPU_D. To make
GROUPS3 the current default group and make the PDM prompt the same
name as your default group, enter:

switch GROUP3

This causes the default group (dgroup) to contain CPU_A, CPU_B, and
CPU_D, and changes the PDM prompt to GROUP3:x>>.

2.6 Entering Operating-System Commands

2-16

The SYSTEM command provides you with a method of entering operating-
system commands. The format for the SYSTEM command is:

system operating-system command

The SYSTEM command allows you to enter a single operating-system com-
mand without explicitly exiting the PDM environment.

Understanding the PDM'’s Expression Analysis

2.7 Understanding the PDM’s Expression Analysis

The PDM analyzes expressions differently than individual debuggers do (ex-
pression analysis for the debugger is described in Chapter 14, Basic Informa-
tion About C Expressions). The PDM uses a simple integral expression ana-
lyzer. You can use expressions to cause the PDM to make decisions as part
of the @ command and the flow control commands (described on pages 2-18
anqﬁ-ﬁ, respectively).

Note that you cannot evaluate string variables with the PDM expression ana-
lyzer. You can evaluate only constant expressions.

Table 2-1 summarizes the PDM operators. The PDM interprets the operators
in the order that they’re listed in Table 2-1 (left to right, top to bottom).

Table 2-1. PDM Operators

Operator Definition Operator Definition

() take highest precedence * multiplication

/ division % modulo

+ addition (binary) - subtraction (binary)
<< left shift ~ complement

< less than > > right shift

> greater than <= less than or equal to
== is equal to > = greater than or equal to
& bitwise AND I = is not equal to

| bitwise OR " bitwise exclusive-OR
|| logical OR && logical AND

Using the Parallel Debug Manager 2-17

Using System Variables

2.8 Using System Variables

You can use the SET, @, and UNSET commands to create, modify, and delete
system variables. In addition, you can use the SET command with system-
defined variables.

Creating your own system variables

2-18

The SET command lets you create system variables that you can use with
PDM commands. The syntax for the SET command is:

set [variable name [= string]]

The variable name can consist of up to 128 alphanumeric characters or under-
score characters.

For example, suppose you have an array that you want to examine frequently.
You can use the SET command to define a system variable that represents
that array value:

set result = arl[0] + 100

In this case, result is the variable name, and ar1[0] + 100 is the expression
that will be evaluated whenever you use the variable result.

Once you have defined result, you can use it with other PDM commands such
as the SEND command:

send CPU_D ? $result

The dollar sign ($) tells the PDM to replace result with ar1[0] + 100 (the string
defined in result) as the expression parameter for the ? command. You must
precede the name of a system variable with a $ when you want to use the string
value you defined with the variable as a parameter.

You can also use the SET command to concatenate and substitute strings.

1 Concatenating strings

The dollar sign followed by a system variable name enclosed in braces
({and }) tells the PDM to append the contents of the variable name to a
string that precedes or follows the braces. For example:

set k = Hel Set k to the string Hel
${k}lo ${k}en Concatenate the contents of k before

lo and en and set the result to i
echo $i Show the contents of i
Hello Helen

set i

Using System Variables

[d Substituting strings

You can substitute defined system variables for parts of variable names or
strings. This series of commands illustrates the substitution feature:

set err0 = 25 Set err0 to 25
set 3 =0 Setjto0
echo Serrs$j Show the value of errj — $err0 — 25
25

Note that substitution stops when the PDM detects recursion (for example,
$k = k).

Assigning a variable to the result of an expression

The @ (substitute) command is similar to the SET command. You can use the
@ command to assign the result of an expression to a variable. The syntax for
the @ command is:

@ variable name = expression

The following series of commands illustrates the differences between the @
command and the SET command. Assume that mask1 equals 36 and mask2
equals 47.

set mask3 = $maskl+$mask2 Set mask3 to the contents of mask1
plus the contents of mask2

echo $mask3 Show the contents of mask3

36+47

@ mask3 = $maskl+$mask2 Set mask3 to the result of the
expression $mask1+$mask2

echo $mask3 Show the contents of mask3

83

Notice the difference between the two commands. The @ command evaluates
the expression and assigns the result to the variable name.

The @ command is useful in setting loop counters. For example, you can ini-
tialize a counter with the following command:

@ej=o0
Inside the loop, you can increment the counter with the following statement:
@3 =58 +1

Changing the PDM prompt

The PDM recognizes a system variable called prompt. You can change the
PDM prompt by setting the prompt variable to a string. For example, to change
the PDM prompt to 3PROCs, enter:

set prompt = 3PROCs
After entering this command, the PDM prompt will look like this: 3PROCs:x>>.

Using the Parallel Debug Manager 2-19

Using System Variables

Checking the execution status of the processors

In addition to displaying the execution status of a processor or group of proces-
sors, the STAT command (described on pagqj—B) sets a system variable
called status.

[[f all of the processors in the specified group are running, the status vari-
ableis setto 1.

[[If one or more of the processors in the group is halted, the status variable
is set to 0.

You can use this variable when you want an instruction loop to execute until
a processor halts:

loop stat ==
send ?pc

Listing system variables

To list all system variables, use the SET command without parameters:
set @
You can also list the contents of a single variable. For example,

set j @&
j "100"

Deleting system variables

To delete a system variable, use the UNSET command. The format for this
command is:

unset variable name

If you want to delete all of the variables you have created and any groups you
have defined (as described on pagqj—4), use the UNSET command with an
asterisk instead of a variable name:

unset *

Note:

When you use UNSET * to delete all of your system variables and processor
groups, variables such as prompt, status, and dgroup are also deleted.

2-20

Evaluating Expressions

2.9 Evaluating Expressions

The debugger includes an EVAL command that evaluates an expression (see
Section 9.2, Basic Commands for Managing Data, on page 9-2 for more in-
formation about the debugger version of the EVAL command). The PDM has
a similar command called EVAL that you can send to a processor or a group
of processors. The EVAL command evaluates an expression in a debugger
and sets a variable to the result of the expression. The syntax for the PDM ver-
sion of the EVAL command is:

eval [-g{group | processor name}] variable name=expression|, format]

(1 The -g option specifies the group or processor that EVAL should be sent
to. If you don’t use this option, the command is sent to the default group

(dgroup).

[When you send the EVAL command to more than one processor, the PDM
takes the variable name that you supply and appends a suffix for each pro-
cessor. The suffix consists of the underscore character (_) followed by the
name that you assigned the processor. That way, you can differentiate be-
tween the resulting variables.

(1 The expression can be any expression that uses the symbols described
in Section 2.7, Understanding the PDM’s Expression Analysis.

(1 When you use the optional format parameter, the value that the variable
is set to will be in one of the following formats:

Parameter Result Parameter Result
* Default for the data type o Octal
c ASCII character (bytes) o] Valid address
d Decimal s ASCII string
e Exponential floating point u Unsigned decimal
f Decimal floating point X Hexadecimal

Suppose the program that CPU_A is running has two variables defined: j is
equal to 5, and k is equal to 17. Also assume that the program that CPU_B is
running contains variables j and k: j is equal to 12, and k is equal to 22.

set dgroup = CPU_A CPU_B
eval val = j + k &

set

dgroup "CPU_A CPU_B"
val CPU A 722"

val CPU_B "34"

Notice that the PDM created a system variable for each processor:
val_ CPU_A for CPU_A and val_CPU_B for CPU_B.

Using the Parallel Debug Manager 2-21

2-22

Chapter 3

An Introductory Tutorial
to the C Source Debugger

This chapter provides a step-by-step, hands-on demonstration of the 'C2xx C
source debugger’s basic features. This is not the kind of tutorial that you can
take home to read—it is effective only if you're sitting at your terminal, perform-
ing the lessons in the order that they’re presented. The tutorial contains two
sets of lessons (11 in the first, 13 in the second) and takes about 1 hour to com-
plete.

3-1

How to Use This Tutorial / A Note About Entering Commands

Topic Page
ey @ =0 WnlB WG 60o00 B-Z
A note about enteringcommands iiiiiiiiiiii e E-S
An escape route (justincase)coiiiiiiiiiiiiiiii i '|3'3
Invoke the debugger and load the sample program’s object codeB-4
Take alook atthedisplay.cciiiiiiiiiii ittt iiiiaeees B-s
What’s in the DISASSEMBLY window?cciiiiiiiiinnnnnnn B-G
Select the activewindowt 37
Resize the activewindowciiiiiiiiiiiiiiiiii e E-S
Zoom the activewindowttt i B-Q
Move the active windowccoiiiiiiiiiiiiiiiiiininnnennns 5-10
Scroll through awindow’scontentsttt -11
Display the C source version of the samplefile 13-12
[SEENEEIMO R cooooooooonooc000000000000000000000000000a0000 13-12
Become familiar with the four debuggingmodes 313
Open another text file, then redisplay a C source file 5-15
Usethebasic RUNcommandccoiiiiiiiinninnnnnennns 13-16
Set some breakpointsciiiiiii i i e -16
Watch some values and single-step throughcode 13-18
Run code conditionallyccccciiiiiiiiiiiii e -19
WHATIS that? ... i ettt i nsna i iaaaanes 321
Clear the COMMAND window displayarea...............ccccvuunnnn. 322
Display the contents of an aggregate datatype 5-22
Display data in anotherformatc.cciiiiiiiiinnnn 5-25
EEER S0E YEVES 600 -27
Defineamemorymapc.coiiiiiiirnrnnnnrrennnsneannrennnnns -28
Define yourowncommand stringcoviiiiiiiiiiii i -29
TR CENEEET cooococana000000000000000000000000000000000a00 329

How to use this tutorial

This tutorial contains three basic types of information:

Primary actions Primary actions identify the main lessons in the
tutorial; they’re boxed so that you can find them
easily. A primary action looks like this:

Make the CPU window the active window:

win CPU

Important information In addition to primary actions, important infor-
mation ensures that the tutorial works correctly.
Important information is marked like this:

3-2

m The CPU window should still be

active from the previous step.

Alternative actions Alternative actions show additional methods for
performing the primary actions. Alternative
actions are marked like this:

Try This: | Another way to display the current

code in MEMORY is to show memory begin-
ning from the current PC. . .

m This tutorial assumes that you have correctly and completely
installed your debugger (including invoking any files or operating-system
commands as instructed in the installation guide).

A note about entering commands

Whenever this tutorial tells you to type a debugger command, just type—the
debugger automatically places the text on the command line. You don’t have
to worry about moving the cursor to the command line; the debugger takes
care of this for you. (There are a few instances when this isn’t true—for exam-
ple, when you’re editing data in the CPU or MEMORY window—but this is
explained later in the tutorial.)

Also, you don’t have to worry about typing commands in uppercase or lower-
case—either is fine. There are a few instances when a command’s parame-
ters must be entered in uppercase, and the tutorial points this out.

An escape route (just in case)

The steps in this tutorial create a path for you to follow. The tutorial won’t
purposely lead you off the path. But sometimes when people use new
products, they accidently press the wrong key, push the wrong mouse button,
or mistype a command. Suddenly, they’re off the path without any idea of
where they are or how they got there.

This probably won't happen to you. But, if it does, you can almost always get
back to familiar ground by pressing . If you were running a program when
you pressed (€SO, you should also type RESTART (@. Then go back to the
beginning of whatever lesson you were in and try again.

An Introductory Tutorial to the C Source Debugger 3-3

An Escape Route / Invoke the Debugger and Load the Sample Program’s Object Code

Invoke the debugger and load the sample program’s object code

3-4

Included with the debugger is a demonstration program named sample. This
lesson shows you how to invoke the debugger and load the sample program.

m If you are using the emulator, this step assumes that you are
using the default /O address or that you have identified the I/O address with
the D_OPTIONS environment variable (as described in the individual installa-
tion guides).

Invoke the debugger and load the sample program:
g For the emulator, enter:

emu2xx c:\c2xxhll\sample

0 For the simulator, enter:
sim2xx c:\sim2xx\sample

If you are using a window manager and have an icon for the debugger,
simply double-click on the debugger icon to invoke the debugger. Once
the debugger screen is displayed, enter the following from the debugger
command line to load the sample program:

load c:\c2xxhll\sample

Take a Look at the Display

Take a look at the display. . .

Now you should see a display similar to this (it may not be exactly the same,
but it should be close).

menu bar with ™\
pU"dOWn menus Load Break Watch Memory Color MoDe Analyis Run=F5 Step=F8 Next=F10
—DISASSEMBLY — CPU
current PC 20cf bfo8 c_intO: LAR ARO, #08alh Alacc 0000005¢
(highlighted) 20d1 bf09 LAR AR1, #00alh PREG 00000005
20d3 bf00 SPM 0 PC 20c£ TOS 005d
20d4 be47 SETC SXM STO 2610 ST1 cdfc
20d5 bf80 LACC #2143h IMR O1ff IFR 0008
reverse assembly ——fpf 20a7 bso1 ADD #1 TREG 0000 ARO 08ab
of memory contents 20d8 e388 BCND 20dch,EQ ARl 08ac AR2 08a5
20da 7a89 CALL 20e0h, * ,AR1 AR3 00a3 AR4 O00a4
. 20dc 7a89 CALL main, *,AR1 AR5 0807 AR6 O08a4
regISter Contents 20de 7a89 CALL abort, *,AR1 AR7 00a7
20e0 bf£80 LACC #2143h
20e2 8bc00 LDP #0
20e3 a680 TBLR * v
20e4 b8O1 ADD #1
20e5 028a LAR AR2, *,AR2
COMMAND window —COMMAND —MEMORY
display area N 0000 0000 0000 0000 0000 Olff ££00 0008 0038 A
0008 0000 0000 20f1 20£f3 0001 ffel f£ffl1 0000
Loading sample.out 0010 08ab 08ac 08a5 00a3 0004 0807 08a4 00a7
memory contents 34— Symbots—toaded vors® 08ab 08ab 0000 0000 0000 0000 ££77 5555
Done 0020 0000 0000 0000 0000 2494 £££f 0000 0000 Y.
command line 4&>»I J 0028 ffff ffff 000f 0000 0000 0000 0000 0000 /

[If you don’t see a display, then your debugger or board may not be
installed properly. Go back through the installation instructions and be
sure that you followed each step correctly; then reinvoke the debugger.

[J If you do see a display, check the first few lines of the DISASSEMBLY
window. If these lines aren’t the same—if, for example, they show ADD
instructions or say /nvalid address—then enter the following commands
on the debugger command line. (Just type; you don’t have to worry about
where the cursor is.)

1) Reset the 'C2xx processor:
reset

2) Load the sample program again:
load c:\c2xxhll\sample (emulator)

load c:\sim2xx\sample (simulator)

An Introductory Tutorial to the C Source Debugger 3-5

Take a Look at the Display / What'’s in the DISASSEMBLY Window?

[After reset, if you're using the emulator and you see a display and the first
few lines of the DISASSEMBLY window still show ADD instructions or say
Invalid address after resetting the 'C2xx processor, you can check the
following:

B Your emulator board may not be installed snugly. Check your board to
see if it is correctly installed, and reenter the commands above.

B Your default memory map may not be correct. Enter the following
command to turn off the default map:

map off

What’s in the DISASSEMBLY window?

3-6

The DISASSEMBLY window always shows the reverse assembly of memory
contents; in this case, it shows an assembly language version of sample.out.
The MEMORY window displays the current contents of memory. Because you
loaded the object file sample.out when you invoked the debugger, memory
contains the object code version of the sample file.

This tutorial step demonstrates that the code shown in the DISASSEMBLY
window corresponds to memory contents. Initially, memory is displayed start-
ing at address 0; if you look at the first line of the DISASSEMBLY window, you'll
see that its display starts at address 0x20cf.

Modify the MEMORY display to show the same object code that is dis-
played in the DISASSEMBLY window:

mem 0x20cf@prog

Notice that the addresses in the first column in the DISASSEMBLY window
corresponds to the addresses in first column of the MEMORY window; the
values in the second column in the DISASSEMBLY window corresponds to the
memory contents displayed in second, third, and fourth columns of the
MEMORY window.

Try This: | The 'Coxx has separate program and data spaces. You can access

either program or data memory by following the location with @prog for
program memory or @data for data memory. If you'd like to see the contents
of location 0x0060 in data memory, enter:

mem Ox60@data

Try This: | Another way to display the current code in MEMORY is to show
memory beginning from the current PC:
mem PC@prog

Select the Active Window

Select the active window

This lesson shows you how to make a window into the active window. You can
move and resize any window; you can close some windows. Whenever you
type a command or press a function key to move, resize, or close a window,
the debugger must have some method of understanding which window you
want to affect. The debugger does this by designating one window at a time
to be the active window. Any window can be the active window, but only one
window at a time can be active.

Make the CPU window the active window:

win CPU

m Notice the appearance of the CPU window (especially its bor-
ders) in contrast to the other, inactive windows. This is how you can tell which
window is active.

m If you don’t see a change in the appearance of the CPU window,
look at the way you entered the command. Did you enter CPU in uppercase
letters? For this command, it's important that you enter the parameter in upper-
case, as shown.

Try This: | press the key to “cycle” through the windows in the display,
making each one active in turn.

1

Try This: | vou can also use the mouse to make a window active:

1) Point to any location on the window’s border.

2) Click the left mouse button.

An Introductory Tutorial to the C Source Debugger 3-7

Select the Active Window / Ressize the Active Window

Be careful! If you point inside the window, the window becomes active when
you press the mouse button, but something else may happen as well:

[If you're pointing inside the CPU window, then the register you’re pointing
at becomes active. The debugger then treats the text you type as a new
value for that register. Similarly, if you're pointing inside the MEMORY
window, the address you’re pointing at becomes active.

Press to get out of this.

(O If you're pointing inside the DISASSEMBLY or FILE window, you'll set a
breakpoint on the statement that you were pointing to.

Point to the same statement; press the button again to delete the break-
point.

Resize the active window

This lesson shows you how to resize the active window.

m Be sure the CPU window is still active.

\o Make the CPU window as small as possible:
size 4,3

This tells the debugger to make the window 4 characters by 3 lines, which is
the smallest a window can be. (If it were any smaller, the debugger wouldn’t
be able to display all four corners of the window.) If you try to enter smaller
values, the debugger will warn you that you’ve entered an Invalid window size.
The maximum width and length depend on which screen-size option you used
when you invoked the debugger.

p—

— Make the CPU window larger:
size Enter the SIZE command without parameters
() (v) Make the window 3 lines longer
Make the window 4 characters wider
ESC Press this key when you finish sizing the window

lesson continues on the next page —

3-8

Ressize the Active Window / Zoom the Active Window

You can use to make the window shorter and to make the window
narrower.

=

10

00

Try This: | you can use the mouse to resize the window (note that this process
forces the selected window to become the active window).

1) If you examine any window, you'll see a highlighted, backward L in the
lower right corner. Point to the lower right corner of the CPU window.

2) Press the left mouse button but don’t release it; move the mouse while
you’re holding in the button. This resizes the window.

3) Release the mouse button when the window reaches the desired size.

Zoom the active window

Another way to resize the active window is to zoom it. Zooming the window
makes it as large as possible.

m Be sure the CPU window is still active.

=

Make the active window as large as possible:

zoom

The window should now be as large as possible, taking up the entire display
(except for the menu bar) and hiding all the other windows.

“Unzoom” or return the window to its previous size by entering the ZOOM
command again:

zoom The ZOOM command will be recognized,
even though the COMMAND window is hidden
by the CPU window.

The window should now be back to the size it was before zooming.

An Introductory Tutorial to the C Source Debugger 3-9

Zoom the Active Window / Move the Active Window

=

10

Try This: | you can use the mouse to zoom the window.

Zoom the active window:
1) Point to the upper left corner of the active window.

2) Click the left mouse button.

Return the window to its previous size by repeating steps 1 and 2.

Move the active window

This lesson shows you how to move the active window.

m Be sure the CPU window is still active.

Move the CPU window to the upper left portion of the screen:

move 0,1 The debugger doesn't let you move the window
to the very top—that would hide the menu bar

The MOVE command’s first parameter identifies the window’s new X position
on the screen. The second parameter identifies the window’s new Y position
on the screen. The maximum X and Y positions depend on which screen-size
option you used when you invoked the debugger and on the position of the win-
dow before you tried to move it.

Try This: |yoy can use the MOVE command with no parameters and then use
arrow keys to move the window:

move
Press & until the CPU window is back where it was
(it may seem as if only the border is moving—this is normal)
ESC Press when you finish moving the window

You can use (O to move the window up, (3 to move the window down, and
to move the window left.

lesson continues on the next page —

Move the Active Window / Scroll Through a Window’s Contents

BN
10

00

Try This: | you can use the mouse to move the window (note that this process
forces the selected window to become the active window).

1) Point to the top edge or left edge of the window border.

2) Press the left mouse button, but don’t release the button; move the mouse
while you’re holding in the button.

3) Release the mouse button when the window reaches the desired position.

Scroll through a window’s contents

Many of the windows contain more information than can possibly be displayed
at one time. You can view hidden information by moving through a window’s
contents. The easiest way to do this is to use the mouse to scroll the display
up or down.

If you examine most windows, you'll see an up arrow near the top of the right
border and a down arrow near the bottom of the right border. These are scroll
arrows.

Scroll through the contents of the DISASSEMBLY window:
N 1) Point to the up or down scroll arrow.

10 2) Press the left mouse button; continue pressing it until the dis-
play has scrolled several lines.

00 3) Release the button.

You can use several of the keys to modify the display in the active

window.

Make the MEMORY window the active window:

win MEMORY

Now try pressing these keys; observe their effects on the window’s contents.
@) @D

These keys don’t work the same for all windows; Section 5.5, Summary of Spe-
cial Keys, on page 18-75 summarizes the functions of all the special keys and
key sequences and how they affect different windows.

An Introductory Tutorial to the C Source Debugger 3-11

Display the C Source Version of the Sample File / Execute Some Code

Display the C source version of the sample file

Execute some code

Now that you can find your way around the debugger interface, you can
become familiar with some of the debugger’s more significant features. It’s
time to load C code.

Display the contents of a C source file:

file sample.c

This opens a FILE window that displays the contents of the file sample.c
(sample.c was one of the files that contributed to making the sample object
file). You can always tell which file you're displaying by the label in the FILE
window. Right now, the label should say FILE: sample.c. If you can’t see the
label, press until the FILE window becomes the active window.

The CALLS window is displayed also. The CALLS window tracks the C func-
tions as they are called. Right now, the CALLS window lists *UNKNOWN as
the first function, because it is waiting for a function to be called.

Let’s run some code—not the whole program, just a portion of it.

Execute a portion of the sample program:

go main The label in the COMMAND window changes
to COMMAND [RUNNING...] to indicate
that your program is executing.

You've just executed your program up to the point where main() is declared.
Notice how the display has changed:

[The current PC is highlighted in both the DISASSEMBLY and FILE
windows.

[The addresses and object codes of the first several statements in the
DISASSEMBLY window are highlighted because these statements are
associated with the current C statement (which is highlighted in the FILE
window).

[The CALLS window, which tracks functions as they’re called, now points
to main().

Become Familiar with the Four Debugging Modes

[d The color for the values of the PC and TOS (and possibly some additional
registers) in the CPU window have changed because those values were
changed during program execution.

Become familiar with the four debugging modes
The debugger has four basic debugging modes:

[Mixed mode shows both disassembly and C at the same time.

(1 Auto mode shows disassembly or C, depending on what part of your
program happens to be running.

[Assembly mode shows only the disassembly, no C, even if you're
executing C code.

[d Minimal mode shows only the COMMAND window (no C or disassembly).

When you opened the FILE window in a previous step, the debugger switched
to mixed mode; you should be in mixed mode now. (You can tell that you're in
mixed mode if both the FILE and DISASSEMBLY windows are displayed.)

The following steps show you how to switch debugging modes.

.§ Use the MoDe menu to select assembly mode:

1) Look at the top of the display: the first line shows a row of pull-
down menu selections.

BN 2) Point to the word MoDe on the menu bar.

110 3) Press the left mouse button, but don’t release it; drag the
mouse downward until Asm (the second entry) is highlighted.

00 4) Release the button.

This switches to assembly mode. You should see the DISASSEMBLY window,
but not the FILE window.

An Introductory Tutorial to the C Source Debugger 3-13

Become Familiar with the Four Debugging Modes

Switch to auto mode:
1) Press (au](p]. This displays and freezes the MoDe menu.

2) Now select C(auto). To do so, choose one of these methods:

0 Press the arrow keys to move up/down through the menu; when
C(auto) is highlighted, press [2].

a Type C.

0O Point the mouse cursor at C(auto), then click the left mouse but-
ton.

You should be in auto mode now, and you should see the FILE window. The
statement that defines the main() label should still be highlighted. The
DISASSEMBLY window is not displayed, because the processor is in the C
portion of your program. Auto mode automatically switches between an as-
sembly and a C display, depending on where you are in your program. Here’s
a demonstration of that:

Run to a point in your program that executes assembly language code:

go meminit

You're still in auto mode, but you should now see the DISASSEMBLY window.
The current PC should be at the statement that defines the meminit label.

Try This: | yvou can also switch modes by typing one of these commands:

asm switches to assembly-only mode
c switches to auto mode
mix switches to mixed mode

minimal switches to minimal mode

Switch back to mixed mode before continuing:

mix

Open Another Text File, Then Redisplay a C Source File

rlalitway Polnt

You’ve finished the first half of the tutorial and the
first set of lessons.

If you want to close the debugger, just type QUIT (@. When you come back,
reinvoke the debugger and load the sample program (pagﬁ—4) and continue
with the second set of lessons.

Open another text file, then redisplay a C source file

In addition to what you already know about the FILE window and the FILE
command, you should also know that:

[d You can display any text file in the FILE window.

[d If you enter any command that requires the debugger to display a C source
file, it automatically displays that code in the FILE window (regardless of
whether the window is open or not and regardless of what is already
displayed in the FILE window).

Display a file that isn’'t a C source file:
file init.cmd

This replaces sample.c in the FILE window with your init.cmd file.

Remember, you can tell which file you're displaying by the label in the FILE
window. Right now, the label should say FILE: init.cmd.

Redisplay another C source file (sample.c):

func call

Now the FILE window label should say FILE: sample.c because the call() func-
tion is in sample.c.

An Introductory Tutorial to the C Source Debugger 3-15

Use the Basic RUN Command / Set Some Breakpoints

Use the basic RUN command

The debugger provides you with several ways of running code, but it has one
basic run command.

Run your entire program:

run The label in the COMMAND window changes
to COMMAND [RUNNING...] to indicate
that your program is executing.

Entered this way, the command basically means “run forever”. You may not
have that much time!

This isn’t very exciting; halt program execution:

ESC

Set some breakpoints

When you halted execution in the previous step, you should have seen
changes in the display similar to the changes you saw when you entered go
main earlier in the tutorial. When you pressed , you had little control over
where the program stopped. Knowing that information changed was nice, but
what part of the program affected the information?

This information would be much more useful if you picked an explicit stopping
point before running the program. Then, when the information changed, you'd
have a better understanding of what caused the changes. You can stop
program execution in this way by setting software breakpoints.

m This lesson assumes that you're displaying the contents of
sample.c in the FILE window. If you aren’t, enter:

file sample.c

lesson continues on the next page —

Set Some Breakpoints

Set a software breakpoint and run your program:

1) Scroll to line 38 in the FILE window (the meminit() statement) and set
a breakpoint at that line:

¥ a) Point the mouse cursor at the statement on line 38.

1D b) Click the left mouse button. Notice that BP> (for breakpoint)
appears at the beginning of the line and that the line is high-
lighted.

2) Reset the program entry point:

restart

3) Enter the run command:
run Program execution halts at the breakpoint

Once again, you should see that some statements are highlighted in the CPU
window, showing that they were changed by program execution. But this time,
you know that the changes were caused by code from the beginning of the
program to line 38 in the FILE window.

Clear the breakpoint:

r_ 1) Point the mouse cursor at the statement on line 38. (It should still
be highlighted from setting the breakpoint.)

1D 2) Click the left mouse button. The line is no longer highlighted.

An Introductory Tutorial to the C Source Debugger 3-17

Watch Some Values and Single-step Through Code

Watch some values and single-step through code

Now you know how to update the display without running your entire program;
you can set software breakpoints to obtain information at specific points in your
program. But what if you want to update the display after each statement? No,
you don’t have to set a breakpoint at every statement—you can use
single-step execution.

Set up for the single-step example:

restart
go main

The debugger has another type of window called a WATCH window that’s very
useful in combination with single-step execution. What's a WATCH window
for? Suppose you are interested in only a few specific register values, not all
of the registers shown in the CPU window. Or suppose you are interested in
a particular memory location or in the value of some variable. You can observe
these data items in a WATCH window.

Set up the WATCH window before you start the single-step execution.

Open a WATCH window and change to mixed mode:

wa arl, Stack Pointer
wa pc
wa *0x2059@prog, Call:
wa i

mix

You may have noticed that the WA (watch add) command can have one or two
parameters. The first parameter is the item that you're watching. The second
parameter is an optional label.

If the WATCH window isn’t wide enough to display the PC value, resize the
window.

lesson continues on the next page —

Watch Some Values and Single-step Through Code / Run Code Conditionally

Now try out the single-step commands. Hint: Watch the PC in the FILE and
DISASSEMBLY windows; watch the value of i in the WATCH window.

Single-step through the sample program:

step 20

Notice that the step command single-stepped each assembly
language statement (in fact, you single-stepped through 20 assembly

language statements). Did you also notice that the FILE window displayed the
source for the meminit() function when it was called? The debugger supports
additional single-step commands that have a slightly different flavor.
(4 For example, if you enter:

cstep 20

you'll single-step 20 C statements, not assembly language statements
(notice how the PC “jumps” in the DISASSEMBLY window).

[Reset the program entry point and run to main().

restart
go main

Now enter the NEXT command, as shown below. You'll be single-stepping
20 assembly language statements, but the FILE window won't display the
source for the meminit() function when meminit() is executed.

next 20
(There’s also a CNEXT command that “nexts” in terms of C statements.)

Run code conditionally

Try executing this loop one more time. Take a look at this code; it’s doing a lot
of work with a variable named i. You may want to check the value of i at specific
points instead of after each statement. To do this, you set software breakpoints
at the statements you’re interested in and then initiate a conditional run.

An Introductory Tutorial to the C Source Debugger 3-19

Run Code Conditionally

First, clear out the WATCH window so that you won'’t be distracted by any
superfluous data items.

Delete the first three data items from the WATCH window (don’t watch
them anymore):

wd 3
wd 1
wd 1

The variable i was the fourth item added to the WATCH window in the previous
tutorial step, and it should now be the only remaining item in the window.

Set up for the conditional run examples:
1) Set software breakpoints at lines 39 and 41.
2) Reset the program entry point:

restart
3) Run the first part of the program:

go main

4) Reset the value of i

?i=0

Now initiate the conditional run:

run i<10

This causes the debugger to run through the loop as long as the value of i is
less than 10. Each time the debugger encounters the breakpoints in the loop,
it updates the value of i in the WATCH window.

When the conditional run completes, close the WATCH window.

Close the WATCH window:
wr

3-20

WHATIS that?

WHATIS That?

At some point, you might like to obtain some information about the types of
data in your C program. Maybe things won’t be working quite the way you'd
planned, and you’ll find yourself saying something like “... but isn’t that sup-
posed to point to an integer?” Here’s how you can check on this kind of infor-
mation; be sure to watch the COMMAND window display area as you enter
these commands.

Use the WHATIS command to find the types of some of the variables
declared in the sample program:

whatis genum
enum yyy genum; genum is an enumerated type
whatis tiny6
struct { tiny6 is a structure
int u;
int v;
int x;
int y;
int z;
} tinyé6;
whatis call
int call(); call is a function that returns an integer

whatis s

short s; s is a short unsigned integer
whatis zzz
struct zzz { zzz is a very long structure
int bl;
int b2;
Press to halt long listings

An Introductory Tutorial to the C Source Debugger 3-21

Clear the COMMAND Window Display Area / Display the Contents of an Aggregate Data Type

Clear the COMMAND window display area

After displaying all of these types, you may want to clear them away. This is
easy to do.

Clear the COMMAND window display area:
cls

CLS isn’'t the only system-type command that the debugger
supports. If you are using Windows™, you can use the following commands:

cd .. Change back to the main directory
dir Show a listing of the current directory
cd c2xxhll Change back to the debugger directory

Display the contents of an aggregate data type

3-22

The WATCH window is convenient for watching single, or scalar, values. When
you're debugging a C program, though, you may need to observe values that
aren’t scalar; for example, you might need to observe the effects of program
execution on an array. The debugger provides another type of window called
a DISP window, where you can display the individual members of an array or
structure.

Show a structure in a DISP window:
disp small
Close the DISP window:

Show another structure in a DISP window:

disp bigl

lesson continues on the next page —

Display the Contents of an Aggregate Data Type

Now you should see a display like the one below. The newly opened DISP
window becomes the active window. Like the FILE window, you can always tell
what’s being displayed because of the way the DISP window is labeled. Right
now, it should say DISP: big1.

4 N
=DISP: bigl
bl -515
b2 24575
b3 O
b4 O
b5 64
ql [...]
q2 {...}
q3 Oxfff9 J
o J

(Note that the values displayed in this diagram may be different from what you
see on the screen.)

[Members b1, b2, b3, b4, and b5 are ints; you can tell because they're
displayed as integers (shown as plain numbers without prefixes).

(1 Member g1 is an array; you can tell because g1 shows [. . .] instead of a
value.

(1 Member g2 is another structure; you can tell because g2 shows {. . .}
instead of a value.

(1 Member g3 is a pointer; you can tell because it is displayed as a hexadeci-
mal address (indicated by a Ox prefix) instead of an integer value.

If a member of a structure or an array is itself a structure or an array, or even
a pointer, you can display its members (or the data it points to) in additional
DISP windows (referred to as the original DISP window’s children).

Display what g3 is pointing to:

= 1) Point at the address displayed next to the g3 label in big1’s
display.

j 2) Click the left mouse button.

This opens a second DISP window, named big1.g3, that shows what q3 is
pointing to (it's pointing to another structure). Close this DISP window, or move
it out of the way.

An Introductory Tutorial to the C Source Debugger 3-23

Display the Contents of an Aggregate Data Type

Display array g1 in another DISP window:

o 1) Point at the [. . .] displayed next to the g1 label in big1’s
display.

10 2) Click the left mouse button.

This opens another DISP window labeled DISP: big1.q1.

m g1 is actually a two-member array of structures. To view the two
different structures, use (CONTROL) (PAGEDOWN) and (CONTROL) (PAGEUP). (Look at
the name of this DISP window when you’re switching.)

@

3-24

Display structure g2 in another DISP window.

1) Close the additional DISP windows, or move them out of the way so that
you can clearly see the original DISP window that you opened to display
big1.

2) Make big1’s DISP window the active window.

3) Use these arrow keys to move the field cursor (_) through the list of big1’s
members until the cursor points to g2.

4) Now press ().

Close all of the DISP windows:

1) Make big1’s DISP window the active window.

2) Press (Fe).

When you close the main DISP window, the debugger closes all of its children
as well.

Display Data in Another Format

Display data in another format

Usually, when you add an item to the WATCH window or open a DISP window,
the data is shown in its natural format. This means that ints are shown as
integers, floats are shown as floating-point values, etc. Occasionally, you may
want to view data in a different format. This can be especially important if you
want to show memory or register contents in another format.

One way to display data in another format is through casting (which is part of
the C language). In the expression below, the *(float *) portion of the expres-
sion tells the debugger to treat address 0x100 as type float (exponential floa-
ting-point format).

Display memory contents in floating-point format:

disp *(float *)0x100

This opens a DISP window to show memory contents in an array format. The
array member identifiers don’t necessarily correspond to actual addresses—
they’re relative to the first address you request with the DISP command. In this
case, the item displayed as item [0] is the contents of address 0x0100—it isn’t
memory location 0. Note that you can scroll through the memory displayed in
the DISP window; item [1] is at 0x0101, and item [-1] is at OxOffe.

You can also change display formats according to data type. This affects all
data of a specific C data type.

Change display formats according to data types by using the SETF (set
format) command:

1) For comparison, watch the following variables. Their C data types are
listed on the right.

wa i Type int
wa £ Type float
wa d Type double

2) You can list all the data types and their current display formats:

setf

An Introductory Tutorial to the C Source Debugger 3-25

Display Data in Another Format

3) Now display the following data types with new formats:

setf int, ¢ Ints as characters

setf float, o Floats as octal integers

setf double, x Doubles as hex integers
4) List the data types to display formats again; note the changes in the

display:

setf

5) Add the variables to the WATCH window again; use labels to identify
the additions:

wa i, MEWi
wa £, NEWE
wa d, NEWd

Notice the differences in the display formats between the first versions
you added and these new versions.

6) Now reset all data types back to their defaults:

setf *

A third way to display data in another format is to use the DISP, ?, MEM, or WA
command with an optional parameter that identifies the new display format.
The following examples are for the ? and WA commands—DISP and MEM
work similarly.

Use display formats with the ? and WA commands:
1) Evaluate a variable and display it as a character:
? small.ra[l],c
2) Add a variable to the watch window and display it as an octal integer:

wa str.a,,o Notice that because no label was used
with WA, an extra comma was inserted;

otherwise, the o parameter would have

been interpreted as a label.

To get ready for the next step, close the DISP and WATCH windows.

3-26

Change Some Values

Change some values
You can edit the values displayed in the MEMORY, CPU, WATCH, and DISP
windows.

m Make sure no other windows are obscuring your view of the
MEMORY window.

.§ Change a value in memory:

1) Display memory beginning with address 0x0100:
mem 0x100

2) Point to the contents of memory location 0x0100. (The con-
tents of memory location 0x0100 are in the second column of
N the MEMORY window.)

1D 3) Click the left mouse button. Notice that this highlights and
identifies the field to be edited.

4) Type 0000.
5) Press to enter the new value.

6) Press to conclude editing.

key Try This: | Here’s another method for editing data that lets you edit a few more

values at once.

1) Make the CPU window the active window:
win CPU

MA@ 2) Press the arrow keys until the field cursor (_) points to the PC contents.
3) Press .

4) Type 2000.
@ 5) Press @ enough times to point at the contents of register ARO.

6) Type ffff.

&

7) Press @ to enter the new value.

ESC 8) Press to conclude editing.

An Introductory Tutorial to the C Source Debugger 3-27

Define a Memory Map

Define a memory map

3-28

You can set up a memory map to tell the debugger which areas of memory it
can and can'’t access. This is called memory mapping. When you invoked the
debugger for this tutorial, the debugger automatically read a default memory
map from the initialization batch file included in the c2xxhll or sim2xx directory.
For the purposes of the sample program, that’s fine (which is why this lesson
was saved for the end).

View the default memory map settings:

ml (2]

Look in the COMMAND window display area—you’ll see a listing of the areas
that are currently mapped. The 'C2xx supports separate program and data
spaces. Page 0 in the memory map is for program memory; page 1 is for data
memory.

It's easy to add new ranges to the map or delete existing ranges.

Change the memory map:

1) Use the MD (memory delete) command to delete the block of program
memory:

md 0x0,0

This deletes the block of memory beginning at address 0 in program
memory.

2) Use the MA (memory add) command to define a new block of program
memory and a new block of data memory:

ma 0x0,0,0x20,ROM
ma 0x100,1,0x7£f,RAM

Define Your Own Command String / Close the Debugger

Define your own command string

If you find that you often enter a command with the same parameters, or often
enter the same commands in sequence, you will find it helpful to have a short-
hand method for entering these commands. The debugger provides an alias-
ing feature that allows you to do this.

This lesson shows you how you can define an alias to set up a memory map,
defining the same map that was defined in the previous lesson.

Define an alias for setting up the memory map:

1) Use the ALIAS command to associate a nickname with the commands
used for defining a memory map:

alias mymap, “mr;ma 0x0,0,0x20,ROM;
ma 0x100,1,0x7f,RAM;ml”

(Note: Because of space constraints, the command is shown on two
lines.)

2) Now, to use this memory map, just enter the alias name:
mymap
This is equivalent to entering the following four commands:

mr
ma 0x0,0,0x20,ROM
ma 0x100,1,0x7f,RAM
ml

Close the debugger

This is the end of the tutorial—close the debugger.

Close the debugger and return to the operating system:

quit

An Introductory Tutorial to the C Source Debugger 3-29

The Debugger Display

The ’C2xx C source debugger has a window-oriented display. This chapter
shows what windows look like and describes the basic types of windows that
you’ll use.

Topic Page
4.1 Debugging Modes and Default Displays 4-2
4.2 Descriptions of the Different Kinds of Windows 4-6

and Their Contents
4.3 CUISOISivteentnennnnssnaaanasssreeennennnnnnnnnnnnnnsnn 4-19
44 The Active WiNndOWcoiiiiiiiiiiiiiin i innnnrennnnnnes 4-20
4.5 Manipulating Windowscciiiiiiiiiiiiininreinnnnnns 4-22
4.6 Manipulatinga Window’sContentsccoiiuunn.. 4-27
47 ClosingaWindowcoiiiiiiiinirrnnnnrrnnnnrennnnnnns 4-30

Debugging Modes and Default Displays

4.1 Debugging Modes and Default Displays

Auto mode

4-2

The debugger has four debugging modes:

1 Auto

1 Assembly
[Mixed
J Minimal

Each mode changes the debugger display by adding or hiding specific win-
dows. This section shows the default displays and the windows that the debug-
ger automatically displays for these modes. These modes cannot be used
within the profiling environment (simulator only); the COMMAND, PROFILE,
DISASSEMBLY, and FILE windows are the only available windows in the pro-
filing environment.

In auto mode, the debugger automatically displays whatever type of code is
currently running: assembly language or C. This is the default mode; when you
first invoke the debugger, you'll see a display similar to Figure 4-1. Auto mode
has two types of displays:

1 When the debugger is running assembly language code, you'll see an
assembly display similar to the one in Figure 4-1. The DISASSEMBLY
window displays the reverse assembly of memory contents.

[When the debugger is running C code, you'll see a C display similar to the
one in Figure 4-2. (This assumes that the debugger can find your C
source file to display in the FILE window. If the debugger can’t find your
source, then it switches to mixed mode.)

When you’re running assembly language code, the debugger automatically
displays windows as described for assembly mode.

When you’re running C code, the debugger automatically displays the
COMMAND, CALLS, and FILE windows. If you want, you can also open a
WATCH window and DISP windows.

Debugging Modes and Default Displays

Figure 4-1. Typical Assembly Display (for Auto Mode and Assembly Mode)

~

Load Break Watch Memory Color MoDe Analyis Run=F5 Step=F8 Next=F10
—DISA ¥ — CPU
20cf bf08 c_int0: LAR ARO, #08alh A ACC 0000005£
2041 b£f09 LAR AR1, #00alh PREG 00000005
2043 b£f00 SPM 0o PC 20cf TOS 0054
2044 bed?7 SETC SXM STO 2610 ST1 cdfc
2045 b£80 LACC #2143h IMR 01ff IFR 0008
2047 b8o01 ADD #1 TREG 0000 ARO 08ab
20d8 e388 BCND 20dch,EQ AR1 08ac AR2 08a5
20da 7a89 CALL 20e0h, * ,AR1 AR3 00a3 AR4 00a4
20dc 7a89 CALL main, *,AR1 AR5 0807 AR6 08a4
20de 7a89 CALL abort, *,AR1 AR7 00a7
20e0 bf80 LACC #2143h
20e2 8bc00 LDP #0
20e3 a680 TBLR * v
20e4 b801 ADD #1
20e5 028a LAR AR2, *,AR2
— COMMANDF MEMORY
0000 0000 0000 0000 0000 O1ff ££f00 0008 0038 A
0008 0000 0000 20f1 20f3 0001 ffel ££ffl 0000
Loading sample.out 0010 08ab 08ac 08a5 00a3 0004 0807 08a4 00a7
34 symbols loaded 0018 08ab 08ab 0000 0000 0000 0000 ££f77 5555
Done 0020 0000 0000 0000 0000 249d £ffff 0000 0000 Y
\>>>I 0028 ffff f£fff 000f 0000 0000 0000 0000 0000 /
Figure 4-2. Typical C Display (for Auto Mode Only)
/Load Break Watch Memory Color MoDe Analyis Run=F5 Step=F8 Next=F10 \
r FILE:sample.c
00042 double d;
00043 int ai[10];
00044 int aai[10][5];
00045 char ac[10];
00046 int *pi;
00047 char *Xpc;
00048
00049 extern call();
00059 exter meminit();
00060
00061 main()
00062 {
00063 int i = 0;
00064 int j = 0; = 0;
00065 meminit(); J
— COMMAND CALLS
Copyright (c) 1989, 1995, Texas Instruments Incorporated Al . main ()
TMS320C2xx Silicon Revision 1.0.0
XDS510 Emulator Revision 1
file sample.c
go main v
>>>

RS

The Debugger Display

4-3

Debugging Modes and Default Displays

Assembly mode

Mixed mode

Assembly mode is for viewing assembly language programs only. In this
mode, you’ll see a display similar to the one shown in Figure 4-1. When you'’re
in assembly mode, you'll always see the assembly display, regardless of
whether C or assembly language is currently running.

Windows that are automatically displayed in assembly mode include the
MEMORY window, the DISASSEMBLY window, the CPU register window, and
the COMMAND window. If you choose, you can also open a WATCH window
in assembly mode.

Mixed mode is for viewing assembly language and C code at the same time.
Figure 4-3 shows the default display for mixed mode.

Figure 4-3. Typical Mixed Display (for Mixed Mode Only)

4-4

/Load Break Watch Memory Color Analysis Pin Run=F5 Step=F8 Next=F10\

—DISASSEMBLY —CPU
0040 0aa0 main: POPD *+ Al acc gggggggg A
PREG
0041 80a0 SAR ARO, *+ PC 000f
0042 8180 SAR AR1, * TOS 0060
STO 2e00
0043 b004 LAR ARO, #4 ST1 2dfc
0044 00ea LAR ARO, *0+,AR2 IMR bffs8
0045 b900 ZAC ;::G gggg
0046 b201 LAR AR2, #1 y|aR0" 00f0
0047 8be0 MAR *0+ AR1 0000
AR2 0000
*
0048 90a0 SACL ar AR3 00£0 v
—FILE: sample. ::g gggg
00046 int *pi; A
00047 char *xXpc; CALLS
00048 1: main()

00049 extern call();
00059 exter meminit();
00060

00061 main()

- MEMORY
ST 0000 0007 0007 0007 0007 bfff ££00 0000
file sample.c A

0007 0008 0000 bfff 0000 0000 0001 0001
e 000e 0001 bfff 0000 09f5 dffd ffff £080 o
= 0015 09c6 bfff bfff £7£f 0000 bfff bEff
00lc bfff bfff ££77 bEfff 0000 0000 0900

go main

>>>

In mixed mode, the debugger displays all windows that can be displayed in
auto and assembly mode, regardless of whether you’re currently running
assembly language or C code. This is useful for finding bugs in C programs
that exploit specific architectural features of the 'C2xx.

Minimal mode

Debugging Modes and Default Displays

Minimal mode allows you to query the target system without displaying any
additional information. You can display the contents of CPU registers, memory
addresses, or symbols within the COMMAND window by using the WA, DISP,
and ?/EVAL commands (described on page 9-3). You can use any of the stan-
dard debugger commands in the COMMAND window. If you use the C, ASM,
or MIX commands, the debugging mode changes to the auto, assembly, or
mixed mode, respectively. To return to minimal mode, use the MINIMAL com-
mand.

Restrictions associated with debugging modes

The assembly language code that the debugger shows you is the disassembly
(reverse assembly) of the memory contents. If you load object code into
memory, the assembly language code is the disassembly of that object code.
If you don’t load an object file, then the disassembly won’t be very useful.

Some commands are valid only in certain modes, especially if a command
applies to a window that is visible only in certain modes. In this case, entering
the command causes the debugger to switch to the mode that is appropriate
for the command. This applies to these commands:

dasm func mem
calls file disp

The Debugger Display 4-5

Descriptions of the Different Kinds of Windows and Their Contents

4.2 Descriptions of the Different Kinds of Windows and Their Contents

4-6

The debugger can show several types of windows. This section lists the
various types of windows and describes their characteristics.

Every window is identified by a name in its upper left corner. Each type of
window serves a specific purpose and has unique characteristics. There are
nine different windows, divided into these general categories:

(1 The COMMAND window provides an area for typing in commands and for
displaying various types of information such as progress messages, error
messages, or command output.

(1 Code-display windows display assembly language or C code. There are
three code-display windows:

The DISASSEMBLY window displays the disassembly (assembly
language version) of memory contents.

The FILE window displays any text file that you want to display; its
main purpose, however, is to display C source code.

The CALLS window identifies the current function and previous func-
tion calls (when C code is running).

[The PROFILE window displays statistics about code execution. This
window is only available when you are using the simulator in the profiling
environment.

(1 Data-display windows are for observing and modifying various types of
data. There are four data-display windows:

A MEMORY window displays the contents of a range of memory. You
can display multiple MEMORY windows at one time.

The CPU window displays the contents of 'C2xx registers.

A DISP window displays the contents of an aggregate type such as an
array or structure, showing the values of the individual members. You
can display up to 120 DISP windows at one time.

A WATCH window displays selected data such as variables, specific
registers, or memory locations. You can display multiple WATCH win-
dows at one time.

You can move or resize any of these windows; you can also edit any value in
a data-display window. Before you can perform any of these actions, however,
you must select the window you want to move, resize, or edit and make it the
active window. For more information about making a window active, see
Section 4.4, The Active Window.

The remainder of this section describes the individual windows.

Descriptions of the Different Kinds of Windows and Their Contents

COMMAND window

— COMMAND
Display — A
area
Loading sample.out
< Done
file sample.c v
Command >>> go main
line
command line
\\ cursor /
Purpose [] Provides an area for entering commands
[Provides an area for echoing commands and displaying
command output, errors, and messages
Editable? Command line is editable; command output isn’t
Modes All modes
Created Automatically

Affected by [All commands entered on the command line
(1 All commands that display output in the display area
(1 Any input that creates an error

The COMMAND window has two parts:

[Command line. This is where you enter commands. When you want to en-
ter a command, just type—no matter which window is active. The debug-
ger keeps a list of the last 50 commands that you entered. You can select
and reenter commands from the list without retyping them. (For more in-
formation, see Using the command history, page 5-5.)

(O Display area. This area of the COMMAND window echoes the command
that you entered, shows any output from the command, and displays
debugger messages.

For more information about the COMMAND window and entering commands,
see Chapter 5, Entering and Using Commands.

The Debugger Display 4-7

Descriptions of the Different Kinds of Windows and Their Contents

DISASSEMBLY window
) Disassembly
Memory Object (assembly language
address code constructed from object code)
e o
0106 e£00 RET A
0107 b£f08 c_int0: LAR ARO, #095fh | Current PC
0109 b£09 LAR AR1, #095fh
010b b£00 SPM o
010d b£80 LACC #017ch
010f bf0o1l ADD #1
0110 e388 BCND 0114h,EQ
0112 7a89 CALL 0118h v
0114 7a89 CALL main
/
Purpose Displays the disassembly (or reverse assembly) of memory
contents
Editable? No; pressing the edit key () or the left mouse button sets
a software breakpoint on an assembly language statement
Modes Auto (assembly display only), assembly, and mixed
Created Automatically

Affected by (1 DASM and ADDR commands
[Breakpoint and run commands
Within the DISASSEMBLY window, the debugger highlights:

[The statement that the program counter (PC) is pointing to (if that line is
in the current display)

(O Any statements with software breakpoints

[The address and object code fields for all statements associated with the
current C statement, as shown below

—DISASSEMBLY-

0040 0aa0 main: POPD o+ A
0041 80a0 SAR ARO, *+ v
_— 0042 8180 SAR R1, *
0043 b004 LAR ARG #4
These assembly

language statements
are associated with —riLe: ti.c

this C statement | 00049 extern call(); A Current PC
\ 00059 exter meminit();
00660 y
00061 main() /

FILE window

Descriptions of the Different Kinds of Windows and Their Contents

—FILE: sample.c

L 00001 struct xxx
00002
00003 union uuu

-~

-~

int a,b,c; int f1 : 2; int £f2 : 4; struct xx
str, astr[10], aastr[
int ul, u2, u3, u4, u5[6]; struct xxx u6; }

/

TeXt 00004 struct zzz { int bl,b2,be,b4,b5; struct xxx ql[2],q2; str
file 00005 bigl, *big2, big3[6];
00006 struct { int x,y,z,; int **ptr; float *fptr; char ra[5 v
00007 enum vyyy { RED, GREEN, BLUE } genum, *penum, aenum[5][4]
o
Purpose Shows any text file you want to display
Editable? No; if the FILE window displays C code, pressing the edit key
() or the left mouse button sets a software breakpoint on
a C statement
Modes Auto (C display only) and mixed
Created (1 With the FILE command
[Automatically when you’re in auto or mixed mode and
your program begins executing C code
Affected by (1 FILE, FUNC, and ADDR commands
EI

Breakpoint and run commands

You can use the FILE command to display the contents of any file within the
FILE window, but this window is especially useful for viewing C source files.
Whenever you single-step a program or run a program and halt execution, the
FILE window automatically displays the C source associated with the current
point in your program. This overwrites any other file that may have been
displayed in the window.

Within the FILE window, the debugger highlights:

[d The statement that the PC is pointing to (if that line is in the current display)
(1 Any statements where you've set a software breakpoint

The Debugger Display

4-9

Descriptions of the Different Kinds of Windows and Their Contents

CALLS window

CALLS

Order of functions called
2: call()

Names of functions called

33 subx()\\\\\\\\

\ Current function

is at top of list

Lists the function you’re in, its caller, and its caller, etc., as

Purpose
long as each function is a C function

Editable? No; pressing the edit key (#)) or the left mouse button
changes the FILE display to show the source associated with
the called function

Modes Auto (C display only) and mixed

Created [Automatically when you're displaying C code
[With the CALLS command if you closed the CALLS

window
Affected by Run and single-step commands

The display in the CALLS window changes automatically to reflect the latest

function call.

If you haven'’t run any code, then no func-
tions have been called yet. You'll also see
this if you’re running code but are not cur-

rently running a C function.

In C programs, the first C function is main.

As your program runs, the contents of the
CALLS window change to reflect the cur-
rent routine that you're in and where the
routine was called from. When you exit a
routine, its name is popped from the
CALLS list.

—CALLS
1: **UNKNOWN

—CALLS

1: main()

—CALLS
2: xcall()
1: main()

—CALLS

1: main()

Descriptions of the Different Kinds of Windows and Their Contents

If a function name is listed in the CALLS window, you can easily display the
function in the FILE window:

1

1) Point the mouse cursor at the appropriate function name that is listed in
the CALLS window.

2) Click the left mouse button. This displays the selected function in the FILE
window.

Q®

1) Make the CALLS window the active window (see Section 4.4, on
page 4-20).

2) Use the arrow keys to move up/down through the list of function names
until the appropriate function is indicated.

3) Press (). This displays the selected function in the FILE window.

You can close and reopen the CALLS window.

(4 Closing the window is a two-step process:

1) Make the CALLS window the active window.
2) Press .

(1 To reopen the CALLS window after you've closed it, enter the CALLS
command. The format for this command is:

calls

The Debugger Display 4-11

Descriptions of the Different Kinds of Windows and Their Contents

PROFILE window

4-12

profile data
PROFILE
Area Name Count Inclusive Incl-Max Exclusive Excl-Max A
AR 00£00001-00£00008 1 65 65 19 19
proﬁ|e CL <sample>#58 1 50 50 7 7
areas CR <sample>#59-64 1 87 87 44 44
CF call() 24 1623 99 1089 55
AL meminit 1 3 3 3 3 v
AL 00£00059 disabled
Purpose Displays statistics collected during a profiling session
Editable? No
Modes Auto
Created By invoking the debugger with the —profile option

Affected by (] The PF and PQ commands
(11 Any commands on the View menu
[Clicking in the header area of the window

The PROFILE window is visible only when you are in the profiling environment
(available for the simulator only). The illustration above shows the window with
a default set of data, but the display can be modified to show specific sets of
data collected during a profiling session.

Note that within the profiling environment, the only other available windows are
the COMMAND window, the DISASSEMBLY window, and the FILE window.

For more information about the PROFILING window (and about profiling in
general), see Chapter 13, Profiling Code Execution.

MEMORY window

Descriptions of the Different Kinds of Windows and Their Contents

MEMORY
0000 0007 0007 0007 0007 bfff ££00 0000 A

0007 0008 0000 bfff 0000 0000 0001 00}1\
000e 0001 bfff 0000 09f5 dffd f£ffff £080

addresses 0015 09c6 Dbfff Dbfff £7ff 0000 bfff — data
0o1c bffwr
0023 090 a ffff 0000 0000 ffff ffff
Purpose Displays the contents of memory
Editable? Yes—you can edit the data (but not the addresses)
Modes Auto (assembly display only), assembly, and mixed
Created [Automatically (the default MEMORY window only)

(1 With the MEM command and a unique window name
Affected by MEM command

The MEMORY window has two parts:

(1 Addresses. The first column of numbers identifies the addresses of the
first column of displayed data. No matter how many columns of data you
display, only one address column is displayed. Each address in this
column identifies the address of the data immediately to its right.

(1 Data. The remaining columns display the values at the listed addresses.
The data is shown in hexadecimal format as 8-bit words. You can display
more data by making the window wider and/or longer.

The MEMORY window above has seven columns of data, so each new
address is incremented by seven. Although the window shows seven col-
umns of data, there is still only one column of addresses; the first value is at
address 0x0000, the second at address 0x0001, etc.; the eighth value
(first value in the second row) is at address 0x0007, the ninth at address
0x0008, etc.

As you run programs, some memory values change as the result of program
execution. The debugger highlights the changed values. Depending on how
you configure memory for your application, some locations may be invalid/
unconfigured. The debugger also highlights these locations (by default, it
shows these locations in red).

The Debugger Display 4-13

Descriptions of the Different Kinds of Windows and Their Contents

The debugger opens one MEMORY window by default. You can open any
number of additional MEMORY windows to display different ranges of

memory. See Figure 4-4.

Figure 4-4. The Default and Additional MEMORY Windows

MEMORY3 [PROG] The default
» [0800 0000 0000 e3d6 c9fd 83a7 8544 Oeaa 0004 | MEMORY
0808 _e5de dbf6 bd9d 2579 30c3 0000 al49 b2a? window
0810 20cf bf08 08al bf09 08al bf0O0 be47 bf80 2143 4
0818| 2047 b801 e388 20dc 7a89 20e0 7a89 2000 7a89
—MEMORY RANGE1l

0820| 204f 1000 6d8f £69a dbd3 £ff6 5a07 Oab3 31d4 50? A
0828| 20e7 1008 f£ff7 6d9b Ocfd dadb 2a0b 8c90 e909 6el2
20ef 1010_0343340‘%000 0000 0000 0000 O1ff ££00 00,68 0038 A
20£7 1018/ 0008 0000 0000 20f1 20£3 0001 ffel ££ffl 0000
1020| 0010 08ab 08ac 08a5 00a3 0004 0807 08ad 00a7
1028| 0018 08ab 08ab 0000 0000 0000 0000 f££77 5555
0020 0000 0000 0000 0000 249d ££ff 0000 0000 Y
0000 0000 0000 0000

e 0028 ffff ffff 000f 0000
Additional

MEMORY windows

To open an additional MEMORY window or to display another range of
memory in the current window, use the MEM command.

(1 Opening an additional MEMORY window

To open an additional MEMORY window, enter the MEM command with a
unique window name:

mem address, [display format] , window name

For example, if you want to open a new memory window starting at
address 0x8000 named RANGE1, you would enter:

mem 0x8000, ,RANGE1l

This displays a new window, labeled MEMORY RANGE1, showing the
contents of memory starting at the address 0x8000.

The ’C2xx has separate data, program, and 1/O spaces. By default, the
MEMORY window shows data memory. If you want to display program
memory, you can enter the MEM command like this:

mem address@prog, , window name

The @prog suffix identifies the address as a program memory address.
You can also use @data to display data memory. However, if you are dis-
playing data memory, the @data is unnecessary because data memory is
the default. If you are using an emulator, you can display I/O space by

using @io.

Descriptions of the Different Kinds of Windows and Their Contents

When you display program memory, the MEMORY window’s label
changes to remind you that you are no longer displaying data memory:

MEMORY RANGE2 [PROG]
0000 ££80 1000 0000 0000 0000 0000 0000 A

0007 0000 0000 0000 0000 0000 0000 0000
000e 0000 0000 0000 0000 0000 0000 0000
0015 0000 0000 0000 0000 0000 0000 0000 Y
001c fefa fdcf 7175 1454 57d3 5555 ffff

The label changes to
window name [PROG]

.

Displaying a new memory range in a MEMORY window

You can use the MEM command to display a different memory range in a
window:

mem address, [display format] , window name

The debugger displays the contents of memory at address in the first data
position in your MEMORY window. The end of the range is defined by the
size of the window.

The window name parameter is optional if you are displaying a different
memory range in the default MEMORY window. Use the window name pa-
rameter when you want display a new memory range in one of the addi-
tional MEMORY windows.

The display format parameter for the MEM command is optional. When used,
the data is displayed in the selected format as shown in Table 9-2 on
page 9-19.

You can close and reopen any of the MEMORY windows as often as you like.

U

Closing a MEMORY window
Closing a window is a two-step process:

1) Make the appropriate MEMORY window the active window (see Sec-
tion 4.4, on page 4-20).

2) Press .

Reopening a MEMORY window

To reopen an additional MEMORY window after you've closed it, enter the
MEM command with a unique window name. To reopen the default
MEMORY window, use the MEM command with no window name.

The Debugger Display 4-15

Descriptions of the Different Kinds of Windows and Their Contents

CPU window

4-16

—CPU

) lacc 0000005¢ A
registel —erec 00000005

name PC 20cf
TOS 005d

STO 2610

ST1 cdfc

IMR O1ff

IFR 0008

TREG 0000

ARO 08ab

AR1 08ac

MaS

registe[/ AR3 00a3
contents ~ |AR¢ 00ad

AR5 0807
AR6 08a4 v
AR7 00a7
CPU
ACC 00000002 PREG 00000000 A
The dlsplay PC 0107 TOS £050 STO 8e00 ST1 8ffc
changes when you IMR 3f£f IFR 0000 TREG 04f3 y
resize the window ARO 0000 ARl 095f AR2 dffd AR3 $3333
Purpose Shows the contents of the 'C2xx registers
Editable? Yes—you can edit the value of any displayed register
Modes Auto (assembly display only), assembly, and mixed
Created Automatically

Affected by Data-management commands

As you run programs, some values displayed in the CPU window change as
the result of program execution. The debugger highlights changed values.

DISP windows

Descriptions of the Different Kinds of Windows and Their Contents

DISP: str
a 84 A
b 86
172

structure
members —DISP: str.fd
[0] 44276127 A
v [1] 1778712578
[2] 555492660
[3] 356713217
| [4] 138412802
[5] 182452229
[6] 35659888
This member is an array, and [7]1 37749506

£3 0x18740001

member £ (...

values

you can display its contents in [8] 134742016 Y
a second DISP window | (o] 138412801
- /
Purpose Displays the members of a selected structure, array, or
pointer, and the value of each member
Editable? Yes—you can edit individual values
Modes Auto (C display only), mixed, and minimal
Created With the DISP command
Affected by DISP command

A DISP window is similar to a WATCH window, but it shows the values of an
entire array or structure instead of a single value. Use the DISP command to
open a DISP window; the basic syntax is:

disp expression

Data is displayed in its natural format:

[J Integer values are displayed in decimal.

(1 Floating-point values are displayed in floating-point format.

(1 Pointers are displayed as hexadecimal addresses (with a 0x prefix).
(1 Enumerated types are displayed symbolically.

If any of the displayed members are arrays, structures, or pointers, you can
bring up additional DISP windows to display their contents—up to 120 DISP
windows can be open at once.

The Debugger Display 4-17

Descriptions of the Different Kinds of Windows and Their Contents

WATCH window

4-18

watch index 1: ARO 0x1802 A

—WATCH

2: X+X 4 v
3: PC 0x0064

label current value
Purpose Displays the values of selected expressions
Editable? Yes—you can edit the value of any expression whose value

corresponds to a single storage location (in registers or
memory). In the window above, for example, you could edit
the value of PC but couldn’t edit the value of X+X.

Modes All modes
Created With the WA command
Affected by WA, WD, and WR commands

A WATCH window helps you to track the values of arbitrary expressions, vari-
ables, and registers. Although the CPU window displays register contents, you
might not be interested in the values of all these registers. In this situation, it
is convenient to use the WATCH window to track the values of the specific reg-
isters you are interested in.

To display the values of expressions, variables, or registers, use the WA
command; the syntax is:

wa expression [,[labell, [display format], window name]]

a

a

WA adds expression to the WATCH window. (If there’s no WATCH window,
then WA also opens a WATCH window.)

The label parameter is optional. When used, it provides a label for the
watched entry. If you don’t use a label, the debugger displays the expres-
sion in the label field.

The display format parameter is optional. When used, the data is dis-
played in the selected format as shown in Table 9-2 on page 9-19.

If you omit the window name parameter, the debugger displays the ex-
pression in the default WATCH window (labeled WATCH). You can open
additional WATCH windows by using the window name parameter. When
you open an additional WATCH window, the debugger appends the win-
dow name to the WATCH window label. You can create as many WATCH
windows as you need.

4.3 Cursors

Descriptions of the Different Kinds of Windows and Their Contents / Cursors

To delete individual entries from a WATCH window, use the WD command with
the appropriate window name. To delete all entries at once and close a WATCH
window, use the WR command with the appropriate window name. Note that
you don’t need to specify a window name if you are deleting items from the de-
fault WATCH window.

The debugger display has three types of cursors:

(1 The command-line cursor is a block-shaped cursor that identifies the cur-
rent character position on the command line. When the COMMAND win-
dow is active (see Section 4.4, The Active Window), arrow keys affect the
position of this cursor.

COMMAND

load sample
Loading sample.out
Done

file sample.c v

>>> go main

command line cursor

(1 Themouse cursor is a block-shaped cursor that tracks mouse movements
over the entire display. This cursor is controlled by the mouse driver in-
stalled on your system; if you haven't installed a mouse, you won'’t see a
mouse cursor on the debugger display.

[The current-field cursor identifies the current field in the active window. On

PCs, this is the hardware cursor that is associated with your graphics card.
Arrow keys do affect this cursor’s movement.

ACC 00000002 PREG 00000000 A
PC 0107 TOS £050 STO 8e00 ST1 8ffc
IMR 3£ff IFR 0000 TREG 04f3 y

ARO 0000 ARl 09fb AR2 dffd AR3 ffff

current field cursor

The Debugger Display 4-19

The Active Window

4.4 The Active Window

The windows in the debugger display aren’t fixed in their position or in their
size. You can resize them, move them around, and, in some cases, close
them. The window that you’re going to move, resize, or close must be active.

You can move, resize, zoom, or close only one window at a time; thus, only one
window at a time can be the active window. Whether or not a window is active
doesn’t affect the debugger’s ability to update information in a window—it
affects only your ability to manipulate a window.

Identifying the active window

The debugger highlights the active window. When windows overlap on your
display, the debugger moves the active window to the top of other windows.

You can alter the active window’s border style and colors if you wish;
Figure 4-5 illustrates the default appearance of an active window and an
inactive window.

Figure 4-5. Default Appearance of an Active and an Inactive Window

4-20

An active window (default appearance)

— COMMAND

This window is load. sample
hlgh/lghted to show Loading sample.out
that it is active >>>

An inactive window (default appearance)

COMMAND
load sample A

Loading sample.out
Done
This window is not file sample.c
highlighted and is | go main v
L not active | >>>

Note: On monochrome monitors, the border and selection corner are highlighted as shown in
the illustration. On color monitors, the border and selection corner are highlighted as
shown in the illustration, but they also change color (by default, they change from white to
yellow when the window becomes active).

The Active Window

Selecting the active window

You can use one of several methods for selecting the active window:

2

1) Point to any location within the boundaries or on any border of the desired
window.

2) Click the left mouse button.

Note that if you point within the window, you might also select the current field.
For example:

[If you point inside the CPU window, then the register you're pointing at
becomes active, and the debugger treats any text that you type as a new
register value. If you point inside the MEMORY window, then the address
value you’re pointing at becomes active and the debugger treats any text
that you type as a new memory value.

Press to get out of this.

[If you point inside the DISASSEMBLY or FILE window, you'll set a break-
point on the statement you’re pointing to.

Press the button again to clear the breakpoint.

This key cycles through the windows on your display, making each one active
in turn and making the previously active window inactive. Pressing this key
highlights one of the windows, showing you that the window is active. Pressing
again makes a different window active. Press as many times as nec-
essary until the desired window becomes the active window.

win
<d

or

The WIN command allows you to select the active window by name. The
format of this command is:

win WINDOW NAME

Note that the WINDOW NAME is in uppercase (matching the name exactly as
displayed). You can spell out the entire window name, but you really need to
specify only enough letters to identify the window.

For example, to select the DISASSEMBLY window as the active window, you
can enter either of these two commands:

win DISASSEMBLY
win DISA

The Debugger Display 4-21

The Active Window / Manipulating a Window

If several windows of the same type are visible on the screen, don’t use the
WIN command to select one of them.

If you supply an ambiguous name (such as C, which could stand for CPU or
CALLS), the debugger selects the first window it finds whose name matches
the name you supplied. If the debugger doesn’t find the window you asked for
(because you closed the window or misspelled the name), then the WIN
command has no effect.

4.5 Manipulating a Window

A window’s size and its position in the debugger display aren’t fixed—you can
resize and move windows.

Note:

You can resize or move any window, but first the window must be active. For
information about selecting the active window, see Section 4.4 on page 4-20.

Resizing a window

The minimum window size is three lines by four characters. The maximum
window size varies, depending on which screen size option you're using, but
you can’t make a window larger than the screen.

There are two basic ways to resize a window:

[By using the mouse
(1 By using the SIZE command

AN 1) Point to the lower right corner of the window. This corner is highlighted—

here’s what it looks like:

COMMANIF

load sample
Loading sample.out

Done lower right corner
> " (highlighted)

/

& i 2) Grab the highlighted corner by pressing one of the mouse buttons; while
pressing the button, move the mouse in any direction. This resizes the
window.

00 3) Release the mouse button when the window reaches the desired size.

4-22

Manipulating a Window

size

The SIZE command allows you to size the active window. The format of this
command is:

size [width, length]
You can use the SIZE command in one of two ways:

Method 1 Supply a specific width and length.

Method 2 Omit the width and length parameters and use arrow keys
to interactively resize the window.

SIZE, method 1: Use the width and length parameters. Valid values for the
width and length depend on the screen size and the window position on the
screen. If the window is in the upper left corner of the screen, the maximum
size of the window is the same as the screen size minus one line. (The extra
line is needed for the menu bar.) For example, if the screen size is 80 charac-
ters by 25 lines, the largest window size is 80 characters by 24 lines.

If a window is in the middle of the display, you can’t size it to the maximum
height and width—you can size it only to the right and bottom screen borders.
The easiest way to make a window as large as possible is to zoom it, as
described on pagg34-24.

For example, if you want to use commands to make the CALLS window 8
characters wide by 20 lines long, you could enter:

win CALLS
size 8, 20

SIZE, method 2: Use arrow keys to interactively resize the window. If you
enter the SIZE command without width and length parameters, you can use
arrow keys to size the window:

@ Makes the active window one line longer

Makes the active window one line shorter

Makes the active window one character narrower
Makes the active window one character wider

When you're finished using the cursor keys, you must press or .

For example, if you want to make the CPU window three lines longer and two
characters narrower, you can enter:

win CPU
size
EESINES! EsC

The Debugger Display 4-23

Manipulating a Window

Zooming a window

Another way to resize the active window is to zoom it. Zooming a window
makes it as large as possible, so that it takes up the entire display (except for
the menu bar) and hides all the other windows. Unlike the SIZE command,
zooming is not affected by the window’s position in the display.

To unzoom a window, repeat the same steps you used to zoom it. This will re-
turn the window to its prezoom size and position.

There are two basic ways to zoom or unzoom a window:

(1 By using the mouse
(1 By using the ZOOM command

% AN 1) Point to the upper left corner of the window. This corner is highlighted—
here’s what it looks like:

‘COMMANIF
upper left corner/ load sample

(hlgh'lghted) Loading sample.out
go main
>>>l
%
10 2) Click the left mouse button.
@ zoom You can also use the ZOOM command to zoom/unzoom the window. The
<d

format for this command is:

zoom

4-24

Moving a window

Manipulating a Window

The windows in the debugger display don’t have fixed positions—you can
move them around.

There are two ways to move a window:

(1 By using the mouse
(1 By using the MOVE command

= 1) Point to the left or top edge of the window.
Point to the top edge COMmE
or the left edge load sample
Loading sample.out
go main
>>>l
%
11 2) Press the left mouse button, but don’t release it; now move the mouse in
any direction.
00 3) Release the mouse button when the window is in the desired position.
move The MOVE command allows you to move the active window. The format of this

command is:
move [X position, Y position [, width, length]]
You can use the MOVE command in one of two ways:

Method 1 Supply a specific X position and Y position.

Method 2 Omit the X position and Y position parameters and use
arrow keys to interactively resize the window.

The Debugger Display 4-25

Manipulating a Window

4-26

MOVE, method 1: Use the X position and Y position parameters. You can
move a window by defining a new XY position for the window’s upper left cor-
ner. Valid X and Y positions depend on the screen size and the window size.
X positions are valid if the X position plus the window width in characters is less
than or equal to the screen width in characters. Y positions are valid if the Y
position plus the window height is less than or equal to the screen height in
lines.

For example, if the window is 10 characters wide and 5 lines high and the
screen size is 80 x 25, the command move 70, 20 would put the lower right-
hand corner of the window in the lower right-hand corner of the screen. No X
value greater than 70 or Y value greater than 20 is valid in this example.

Note:

If you choose, you can resize a window at the same time you move it. To do
this, use the width and length parameters in the same way that they are used
for the SIZE command (see pagqj—23).

MOVE, method 2: Use arrow keys to interactively move the window. If you
enter the MOVE command without X position and Y position parameters, you
can use arrow keys to move the window:

@ Moves the active window down one line

@ Moves the active window up one line

Moves the active window left one character position
Moves the active window right one character position

When you're finished using the cursor keys, you must press or :

For example, if you want to move the COMMAND window up two lines and
right five characters, you can enter:

win CcoM &)
move &)

Manipulating a Window’s Contents

4.6 Manipulating a Window’s Contents

Although you may be concerned with changing the way windows appear in the
display—where they are and how big/small they are—you’ll usually be
interested in something much more important: what's in the windows. Some
windows contain more information than can be displayed on a screen; others
contain information that you'd like to change. This section tells you how to view
the hidden portions of data within a window and which data can be edited.

Note:

You can scroll and edit only the active window. For information, see Sec-
tion 4.4 on page 4-20.

Scrolling through a window’s contents

If you resize a window to make it smaller, you may hide information. Some-
times, a window contains more information than can be displayed on a screen.
In these cases, the debugger allows you to scroll information up and down
within the window.

There are two ways to view hidden portions of a window’s contents:

[You can use the mouse to scroll the contents of the window.
[d You can use function keys and arrow keys.

% You can use the mouse to point to the scroll arrows on the right-hand side of
the active window. This is what the scroll arrows look like:

—FILE: sample.c

00038 extern call(); A

00039 extern meminit(); \ I
00040 main() Scro Up
00041 {

00042 register int i = 0;

00043 int j =0, k = 0;

00044

00045 meminit();

00046 for (i = 0, i , 0x50000; i++)

00047 {

00048 call(i);

00049 1f‘(1 & 1)].+= i; SCI’0|| down
00050 aai[k][k] = j; /

00051 if (!(i & OXFFFF)) kt+; y

00052 } :"

The Debugger Display 4-27

Manipulating a Window’s Contents

To scroll window contents up or down:

o\ 1)
10 2)
0l 3)

Point to the appropriate scroll arrow.

Press the left mouse button; continue to press it until the information you're
interested in is displayed within the window.

Release the mouse button when you're finished scrolling.

You can scroll up/down one line at a time by pressing the mouse button and
releasing it immediately.

key In addition to scrolling, the debugger supports the following methods for

PAGE DOWN

END

4-28

moving through a window’s contents.

The page-up key scrolls up through the contents of the active window, one
window length at a time. You can use (ConTROL) (PAGEUP) to scroll up
through an array of structures displayed in a DISP window.

The page-down key scrolls down through the contents of the active
window, one window length at a time. You can use (CONTROL) (PAGEDOWN) tO
scroll down through an array of structures displayed in a DISP window.

When the FILE window is active, pressing adjusts the window’s con-
tents so that the first line of the text file is at the top of the window. You can’t
use outside of the FILE window.

When the FILE window is active, pressing adjusts the window’s con-
tents so that the last line of the file is at the bottom of the window. You can’t
use outside of the FILE window.

Pressing this key moves the field cursor up one line at a time.
Pressing this key moves the field cursor down one line at a time.

When a field is selected for editing, the (© and = keys move the cursor
within the field. You can use or to move to the
next field, except when the COMMAND window is active; in this case, the
cursor moves to the beginning of the preceding or next word.

Manipulating a Window’s Contents

Editing the data displayed in windows

You can edit the data displayed in the MEMORY, CPU, DISP, and WATCH
windows by using an overwrite click-and-type method or by using commands
that change the values. This is described in detail in Section 9.3, Basic
Methods for Changing Data Values, page 9-4.

Note:

In the following windows, the click-and-type method of selecting data for edit-
ing— pointing at a line and pressing or the left mouse button—does not
allow you to modify data.

d Inthe FILE and DISASSEMBLY windows, pressing or the mouse but-
ton sets or clears a breakpoint on any line of code that you select. You can’t
modify text in a FILE or DISASSEMBLY window.

[Inthe CALLS window, pressing or the mouse button shows the source
for the function named on the selected line.

(1 Inthe PROFILE window, pressing has no effect. Clicking the mouse
button in the header displays a different set of data; clicking the mouse but-
ton on an area name shows the code associated with the area.

The Debugger Display 4-29

Closing a Window

4.7 Closing a Window

4-30

The debugger opens various windows on the display according to the debug-
ging mode you select. When you switch modes, the debugger may close some
windows and open others. Additionally, you may choose to open DISP,
WATCH, and MEMORY windows.

Most of the windows remain open—you can’t close them. However, you can
close the CALLS, DISP, WATCH, and MEMORY windows. To close one of
these windows:

1) Make the appropriate window active.

2) Press (.

You can also close the WATCH window by using the WR command:
wr [window name]

When you close a window, the debugger remembers the window’s size and
position. The next time you open the window, it will have the same size and
position. That is, if you close the CALLS window, then reopen it, it will have the
same size and position as it did before you closed it. When you open a DISP,
WATCH, or MEMORY window, it will occupy the same position as the last one
of that type that you closed.

Chapter 5

Entering and Using Commands

The debugger provides you with several methods for entering commands:

(1 From the command line

(d From the pulldown menus (using keyboard combinations or the mouse)
[With function keys

[From a batch file

Mouse use and function key use differ from situation to situation and are
described throughout this book whenever applicable. This chapter includes
specific rules that apply to entering commands and using pulldown menus.

Topic Page
5.1 Entering Commands From the Command Line 5-2
5.2 Using the Menu Bar and the Pulldown Menus 5-7
5.3 UsingDialogBoXesccoiiiiiiiiirnnnnnrrnnnnnrnnnnnnnss 5-11
5.4 Entering Commands FromaBatchFile 5-17
5.5 Defining Your Own Command Stringsccoiuunn.. 5-21
5.6 Changing and Listing the Current Working Directory

(WIindows Only) iieena i ieniaannnnnes 5-24

5-1

Entering Commands From the Command Line

5.1

Entering Commands From the Command Line

The debugger supports a complete set of commands that help you to control
and monitor program execution, customize the display, and perform other
tasks. These commands are discussed in the various sections throughout this
book, as they apply to the topic that is being discussed. Chapter 5, Summary
of Commands and Special Keys, summarizes all of the debugger commands
with an alphabetic reference.

Although there are a variety of methods for entering most of the commands,
all of the commands can be entered by typing them on the command line in
the COMMAND window. Figure 5-1 shows the COMMAND window.

Figure 5-1. The COMMAND Window

5-2

— COMMAND

display — A
area <
}o main v

>>> step 50

command
line

\

The COMMAND window serves two purposes:

[Thecommand line portion of the window provides you with an area for en-
tering commands. For example, the command line in Figure 5-1 shows
that a STEP command was typed in (but not yet entered).

[The display area provides the debugger with a space for echoing com-
mands, displaying command output, or displaying errors and messages
for you to read. For example, the command output in Figure 5-1 shows
the messages that are displayed when you first bring up the debugger and
also shows that a GO MAIN command was entered.

If you enter a command through an alternate method (using the mouse, a
pulldown menu, or function keys), the COMMAND window doesn’t echo
the entered command.

Entering Commands From the Command Line

How to type in and enter commands

You can type a command at almost any time; the debugger automatically
places the text on the command line when you type. When you want to enter
a command, just type—no matter which window is active. You don’t have to
worry about making the COMMAND window active or moving the field cursor
to the command line. When you start to type, the debugger usually assumes
that you're typing a command and puts the text on the command line (except
under certain circumstances, which are explained on the next page).
Commands themselves are not case sensitive, although some parameters
(such as window names) are.

To execute a command that you’ve typed, just press @. The debugger then:

1) Echoes the command to the display area,
2) Executes the command and displays any resulting output, and
3) Clears the command line when command execution completes.

Once you've typed a command, you can edit the text on the command line with
these keystrokes:

To... Press...

Move back over text without erasing characters @1
Move forward through text without erasing characters 1 or

Move to the beginning of the previous word without @f
erasing characters

Move to the beginning of the next word without 2
erasing characters

Move to the beginning of the line without erasing ©f
characters

Move to the end of the line without erasing characters 2

Move back over text while erasing characters or
or

Move forward through text while erasing characters

Insert text into the characters that are already on the
command line

Delete text from the right of the cursor position

t You can use the arrow keys only when the COMMAND window is selected.

Entering and Using Commands 5-3

Entering Commands From the Command Line

Note:

1)

2)

When the COMMAND window is not active, you cannot use the arrow
keys to move through or edit text on the command line.

Typing a command doesn’t make the COMMAND window the active
window.

Sometimes, you can’t type a command

5-4

At most times, you can press any alphanumeric or punctuation key on your
keyboard (any printable character); the debugger interprets this as part of a
command and displays the character on the command line. In a few instances,
however, pressing an alphanumeric key is not interpreted as information for
the command line.

4

a

When you're pressing the key, typing certain letters causes the
debugger to display a pulldown menu.

When a pulldown menu is displayed, typing a letter causes the debugger
to execute a selection from the menu.

When you’re pressing the key, pressing or moves the
command-line cursor backward or forward through the text on the com-
mand line.

When you're editing a field, typing enters a new value in the field.

When you’re using the MOVE or SIZE command interactively, pressing
keys affects the size or position of the active window. Before you can enter
any more commands, you must press to terminate the interactive
moving or sizing.

When you’ve brought up a dialog box, typing enters a parameter value for
the current field in the box. See Section 5.3 on page 5-11 for more informa-
tion on dialog boxes.

Entering Commands From the Command Line

Using the command history

The debugger keeps an internal list, or command history, of the commands
that you enter. It remembers the last 50 commands that you entered. If you
want to reenter a command, you can move through this list, select a command
that you've already executed, and reexecute it.

Use these keystrokes to move through the command history.

To... Press...

Move forward through the list of executed commands, one by one
Move backward through the list of executed commands, one by one

Repeat the last command that you entered

As you move through the command history, the debugger displays the
commands, one by one, on the command line. When you see a command that
you want to execute, simply press (& to execute the command. You can also
edit these displayed commands in the same manner that you can edit new
commands.

For information about using the PDM’s command history, see page 2-14.

Clearing the display area

~§

Occasionally, you may want to completely blank out the display area of the
COMMAND window; the debugger provides a command for this:

cls

Use the CLS command to clear all displayed information from the display area.
The format for this command is:

cls

Entering and Using Commands 5-5

Entering Commands From the Command Line

Recording information from the display area

5-6

The information shown in the display area of the COMMAND window can be
written to a log file. The log file is a system file that contains commands you've
entered, their results, and error or progress messages. To record this informa-
tion in a log file, use the DLOG command.

You can execute log files by using the TAKE command. When you use DLOG
to record the information from the display area of the COMMAND window, the
debugger automatically precedes all error or progress messages and com-
mand results with a semicolon to turn them into comments. This way, you can
easily re-execute the commands in your log file by using the TAKE command.

(1 To begin recording the information shown in the display area of the
COMMAND window, use:

dlog filename

This command opens a log file called filename that the information is
recorded into.

(1 To end the recording session, enter:
dlog close

If necessary, you can write over existing log files or append additional informa-
tion to existing files. The extended format for the DLOG command is:

dlog filename [,{a | w}]

The optional parameters of the DLOG command control how the log file is
created and/or used:

(1 Creating a new log file. If you use the DLOG command without one of
the optional parameters, the debugger creates a new file that it records the
information into. If you are recording to a log file already, entering a new
DLOG command and filename closes the previous log file and opens a
new one.

(1 Appending to an existing file. Use the a parameter to open an existing
file to which to append the information in the display area.

[Writing over an existing file. Use the w parameter to open an existing
file to write over the current contents of the file. Note that this is the default
action if you specify an existing filename without using either the a or w
option; you will lose the contents of an existing file if you don’t use the
append (a) option.

For more information about the PDM version of the DLOG command, see
page 2-10.

Using the Menu Bar and the Pulldown Menus

5.2 Using the Menu Bar and the Pulldown Menus

In all four of the debugger modes, you'll see a menu bar at the top of the screen.
The menu selections offer you an alternative method for entering many of the
debugger commands. Figure 5-2 points out the menu bar in a mixed-mode
display. There are several ways to use the selections on the menu bar, de-
pending on whether the selection has a pulldown menu or not.

Figure 5-2. The Menu Bar in the Basic Debugger Display

/Load Break Watch Memory Color Analysis Pin Run=F5 Step=F8 Next=F10\
/ — DISASSEMBLY- CPU
menu bar 0040 0aa0 main: POPD 4+ A|acc 00000002 A
0041 80a0 SAR ARO, *+ :gEG S G0E
0042 8180 SAR AR1,* TOS 0060
STO 2e00
0043 b004 LAR ARO, #4 s
0044 0OOea LAR ARO, *0+,AR2 IMR bff8
0045 b900 ZAC IFR 0000
0046 b201 LAR AR2,#1 S0y
0047 8be0 MAR *0+ ¥Y|ar1 o000
AR2 0000
0048 90a0 SAcL o+ e v
—FILE: sample. AR4 0000
00046 int *pi; A| AR5 0000
00047 char *Xpc; CALLS
00048 1: main()
00049 extern call();
00059 exter meminit(); Y
00060
00061 main()
__| MEMORY
COMMAND 0000 0007 0007 0007 0007 bfff ££00 0000
file sample.c A
. 0007 0008 0000 bfff 0000 0000 0001 0001
go main
e 000e 0001 bEff 0000 09f5 dffd Efff £080 o
= 0015 09c6 bfff bEfff £7£f 0000 bEfff bEff
>>> 00lc bfff bfff ££77 bfff 0000 0000 0900
Several of the selections on the menu bar have pulldown menus; if they could
all be pulled down at once, they’d look like Figure 5-3.
Figure 5-3. All of the Pulldown Menus (Basic Debugger Display)
Load Break Watch Memory Color Mode Analysis Pin
Load Add Add Add Load C (auto) Disable Connect
Reload Delete Delete Delete Save Asm Break Disconnect]
Symbols Reset Reset Reset Config Mixed EMU List
REstart List List ErdEe MiNimal View
ReseT Enable Prompt
File Fill
Save
Connect
DisConn

Note: The Pin menu and the Connect and DisConn entries in the Memory menu are available for the simulator only. The Analy-
sis menu is available for the emulator only.

Entering and Using Commands

5-7

Using the Menu Bar and the Pulldown Menus

Note that the menu bar and associated pulldown menus occupy fixed positions
on the display. Unlike windows, you can’t move, resize, or cover the menu bar
or pulldown menus.

Pulldown menus in the profiling environment

The debugger displays a different menu bar in the profiling environment:

Load mAp Mark Enable Disable Unmark View Stop-points Profile

The Load menu corresponds to the Load menu in the basic debugger environ-
ment. The mAp menu provides memory map commands available from the
basic Memory menu. The other entries provide access to profiling commands.

Using the pulldown menus

There are several ways to display the pulldown menus and then execute your
selections from them. Executing a command from a menu has the same effect
as executing a command by typing it in.

[[f you select a command that has no parameters or only optional parame-
ters, the debugger executes the command as soon as you select it.

[[f you select a command that has one or more required parameters, the
debugger displays a dialog box when you make your selection. A dialog
box offers you the chance to type in the parameters values for the com-
mand.

The following paragraphs describe several methods for selecting commands
from the pulldown menus.

% Mouse method 1

AN 1) Point the mouse cursor at one of the appropriate selections in the menu
bar.

1 2) Press the left mouse button, but don’t release the button.

Bl 3) While pressing the mouse button, move the mouse downward until your

selection is highlighted on the menu.

00 4) When your selection is highlighted, release the mouse button.

1

1

Using the Menu Bar and the Pulldown Menus

Mouse method 2

1)

3)

4)

Point the cursor at one of the appropriate selections in the menu bar.

Click the left mouse button. This displays the menu until you are ready to
make a selection.

Point the mouse cursor at your selection on the pulldown menu.

When your selection is highlighted, click the left mouse button.

ALT

]

ALT

Keyboard method 1

1)

Press the key; don'’t release it.

Press the key that corresponds to the highlighted letter in the selection
name; release both keys. This displays the menu and freezes it.

Press and release the key that corresponds to the highlighted letter of your
selection in the menu.

Keyboard method 2

1)
2)

3)
4)

Press the key; don'’t release it.

Press the key that corresponds to the highlighted letter in the selection
name; release both keys. This displays the menu and freezes it.

Use the arrow keys to move up and down through the menu.

When your selection is highlighted, press &.

Escaping from the pulldown menus

a

a

If you display a menu and then decide that you don’'t want to make a selec-
tion from this menu, you can:

W Press
or

B Point the mouse outside of the menu; press and then release the left
mouse button.

If you pull down a menu and see that it is not the menu you wanted, you
can point the mouse at another entry and press the left mouse button, or
you can use the (© and & keys to display adjacent menus.

Entering and Using Commands 5-9

Using the Menu Bar and the Pulldown Menus

Using menu bar selections that don’t have pulldown menus

These three menu bar selections are single-level entries without pulldown
menus:

[Run=F5 Step=F8 Next=F10]

There are two ways to execute these choices.

10

1) Point the cursor at one of these selections in the menu bar.

2) Click the left mouse button.

This executes your choice in the same manner as typing in the associated
command without its optional expression parameter.

key

F10

5-10

Pressing this key is equivalent to typing in the RUN command without an
expression parameter.

Pressing this key is equivalent to typing in the STEP command without an
expression parameter.

Pressing this key is equivalent to typing in the NEXT command without an
expression parameter.

For more information about the RUN, STEP, and NEXT commands, see Sec-
tion 8.5, Running Your Programs, page 8-13.

Using Dialog Boxes

5.3 Using Dialog Boxes

Many of the debugger commands have parameters. When you execute these
commands from pulldown menus, you must have some way of providing
parameter information. The debugger allows you to do this by displaying a
dialog box that asks for this information.

Some debugger commands have very simple dialog boxes that provide you
with an alternative method for typing in values. Other commands, such as
analysis commands, have more complex dialog boxes; in addition to typing in
values, you may be asked to make selections from a list of predefined
parameters.

Entering text in a dialog box

Entering text in a dialog box is much like entering commands on the command
line. For example, the Add entry on the Watch menu is equivalent to entering
the WA command. This command has four parameters:

wa expression [,[labell [, [display format] [, window name]]]

When you select Add from the Watch menu, the debugger displays a dialog
box that asks you for this parameter information. The dialog box looks like this:

Watch Add
Expression
Label
Format

Name
<<OK>> <Cancel>

You can enter an expression just as you would if you typed the WA command.
After you enter an expression, press or . The cursor moves down to
the next parameter:

Watch Add
Expression MY VAR
Label

Format

Name
<<OK>> <Cancel>

When the dialog box displays more than one parameter, you can use the arrow
keys to move from parameter to parameter. You can omit entries for optional
parameters, but the debugger won’t allow you to skip required parameters.

Entering and Using Commands 5-11

Using Dialog Boxes

In the case of the WA command, the label, format, and window name parame-
ters are optional. If you want to enter one of these parameters, you can do so;
if you don’t want to use these optional parameters, don'’t type anything in their
fields—just continue to the next parameter.

Modifying text in a dialog box is similar to editing text on the command line:

[When you display a dialog box for the first time during a debugging ses-
sion, the parameter fields are empty. When you bring up the same dialog
box again, the box displays the last values that you entered. (This is similar
to having a command history.) If you want to use the same value, just press
or (D to move to the next parameter.

[You can edit what you type (or values that remain from a previous entry)
in the same way that you can edit text on the command line. See Sec-
tion 5.1 on page 5-2 for more information on editing text on the command
line.

When you’ve entered a value for the final parameter, point and click on OK to
save your changes, or on Cancel to discard your changes; the debugger
closes the dialog box and executes the command with the parameter values
you supplied. You can also choose between the OK and Cancel options by us-
ing the arrow keys and pressing on your desired choice.

Selecting parameters in a dialog box

5-12

More complex dialog boxes, such as those associated with analysis com-
mands, allow you to:

(1 Enter text. Entering text in a more complex dialog box is the same as
entering text on the command line. Refer to the discussion above, Enter-
ing text in a dialog box, for more information.

(O Choose from a list of predefined options. There are two types of prede-
fined options in a dialog box. The first type of option allows you to enable
one or more predefined options. Options of the second type are mutually
exclusive; therefore, you can enable only one at a time.

Valid options (of the opened dialog box) are listed for you so that all you
have to do is point and click to make your selections.

(1 Close the dialog box. The more complex dialog boxes do not close auto-
matically. They allow you the option of saving or discarding any changes
you made to your parameter choices. To close the dialog box, just point
and click on the appropriate option: either OK or Cancel.

Using Dialog Boxes

Figure 5-4 shows you the components of a complex dialog box used with the
analysis module.

Figure 5-4. The Components of a Dialog Box

Text entry
area
Analysis Break Events
[]Program bus []Emu0 M []Emul driven low
. M)
Pre.defmed ()Access ()Read ()Write ()Fetch
options
<< OK >> < Cancel >

Mutually exclusive
options Closing
options

When you display a dialog box for the first time during a debugging session,
nothing is enabled. When you bring up the same dialog box again, though,
your previous selections are remembered. (This is similar to having a com-
mand history.)

As Figure 5-4 shows, options are preceded by either square brackets or
parentheses; mutually exclusive options are preceded by parentheses. Enab-
ling options preceded by square brackets is like turning a switch on and off.
When the option is enabled, the debugger displays an X inside the brackets
preceding the option. You can enable as many of these options as you want:

[X] Option1 []Option2 [X] Option 3
[] Option4 [X] Option5 [X] Option 6
[X] Option7 []Option8 [] Option9

Entering and Using Commands 5-13

Using Dialog Boxes

Mutually exclusive options, however, are enabled when the debugger displays
an asterisk inside the parentheses preceding your selection. The following
example illustrates this:

(*) Option 1
() Option2
() Option3

Notice that only one option is enabled at a time. There are several ways to
enable both types of options:

10

1) Point the cursor at the option you want to enable.

2) Click the left mouse button. This enables the event and displays an X next
to the option (or an asterisk next to a mutually exclusive option).

Repeat these two steps to disable an option. When the X (or asterisk) is no
longer displayed, that option has been disabled.

ALT

&

Keyboard Method 1
1) Press the key; don’t release it.

2) Press and release the key that corresponds to the highlighted letter or
number of the option you want to enable. The debugger displays an X (or
asterisk) next to the option, indicating that selection is enabled.

Repeat these two steps to disable an option. When the X (or asterisk) is no
longer displayed, that option has been disabled.

TAB

Using Dialog Boxes

Keyboard Method 2

1) Press the key to move throughout the dialog box until your cursor
points to the option you want to enable.

2) Use the arrow keys to move up and down or left and right.

When you enable a mutually exclusive option, moving the arrow keys alone
will place an asterisk inside the parentheses, indicating that the option is
enabled. However, to enable an option preceded by square brackets, you
must:

Press the bar. The debugger displays an X next to your selection, thus
enabling that particular option.
or
Press the key. The debugger displays an X next to your selection, thus
enabling that particular option.
Repeat these steps to disable an option.
Closing a dialog box

or

The more complex dialog boxes do not close automatically; the debugger
expects input from you. When you close a dialog box, you can:

[Save the changes you made

(4 Discard any of the changes you made

Note:

The default option, OK, is highlighted; clicking on this option saves your
changes and closes the dialog box.

There are several ways to close a dialog box:

1) Point the cursor at OK to close the dialog box and save your changes. Or
you can opt to discard your changes by pointing the cursor at Cancel.

2) Click the left mouse button. This executes your choice and closes the dia-
log box.

Entering and Using Commands 5-15

Using Dialog Boxes

key

5-16

ALT

&

TAB

Keyboard Method 1
1) Press the key; don’t release it.

2) Press and release the (@ key to save your changes. Press and release
the key to discard your changes. Both of these actions execute your
choice and close the dialog box.

Keyboard Method 2

1) Pressthe key to move through the dialog box until your cursor is in
the OK or Cancel field.

2) Use the arrow keys to switch between OK and Cancel.

3) Press the (@ key to accept your selection. This executes your choice and
closes the dialog box.

Entering Commands From a Batch File

5.4 Entering Commands From a Batch File

You can place debugger commands in a batch file and execute the file from
within the debugger environment. This is useful, for example, for setting up a
memory map that contains several MA commands followed by a MAP
command to enable memory mapping.

@

Use the TAKE command to tell the debugger to read and execute commands
from a batch file. A batch file can call another batch file; they can be nested
in this manner up to 10 deep. To halt the debugger’s execution of a batch file,
press (EsO).

The format for the TAKE command is:

take batch filename [, suppress echo flag]

(1 The batch filename parameter identifies the file that contains commands.

If you supply path information with the filename, the debugger looks
for the file in the specified directory only.

If you don’t supply path information with the filename, the debugger
looks for the file in the current directory.

If the debugger can't find the file in the current directory, it looks in any
directories that you identified with the D_DIR environment variable.
You can set D_DIR within the operating-system environment; the
command for doing this is:

SET D_DIR=pathname;pathname For Windows or OS/2
setenv D_DIR "pathname;pathname” For UNIX™

This allows you to name several directories that the debugger can
search.

(1 By default, the debugger echoes the commands in the display area of the
COMMAND window and updates the display as it reads commands from
the batch file.

If you don’t use the suppress echo flag parameter, or if you use it but
supply a nonzero value, the debugger behaves in the default manner.

If you want to suppress the echoing and updating, use the value 0 for
the suppress echo flag parameter.

For information about the PDM version of the TAKE command, see page 2-9.

Entering and Using Commands 5-17

Entering Commands From a Batch File

Echoing strings in a batch file

When executing a batch file, you can display a string to the COMMAND win-
dow by using the ECHO command. The syntax for the command is:

echo string
This displays the string in the display area of the COMMAND window.

For example, you may want to document what is happening during the execu-
tion of a certain batch file. To do this, you could use the following line in your
batch file to indicate that you are creating a new memory map for your device:

echo Creating new memory map

(Notice that the string should not be in quotes.)

When you execute the batch file, the following message appears:
Creating new memory map

Note that any leading blanks in your string are removed when the ECHO com-
mand is executed.

For more information about the PDM version of the ECHO command, see
page 2-13.

Controlling command execution in a batch file

5-18

In batch files, you can control the flow of debugger commands. You can
choose to execute debugger commands conditionally or set up a looping situa-
tion by using IF/ELSE/ENDIF or LOOP/ENDLOOQP, respectively.

(1 To conditionally execute debugger commands in a batch file, use the
IF/ELSE/ENDIF commands. The syntax is:

if Boolean expression
debugger command
debugger command

[else

debugger command
debugger command
g/

endif

Entering Commands From a Batch File

The debugger includes some predefined constants for use with IF. These
constants evaluate to 0 (false) or 1 (true). Table 5-1 shows the constants
and their corresponding tools.

Table 5-1. Predefined Constants for Use With Conditional Commands

Constant Debugger Tool
$SEMUSS emulator
$$SIM$$ simulator

If the Boolean expression evaluates to true (1), the debugger executes all
commands between the IF and ELSE or ENDIF. Note that the ELSE por-
tion of the command is optional. (See Chapter 14, Basic Information About
C Expressions, for more information about expressions and expression
analysis.)

One way you can use these predefined constants is to create an initializa-
tion batch file that works for any debugger tool. This is useful if you are
using, for example, both the emulator and the simulator. To do this, you
can set up the following batch file:

if $SEMUSS

echo Invoking initialization batch file for emulator.
use \c2xxhll

take emuinit.cmd

endif

if $$SIMSS

echo Invoking initialization batch file for simulator.
use \sim2xx

take siminit.cmd

endif

In this example, the debugger will execute only the initialization com-
mands that apply to the debugger tool that you invoke.

Entering and Using Commands 5-19

Entering Commands From a Batch File

5-20

(1 To set up a looping situation to execute debugger commands in a batch
file, use the LOOP/ENDLOOP commands. The syntax is:

loop expression
debugger command
debugger command

endloop

These looping commands evaluate in the same method as in the run
conditional command expression. (See Chapter 14, Basic Information
About C Expressions, for more information about expressions and expres-
sion analysis.)

If you use an expression that is not Boolean, the debugger evaluates
the expression as a loop count. For example, if you wanted to execute
a sequence of debugger commands ten times, you would use the fol-
lowing:

loop 10
step

endloop

The debugger treats the 10 as a counter and executes the debugger
commands ten times.

If you use a Boolean expression, the debugger executes the com-
mands repeatedly as long as the expression is true. This type of
expression has one of the following operators as the highest prece-
dence operator in the expression:

For example, if you want to trace some register values continuously,
you can set up a looping expression like the following:

loop !0
step
? PC
? ARO
endloop

Entering Commands From a Batch File / Defining Your Own Command Strings

The IF/ELSE/ENDIF and LOOP/ENDLOOP commands work with the follow-
ing conditions:

[d You can use conditional and looping commands only in a batch file.

[d You must enter each debugger command on a separate line in the batch
file.

[d You can’t nest conditional and looping commands within the same batch
file.

See Controlling PDM command execution, page 2-11, for more information
about the PDM versions of the IF and LOOP commands.

5.5 Defining Your Own Command Strings

The debugger provides a shorthand method of entering often-used com-
mands or command sequences. This processing is called aliasing. Aliasing
enables you to define an alias name for the command(s) and then enter the
alias name as if it were a debugger command.

To do this, use the ALIAS command. The syntax for this command is:
alias [alias name [, “command string”]]

The primary purpose of the ALIAS command is to associate the alias name
with the debugger command you’ve supplied as the command string. How-
ever, the ALIAS command is versatile and can be used in several ways:

(O Aliasing several commands. The command string can contain more
than one debugger command—ijust separate the commands with semi-
colons. Be sure to enclose the command string in quotes.

For example, suppose you always began a debugging session by loading
the same object file, displaying the same C source file, and running to a
certain point in the code. You could define an alias to do all these tasks at
once:

alias init,”load test.out;file source.c;go main”

Now you could enter init instead of the three commands listed within the
quote marks.

(O Supplying parameters to the command string. The command string
can define parameters that you’ll supply later. To do this, use a percent
sign and a number (%1) to represent the parameter. The numbers should
be consecutive (%1, %2, %3) unless you plan to reuse the same parame-
ter value for multiple commands.

Entering and Using Commands 5-21

Defining Your Own Command Strings

5-22

For example, suppose that every time you filled an area of memory, you
also wanted to display that block in the MEMORY window:

alias mfil,”£fill %1, %2, %3, %4;mem %1”

Then you could enter:

mfil 0xf£f80,1,0x18,0x1122

In this example, the first value (0xff80) is substituted for the first FILL pa-
rameter and the MEM parameter (%1). The second, third, and fourth val-

ues are substituted for the second, third, and fourth FILL parameters (%2,
%3, and %4).

Listing all aliases. To display a list of all the defined aliases, enter the
ALIAS command with no parameters. The debugger will list the aliases
and their definitions in the COMMAND window.

For example, assume that the init and mfil aliases had been defined as
shown in the previous two examples. If you enter:

alias
you'll see:
Alias Command
INIT ——> load test.out;file source.c;go main
MFIL -—> £ill %1,%2,%3,%4;mem %1

Finding the definition of an alias. If you know an alias name but are not
sure of its current definition, enter the ALIAS command with just an alias
name. The debugger will display the definition in the COMMAND window.

For example, if you had defined the init alias as shown in the first example
above, you could enter:

alias init

Then you'd see:

GINIT” aliased as ”"load test.out; file source.c;go main"]

Nesting alias definitions. You can include a defined alias name in the
command string of another alias definition. This is especially useful when
the command string would be longer than the debugger command line.

Redefining an alias. To redefine an alias, reenter the ALIAS command
with the same alias name and a new command string.

Defining Your Own Command Strings

(1 Deleting aliases. To delete a single alias, use the UNALIAS command:
unalias alias name

To delete all aliases, enter the UNALIAS command with an asterisk
instead of an alias name:

unalias *

Note that the * symbol does not work as a wildcard.

Note:

1) Alias definitions are lost when you exit the debugger. If you want to reuse
aliases, define them in a batch file.

2) Individual commands within a command string are limited to an expand-
ed length of 132 characters. The expanded length of the command
includes the length of any substituted parameter values.

For information about the PDM versions of the ALIAS and UNALIAS com-
mands, see page 2-15.

Entering and Using Commands 5-23

Changing and Listing the Current Working Directory

5.6 Changing and Listing the Current Working Directory

-

5-24

If you're using the debugger with Windows, the debugger provides separate
commands for changing directories and for listing the contents of a directory.

cd

or

dir

Use the CHDIR (CD) command to change the current working directory. The
format for this command is:

chdir directory name
cd directory name

This changes the current directory to the specified directory name. You can
use relative pathnames as part of the directory name. Note that this command
can affect any command whose parameter is a filename (such as the FILE,
LOAD, and TAKE commands).

Use the DIR command to list the contents of a directory. The format for this
command is:

dir [directory name]

This command displays a directory listing in the display area of the COMMAND
window. If you use the optional directory name parameter, the debugger
displays a list of the specified directory’s contents. If you don’t use this
parameter, the debugger lists the contents of the current directory.

You can use the asterisk wildcard as part of the directory name.

Chapter 6

Defining a Memory Map

Before you begin a debugging session, you must supply the debugger with a
memory map. The memory map tells the debugger which areas of memory it
can and can’t access. Note that the commands described in this chapter can
also be entered by using the Memory pulldown menu (see Section 5.2, Using
the Menu Bar and the Pulldown Menus, page 5-7).

Topic Page
6.1 The Memory Map: What It Is and Why You Must Definelt 6-2
6.2 ASampleMemoryMapcciiiiiiiiinirinnnrrnnnnnnnns 6-4
6.3 Identifying Usable MemoryRangesocviiiinnnnnn 6-7
6.4 Enabling Memory Mappingcioiiiiiiiiininreannnnns 6-11
6.5 CheckingtheMemoryMapcccvviiiiiiiinnnnnnnnnns 6-12
6.6 Modifying the Memory Map During a Debugging Session 6-13
6.7 Using Multiple Memory Maps for Multiple Target Systems 6-14
6.8 A Sample Memory Map for the Simulator 6-15
6.9 Simulating I/O Space (SimulatorOnly)coiuua... 6-16
6.10 Simulating External Interrupts (SimulatorOnly) 6-18

6-1

The Memory Map: What It Is and Why You Must Define It

6.1 The Memory Map: What It Is and Why You Must Define It

A memory map tells the debugger which areas of memory it can and can’t
access. Memory maps vary, depending on the application. Typically, the map
matches the MEMORY definition in your linker command file.

Note:

When the debugger compares memory accesses against the memory map,
it performs this checking in software, not hardware. The debugger can’t
prevent your program from attempting to access nonexistent memory.

A special default initialization batch file included with the debugger package
defines a memory map for your version of the debugger. This memory map
may be sufficient when you first begin using the debugger. However, the de-
bugger provides a complete set of memory-mapping commands that let you
modify the default memory map or define a new memory map.

You can define the memory map interactively by entering the memory-map-
ping commands while you're using the debugger. This can be inconvenient be-
cause, in most cases, you'll set up one memory map before you begin debug-
ging and will use this map for all of your debugging sessions. The easiest
method for defining a memory map is to put the memory-mapping commands
in a batch file.

Defining the memory map in a batch file

6-2

There are two methods for defining the memory map in a batch file:

[You can redefine the memory map defined in the initialization batch file.
[You can define the memory map in a separate batch file of your own.

When you invoke the debugger, it follows these steps to find the batch file that
defines your memory map:

1) It checks to see whether you've used the -t debugger option. The -t option
allows you to specify a batch file other than the initialization batch file
shipped with the debugger. If it finds the -t option, the debugger reads and
executes the specified file.

2) If you don’t use the -t option, the debugger looks for the default initializa-
tion batch file. The batch filename differs for each version of the debugger:

] Forthe emulator, this file is called emuinit.cmd.
] For the simulator, this file is called siminit.cmd.

If the debugger finds the file corresponding to your tool, it reads and
executes the file.

The Memory Map: What It Is and Why You Must Define It

3) If the debugger does not find the -t option or the initialization batch file, it
looks for a file called init.cmd. This search mechanism allows you to have
one initialization batch file for more than one debugger tool. To set up this
file, you can use the IF/ELSE/ENDIF commands (for more information,
see Controlling command execution in a batch file, on page 5-18) to indi-
cate which memory map applies to each tool.

Potential memory map problems

You may experience these problems if the memory map isn’t correctly defined
and enabled:

(1 Accessing invalid memory addresses. If you don’t supply a batch file
containing memory-map commands, the debugger is initially unable to
access any target memory locations. Invalid memory addresses and their
contents are highlighted in the data-display windows. (On color monitors,
invalid memory locations, by default, are displayed in red.)

(1 Accessing an undefined or protected area. \When memory mapping is
enabled, the debugger checks each of its memory accesses against the
memory map. If you attempt to access an undefined or protected area, the
debugger displays an error message. For specific error messages, see
Appendix C, Debugger and PDM Messages.

1 Loading a COFF file with sections that cross a memory range. Be sure
that the map ranges you specify in a COFF file match those that you define
with the MA command (described on page 6-7). Alternatively, you can
turn memory mapping off during a load by using the MAP OFF command
(described on page 6-11).

Defining a Memory Map 6-3

A Sample Memory Map

6.2 A Sample Memory Map

Because you must define a memory map before you can run any programs,
it's convenient to define the memory map in the initialization batch files.
Figure 6-1 shows the memory map commands that are defined in the initial-
ization batch file that accompanies the *C2xx emulator. You must edit the file
to your configuration. This file is configured for the *C209. You can use the file
as is, edit it, or create your own memory map batch file to match your own con-
figuration. The files shipped with the simulator are similar to those of the emu-
lator.

The MA (map add) commands define valid memory ranges and identify the
read/write characteristics of the memory ranges. Figure 6-2 illustrates the
'C209 memory map defined by the default initialization batch file. For refer-
ence, Figure 6-3 shows the memory map for the 'C203.

Figure 6-1. Memory Map Commands in the Sample Initialization Batch File (for the ‘C209
Emulator)

; Uncomment following line if MP/MC = 0
; MA 0x0000,0,0x1000,ROM

; Uncomment following line if RAMEN = 1
; MA 0x1000,0,0x1000,RAM

; Uncomment following line if CNF

; MA 0xFE00,0,0x200,RAM

MA 0x0004,1,0x3,RAM

MA 0x0060,1,0x20,RAM

; Uncomment following line if CNF
; MA 0x100,1,0x200,RAM

MA 0x0300,1,0x200,RAM

MA 0x1000,1,0x1000,RAM

1
=

1
o

Figure 6-2. Sample Memory Map for Use With a 'C209

Program
0x0000 Interrupts
I
0x003F (external)
0x0040
External
OXOFFF
0x1000| On-chip SARAM
(RAMEN = 1);
External
(RAMEN = 0)
Ox1FFF
0x2000
External
OxFDFF
OXxFEOO| On-chip DARAM
BO (CNF = 1);
OXFEFF External (CNF = 0)
0xFFOO| On-chip DARAM
BO (CNF = 1);
OXFFEF External (CNF = 0)
MP/MC = 1

Microprocessor Mode

0x0000

0x003F
0x0040

OxOFFF
0x1000

Ox1FFF
0x2000

OxFDFF
OXFEOO

OxFEFF
OxFF00

OXFFFF

Program

Interrupts
(on-chip)

On-chip ROM

On-chip SARAM
(RAMEN = 1);
External
(RAMEN = 0)

External

On-chip DARAM
BO (CNF = 1);
External (CNF = 0)

On-chip DARAM
BO (CNF = 1);

External (CNF = 0)

MP/MC = 0
Microcomputer Mode

0x0000

0x005F
0x0060

0x007F
0x0080

0x00FF
0x0100

0x01FF
0x0200

0x02FF
0x0300

O0x03FF
0x0400
0x04FF
0x0500

0x07FF
0x0800

OXOFFF
0x1000

Ox1FFF
0x2000

OXFFFF

Defining a Memory Map

A Sample Memory Map

Data

Memory-mapped
registers and
Reserved

On-chip
DARAM B2

Reserved

On-chip DARAM
BO (CNF = 0);
Reserved (CNF = 1)

On-chip DARAM
BO (CNF = 0);
Reserved (CNF = 1)

On-chip
DARAM B1

On-chip
DARAM B1

Reserved

External
(RAMEN = 0);
Reserved
(RAMEN = 1)

On-chip SARAM
(RAMEN = 1);
External
(RAMEN = 0)

External

6-5

A Sample Memory Map

Figure 6-3. Memory Map for Use With a 'C203

0x0000

0x003F
0x0040

OxFDFF
O0xFEO00

OXFEFF
OxFF00

OXFFFF

6-6

Program

Interrupts
(external)

External

On-chip DARAM
B0’ (CNF = 1);
External (CNF = 0)

On-chip DARAM
BO (CNF = 1);
External (CNF = 0)

BOOT =1
Microprocessor Mode

0x0000

0x003F
0x0040

OxFDFF
OxFEOO0

OxFEFF
OxFF00

OXFFFF

Program

Interrupts
(external)

External

On-chip DARAM
BO (CNF = 1);
External (CNF = 0)

On-chip DARAM
B0’ (CNF = 1);
External (CNF = 0)

BOOT =0
Microprocessor Mode

0x0000

0x005F
0x0060

0x007F
0x0080

0x00FF
0x0100

0x01FF
0x0200

0x02FF
0x0300

Ox03FF
0x0400

0x04FF
0x0500

Ox07FF
0x0800

OXFFFF

Data

Memory-mapped
registers and
Reserved

On-chip
DARAM B2

Reserved

On-chip DARAM
BO (CNF = 0);
Reserved (CNF = 1)

On-chip DARAM
BO’ (CNF = 0);
Reserved (CNF = 1)

On-chip
DARAM B1

On-chip
DARAM B1’

Reserved

External

Identifying Usable Memory Ranges

6.3 Identifying Usable Memory Ranges

ma
@

The debugger’s MA (map add) command identifies valid ranges of target
memory. The syntax for this command is:

ma address, page, length, type

(1 The address parameter defines the starting address of a range. This
parameter can be an absolute address, any C expression, the name of a
C function, or an assembly language label.

A new memory map must not overlap an existing entry. If you define a
range that overlaps an existing range, the debugger ignores the new
range and displays this error message in the display area of the
COMMAND window:

Conflicting map range

(1 The page parameter is a one-digit number that identifies the type of
memory (program, data, or I/O) that the range occupies:

Defining a Memory Map 6-7

Identifying Usable Memory Ranges

Use this value as the page

To identify this page, parameter
Program memory 0
Data memory 1
I/O space 2

The length parameter defines the length of the range. This parameter can

be any C expression.

The type parameter identifies the read/write characteristics of the memory
range. The type must be one of these keywords:

To identify this kind of memory . ..

Use this keyword as the type
parameter. ..

Read-only memory
Write-only memory
Read/write memory
No-access memory
Dual-access memory
Single-access memory
Input port

Output port
Input/output port

R or ROM

W or WOM

R|W or RAM
PROTECT

DA

SA

INPORT or P|R
OUTPORT or P|W
IOPORT or P|R|W

Identifying Usable Memory Ranges

Notes:

1)

2)

4)

The debugger caches memory that is not defined as a port type
(INPORT, OUTPORT, or IOPORT). For ranges that you don't want
cached, be sure to map them as ports.

When you are using the simulator, you can use the parameter values
INPORT, OUTPORT, and IOPORT to simulate 1/O ports. Refer to Sec-
tion 6.9, Simulating I/O Space, on page 6-16.

Be sure that the map ranges that you specify in a COFF file match those
that you define with the MA command. Moreover, a command sequence
such as:

ma X,y,ram; ma X+y,z,ram
doesn’t equal
ma x,y+z,ram

If you were planning to load two COFF blocks, where the first block
spanned the length of y and the second block spanned the length of z,
you would use the first MA command example. However, if you were
planning to load a COFF block that spanned the length of y + z, you
would use the second MA command example. Alternatively, you could
turn memory mapping off during a load by using the MAP OFF com-
mand.

Adding input FIFOs to your memory map as readable by the debugger
can cause your program to execute incorrectly. Input FIFOs can only be
read once, regardless of whether the FIFO is read by the debugger or
your program.

Memory mapping with the simulator (MS-DOS version only)

Unlike the emulator, the 'C2xx simulator has memory cache capabilities that
allow you to allocate as much memory as you need. However, to use memory
cache capabilities effectively with the 'C2xx, do not allocate more than 20K
words of memory in your memory map. For example, the following memory
map allocates 64K words of ‘C2xx program memory.

Example 6-1. Sample Memory Map for the 'C2xx Using Memory Cache Capabilities

MA 0,0,0x5000,R|W

MA 0x5000,0,0x5000,R|W
MA 0xa000,0,0x5000,R|W
MA 0x£000,0,0x1000,R|W

Defining a Memory Map 6-9

Identifying Usable Memory Ranges

The simulator creates temporary files in a separate directory on your disk. For
example, when you enter an MA command, the simulator creates a temporary
file in the root directory of your current disk. Therefore, if you are currently run-
ning your simulator on the C drive, temporary files are placed in the C:\ directo-
ry. This prevents the processor from running out of memory space while you
are executing the simulator.

Note:

If you execute the simulator from a floppy drive (for example, drive A), the
temporary files are created in the A:\ directory.

All temporary files are deleted when you leave the simulator via the QUIT com-
mand. If, however, you exit the simulator with a soft reboot of your computer,
the temporary files are not deleted; you must delete these files manually. (Tem-
porary files usually have numbers for names.)

Your memory map is now restricted only by your PC’s capabilities. As a result,
there should be sufficient free space on your disk to run any memory map you
want to use. If you use the MA command to allocate 20K words (40K bytes)
of memory in your memory map, your disk should have at least 40K bytes of
free space available. To do this, you can enter:

ma 0x0, O, 0x5000, ram

Note:

You can also use the memory cache capability feature for the data memory.

Enabling Memory Mapping

6.4 Enabling Memory Mapping

@

By default, mapping is enabled when you invoke the debugger. In some
instances, you may want to explicitly enable or disable memory. You can use
the MAP command to do this; the syntax for this command is:

map on
or
map off

Note that disabling memory mapping can cause bus fault problems in the
target because the debugger may attempt to access nonexistent memory.

Note:
When memory mapping is enabled, you cannot:

(1 Access memory locations that are not defined by an MA command
(1 Modify memory areas that are defined as read only or protected

If you attempt to access memory in these situations, the debugger displays
this message in the display area of the COMMAND window:

Error in expression

Defining a Memory Map 6-11

Checking the Memory Map

6.5 Checking the Memory Map

@ ml If you want to see which memory ranges are defined, use the ML (list memory
> map) command. The syntax for this command is:

ml

The ML command lists the page, starting address, ending address, and read/
write characteristics of each defined memory range. Here is an example of the
results shown in the display area of the COMMAND window when you enter
the ML command:

4 Page Memory range Attributes)

0 0000 - 07ff READ WRITE

0 0800 — 2bff READ WRITE

1 0800 — 2bff READ WRITE

1 2c00 - 7fff READ WRITE

1 8000 — ffff READ WRITE

1 0004 - 0022 READ WRITE

1 0024 — 0026 READ WRITE

1 0028 — 002a READ WRITE

1 0030 — 0035 READ WRITE

1 0050 — 005f READ WRITE

/ 1 0060 — 007f READ WRITE

1 0300 — 04ff READ WRITE

Page 0 = program memory

\Page 1 = data memory starting address ending address /

6-12

Modifying the Memory Map During a Debugging Session

6.6 Modifying the Memory Map During a Debugging Session

md

mr

ma

If you need to modify the memory map during a debugging session, use these
commands.

To delete a range of memory from the memory map, use the MD (memory
delete) command. The syntax for this command is:

md address, page

(1 The address parameter identifies the starting address of the range of
program, data, or I1/O memory. If you supply an address that is not the
starting address of a range, the debugger displays this error message in
the display area of the COMMAND window:

Specified map not found

(1 The page parameter is a one-digit number that identifies the type of
memory (program, data, or I/O) that the range occupies:

Use this value as the page

To identify this page, parameter
Program memory 0
Data memory 1
1/0 space 2

Note:

If you are using the simulator and want to use the MD command to remove
a simulated I/O port, you must first disconnect the port with the Ml command.
Refer to Section 6.9, Simulating I/O Space (Simulator Only), on page 6-16.

If you want to delete all defined memory ranges from the memory map, use
the MR (memory reset) command. The syntax for this command is:

mr
This resets the debugger memory map.

If you want to add a memory range to the memory map, use the MA (map add)
command. The syntax for this command is:

ma address, page, length, type

The MA command is described in detail on page 6-7.

Defining a Memory Map 6-13

Modifying the Memory Map During a Debugging Session / Using Multiple Memory Maps

Returning to the original memory map

If you modify the memory map, you might want to go back to the original
memory map without quitting and reinvoking the debugger. You can do this by
resetting the memory map and then using the TAKE command to read in your
original memory map from a batch file.

Suppose, for example, that you set up your memory map in a batch file named
mem.map. You could enter these commands to go back to this map:

mr Reset the memory map
take mem.map Reread the default memory map

The MR command resets the memory map. (Note that you could put the MR
command in the batch file, preceding the commands that define the memory
map.) The TAKE command tells the debugger to execute commands from the
specified batch file.

6.7 Using Multiple Memory Maps for Multiple Target Systems

If you're debugging multiple applications, you may need a memory map for
each target system. Here’s the simplest method for handling this situation.

Step 1: Let the initialization batch file define the memory map for one of your
applications.

Step 2: Create a separate batch file that defines the memory map for the
additional target system. The filename is unimportant, but for the
purposes of this example, assume that the file is named filename.x.
The general format of this file’s contents should be:

mr Reset the memory map
MA commands Define the new memory map
map on Enable mapping
(Of course, you can include any other appropriate commands in this
batch file.)

Step 3: Invoke the debugger as usual.

Step 4: The debugger reads the initialization batch file during invocation.
Before you begin debugging, read in the commands from the new
batch file:
take filename.x

This redefines the memory map for the current debugging session.
You can also use the -t option instead of the TAKE command when

you invoke the debugger. The -t option allows you to specify a new
batch file to be used instead of the default initialization batch file.

A Sample Memory Map for the Simulator

6.8 A Sample Memory Map for the Simulator

The simulator does not restrict the size, number, or starting address of the
internal SARAM, DARAMS, and ROM blocks. Example 6-2 illustrates the
concept:

Example 6-2. Sample Memory Map for the 'C2xx Simulator

ma 0x0000, 1, 0x0050, RAM|R|W
ma 0x0050, 1, 0x0030, R|W|DA

ma 0x0100, 1, 0x0200, R|W|DA

ma 0x0300, 1, 0x1000, R|W|EX

ma 0x0000, 0, 0x00ff, ROM

ma 0x0100, 0, 0x1000, RAM|EX|R|W

The code in Example 6-2 configures address 0x0050 to 0x0080 as DARAM.
Note that the starting address and length does not correspond to that of the
BO, B1, or B2 blocks. The address from 0x0100 to 0x0300 is configured as
another DARAM block. In the data space, the address 0x0300 to 0x1300 is
configured as external memory. In the program space, the address 0x0000 to
0x00ff is configured as ROM and address 0x0100 to 0x1100 is configured as
external memory.

All the 10 space for the peripheral registers must be configured in the 'C203/
’C209 simulator initialization files. See Section NO TAG, Simulating Periph-
erals (Simulator Only) on page NO TAG, for the commands that must be
included in the ’C203 or *C209 initialization file. The ’*C200 simulator does not
have any of these peripherals.

Defining a Memory Map 6-15

Simulating I/O Space (Simulator Only)

6.9 Simulating I/O Space (Simulator Only)

In addition to adding memory ranges to the memory map, you can use the MA
command to add I/O ports to the memory map. To do this, use INPORT (input
port), OUTPORT (output port), or IOPORT (input/output port) as the memory
type. Use page 1 to simulate serial ports; use page 2 to simulate parallel ports.
Then, you can use the MC command to connect a port to an input or output
file. This simulates external I/O cycle reads and writes by allowing you to read
data in from a file and/or write data out to a file.

Connecting an I/O port

\. mc

6-16

The MC (memory connect) command connects INPORT, OUTPORT, or
IOPORT to an input or output file. The syntax for this command is:

mc port address, page, length, filename, {READ | WRITE}

[The port address parameter defines the address of the I/O port. This
parameter can be an absolute address, any C expression, the name of a
C function, or an assembly language label.

[The page parameter is a one-digit number that identifies the page that the
port occupies. Parallel ports are on page 2 (the I/O space), and serial ports
are on page 1 (data space).

[Thelength parameter defines the length of the range. This parameter can
be any C expression.

[The filename parameter can be any filename. If you connect a port to read
from a file, the file must exist, or the MC command will fail.

[The final parameter is specified as READ or WRITE and defines how the
file will be used (for input or output, respectively).

The file is accessed during an IN or OUT instruction to the associated port
address. Any port in I/O space can be connected to a file. A maximum of one
input and one output file can be connected to a single port; multiple ports can
be connected to a single file.

Example 6-3 shows how an input port can be connected to an input file named
in.dat.

Simulating I/O Space (Simulator Only)

Example 6-3. Connecting an Input Port to an Input File

Assume that the file in.dat contains words of data in hexadecimal format,
one per line, like this:

0AOQ0O0
1000
2000

.
.

These two debugger instructions set up and connect an input port:

MA 0x50,2,0x1,IOPORT Configure port address 50h
as an input port
MC 0x50,2,in.dat,READ Open file in.dat and

connect to port address 50h

Assume that this 'C2xx instruction is part of your ’‘C2xx program. It reads
from the file in.dat.

IN 00h,50h IN instruction reads from file

Disconnecting an I/O port

Before you can use the MD command to delete a port from the memory map,
you must use the Ml command to disconnect the port.

.

The MI (memory disconnect) command disconnects a file from an 1/O port. The
syntax for this command is:

mi port address, page, {READ | WRITE}

The port address and page identify the port that is to be closed. The read/write
characteristics must match the parameter used when the port was connected.

Defining a Memory Map 6-17

Simulating External Interrupts (Simulator Only)

6.10 Simulating External Interrupts (Simulator Only)

The *C2xx simulator supports different external pins and pulses according to

the device simulated. The *C200 and 'C209 external pins are the INT1-INT3
interrupt pins and the BIO pin.

The *’C203 supports the following external pins and pulses:

INTT1-INT3 interrupt pins
FSX and FSR pulses
AFSX pulse

100-1083 pins

BIO pin

Uoooo

To simulate these pins and pulses, create a data file and connect the file to the
appropriate pin or pulse. The format of the data in the file depends on the pin
or pulse simulated.

Note:

The time interval is expressed as a function of CPU clock cycles. Simulation
begins at the first clock cycle.

Setting up your input file

6-18

In order to simulate interrupts or the synchronization pulses, you must first set
up an input file that lists interrupt intervals. Your file must contain a clock cycle
in the following format:

[clock cycle, logic value] rpt {n | EOS}

Note that the square brackets are used only with logic values for the BIO pin,
and, for the 'C203, the I00-103 pins.

Simulating External Interrupts (Simulator Only)

(1 The clock cycle parameter represents the CPU clock cycle where you
want an interrupt to occur.

You can have two types of CPU clock cycles:

B Absolute. To use an absolute clock cycle, your cycle value must
represent the actual CPU clock cycle where you want to simulate an
interrupt. For example:

12 34 56
Interrupts are simulated at the 12th, 34th, and 56th CPU clock cycles.

Notice that no operation is done to the clock cycle value; the interrupt
occurs exactly as the clock cycle value is written.

B Relative. You can also select a clock cycle that is relative to the time at
which the last event occurred. For example:

12 +34 55

In this example, a total of three interrupts are simulated at the 12th,
46th (12 + 34), and 55th CPU clock cycles. A plus sign (+) before a
clock cycle adds that value to the total clock cycles preceding it. Notice
that you can mix both relative and absolute values in your input file.

[Thelogic value parameter is valid for the BIO and I00-103 pins. You must
use a value to force the signal to go high or low at the corresponding clock
cycle. A value of 1 forces the signal to go high, and a value of 0 forces the
signal to go low. For example:

[(1z,1] [56,0] [78,1]

This causes the BIO pin to go high at the 12th cycle, low at the 56th cycle,
and high again at the 78th cycle. You can also select the clock cycle that is
relative to the time at which the last event occurred. For example:
[12,1] [+44,0] [+22,1] [100,0]

This causes the BIO pin to go high at the 12th cycle, low at the 56th cycle,
and high again at the 78th cycle. At the 100th cycle the signal becomes 0.
As seen here, you can mix relative and absolute clock cycles.

Defining a Memory Map 6-19

Simulating External Interrupts (Simulator Only)

6-20

[Therpt{n | EOS} parameter is optional and represents a repetition value.
You can have two forms of repetition to simulate interrupts:

Bl Repetition on a fixed number of times. You can format your input

file to repeat a particular pattern for a fixed number of times. For exam-
ple:

5 (+10 +20) rpt 2

The values inside of the parentheses represent the portion that is re-
peated. Therefore, an interrupt is simulated at the 5th CPU cycle, then
the15th (5 + 10), 35th (15 + 20), 45th (35 + 10), and 65th (45 + 20)
CPU clock cycles.

Note that n is a positive integer value.

Repetition can also be done for the signal logic value pair types. For
example:

[5,1] ([+10,0] [+10,1]) rpt 2

This causes the signal to go high at the 5th cycle, low at the 15th cycle,
high at the 25th cycle, low at the 35th cycle, and high at the 45th cycle.

Repetition to the end of simulation. To repeat the same pattern
throughout the simulation, add the string EOS to the line. For example:

10 (+5 +20) rpt EOS

Interrupts are simulated at the 10th CPU cycle, then the 15th (10 + 5),
35th (15 + 20), 40th (35 + 5), 60th (40 + 20), 65th (60 + 5), and 85th
(65 + 20) CPU cycles, continuing in that pattern until the end of simula-
tion.

The logic value parameter’s pattern can be repeated throughout the
end of simulation by adding the string EOS to the end of the line. For
example:

[5,1] {[+10,0] [+10,1]) rpt eos

This causes the signal to go high at the 5th cycle, low at the 10th cycle,
and then alternate going from 0 to 1 every 10 cycles.

Simulating External Interrupts (Simulator Only)

Programming the simulator

After you have created your input file, you can use debugger commands to
connect, list, and disconnect the interrupt pin to your input file. Use these com-
mands as described below, or use them from the PIN pulldown menu.

@ pinc
<o

To connect your input file to the pin, use the following command:
pinc pinname, filename

(1 The pinname identifies the devices’ input pin. The input pins supported

vary by device:
For the ’C200 and 'C209, the pin name must be one of the following:

B INT1-INT3
m BIO
For the *C2083, the pin name must be one of the following:

INT1-INT3
BIO

FSX pulse
FSR pulse
AFSX pulse
100-103

(1 The filename is the name of your input file.

Example 6-4 shows you how to connect your input file using the PINC com-
mand.

Example 6-4. Connecting the Input File With the PINC Command

Suppose you want to generate an INT2 external interrupt at the 12th, 34th,
56th, and 89th clock cycles.

First, create a data file with an arbitrary name such as myfile:

Then use the PINC command in the pin pulldown menu to connect the
input file to the INT2 pin.

pinc int2, myfile Connects your data file

This command connects myfile to the INT2 pin. As a result, the simulator
generates an INT2 external interrupt at the 12th, 34th, 56th, and 89th clock
cycles.

12 34 56 89

to the specific interrupt pin

Defining a Memory Map 6-21

Simulating External Interrupts (Simulator Only)

pinl

pind

6-22

To verify that your input file is connected to the correct pin, use the PINL com-
mand. The syntax for this command is:

pinl

The PINL command displays all of the unconnected pins first, followed by the
connected pins. For a pin that has been connected, it displays the name of the
pin and the absolute pathname of the file in the COMMAND window. The

following is the COMMAND window display for the ’*C200 and 'C209 simula-
tors.

[COMMAND
PIN FILENAME
INTO NULL
A

INT1 NULL

INT3 NULL

BIO NULL
— INT2 /320hll/myfile v
>>>

To end the interrupt simulation, disconnect the pin. You can do this with the
following command:

pind pinname

The pinname parameter identifies the interrupt pin and must be one of the
external interrupt pins:

For the *C200 and 'C209, the pin name must be one of the following:

B INT1-INT3

m BIO

For the *C203, the pin name must be one of the following:
W INT1-INT3

m BIO

m FSX

H FSR

H AFSX

m 100-103

The PIND command detaches the file from the input pin. After executing this
command, you can connect another file to the same pin.

Defining a Memory Map 6-23

Using the Debugger With
Extended Addressing

The TMS320C2xx is limited to 64K bytes of address space in program, data,
and I/O space. Some applications require access to memory beyond the 64K
limit for program and data space. By adding memory and additional logic to
your target system, you can extend the memory of your system. The emulator
version of the debugger includes an extended addressing feature that enables
the 'C2xx to access this extended memory when you debug your system.

This chapter defines extended addressing and describes what you need to do
in your debugger to enable extended addressing for the TMS320C2xx.

Topic Page
7.1 Understanding the Use of Extended Addressing 7-2
7.2 Setting Up Extended Memoryccoiiiiiiiiiiinnnnnnnns 7-4
7.3 Debugging With Extended Addressingc.ccovaun... 7-6

7-1

Understanding the Use of Extended Addressing

7.1

Understanding the Use of Extended Addressing

With the extended addressing feature, you have the ability to add additional
memory to your target system for use by the *C2xx.

About extended addressing

7-2

Once you modify your target system to include extended memory, you can use
the debugger to access the extended memory. To determine which memory
location you want to access, the debugger must have a unique address.

In an extended memory system, you logically split the 16-bit 'C2xx address
space into two pieces. The low-ordered addresses are common or unmapped
memory. The high-ordered addresses are extended or mapped memory. The
address that defines the boundary between unmapped and mapped memory,
the mapped start address, is defined based on the external registers and
memory that you add to your target system.

You can add and define multiple banks of physical memory that overlay each
other in a single, mapped address range. The use of extended pages of
memory extends the native 16-bit address space. Because the 16-bit address
space is extended, the debugger uses addresses that are 32 bits wide. The
32-bit address is composed of the following:

(O The 16 most significant bits (MSBs) represent the extended page number.
In your source code, you store this number in one of the following regis-
ters:

B The program mapper register (PMR) stores the extended page num-
ber for extended program-memory pages. The value that you use in
the PMR is the same extended-page number that you use in the linker
command file.

B The data mapper register (DMR) stores the extended page number
for extended data-memory pages. The value that you use in the DMR
is the same extended-page number that you use in the linker com-
mand file.

You create the PMR or DMR when you build your extended memory
system.

(1 The 16 least significant bits (LSBs) represent the native 16-bit address for
the symbol.

Understanding the Use of Extended Addressing

Sample extended memory system

Figure 7-1 illustrates a sample extended memory system. In this example, the
program and data space are allocated in the same manner:

[The unmapped memory region is from 0x0000 to Ox7FFF.
(1 The mapped memory region is from 0x8000 to OxFFFF.

1 Two extended pages extend the mapped address space.
EI

The mapper register (PMR or DMR) qualifies the mapped address,
creating a unique address for each location in each extended page.

Figure 7-1. Sample Extended Memory System

Program Space Data Space
0x0000 0x0000
Unmapped Unmapped
_____ Ox7FFF | _______| OX7FFF
0x8000 (Mapped 0x8000 (Mapped
Start Start
Mapped Address) Mapped Address)
OxFFFF OxFFFF
PMR: 1 2 DMR: 1 2
0x18000 0x28000 0x18000 0x28000
Ox1FFFF O0x2FFFF Ox1FFFF Ox2FFFF
Extended Pages Extended Pages
(Extended Program Memory) (Extended Data Memory)

Using the Debugger With Extended Addressing 7-3

Setting Up Extended Addressing

7.2 Setting Up Extended Addressing

Before you can use extended memory, you must build a target system that in-
cludes extended memory, including hardware that assigns an extended page
to an extended memory region. The TMS320C2xx Emulator Getting Started
Guide describes how to set up your target system with extended memory.

Once you have built your extended memory system, you must set up the de-
bugger to use extended addressing by doing the following:

(1 Describe your extended memory configuration to the debugger
(0 Enable extended addressing

This section describes how to perform these tasks.

Describing your extended memory configuration to the debugger

7-4

You must describe to the debugger your extended memory configuration and
where to look for the PMR or DMR register. To do so, use the EXT_ADDR_DEF
command. The syntax for this command is:

ext_addr_def map start [{@prog | @data}], reg addr [{@prog | @data | @io}], mask

[The map start parameter defines the beginning of the mapped memory
range. By default, the map start parameter is treated as a program-
memory address. However, you can follow it with @prog to identify
program memory or with @data to identify data memory.

(1 The reg addr parameter defines the location of the mapper register (PMR
or DMR).

W [f you are defining program memory, use the address for the PMR.
W If you are defining data memory, use the address for the DMR.

By default, the reg addr parameter is treated as a data-memory address.
However, you can follow it with @prog to identify program memory, with
@data to identify data memory, or with @io to identify 1/0 space.

[0 The mask parameter is a bit mask that represents the size of the PMR or
DMR.

For example, if you designed an extended memory system that begins
mapping at address 0x8000 in program memory, with the 8-bit PMR located
at 0x0100 in I/O space, you would enter:

ext_addr_def 0x8000@prog, 0x0100@io, Oxff

To avoid entering the EXT_ADDR_DEF command each time you invoke the
debugger, you can modify your emuinit.cmd file to include the command. The
debugger reads and executes the commands in the emuinit.cmd file each time
you invoke the debugger.

Setting Up Extended Addressing

Enabling extended addressing

Before you load your target code, you must enable extended addressing. To
do so, use the EXT_ADDR ON command. The syntax for this command is:

ext_addr {on | off}

You cannot use this command before you define your extended memory con-
figuration with the EXT_ADDR_DEF command.

To avoid entering the EXT_ADDR command each time you invoke the debug-
ger, you can modify your emuinit.cmd file to include the command.

Using the Debugger With Extended Addressing 7-5

Debugging With Extended Addressing

7.3 Debugging With Extended Addressing

Once you have set up the debugger for extended addressing (as described in
Section 7.2, Setting Up Extended Memory, on page 7-4), you can use the de-
bugger to access data or code stored in the extended memory of your system.

When the debugger loader loads a section of code that contains extended
addresses, the loader places the addresses in the proper overlays automati-
cally. The debugger also changes the display of the DISASSEMBLY or
MEMORY window to show extended addresses. It uses the PMR or DMR
value (which contains the extended page number) as a prefix to the address.
The DISASSEMBLY window in Figure 7-2 shows addresses that have been
accessed from extended memory. The debugger used the PMR value (4) as
a prefix to the addresses in extended memory.

Figure 7-2. The DISASSEMBLY Window With Extended Addressing In Use

DISASSEMBLY

0004:80cf bf08 c_int0: LAR ARO, #08alh 4
0004:80d1 bf09 LAR AR1,#00alh

0004:80d3 bf00 SPM (V)

0004:80d4 be4d7 SETC SXM

0004:80d5 b£f80 LACC #2143h

0004:80d7 b801 ADD #1 v
0004:80d8 e388 BCND 20dch,EQ

PMR value

Note:

The extended-page number that is shown in the DISASSEMBLY or
MEMORY window does not always represent the value currently stored in
the PMR or DMR. However, while stepping through the code, the PMR and
the extended-page number are the same.

Registers associated with extended addressing: PMR, DMR, and EPC

7-6

When you turn extended addressing on (using the EXT_ADDR ON com-
mand), the debugger adds the following registers to the CPU window:

(1 One of the following mapper registers:

W The program mapper register (PMR) displays the current value of the
external PMR that you created in your target system.

B The data mapper register (DMR) displays the current value of the
external DMR that you created in your target system.

[The extended program counter (EPC). The EPC is 32 bits wide and repre-
sents the PMR or DMR value concatenated with the PC value.

Debugging With Extended Addressing

You can use these registers in expressions. For example, this command sets
the PMR to 4 and the program counter (PC) to 0x8000:

? EPC= 0x48000

This DASM command causes the DISASSEMBLY window to display the
current extended PC location:

DASM EPC

When you turn extended addressing off (using the EXT_ADDR OFF com-
mand), the CPU window no longer displays the PMR, DMR, and EPC regis-
ters, and you cannot use these registers in expressions.

New expression syntax

When you enter one of the commands listed in Table 7-1, you can use an ad-
dress as one of the command parameters. You can append a suffix to the ad-
dress to specify whether the address is in program memory (@prog), data
memory (@data), or I/O space (@io). When extended addressing is enabled,
you can use two new suffixes with the commands in Table 7-1:

[The @prog16 suffix identifies an address in extended program memory.
The debugger uses the current value in the PMR to qualify the address
that you enter.

[The @data16 suffix identifies an address in extended data memory. The
debugger uses the current value in the DMR to qualify the address that you
enter.

Table 7-1. Commands That Use the @prog16 and @data16 Suffixes

Command See Page Command See Page
? (evaluate expression) 18-13 EVAL 18-27
ADDR 18-15 MEM 18-39
DASM 18-22 WA 18-67
DISP 18-23

Using the Debugger With Extended Addressing 7-7

Debugging With Extended Addressing

How extended addressing affects symbols

When you use the debugger with symbol names, the debugger uses the entire
extended address associated with the symbol.

When you use a pointer in an expression, the debugger uses the current PMR
or DMR value to determine the pointer value. Likewise, if you use the contents
of a register as an address, the debugger uses the current PMR or DMR value
to determine the correct address. For example, if the PC=0x8000 and the

PMR=2 and you enter:

? *PC

The debugger returns the value at location 0x28000.

Table 7-2 shows typical commands that you could use with the debugger and
how the results of the commands are affected by extended addressing.

Table 7-2. Sample Commands and Results Using Extended Addressing

7-8

If you enter this...

The result is...

dasm 0x8000

dasm 0x8000@proglé

dasm labelO

dasm label4

dasm pc

dasm ptr

dasm (ptr+l)

Disassembly starting at 0:8000, regardless of the PMR
value

Disassembly starting at x:8000, where x represents the
current PMR value

Where label0 is a label located at 0x8000, the result is
disassembly starting at 0:8000, regardless of the PMR
value

Where label4 is a label located at 0x48000, the result is
disassembly starting at 4:8000, regardless of the PMR
value

Where PC=0x8000, the result is disassembly starting at
x:8000, where x represents the current PMR value

Where ptr is a VOID* pointing to 0x8000, the result is
disassembly starting at x:8000, where x represents the
current PMR value

Where ptr is a VOID* pointing to 0x8000, the result is
disassembly starting at x:8001, where x represents the
current PMR value

Debugging With Extended Addressing

Note:

In the DISASSEMBLY window, addresses associated with symbols are
shown as 16-bit addresses. Moreover, if a symbol represents an extended
address, you cannot see the entire 32-bit address in the DISASSEMBLY win-
dow. However, when you use the symbol name in an expression, the debug-
ger accesses the correct address.

Using 16-bit expressions with 32-bit extended addressing

Extended addressing allows you to use 32-bit addresses to reference loca-
tions in extended memory. When you use the debugger and specify a 16-bit
expression, the debugger uses the following algorithm to determine which
memory location to access:

1) If you use the @prog16 suffix, the debugger uses the current PMR value
as a prefix to the address that you entered. Likewise, if you use the
@data16 suffix, the debugger uses the current DMR value as a prefix to
the address that you entered.

2) If you use a pointer in an expression, the debugger uses the current PMR
or DMR value as a prefix to the pointer value, as applicable.

3) If you use the contents of a register as an address, the debugger uses the
PMR or DMR value as a prefix to the address, as applicable.

4) If none of the above is true, the debugger uses 0 as a prefix to the address.
This applies to constants and program labels.

Hardware breakpoints and extended addressing

Do not use extended addressing when you are using hardware breakpoints.
A hardware breakpoint set at a particular address causes the debugger to stop
at that address not only for the native ‘C2xx memory but for every extended
page defined by your extended memory. This might confuse the emulator and
can cause unexpected results.

Using the Debugger With Extended Addressing 7-9

7-10

Chapter 8

Loading, Displaying, and
Running Code

The main purpose of a debugging system is to allow you to load and run your
programs in a test environment. This chapter tells you how to load your pro-
grams into the debugging environment, run them on the target system, and
view the associated source code. Many of the commands described in this
chapter can also be executed from the Load pulldown menu (see Section 5.2,
Using the Menu Bar and the Pulldown Menus, page 5-7).

Topic Page
8.1 Code-Display Windows:cccviiiiiiiinnnnnnnnnnnnnnnns 8-2
Viewing Assembly Language Code, C Code, or Both
8.2 Displaying Your Source Programs (or Other Text Files) 8-4
8.3 LoadingObjectCodeovviiiiiiiiiiiiiiiiinrinnnnnns 8-10
8.4 Where the Debugger Looks for Source Files 8-12
8.5 Running Your Programsccoiiiiiininrrrnnnnrenanannes 8-13
8.6 Halting Program Executioncoiiiiiiiiiiiininn, 8-19

8-1

Code-Display Windows: Viewing Assembly Language Code, C Code, or Both

8.1 Code-Display Windows:

Viewing Assembly Language Code, C Code, or Both

The debugger has three code-display windows:

(1 The DISASSEMBLY window displays the reverse assembly of program
memory contents.

[The FILE window displays any text file; its main purpose is to display C

source files.

[The CALLS window identifies the current function (when C code is run-

ning).

You can view code in several different ways. The debugger has three different
code displays that are associated with the three debugging modes. The
debugger’s selection of the appropriate display is based on two factors:

(1 The mode you select

[Whether your program is currently executing assembly language code or

C code

Here’s a summary of the modes and displays; for a complete description of the
three debugging modes, refer to Section 4.1, Debugging Modes and Default
Displays, on page 4-2.

Use this mode

To view

The debugger uses these
code-display windows

Assembly mode

Auto mode

Auto mode

Mixed mode

Minimal mode

Assembly language code only
(even if your program is execut-
ing C code)

Assembly language code
(when that’s what your program
is running)

C code only (when that's what
your program is running)

Both assembly language and C
code

No code

DISASSEMBLY

DISASSEMBLY

FILE
CALLS

DISASSEMBLY
FILE
CALLS

Udd od

None

You can switch freely between the modes. If you choose auto mode, the
debugger displays C code or assembly language code, depending on the type
of code that is currently executing.

8-2

Code-Display Windows: Viewing Assembly Language Code, C Code, or Both

Selecting a debugging mode

Unless you use the -min command-line option (which selects minimal mode
and is discussed on page 1-20), when you first invoke the debugger, it auto-
matically comes up in auto mode. You can then choose assembly or mixed
mode. There are several ways to do this.

=

00

The Mode pulldown menu provides an easy method for
switching modes. There are several ways to use the
pulldown menus; here’s one method:

MiNimal

1) Point to the menu name.

2) Press the left mouse button; do not release the button. Move the mouse
down the menu until your choice is highlighted.

3) Release the mouse button.

For more information about the pulldown menus, refer to Section 5.2, Using
the Menu Bar and the Pulldown Menus, on page 5-7.

Pressing this key causes the debugger to switch modes in this order:

<—. auto ——» assembly —— » mixed4>_>

Note that you can’t select the minimal mode with (7.

Cc

asm

mix

minimal

Enter any of these commands to switch to the desired debugging mode:
Changes from the current mode to auto mode

Changes from the current mode to assembly mode

Changes from the current mode to mixed mode

Changes from the current mode to minimal mode

If the debugger is already in the desired mode when you enter a mode com-

mand, then the command has no effect.

Loading, Displaying, and 8-3

Displaying Your Source Programs (or Other Text Files)

8.2 Displaying Your Source Programs (or Other Text Files)

The debugger displays two types of code:

[It displays assembly language code in the DISASSEMBLY window in auto,
assembly, or mixed mode.

(O Itdisplays C code in the FILE window in auto and mixed modes.

The DISASSEMBLY and FILE windows are primarily intended for displaying
code that the program counter (PC) points to. By default, the FILE window dis-
plays the C source for the current function (if any), and the DISASSEMBLY
window shows the current disassembly.

Sometimes it’s useful to display other files or different parts of the same file;
for example, you may want to set a breakpoint at an undisplayed line. The
DISASSEMBLY and FILE windows are not large enough to show the entire
contents of most assembly language and C files, but you can scroll through
the windows. You can also tell the debugger to display specific portions of the
disassembly or C source.

Displaying assembly language code

8-4

The assembly language code in the DISASSEMBLY window is the reverse
assembly of program-memory contents. (This code doesn’'t come from any of
your text files or from the intermediate assembly files produced by the
compiler.)

(MEMORY [PROG] \
0118 7802 A
0119 b£80
017c
8bb8
a6a0 4
b801
Addresses Contents of program Disassembly of object
memory (object code) code in memory
ADRK/#Z
LACC #017ch
LARP ARO
TBLR, *+
ADD #1
TBLR 53
- J

Displaying Your Source Programs (or Other Text Files)

When you invoke the debugger, it comes up in auto mode. If you load an object
file when you invoke the debugger, the DISASSEMBLY window displays the
reverse assembly of the object file that’s loaded into memory. If you don’t load
an object file, the DISASSEMBLY window shows the reverse assembly of
whatever happens to be in memory.

dasm

addr

In assembly and mixed modes, you can use these commands to display a
different portion of code in the DISASSEMBLY window.

Use the DASM command to display code beginning at a specific point. The
syntax for this command is:

dasm address
or
dasm function name

This command modifies the display so that address or function name is
displayed within the DISASSEMBLY window. The debugger continues to dis-
play this portion of the code until you run a program and halt it.

Use the ADDR command to display assembly language code beginning at a
specific point. The syntax for this command is:

addr address
or
addr function name

In assembly mode, ADDR works like the DASM command, positioning the
code starting at address or at function name as the first line of code in the
DISASSEMBLY window. In mixed mode, ADDR affects both the
DISASSEMBLY and FILE windows.

Modifying assembly language code

You can modify the code in the disassembly window on a statement-by-state-
ment basis. The method for doing this is called patch assembly. Patch
assembly provides a simple way to temporarily correct minor problems by
allowing you to change individual statements and instruction words.

@

Use the PATCH command to identify the address of the statement you want
to change and the new statement you want to use at that address. The format
for this command is:

patch address, assembly language statement

Loading, Displaying, and 8-5

Displaying Your Source Programs (or Other Text Files)

=

8-6

For patch assembly, use the right mouse button instead of the left. (Clicking
the left mouse button sets a software breakpoint.)

1)

2)

Point to the statement that you want to modify.

Click the right button. The debugger will open a dialog box so that you can
enter the new statement. The address field will already be filled in; clicking
on the statement defines the address. The statement field will already be
filled in with the current statement at that address (this is useful when only
minor edits are necessary).

Patch assembly may, at times, cause undesirable side effects:

a

Patching a multiple-word instruction with an instruction of lesser length will
leave “garbage” or an unwanted new instruction in the remaining old
instruction fragment. This fragment must be patched with either a valid
instruction or a NOP, or else unpredictable results may occur when run-
ning code.

Substituting a larger instruction for a smaller one partially or entirely over-
writes the following instruction; you lose the instruction and might be left
with another fragment.

If you want to insert a large amount of new code or if you want to skip over a
section of code, you can use a different patch assembly technique:

a

4

To insert a large section of new code, patch a branch instruction to go to
an area of memory not currently in use. Using the patch assembler, add
new code to this area of memory and branch back to the statement follow-
ing the initial branch.

To skip over a portion of code, patch a branch instruction to go beyond that
section of code.

The patch assembler changes only the disassembled assembly
language code—it does not change your source code. After
determining the correct solution to problems in the disassembly, edit
your source file, recompile or reassemble it, and reload the new
object file into the debugger.

Displaying Your Source Programs (or Other Text Files)

Additional information about modifying assembly language code

When using patch assembly to modify code in the disassembly window, keep
these things in mind:

a
a

Directives. You cannot use directives (such as .global or .word).

Expressions. You can use constants, but you cannot use arithmetic
expressions. For example, an expression like 12 + 33 is not valid in patch
assembly, but a constant such as 12 is allowed.

Labels. You cannot define labels. For example, a statement such as the
following is not allowed:

LOOP: B LOOP

However, an instruction can refer to a label, as long as it is defined in a
COFF file that is already loaded.

Constants. You can use hexadecimal, octal, decimal, and binary
constants. The syntax to input constants is the same as that for the DSP
assembler. See the TMS320C1x/C2x/C2xx/C5x Assembly Language
Tools User’s Guide for the constants syntax.

Error messages. The error messages for the patch assembler are the
same as the corresponding DSP assembler error messages. See the
TMS320C1x/C2x/C2xx/C5x Assembly Language Tools User’s Guide for
a detailed list of these messages.

Loading, Displaying, and 8-7

Displaying Your Source Programs (or Other Text Files)

Displaying C code

8-8

Unlike assembly language code, C code isn’'t reconstructed from memory
contents—the C code that you view is your original C source. You can display
C code explicitly or implicitly:

(O You can force the debugger to show C source by entering a FILE, FUNC,
or ADDR command.

1 In auto and mixed modes, the debugger automatically opens a FILE
window if you’re currently running C code.

file

func

These commands are valid in C and mixed modes:

Use the FILE command to display the contents of any text file. The syntax for
this command is:

file filename

This uses the FILE window to display the contents of filename. The debugger
continues to display this file until you run a program and halt in a C function.
Although this command is most useful for viewing C code, you can use the
FILE command for displaying any text file. You can view only one text file at
a time. Note that you can also access this command from the Load pulldown
menu.

(Displaying a file doesn’t load that file’s object code. If you want to be able to
run the program, you must load the file’s associated object code as described
in Section 8.3, Loading Object Code, on page 8-10.)

Use the FUNC command to display a specific C function. The syntax for this
command is:

func function name
or
func address

FUNC modifies the display so that function name or address is displayed
within the window. If you supply an address instead of a function name, the
FILE window displays the function containing address and places the cursor
at that line.

Note that FUNC works similarly to FILE, but you don’t need to identify the name
of the file that contains the function.

addr

Displaying Your Source Programs (or Other Text Files)

Use the ADDR command to display C or assembly code beginning at a specific
point. The syntax for this command is:

addr address
or
addr function name

In a C display, ADDR works like the FUNC command, positioning the code
starting at address or at function name as the first line of code in the FILE
window. In mixed mode, ADDR affects both the FILE and DISASSEMBLY
windows.

1

Whenever the CALLS window is open, you can use the mouse or function keys
to display a specific C function. This is similar to the FUNC or ADDR command
but applies only to the functions listed in the CALLS window.

1) In the CALLS window, point to the name of the C function.

2) Click the left mouse button.

(If the CALLS window is active, you can also use the arrow keys and to
display the function; see the CALLS window discussion on page 4-10 for
details.)

Displaying other text files

The DISASSEMBLY window always displays the reverse assembly of memory
contents, no matter what is in memory.

The FILE window is primarily for displaying C code, but you can use the FILE
command to display any text file within the FILE window. You might, for exam-
ple, want to examine system files such as autoexec.bat or an initialization
batch file. You can also view your original assembly language source files in
the FILE window.

You are restricted to displaying files that are 400K bytes long or less.

Loading, Displaying, and 8-9

Loading Object Code

8.3 Loading Object Code

In order to debug a program, you must load the program’s object code into
memory. You can do this as you're invoking the debugger, or you can do it after
you've invoked the debugger. (Note that you create an object file by compiling,
assembling, and linking your source files; see Section 1.6, Preparing Your
Program for Debugging, on page 1-12.)

Loading code while invoking the debugger

You can load an object file when you invoke the debugger (this has the same
effect as using the debugger’s LOAD command). To do this, enter the appro-
priate debugger-invocation command along with the name of the object file.

If you want to load a file’s symbol table only, use the —s option (this has the
same effect as using the debugger’s SLOAD command). To do this, enter the
appropriate debugger-invocation command along with the name of the object
file and specify -s (see page 1-22 for more information).

Loading code after invoking the debugger

8-10

load

reload

sload

After you invoke the debugger, you can use one of three commands to load
object code and/or the symbol table associated with an object file. Use these
commands as described below, or use them from the Load pulldown menu.

Use the LOAD command to load both an object file and its associated symbol
table. In effect, the LOAD command performs both a RELOAD and an SLOAD.
The format for this command is:

load object filename

If you don’t supply an extension, the debugger will look for filename.out.

Use the RELOAD command to load only an object file without loading its asso-
ciated symbol table. This is useful for reloading a program when memory has
been corrupted. The format for this command is:

reload [object filename])

If you enter the RELOAD command without specifying a filename, the debug-
ger reloads the file that you loaded last.

Use the SLOAD command to load only a symbol table. The format for this com-
mand is:

sload object filename

SLOAD is useful in a debugging environment in which the debugger cannot,
or need not, load the object code (for example, if the code is in ROM). SLOAD
clears the existing symbol table before loading the new one but does not
modify memory or set the program entry point.

Loading Object Code

Note:

Loading code does not clear the cache on the ’C2xx. Unless your program
explicitly clears the cache, the code in the cache may be executed instead
of the code in your program. You can explicitly clear the cache prior to loading
your program by using this command:

e ST|=0x1000

Loading, Displaying, and 8-11

Where the Debugger Looks for Source Files

8.4 Where the Debugger Looks for Source Files

cd

use

8-12

Some commands (FILE, LOAD, RELOAD, and SLOAD) expect a filename as
a parameter. If the filename includes path information, the debugger uses the
file from the specified directory and does not search for the file in any other
directory. If you don’t supply path information, the debugger must search for
the file. The debugger first looks for these files in the current directory. You
may, however, have your files in several different directories.

[[Ifyoure using LOAD, RELOAD, or SLOAD, you have only two choices for
supplying the path information:

Specify the path as part of the filename.

Alternatively, you can use the CD command to change the current
directory from within the debugger. The format for this command is:

cd directory name

[If you're using the FILE command, you have several options:

Within the operating-system environment, you can name additional
directories with the D_SRC environment variable. The format for
doing this is:

SET D_SRC=pathname,pathname For Windows or OS/2
setenv D_SRC “pathname;pathname” For UNIX

This allows you to name several directories that the debugger can
search.

When you invoke the debugger, you can use the - i option to name
additional source directories for the debugger to search. The format
for this option is -i pathname.

You can specify multiple pathnames by using several -i options (one
pathname per option). The list of source directories that you create
with —i options is valid until you quit the debugger.

Within the debugger environment, you can use the USE command to
name additional source directories. The format for this command is:

use directory name

You can specify only one directory at a time.

In all cases, you can use relative pathnames such as ..\csource or ..\..\code.
The debugger can recognize a cumulative total of 20 paths specified with
D SRC, -i, and USE.

Running Your Programs

8.5 Running Your Programs

To debug your programs, you must execute them on one of two 'C2xx debug-
ging tools (emulator or simulator). The debugger provides two basic types of
commands to help you run your code:

[d Basic run commands run your code without updating the display until you
explicitly halt execution. There are several ways to halt execution:

B Set a breakpoint.

B When you issue a run command, define a specific ending point.
B Press EO.

B Press the left mouse button.

[Single-step commands execute assembly language or C code, one state-
ment at a time, and update the display after each execution.

Note:

Whenever the 'C2xx accesses unresponsive memory, the emulator might
have to break the memory cycle, such as with single stepping, escaping from
a run, or halting a run. Unresponsive memory accesses refers to reading
from full or empty FIFOs, reading from memory that doesn’t exist, or a
memory read or write that requires waiting indefinitely for completion such
as with interlocked instructions. Since the emulator break the memory opera-
tion, bad data may be exchanged.

Defining the starting point for program execution

All run and single-step commands begin executing from the current PC. When
you load an object file, the PC is automatically set to the starting point for pro-
gram execution. You can easily identify the current PC by:

(1 Finding its entry in the CPU window

[Finding the appropriately highlighted line in the FILE or DISASSEMBLY
window. To do this, execute one of these commands:

dasm PC
or
addr PC

Loading, Displaying, and 8-13

Running Your Programs

Sometimes you might want to modify the PC to point to a different position in
your program. There are two ways to do this:

rest [] If you executed some code and would like to rerun the program from the
original program entry point, use the RESTART (REST) command. The
format for this command is:

restart
or
rest

Note that you can also access this command from the Load pulldown
menu.

?/eval [_] You can directly modify the PC’s contents with one of these commands:

?PC = new value
or
eval pc = new value

After halting execution, you can continue from the current PC by reissuing any
of the run or single-step commands.

Running code

The debugger supports several run commands.

@ run The RUN command is the basic command for running an entire program. The
g format for this command is:

run [expression]

The command’s behavior depends on the type of parameter you supply:

[[f you don’t supply an expression, the program executes until it encounters
a breakpoint or until you press or the left mouse button.

(1 [If you supply a logical or relational expression, this becomes a conditional
run (see pagqj-w).

1 If you supply any other type of expression, the debugger treats the expres-
sion as a count parameter. The debugger executes count instructions,
halts, then updates the display.

go Use the GO command to execute code up to a specific point in your program.
The format for this command is:

go [address]

If you don’t supply an address parameter, then GO acts like a RUN command
without an expression parameter.

ret

Running Your Programs

The RETURN (RET) command executes the code in the current C function
and halts when execution returns to its caller. The format for this command is:

return
or
ret

Breakpoints do not affect this command, but you can halt execution by press-
ing or the left mouse button.

Pressing this key runs code from the current PC. This is similar to entering a
RUN command without an expression parameter.

Single-stepping through code

Single-step execution is similar to running a program that has a breakpoint set
on each line. The debugger executes one statement, updates the display, and
halts execution. (You can supply a parameter that tells the debugger to
single-step more than one statement; the debugger updates the display after
each statement.) You can single-step through assembly language code or C
code.

The debugger supports several commands for single-stepping through a pro-
gram. Command execution may vary, depending on whether you're single-
stepping through C code or assembly language code.

Note that the debugger ignores interrupts when you use the STEP command
to single-step through assembly language code.

Each of the single-step commands has an optional expression parameter that
works like this:

[If you don’t supply an expression, the program executes a single state-
ment, then halts.

[[If you supply a logical or relational expression, this becomes a conditional
single-step execution (see pagqj—18).

[d If you supply any other type of expression, the debugger treats the expres-
sion as a count parameter. The debugger single-steps count C or
assembly language statements (depending on the type of code you're in).

Loading, Displaying, and 8-15

Running Your Programs

8-16

step

cstep

next
cnext

Use the STEP command to single-step through assembly language or C code.
The format for this command is:

step [expression]

If you're in C code, the debugger executes one C statement at a time. In
assembly or mixed mode, the debugger executes one assembly language
statement at a time.

If you're single-stepping through C code and encounter a function call, the
STEP command shows you the single-step execution of the called function
(assuming that the function was compiled with the compiler’s —-g debug
option). When function execution completes, single-step execution returns to
the caller. If the function wasn’t compiled with the debug option, the debugger
executes the function but doesn’t show single-step execution of the function.

For more information about the compiler’s —g option, see the TMS320C6200
Optimizing C Compiler User’s Guide.

The CSTEP command is similar to STEP, but CSTEP always single-steps in
terms of a C statement. If you're in C code, STEP and CSTEP behave
identically. In assembly language code, however, CSTEP executes all assem-
bly language statements associated with one C statement before updating the
display. The format for this command is:

cstep [expression]

The NEXT and CNEXT commands are similar to the STEP and CSTEP com-
mands. The only difference is that NEXT/CNEXT never show single-step
execution of called functions—they always step to the next consecutive state-
ment. The formats for these commands are:

next [expression]
cnext [expression]

You can also single-step through programs by using function keys:

Acts as a STEP command.
Acts as a NEXT command.

When you use the function keys to single-step through programs, you can’t en-
ter an expression for the command.

Running Your Programs

The debugger allows you to execute several single-step commands from the
selections on the menu bar.

To execute a STEP:

1) Point to Step=F8 in the menu bar.
2) Press and release the left mouse button.

To execute a NEXT:

1) Point to Next=F10 in the menu bar.
2) Press and release the left mouse button.

When you use the menu-bar selections to single-step through programs, you
can’t enter an expression for the command.

Running code while disconnected from the target system

runf

emulator
only

halt

Use the RUNF command to disconnect the emulator from the target system
while code is executing. The format for this command is:

runf

When you enter RUNF, the debugger clears all breakpoints, disconnects the
emulator from the target system, and causes the processor to begin execution
at the current PC. You can quit the debugger, or you can continue to enter
commands. However, any command that causes the debugger to access the
target at this time will produce an error.

RUNF is useful in a multiprocessor system. It's also useful in a system in which
several target systems share an emulator; RUNF enables you to disconnect
the emulator from one system and connect it to another.

Use the HALT command to halt the target system after you've entered a RUNF
command. The format for this command is:

halt

When you invoke the debugger, it automatically executes a HALT command.
Thus, if you enter a RUNF, quit the debugger, and later reinvoke the debugger,
you will effectively reconnect the emulator to the target system and run the
debugger in its normal mode of operation. When you invoke the debugger, use
the —s option to preserve the current PC and memory contents.

Loading, Displaying, and 8-17

Running Your Programs

reset

The RESET command resets the target system. This is a software reset. The
format for this command is:

reset

If you are using the simulator and execute the RESET command, the simulator
simulates the *C2xx processor and peripheral reset operation, putting the pro-
cessor in a known state.

Running code conditionally

8-18

The RUN, STEP, CSTEP, NEXT, and CNEXT commands all have an optional
expression parameter that can be a relational or logical expression. This type
of expression has one of the following operators as the highest precedence
operator in the expression:

> > = <
< = == !:

&& I !

When you use this type of expression with these commands, the command
becomes a conditional run. The debugger executes the command repeatedly
for as long as the expression evaluates to true.

You must use software breakpoints with conditional runs; the expression is
evaluated each time the debugger encounters a breakpoint. Each time the
debugger evaluates the conditional expression, it updates the screen. The
debugger applies this algorithm:

top:
if (expression = = 0) go to end;
run or single-step (until breakpoint, ESC), or mouse button halts execution)
if (halted by breakpoint, not by or mouse button) go to top

end:

Generally, you should set the breakpoints on statements that are related in
some way to the expression. For example, if you're watching a particular
variable in a WATCH window, you may want to set breakpoints on statements
that affect that variable and to use that variable in the expression.

Halting Program Execution

8.6 Halting Program Execution

Whenever you’re running or single-stepping code, program execution halts
automatically if the debugger encounters a breakpoint or if it reaches a
particular point where you told it to stop (by supplying a count or an address).
If you'd like to explicitly halt program execution, there are two ways to accom-
plish this:

% 0 Click the left mouse button.

ll ESC Press the escape key.

After halting execution, you can continue program execution from the current
PC by reissuing any of the run or single-step commands.

Loading, Displaying, and 8-19

8-20

Chapter 9

Managing Data

The debugger allows you to examine and modify many different types of data
related to the 'C2xx and to your program. You can display and modify the
values of:

1 Individual memory locations or a range of memory
[d ’'C2xx registers

(1 Variables, including scalar types (ints, chars, etc.) and aggregate types
(arrays, structures, etc.)

Topic Page
9.1 Where DatalsDisplayedcc.ciiiiiiiiiiiiiinnrnnnnns 9-2
9.2 Basic Commands for ManagingData 9-2
9.3 Basic Methods for Changing Data Values 9-4
9.4 ManagingDatainMemoryccoiiiiiiiiiiiiinnrnnnn 9-6
9.5 Managing RegisterDatac.cciiiiiiiiiiinnn, 9-12
9.6 Managing Data in a DISP (Display) Window 9-13
9.7 Managing Dataina WATCHWindowccciiuunnnnnn. 9-16
9.8 Managing Pipeline Information (Simulator Only) 9-18
9.9 Displaying Data in Alternative Formats 9-19

Where Data Is Displayed / Basic Commands for Managing Data

9.1 Where Data Is Displayed

Four windows are dedicated to displaying the various types of data.

Type of data Window name and purpose

Memory locations MEMORY window
Displays the contents of a range of data
memory, program memory, or |/O space
Register values CPU window
Displays the contents of 'C2xx registers

Pointer data or selected variables of DISP window

an aggregate type Displays the contents of aggregate types
and show the values of individual mem-
bers

Selected variables (scalar types orin- WATCH window
dividual members of aggregate types) Displays selected data
and specific memory locations or reg-

isters

This group of windows is referred to as data-display windows.

9.2 Basic Commands for Managing Data

The debugger provides special-purpose commands for displaying and modify-
ing data in dedicated windows. The debugger also supports several general-
purpose commands that you can use to display or modify any type of data.

@ whatis If you want to know the type of a variable, use the WHATIS command. The
> syntax for this command is:

whatis symbol

This lists symbol’s data type in the display area of the COMMAND window. The
symbol can be any variable (local, global, or static), a function name, structure
tag, typedef name, or enumeration constant.

Command Result displayed in the COMMAND window
whatis aai int aai[10][5];
whatis xxx struct xxx {
int a;
int b;
int c;
int £f1 : 2;
int £2 : 4;
struct xxx *£3;
int £4[10];
}

eval

or

Basic Commands for Managing Data

The ? (evaluate expression) command evaluates an expression and shows
the result in the COMMAND window display area. The syntax for this com-
mand is:

? expression

The expression can be any C expression, including an expression with side
effects. However, you cannot use a string constant or function call in the
expression.

If the result of expression is scalar, then the debugger displays the result as
a decimal value in the COMMAND window. If expression is a structure or array,
? displays the entire contents of the structure or array; you can halt long listings
by pressing EsO.

Here are some examples that use the ? command.

Command Result displayed in the COMMAND window

? aai aaif[0][0] 1
aai[0][1l] 23
aai[0][2] 45

etc.
? j 4194425
? j=0x5a 90

Note that the DISP command (described in detail on pagﬁ-m) behaves like
the ? command when its expression parameter does not identify an aggregate

type.

The EVAL (evaluate expression) command behaves like the ? command but
does not show the result in the COMMAND window display area. The syntax
for this command is:

eval expression
e expression

EVAL is useful for assigning values to registers or memory locations in a batch
file (where it's not necessary to display the result).

For information about the PDM version of the EVAL command, refer to Section
2.9, Evaluating Expressions, on page 2-21.

Managing Data 9-3

Basic Methods for Changing Data Values

9.3 Basic Methods for Changing Data Values

The debugger provides you with a great deal of flexibility in modifying various
types of data. You can use the debugger’s overwrite editing capability, which
allows you to change a value simply by typing over its displayed value. You can
also use the data-management commands for more complex editing.

Editing data displayed in a window

Use overwrite editing to modify data in a data-display window; you can edit:

(1 Registers displayed in the CPU window

(1 Memory contents displayed in a MEMORY window
(1 Elements displayed in a DISP window

[Values displayed in the WATCH window

There are two similar methods for overwriting displayed data:

0

ESC

This method is sometimes referred to as the “click and type” method.

1) Point to the data item that you want to modify.

2) Click the left button. The debugger highlights the selected field. (Note that
the window containing this field becomes active when you press the
mouse button.)

3) Type the new information. If you make a mistake or change your mind,
press or move the mouse outside the field and press/release the left
button; this resets the field to its original value.

4) When you finish typing the new information, press & or any arrow key.
This replaces the original value with the new value.

9-4

1) Select the window that contains the field you'd like to modify; make this the
active window. (Use the mouse, the WIN command, or (). For more
detail, see Section 4.4, The Active Window, on page 4-20.)

2) Use arrow keys to move the cursor to the field you'd like to edit.
Moves up 1 field at a time.
@ Moves down 1 field at a time.
Moves left 1 field at a time.
Moves right 1 field at a time.

3) When the field you’d like to edit is highlighted, press (72 . The debugger
highlights the field that the cursor is pointing to.

Basic Methods for Changing Data Values

ESC 4) Type the new information. If you make a mistake or change your mind,
press ; this resets the field to its original value.

5) When you finish typing the new information, press (& or any arrow key.
This replaces the original value with the new value.

Note:

If you press when the cursor is in the middle of text, the debugger
truncates the input text at the point where you press (@. Likewise, if you use
or 2 to move to the beginning of the previous or next field, the debugger
truncates the input text at the point where you press the (@ or &.

Advanced “editing”—using expressions with side effects

Using the overwrite editing feature to modify data is straightforward. However,
data-management methods take advantage of the fact that C expressions are
accepted as parameters by most debugger commands and that C expressions
can have side effects. When an expression has a side effect, it means that the
value of some variable in the expression changes as the result of evaluating
the expression.

This means that you can coerce many commands into changing values for
you. Specifically, it's most helpful to use ? and EVAL to change data as well
as display it.

For example, if you want to see what’s in auxiliary register AR3, you can enter:
? AR3

You can also use this type of command to modify AR3’s contents. Here are
some examples of how you might do this:

? AR3++ Side effect: increments the contents of AR3 by 1
eval —-AR3 Side effect: decrements the contents of AR3 by 1
? AR3 = 8 Side effect: sets AR3 to 8
eval AR3/=2 Side effect: divides contents of AR3 by 2

Note that not all expressions have side effects. For example, if you enter
? AR3+4, the debugger displays the result of adding 4 to the contents of AR3
but does not modify AR3’s contents. Expressions that have side effects must
contain an assignment operator or an operator that implies an assignment.
Operators that can cause a side effect are:

= += -_= *— /:
%: &: A: = <<=
>>= ++ --

Managing Data 9-5

Managing Data in Memory

9.4 Managing Data in Memory

In mixed and assembly modes, the debugger maintains a MEMORY window
that displays the contents of memory. For details concerning the MEMORY
window, see MEMORY windows on page 4-13.

DRY
0000 0007 0007 0007 0007 bfff ££00 0000 A
0007 0008 0000 bfff 0000 0000 0001 OOST\

000 0001 bfff 0000 O09f5 dffd ffff £080
addresses © data

0015 09c6 bfff bfff f7ff 0000 Dbfff bfff

001c bfff Dbfff ££77 bfff 0000 0000 09 v

0023 0900 ffad f£f£ff 0000 0000 ffff ffff

The debugger has commands that show the memory values at a specific
location or that display a different range of memory in the MEMORY window.
The debugger allows you to change the values at individual locations; for more
information, refer to Section 9.3, Basic Methods for Changing Data Values.

Displaying memory contents

9-6

The main way to observe memory contents is to view the display in a
MEMORY window. Multiple MEMORY windows are available: the default win-
dow is labeled MEMORY, and additional windows are given the unique name
you assign them. Having multiple windows allows you to view many different
memory ranges.

The amount of memory that you can display is limited by the size of the individ-
ual MEMORY windows (which is limited only by the screen size). During a
debugging session, you may need to display different areas of memory within
a window. You can do this by typing a command or using the mouse.

Managing Data in Memory

If you want to display a different memory range in the MEMORY window, use
the MEM command. The basic syntax for this command is:

mem expression

To view different memory locations in an additional MEMORY window, use the
MEM command with a unique window name. For example:

To do this. .. Enter this. ..

View the block of memory starting at ad- mem 0x8000,, MEMORYA
dress 0x8000 in the MEMORYA window

View the same block of memory (startingat mem 0x8000,, MEMORYB
address 0x8000) but in the MEMORYB win-
dow

Note:

If you want to view a different block of memory explicitly in the default
MEMORY window, you can use the MEM command without a window name.
To use this command, enter:

mem address

For more information, see MEMORY windows on page 4-13.

The expression you type in represents the address of the first entry in the
MEMORY window. The end of the range is defined by the size of the window:
to show more memory locations, make the window larger; to show fewer loca-
tions, make the window smaller. For more information, see Resizing a window
on page 4-22.

Expression can be an absolute address, a symbolic address, or any C expres-
sion. Here are several examples:

[0 Absolute address. Suppose that you want to display data memory begin-
ning from the very first address. You might enter this command:
mem 0x00

Hint: MEMORY window addresses are shown in hexadecimal format. If
you want to specify a hex address, be sure to prefix the address number
with 0x; otherwise, the debugger treats the number as a decimal address.

Managing Data 9-7

Managing Data in Memory

[Symbolic address. You can use any defined C symbol as an expression
parameter. For example, if your program defined a symbol named SYM,
you could enter this command:

mem &SYM
Hint: Prefix the symbol with the & operator to use the address of the
symbol.

(O C expression. If you use a C expression as a parameter, the debugger
evaluates the expression and uses the result as a memory address:
mem SP — ARO + label

=

You can also change the display of any data-display window—including the
MEMORY window—by scrolling through the window’s contents. For more
details, see Scrolling through a window’s contents on page 4-27.

Displaying extended memory, program memory, and l/O space

By default, the MEMORY window displays data memory. You can display other
types of memory using one of these suffixes after the expression. The debug-
ger changes the MEMORY window label to remind you what type of memory
is being displayed.

To display . . . Use this suffix... MEMORY window label
Program memory @prog MEMORY [PROG]
Extended program memoryt ~ @prog16 MEMORY [PROG16]
Extended data memory*t @data16 MEMORY [DATA16]

1/0 spacet @io MEMORY [IO]

Data memory @data MEMORY

T Valid only when extended addressing is enabled.
Valid only with the emulator.

Any of the examples presented in this section could be modified to display ex-
tended memory, program memory, or 1/O space:

mem 0x00@proglé6

mem &SYM@prog

mem (SP — ARO + label)@datalé6
? *0x26Qio

wa *0x26@prog

disp *(float *)0x26@io

Managing Data in Memory

Displaying memory contents while you’re debugging C

If you're debugging C code in auto mode, you won’t see a MEMORY window—
the debugger doesn’'t show the MEMORY window in the C-only display.
However, there are several ways to display memory in this situation.

Hint: If you want to use the contents of an address as a parameter, be sure
to prefix the address with the C indirection operator (*).

a

If you have only a temporary interest in the contents of a specific memory
location, you can use the ? command to display the value at this address.
For example, if you want to know the contents of data memory location 26
(hex), you could enter:

? *0x26

The debugger displays the memory value in the display area of the COM-
MAND window.

If you want the opportunity to observe a specific memory location over a
longer period of time, you can display it in a WATCH window. Use the WA
command to do this:

wa *0x26

You can also use the DISP command to display memory contents. The
DISP window shows memory in an array format with the specified address
as “member” [0]. In this situation, you can also use casting to display
memory contents in a different numeric format:

disp *(float *)0x26

The debugger displays one element of the array at a time, so the memory
is shown in a structure display window. To see other elements of the array,
use and (CONTROL) (PAGE DOWN),

Managing Data 9-9

Managing Data in Memory

Saving memory values to a file

~§

9-10

ms

Sometimes it’s useful to save a block of memory values to a file. You can use
the MS (memory save) command to do this; the files are saved in COFF for-
mat. The syntax for the MS command is:

ms address, page, length, filename
(1 The address parameter identifies the first address in the block.

[The page is a one-digit number that identifies the type of memory (pro-
gram, data, or 1/0O) to save:

To save this type of memory Use this value as the page parameter

Program memory 0
Data memory 1
I/O space 2 (Emulator only)

[The length parameter defines the length, in words, of the block. This
parameter can be any C expression.

(O Thefilename is a system file. If you don’t supply an extension, the debug-
ger adds an .obj extension.

For example, to save the values in data memory locations 0x0000 — 0x0010
to a file named memsave, you could enter:

ms 0x0,1,0x10,memsave

To reload memory values that were saved in a file, use the LOAD command.
For example, to reload the values that were stored in memsave, enter:

load memsave.obj

Managing Data in Memory

Filling a block of memory

"

Sometimes it’s useful to be able to fill an entire block of memory at once. You
can do this by using the FILL command. The syntax for this command is:

fill address, page, length, data
(1 The address parameter identifies the first address in the block.

(1 The page is a one-digit number that identifies the type of memory (pro-
gram or data) to fill:

To fill this type of memory Use this value as the page parameter
Program memory 0

Data memory 1

1/0 space 2 (Emulator Only)

(1 The length parameter defines the number of words to fill.
(1 The data parameter is the value that is placed in each word in the block.

For example, to fill program memory locations 0x10FF-0x110D with the value
0xABCD, you would enter:

£ill 0x10£f£f,0,0xf,O0xabcd
If you want to check whether memory has been filled correctly, you can enter:
mem 0x10ff@prog

This changes the MEMORY window display to show the block of memory
beginning at program memory address Ox10FF.

Note that the FILL command can also be executed from the Memory pulldown
menu.

Managing Data 9-11

Managing Register Data

9.5 Managing Register Data

In mixed and assembly modes, the debugger maintains a CPU window that
displays the contents of individual registers. For details, see CPU window on
page 4-16.

—CPU
registeri ACC 00000002 PREG 00000000 A

name 0107 TOS £050 STO 8e00 ST1 8ffc
IMR IFR 0000 TREG 04f3
ARO 00 AR1 095f AR2 dffd AR3 f£ff Y
4 £080 c6 AR6 bfff AR7 bfff

register%

contents

The debugger provides commands that allow you to display and modify the
contents of specific registers. You can use the data-management commands
or the debugger’s overwrite editing capability to modify the contents of any reg-
ister displayed in the CPU or WATCH window. For more information, refer to
Section 9.3, Basic Methods for Changing Data Values.

Displaying register contents

9-12

The main way to observe register contents is to view the display in the CPU
window. However, you may not be interested in all of the registers; if you're in-
terested in only a few registers, you might want to make the CPU window small
and use the extra screen space for the DISASSEMBLY or FILE display. In this
type of situation, there are several ways to observe the contents of the selected
registers.

(1 [If you have only a temporary interest in the contents of a register, you can
use the ? command to display the register’s contents. For example, if you
want to know the contents of ARO, you could enter:

? ARO

The debugger displays ARO’s current contents in the COMMAND window
display area.

O If you want to observe a register over a longer period of time, you can use
the WA command to display the register in a WATCH window. For
example, if you want to observe the status register, you could enter:

wa STO,Status Register 0

This adds the STO to the WATCH window and labels it as Status Register
0. The register’s contents are continuously updated, just as if you were ob-
serving the register in the CPU window.

When you’re debugging C in auto mode, these methods are also useful be-
cause the debugger doesn’'t show the CPU window in the C-only display.

Managing Register Data / Managing Data in a DISP (Display) Window

Accessing the hardware stacks (simulator only)

The simulator provides access to the eight-level hardware stack, which is used
for saving the PC value during interrupts and subroutines. The pseudoregister
symbols STKO-STK?7 represent hardware stack levels 0-7, respectively. You
can view the contents of these stack levels by adding the appropriate STK
symbol to the WATCH window. For example, to watch hardware stack level 0,
enter:

wa STKO

9.6 Managing Data in a DISP (Display) Window

The main purpose of the DISP window is to display members of complex,
aggregate data types such as arrays and structures. The debugger shows
DISP windows only when you specifically request to see DISP windows with
the DISP command (described below). Note that you can have up to 120 DISP
windows open at once. For more details, see DISP windows on page 4-17.

DISP: str
a 84 A

86
172

structure
members —DISP: str.f4
[0] 44276127 A
v [1] 1778712578
[2] 555492660
[3] 356713217
| [4] 138412802
[5] 182452229

[6] 35659888
This member is an array, and [7]1 37749506

you can display its contents in [8] 134742016 Y
a second DISP window [9] 138412801

. /

£3 0x18740001

member £ [...]

values

Remember, you can use the data-management commands or the debugger’s
overwrite editing capability to modify the contents of any value displayed in a
DISP window. For more information, refer to Section 9.3, Basic Methods for
Changing Data Values.

Managing Data 9-13

Managing Data in a DISP (Display) Window

Displaying data in a DISP window

-

disp

To open a DISP window, use the DISP command. Its basic syntax is:
disp expression

If the expression is not an array, structure, or pointer (of the form *pointer
name), the DISP command behaves like the ? command. However, if expres-
sion is one of these types, the debugger opens a DISP window to display the
values of the members.

If a DISP window contains a long list of members, you can use (PAGEDOWN),
, or arrow keys to scroll through the window. If the window contains an
array of structures, you can use (CONTROL) (PAGEDOWN) and to
scroll through the array.

Once you open a DISP window, you may find that a displayed member is
another one of these types. This is how you identify the members that are
arrays, structures, or pointers:

A member that is an array looks like this [..]
A member that is a structure looks like this {..}
A member that is a pointer looks like an address 0x0000

You can display the additional data (the data pointed to or the members of the
array or structure) in additional DISP windows (these are referred to as
children). There are three ways to do this.

Use the DISP command again; this time, expression must identify the member
that has additional data. For example, if the first expression identifies a struc-
ture named str and one of str’'s members is an array named 4, you can display
the contents of the array by entering this command:

disp str.f4

This opens a new DISP window that shows the contents of the array. If str has
a member named f3 that is a pointer, you could enter:

disp *str.f3

This opens a window to display what str.f3 points to.

Managing Data in a DISP (Display) Window

Here’s another method of displaying the additional data:

1) Point to the member in the DISP window.

2) Now click the left button.

key Here’s the third method:

@ 1) Use the arrow keys to move the cursor up and down in the list of members.

2) When the cursor is on the desired field, press (7.
When the debugger opens a second DISP window, the new window may at
first be displayed on top of the original DISP window; if so, you can move the
windows so that you can see both at once. If the new windows also have
members that are pointers or aggregate types, you can continue to open new
DISP windows.

Closing a DISP window

Closing a DISP window is a simple, two-step process.

Step 1: Make the DISP window that you want to close active (see Section
4.4, The Active Window, on page 4-20).

Step 2: Press (™).

Note that you can close a window and all of its children by closing the original
window.

Note:

The debugger automatically closes any DISP windows when you execute a
LOAD or SLOAD command.

Managing Data 9-15

Managing Data in a WATCH Window

9.7 Managing Data in a WATCH Window

The debugger doesn’t maintain a dedicated window that tells you about the
status of all the symbols defined in your program. Such a window might be so
large that it wouldn’t be useful. Instead, the debugger allows you to create a
WATCH window that shows you how program execution affects specific
expressions, variables, registers, or memory locations.

—WATCH
watchindex—— | 1: aro ox1802 A
2: X+X 4 v
3: BPC 0x0040

label current value

The debugger displays a WATCH window only when you specifically request
a WATCH window with the WA command (described below). For additional
details concerning the WATCH window, see WATCH window on page 4-18.

Remember, you can use the data-management commands or the debugger’s
overwrite editing capability to modify the contents of any value displayed in the
WATCH window. For more information, refer to Section 9.3, Basic Methods for
Changing Data Values.

Note:

All of the watch commands described can also be accessed Watch
from the Watch pulldown menu. For more information about Ad‘li
using the the pulldown menus, refer to Section 5.2, Using the izszte

Menu Bar and the Pulldown Menus, on page 5-7.

Displaying data in the WATCH window

The debugger has one command for adding items to a WATCH window.

wa
<3

9-16

To open a WATCH window, use the WA (watch add) command. The syntax is:
wa expression [,[labell [, [display format] [, window name]]

When you first execute WA, the debugger opens the WATCH window. After
that, executing WA adds additional values to the WATCH window.

(1 The expression parameter can be any C expression, including an expres-
sion that has side effects. It's most useful to watch an expression whose
value will change over time; constant expressions provide no useful func-
tion in the WATCH window.

Managing Data in a WATCH Window

[If you want to use the contents of an address as a parameter, be sure to
prefix the address with the C indirection operator (*¥). Use the WA com-
mand to do this:

wa *0x26
1 The label parameter is optional. When used, it provides a label for the

watched entry. If you don’t use a label, the debugger displays the expres-
sion in the label field.

(1 The display format parameter is optional. When used, the data is dis-
played in the selected format as shown in Table 9-2 on page 9-19.

1 The window name parameter is optional. When used, it allows you to
watch your expression in an alternate WATCH window. For more informa-
tion, see the WA command discussion on page 18-67.

Deleting watched values and closing the WATCH window

The debugger supports two commands for deleting items from the WATCH
window.

Wr
@

wd

If you'd like to close a WATCH window and delete all of the items in a single
step, use the WR (watch reset) command. The syntax is:

wr[* | window name

The optional window name parameter is used to delete a particular WATCH
window; * deletes all WATCH windows.

If you'd like to delete a specific item from the WATCH window, use the WD
(watch delete) command. The syntax is:

wd index number [, window name]

Whenever you add an item to a WATCH window, the debugger assigns it an
index number. (The illustration of the WATCH window on page 9-16 points to
these watch indexes.) The WD command'’s index number parameter must cor-
respond to one of the watch indexes in the named WATCH window.

Note that deleting an item (depending on where it is in the list) causes the
remaining index numbers to be reassigned. Deleting the last remaining item
in a WATCH window closes that WATCH window.

Note:

The debugger automatically closes any WATCH windows when you execute
a LOAD or SLOAD command.

Managing Data 9-17

Managing Pipeline Information (Simulator Only)

9.8 Managing Pipeline Information (Simulator Only)

The simulator supports additional features that allow you to monitor the pipe-
line. The simulator supports pseudoregisters that you can query with ? or DISP
or add to the WATCH window.

Monitoring the pipeline

The instruction pipeline consists of four phases: instruction fetch, decode,
operand fetch, and execution. During any cycle, one to four instructions can
be active, each at a different stage of completion. Instruction operation occurs
during the appropriate stages of the pipeline. For example, ARAU updates of
auxiliary registers occur during the decode phase.

The simulator provides eight pseudoregisters that display the opcode or
address of the instructions in each phase of the pipeline. Table 9-1 identifies
these registers.

Table 9-1. Pipeline Pseudoregisters

9-18

Pipeline phase Opcode pseudoregister Address pseudoregister
Instruction fetch fins faddr
Decode dins daddr
Operand fetch rins raddr
Execution xins xaddr

For example, if you wanted to observe the decode phase during program ex-
ecution, you could watch the dins and daddr pseudoregisters in the WATCH
window:

wa dins,Decode—Opcode
wa daddr,Decode—Address

This adds dins and daddr to the WATCH window and labels them as Decode-
Opcode and Decode-Address, respectively.

Displaying Data in Alternative Formats

9.9 Displaying Data in Alternative Formats

By default, all data is displayed in its natural format. This means that:

[Integer values are displayed as decimal numbers.

(1 Floating-point values are displayed in floating-point format.

(1 Pointers are displayed as hexadecimal addresses (with a 0x prefix).
(1 Enumerated types are displayed symbolically.

However, any data displayed in the COMMAND, MEMORY, WATCH, or DISP
window can be displayed in a variety of formats.

Changing the default format for specific data types

To display specific types of data in a different format, use the SETF command.
The syntax for this command is:

setf [data type, display format]

The display format parameter identifies the new display format for any data of
type data type. Table 9-2 lists the available formats and the corresponding
characters that can be used as the display format parameter.

Table 9-2. Display Formats for Debugger Data

Display Format Parameter | Display Format Parameter
Default for the data type * Octal o
ASCII character (bytes) c Valid address p
Decimal d ASCII string s
Exponential floating point e Unsigned decimal u
Decimal floating point f Hexadecimal X

Table 9-3 lists the C data types that can be used for the data type parameter.
Only a subset of the display formats applies to each data type, so Table 9-3
also shows valid combinations of data types and display formats.

Managing Data 9-19

Displaying Data in Alternative Formats

Table 9-3. Data Types for Displaying Debugger Data

Valid Display Formats

Data Type

Default Display Format

char

uchar

c
N
\/
short J
int J
uint J
long J
ulong J
float

double

ptr

d o x e f p s
NN A
NN
NN A
NN A
NN A
NN A
NN A
vy
S J
Vo

ASCII (c)
Decimal (d

Decimal (d

Decimal (d

(
(
Decimal (d
(
Decimal (d

<2 2 2 2 2 2 2 |C
RN — .

Decimal (d
Exponential floating point (e)
Exponential floating point (e)

S Address (p)

Here are some examples:

(O To display all data of type short as an unsigned decimal, enter:
setf short, u

(O To return all data of type short to its default display format, enter:

setf short,

*

[To list the current display formats for each data type, enter the SETF
command with no parameters:

setf

You'll see a display that looks something like this:

Type
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type

Display Format Defaults

char:

unsigned char:
int:

unsigned int:
short:
unsigned short:
long:

unsigned long:
float:

double:
pointer:

ASCIT

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Exponential floating point
Exponential floating point
Address

[J To reset all data types back to their default display formats, enter:

setf *

9-20

Displaying Data in Alternative Formats

Changing the default format with ?, MEM, DISP, and WA

You can also use the ?, MEM, DISP, and WA commands to show data in alter-
native display formats. (The ? and DISP commands can use alternative
formats only for scalar types, arrays of scalar types, and individual members
of aggregate types.)

Each of these commands has an optional display format parameter that works
in the same way as the display format parameter of the SETF command.

When you don’t use a display format parameter, data is shown in its natural
format (unless you have changed the format for the data type with SETF).

Here are some examples:

[0 To watch the PC in decimal, enter:
wa pc,,d

(1 To display memory contents in octal, enter:
mem 0x0,0

(J To display an array of integers as characters, enter:
disp ai,c

The valid combinations of data types and display formats listed for SETF also
apply to the data displayed with DISP, ?, WA, and MEM. For example, if you
want to use display format e or f, the data that you are displaying must be of
type float or type double. Additionally, you cannot use the s display format
parameter with the MEM command.

Managing Data 9-21

9-22

Chapter 10

Using Software Breakpoints

During the debugging process, you may want to halt execution temporarily so
that you can examine the contents of selected variables, registers, and
memory locations before continuing with program execution. You can do this
by setting software breakpoints at critical points in your code. You can set soft-
ware breakpoints in assembly language code and in C code. A software break-
point halts any program execution, whether you’re running or single-stepping
through code.

Software breakpoints are especially useful in combination with conditional
execution (described on page 8-18).

Topic Page
10.1 Setting a Software Breakpointccciiinnt 10-2
10.2 Clearing a Software Breakpointccciiiiiinn, 10-4
10.3 Finding the Software Breakpoints That AreSet 10-5

10-1

Setting a Software Breakpoint

10.1 Setting a Software Breakpoint

When you set a software breakpoint, the debugger highlights the breakpointed

line in two ways:
|
4

It prefixes the statement with the character >.

It shows the line in a bolder or brighter font. (You can use screen-customi-

zation commands to change this highlighting method.)

If you set a breakpoint in the disassembly, the debugger also highlights the
associated C statement. If you set a breakpoint in the C source, the debugger
also highlights the associated statement in the disassembly. (If more than one
assembly language statement is associated with a C statement, the debugger
highlights the first of the associated assembly language statements.)

FILE: sample.c \
00044 4
00045 > meminit();
A breakpoint is set at for (i=0; i < 0x50000; i++)
this C statement; { v
notice how the line is call(i);
highlighted.
A breakpoint is also
set at the associated
assembly language
statement (it's
highlighted, too). DISASSEMBLY
00fc bf80 > meminit: LACC #5555h 4
00fe bf90 ADD #6666h v
0100 bf9o ADD #777h

Notes:

1)

After execution is halted by a breakpoint, you can continue program

execution by reissuing any of the run or single-step commands.

2)

Up to 200 breakpoints can be set.

10-2

d
121

Setting a Software Breakpoint

There are several ways to set a software breakpoint:

1

1) Point to the line of assembly language code or C code where you'd like to
set a breakpoint.

2) Click the left button.

Repeating this action clears the breakpoint.

@

1) Make the FILE or DISASSEMBLY window the active window.

2) Use the arrow keys to move the cursor to the line of code where you'd like
to set a breakpoint.

3) Pressthe key.
Repeating this action clears the breakpoint.
ba If you know the address where you'd like to set a software breakpoint, you can

use the BA (breakpoint add) command. This command is useful because it
doesn’t require you to search through code to find the desired line. The syntax
for the BA command is:

ba address

This command sets a breakpoint at address. This parameter can be an abso-
lute address, any C expression, the name of a C function, or the name of an
assembly language label. You cannot set multiple breakpoints at the same
statement.

Using Software Breakpoints 10-3

Clearing a Software Breakpoint

10.2 Clearing a Software Breakpoint

&

|
(g”}
=

10-4

There are several ways to clear a software breakpoint. If you clear a breakpoint
from an assembly language statement, the breakpoint is also cleared from any
associated C statement; if you clear a breakpoint from a C statement, the
breakpoint is also cleared from the associated statement in the disassembly.

1) Point to a breakpointed assembly language or C statement.

2) Click the left button.

DD

1) Use the arrow keys or the DASM command to move the cursor to a break-
pointed assembly language or C statement.

2) Pressthe key.

br

bd

If you want to clearall the software breakpoints that are set, use the BR (break-
point reset) command.This command is useful because it doesn’t require you
to search through code to find the desired line. The syntax for the BR command
is:

br

If you'd like to clear one specific software breakpoint and you know the address
of this breakpoint, you can use the BD (breakpoint delete) command. The syn-
tax for the BD command is:

bd address

This command clears the breakpoint at address. This parameter can be an
absolute address, any C expression, the name of a C function, or the name
of an assembly language label. If no breakpoint is set at address, the debugger
ignores the command.

Finding the Software Breakpoints That Are Set

10.3 Finding the Software Breakpoints That Are Set

.

Sometimes you may need to know where software breakpoints are set. For
example, the BD command’s address parameter must correspond to the
address of a breakpoint that is set. The BL (breakpoint list) command provides
an easy way to get a complete listing of all the software breakpoints that are
currently set in your program. The syntax for this command is:

bl

The BL command displays a table of software breakpoints in the COMMAND
window display area. BL lists all the software breakpoints that are set, in the
order in which you set them. Here’s an example of this type of list:

Address Symbolic Information
004d in main, at line 60, "c:\c2xxhll\sample.c”
0051

The address is the memory address of the breakpoint. The symbolic informa-
tion identifies the function, line number, and filename of the breakpointed C
statement:

[If the breakpoint was set in assembly language code, you'll see only an
address unless the statement defines a symbol.

[[If the breakpoint was set in C code, you'll see the address together with
symbolic information.

Using Software Breakpoints 10-5

10-6

Chapter 11

Customizing the Debugger Display

The debugger display is completely configurable; you can create the interface
that is best suited for your use. Besides being able to size and position indi-
vidual windows, you can change the appearance of many of the display
features, such as window borders, how the current statement is highlighted,
etc. In addition, if you're using a color display, you can change the colors of any
area on the screen. Once you've customized the display to your liking, you can
save the custom configuration for use in future debugging sessions.

Topic Page
11.1 Changing the Colors of the Debugger Display 11-2
11.2 Changing the Border Styles of the Windows 11-8
11.3 Saving and Using Custom Displayscccvvne. 11-9
11.4 Changingthe Prompt..............ciiiiiiiiiiiiiiiiiiennns 11-12

Changing the Colors of the Debugger Display

11.1 Changing the Colors of the Debugger Display

You can use the debugger with a color or a monochrome display; the com-
mands described in this section are most useful if you have a color display. If
you are using a monochrome display, these commands change the shades on
your display. For example, if you are using a black-and-white display, these
commands change the shades of gray that are used.

color You can use the COLOR or SCOLOR command to change the colors of areas
> scolor

in the debugger display. The format for these commands is:

color area name, attribute; [, attributes [, attributes [, attribute,]11]
scolor area name, attribute; [, attributes [, attributes |, attribute,]]1]

These commands are similar. However, SCOLOR updates the screen imme-
diately, and COLOR doesn’t update the screen (the new colors/attributes take
effect as soon as the debugger executes another command that updates the
screen). Typically, you might use the COLOR command several times,
followed by an SCOLOR command to put all of the changes into effect at once.

The area name parameter identifies the areas of the display that are affected.
The attributes identify how the areas are affected. Table 11-1 lists the valid
values for the attribute parameters.

Table 11-1. Colors and Other Attributes for the COLOR and SCOLOR Commands

(a) Colors
black blue green cyan
red magenta yellow white

(b) Other attributes

bright blink

The first two attribute parameters usually specify the foreground and
background colors for the area. If you do not supply a background color, the
debugger uses black as the background.

Table 11-2 lists valid values for the area name parameters. This is a long list;
the subsections following the table further identify these areas.

Changing the Colors of the Debugger Display

Table 11-2. Summary of Area Names for the COLOR and SCOLOR Commands

menu_bar menu_border menu_entry menu_cmd
menu_hilite menu_hicmd win_border win_hiborder
win_resize field_text field_hilite field_edit
field_label field_error cmd_prompt cmd_input
cmd_cursor cmd_echo asm_data asm_cdata
asm_label asm_clabel background blanks
error_msg file_line file_eof file_text
file_brk file_pc file_pc_brk

Note: Listing order is left to right, top to bottom.

You don’t have to type an entire attribute or area name; you need to type only
enough letters to uniquely identify either parameter. If you supply ambiguous
attribute names, the debugger interprets the names in this order: black, blue,
bright, blink. If you supply ambiguous area names, the debugger interprets
them in the order that they’re listed in Table 11-2 (left to right, top to bottom).

The remainder of this section identifies these areas.

Area names: common display areas

background — ||

blanks

8e00 A
0000
095f y
£080

Area identification Parameter name
Screen background (behind all windows) background
Window background (inside windows) blanks

Customizing the Debugger Display 11-3

Changing the Colors of the Debugger Display

Area names: window borders

—~
(
. 8 —WATCH =
\?V?nlgg&tlve 1: ARO 0x1802 — A win_border
2: X+X 4 v
3: PC 0x0064
}——— win_resize
an active [COMMAND
window)/ win_hiborder
Loading sample.out
Eone
>>>

Area identification

Parameter name

Window border for any window that isn’t active

The reversed L in the lower right corner of a resizable
window

Window border of the active window

win_border

win_resize

win_hiborder

Area names: COMMAND window

COMMAND

cmd_echo Done

file sample.c
wa eee

error_msg

>>> go main

_

cmd_prompt cmd_input cmd_cursor

Area identification

Parameter name

Echoed commands in display area
Errors shown in display area
Command-line prompt

Text that you enter on the command line

Command-line cursor

cmd_echo
error_msg
cmd_prompt
cmd_input

cmd_cursor

Changing the Colors of the Debugger Display

Area names: DISASSEMBLY and FILE windows

asm_cdata

POPD
SAR
SAR

*4
ARO, *+
ARL, *
ARO, #4
ARO, *0+,AR2

asm_clabel

asm_label LAR

—— file_pc

v
file_brk

asm_data

tl.c

file_text

file_line—— —FILE:

00053
00054
00055 main()
00056 {

extern call();.

extern meminit():

file_eof

Y

A

y file_pc_brk

Area identification

Parameter name

Object code in DISASSEMBLY window that is associated
with current C statement

Object code in DISASSEMBLY window
Addresses in DISASSEMBLY window

Addresses in DISASSEMBLY window that are associated
with current C statement

Line numbers in FILE window

End-of-file marker in FILE window

Text in FILE or DISASSEMBLY window
Breakpointed text in FILE or DISASSEMBLY window
Current PC in FILE or DISASSEMBLY window

Breakpoint at current PC in FILE or DISASSEMBLY
window

asm_cdata

asm_data
asm_label

asm_clabel

file_line
file_eof
file_text
file_brk
file_pc

file_pc_brk

Customizing the Debugger Display

11-5

Changing the Colors of the Debugger Display

Area names: data-display windows

field_label

field_text

field_hilite

0007 0007
0007 0000
0002 3fff
09c6 3fff
3fff 3£ff
0900 Jsa

ooo>\

3fff
09£5
3fff
££77
ffff

0007
0000
09f£5
5477
3fff
0000

3fff
0000
affl
09£5
0000
0000

££00
0002
ffff
3fff
0000
ffff

0000
0002
£080

000
fREE

A

field_edit

field_error

Area identification

Parameter name

Label of a window field (includes register names in CPU win-
dow, addresses in MEMORY window, index numbers and
labels in WATCH window, member names in DISP window)

Text of a window field (includes data values for all data-dis-
play windows) and of most command output messages in

command window

Text of a highlighted field

Text of a field that has an error (such as an invalid memory

location)

Text of a field being edited (includes data values for all data-

display windows)

field_label

field_text

field_hilite

field_error

field_edit

Changing the Colors of the Debugger Display

Area names: menu bar and pulldown menus

menu_bar

~
(Lpad Break Watch Memory Color Mode
— menu_hilite

T menu_entry

menu_border

menu_hicmd

menu_cmd

Area identification Parameter name
Top line of display screen; background to main menu menu_bar
choices

Border of any pulldown menu menu_border
Text of a menu entry menu_entry
Invocation key for a menu or menu entry menu_cmd

Text for current (selected) menu entry menu_hilite
Invocation key for current (selected) menu entry menu_hicmd

Customizing the Debugger Display 11-7

Changing the Border Styles of the Windows

11.2 Changing the Border Styles of the Windows

-

In addition to changing the colors of areas in the display, the debugger allows
you to modify the border styles of the windows.

border Use the BORDER command to change window border styles. The format for

this command is:
border [active window style] [,[inactive window style] [, resize style] |

This command can change the border styles of the active window, the inactive
windows, and any window that is being resized. The debugger supports nine
border styles. Each parameter for the BORDER command must be one of the
numbers that identifies these styles:

Index Style
0 Double-lined box

1 Single-lined box

Solid 1/2-tone top, double-lined sides and bottom
Solid 1/4-tone top, double-lined sides and bottom
Solid box, thin border

Solid box, heavy sides, thin top and bottom

Solid box, heavy borders

Solid 1/2-tone box

0 N O o »~ WwN

Solid 1/4-tone box

Here are some examples of the BORDER command. Note that you can skip
parameters, if desired.

border 6,7,8 Change style of active, inactive, and resize windows
border 1,,2 Change style of active and resize windows
border ,3 Change style of inactive window

You can execute the BORDER command as the Border selection on the Color
pulldown menu. The debugger displays a dialog box so that you can enter the
parameter values; in the dialog box, active window style is called foreground,
and inactive window style is called background.

Saving and Using Custom Displays

11.3 Saving and Using Custom Displays

The debugger allows you to save and use as many custom configurations as
you like.

When you invoke the debugger, it looks for a screen configuration file called
init.clr. The screen configuration file defines how various areas of the display
will appear. If the debugger doesn't find this file, it uses the default screen con-
figuration. Initially, init.clr defines screen configurations that exactly match the
default configuration.

The debugger supports two commands for saving and restoring custom
screen configurations into files. The filenames that you use for restoring
configurations must correspond to the filenames that you used for saving con-
figurations. Note that these are binary files, not text files, so you can’t edit the
files with a text editor.

Changing the default display for monochrome monitors

The default display is most useful with color monitors. The debugger highlights
changed values, messages, and other information with color; this may not be
particularly helpful if you are using a monochrome monitor.

The debugger package includes another screen configuration file named
mono.clr, which defines a screen configuration that can be used with
monochrome monitors. The best way to use this configuration is to rename the
file:

1) Rename the original init.clr fle—you might want to call it color.clr.

2) Next, rename the mono.clr file. Call it init.clr. Now, whenever you invoke
the debugger, it will automatically come up with a customized screen
configuration for monochrome monitors.

If you aren’t happy with the way that this file defines the screen configuration,
you can customize it.

Saving a custom display

ssave Once you've customized the debugger display to your liking, you can use the

SSAVE command to save the current screen configuration to a file. The format
for this command is:

ssave [filename]

Customizing the Debugger Display 11-9

Saving and Using Custom Displays

This saves the screen resolution, border styles, colors, window positions, win-
dow sizes, and (on PCs) video mode (EGA, VGA, etc.) for all debugging
modes.

The filename parameter names the new screen configuration file. You can
include path information (including relative pathnames); if you don’t specify
path information, the debugger places the file in the current directory. If you
don’t supply a filename, the debugger saves the current configuration into a
file named init.clr.

Note that you can execute this command as the Save selection on the Color
pulldown menu.

Loading a custom display

-9

11-10

sconfig You can use the SCONFIG command to restore the display to a particular con-

figuration. The format for this command is:
sconfig ([filename]

This restores the screen resolution, colors, window positions, window sizes,
border styles, and (on PCs) video mode (EGA, CGA, MDA, etc.) saved in file-
name. Screen resolution and video mode are restored either by changing the
mode (on video cards with switchable modes) or by resizing the debugger
screen (on other hosts).

If you don'’t supply a filename, the debugger looks for init.clr. The debugger
searches for the file in the current directory and then in directories named with
the D_DIR environment variable.

Note that you can execute this command as the Load selection on the Color
pulldown menu.

Note:

The file created by the SSAVE command in this version of the debugger
saves positional, screen size, and video mode information that was not
saved by SSAVE in previous versions of the debugger. The format of this new
information is not compatible with the old format. If you attempt to load an
earlier version’s SCONFIG file, the debugger will issue an error message
and stop the load.

Saving and Using Custom Displays

Invoking the debugger with a custom display

If you set up the screen in a way that you like and always want to invoke the
debugger with this screen configuration, you have two choices for
accomplishing this:

(1 Save the configuration in init.clr.

[J Add aline to the batch file that the debugger executes at invocation time
(init.cmd). This line should use the SCONFIG command to load the cus-
tom configuration.

Returning to the default display

If you saved a custom configuration into init.clr but don’t want the debugger to
come up in that configuration, rename the file or delete it. If you are in the
debugger, have changed the configuration, and would like to revert to the
default, just execute the SCONFIG command without a filename.

Customizing the Debugger Display 11-11

Changing the Prompt

11.4 Changing the Prompt

prompt The debugger enables you to change the command-line prompt by using the
> PROMPT command. The format of this command is:

11-12

prompt new prompt

The new prompt can be any string of characters, excluding semicolons and
commas. If you type a semicolon or a comma, it terminates the prompt string.

Note that the SSAVE command doesn’t save the command-line prompt as part
of a custom configuration. The SCONFIG command doesn’'t change the
command-line prompt. If you change the prompt, it stays changed until you
change it again, even if you use SCONFIG to load a different screen configura-
tion.

If you always want to use a different prompt, you can add a PROMPT state-
ment to the init.cmd batch file that the debugger executes at invocation time.

You can also execute this command as the Prompt selection on the Color
pulldown menu.

Note:

Whenever you select a default group of processors, the group name
becomes the command-line prompt for the PDM. You cannot use the
PROMPT command to change the PDM’s command-line prompt. To change
the PDM prompt, use the SET command (see page 2-19).

Chapter 12

Using the Analysis Interface

The 'C2xx on-chip analysis module allows the emulator to monitor hardware
functions. The debugger provides you with easy-to-use windows, dialog
boxes, and analysis commands that let you set hardware breakpoints on cer-
tain occurrences.

The debugger accesses the on-chip analysis module through a special set of
pseudoregisters. The dialog boxes described in this chapter provide a trans-
parent means of loading these registers. You will, in most cases, access the
analysis features, unlike many of the other debugger features, through dialog
boxes rather than through commands. If the dialog boxes do not meet your
needs, you can use the special set of aliased commands that deal directly with
the analysis pseudoregisters. These commands are described in Appendix A,
Customizing the Analysis Interface.

Topic Page
12.1 Introducing the Analysis Interfacecciiun, 12-2
12.2 An Overview of the Analysis Processe. .|-_1|2-3
12.3 Enabling the Analysis Interfaceoe 12-4
12.4 Defining the Conditions for Analysis 12-5
12,5 Running Your Programcciiiiiiinnnrnnnnnrennnnns 12-8
12.6 Viewingthe AnalysisDatacooviiiininnnnnnn. 12-8

12-1

Introducing the Analysis Interface

12.1 Introducing the Analysis Interface

12-2

The 'C2xx analysis interface provides a detailed look into events occurring in
hardware, thereby expanding your debugging capabilities beyond software
breakpoints. The analysis interface examines ’C2xx bus cycle information in
real time and reacts to this information through actions such as hardware
breakpoints.

The analysis interface allows you to:

(1 Set hardware breakpoints. You can also set up the analysis interface to
halt the processor during execution of your program. The events that
cause the processor to stop are called break events. A break event can
define a variety of conditions, including:

W Program accesses
W Low levels on EMUO/1 pins (EMUO and EMUT)

Hardware break events allow you to set breakpoints in ROM. This enables
you to break on events that you cannot break on by using software break-
points alone. In addition, any of the debugger’s basic features available
with software breakpoints can also be used with hardware breakpoints. As
a result, you can take advantage of all the step and run commands.

(1 Set up EMUO/1 pins. In a system of multiple ’'C2xx processors connected
by EMUO/1 (emulation event) pins, you can set up the EMUO/1 pins to
create global breakpoints. Whenever one processor in your system reach-
es a breakpoint (software or hardware), all processors in the system can
be halted.

12.2 An Overview of the Analysis Process

Completing an analysis session consists of four simple steps:

An Overview of the Analysis Process

Enable the analysis interface.

See Enabling the Analysis Inter-

face, page 12-4.

il

Identify the events you'd like to
track.

See Defining the Conditions for

Analysis, page 12-5.

Run your program.

See Running Your Program,

page 12-8.

View the analysis data.

See Viewing the Analysis Data,

page 12-8.

Using the Analysis Interface

12-3

Enabling the Analysis Interface

12.3 Enabling the Analysis Interface

To begin tracking hardware events, you must explicitly enable the interface by
selecting Enable on the Analysis menu. When you select enable, the next time
you open the menu, Enable is replaced by Disable.

Figure 12-1. Enabling/Disabling the Analysis Interface

Toggles Analysis
Disable

Break

EMU
View

Selecting Disable turns the interface off; however, all events you previously
enabled remain unchanged. By default, when the debugger comes up, the
analysis interface is disabled.

During a single debugging session, you may want to change the parameters
of the analysis module several times. To do this, you must open the individual
dialog boxes, deselect any previous events, and select the new events you
want to track.

Note:

You have to enable the analysis interface only once during a debugging ses-
sion. It is not necessary to enable the analysis interface each time you run
your program.

12-4

Defining the Conditions for Analysis

12.4 Defining the Conditions for Analysis

The analysis module detects hardware events and monitors the internal sig-
nals of the processor. The interface to the analysis module allows you to define
parameters that count events or halt the processor.

First, however, you must define the conditions the analysis interface must
meet to track a particular event. To do this, select the events you want to track
by enabling the appropriate conditions in the Analysis Break Events or Emula-
tor Pins dialog boxes found on the Analysis menu.

Halting the processor

You can set a hardware breakpoint on two basic types of events:
0 EMUO/EMU1 events
(1 Program bus address accesses

Figure 12-2 shows the Analysis Break Events dialog box and the different
types of break events that you can select.

Figure 12-2. Basic Types of Break Events

Bus address —|

accesses

a4 N

— Analysis Break Events

| _—f 1Program bus [

Emu0 driven low []Emul driven low

[1— Program bus: AdAr [.ccceeceeNeoooecoaooann 1

()Access ()Read ()Write (etch

<< OK >> < Cancel >

Simple events
Enabling events in the Analysis Break Events dialog box is like turning a switch

on and off. When an event is enabled, the debugger displays an X next to the
event. You can enable as many events as you want.

Using the Analysis Interface 12-5

Defining the Conditions for Analysis

Setting up the event comparators

The program bus supports noninstruction read and write accesses and
instruction fetches. If you enable the Access qualifier, noninstruction reads

and writes are detected. If you enable the Fetch qualifier, only program fetches
are detected.

Break when an access occurs at
address 0x0800 on the program bus

nalysis Break Even

Program bus: Addr [0x800 1
(*)Access ()Read ()Write ()Fetch

<< OK >> < Cancel >

Look for accesses

Setting up the EMUO/1 pins

The analysis interface allows you to access and set up the EMUO/1 (emulation
event) pins on your processor to set global breakpoints.

Selecting EMUO/1 from the Analysis menu opens the Emulator Pins dialog box
shown in Figure 12-3.

Figure 12-3. The Emulator Pins Dialog Box

12-6

r

Emulator Pins

[]EMUO trigger out
[]EMU1l trigger out

<<OK>> <Cancel>

Defining the Conditions for Analysis

When you enable the external clock, the EMUO/1 pins are set up as
totem-pole outputs; otherwise, the EMUO/1 pins are set up as
open-collector outputs. You can set up only one 'C2xx device in the
system to use the external counter. In doing so, no other device in
the system can have EMUO/1 pins set up to trigger out.

The EMU1 pin provides a ripple-carry output signal from the
internal counter that increments the emulator counter. The *C2xx
EMUO pin is set up to send a signal to the debugger when a
hardware or software breakpoint occurs. Other devices in the
system can still be programmed to detect low levels on the EMUQO
pin to provide you with global breakpoint capabilities.

By default, the EMUO/1 pins are set up as input signals; however, you can set
them up as output signals or trigger out whenever the processor is halted by
a software or hardware breakpoint. This is extremely useful when you have
multiple *C2xx processors in a system connected by their EMUO/1 pins.

Selecting EMUO/1 does not, however, automatically halt all processors in the
system. To do so, you must enable the EMUO/1 driven low condition in the
Analysis Break Events dialog box. For example, if you have a system consist-
ing of two processors connected by their EMUO pins, and you want to halt both
processors when this pin is driven low, you would enable the EMUO trigger out
parameter. Then you must enable the parameter EMUQO driven low in the Anal-
ysis Break Events dialog box. See Figure 12-4.

Figure 12-4. Setting Up Global Breakpoints on a System of Two 'C2xx Processors

Processor 1
and
Processor 2

Processor 1
and
Processor 2

[Emulator Pins

[X]EMUO trigger out
[]JEMU1l trigger out

<<OK>> <Cancel>

— Analysis Break Events

[]Program bus [X]Emu0 driven low []Emul driven low

Setting up each processor in this way creates a global breakpoint so that any
processor that reaches a breakpoint halts all the other processors in the sys-
tem.

Using the Analysis Interface 12-7

Running Your Program / Viewing the Analysis Data

12.5 Running Your Program

Once you have defined your parameters, the analysis interface can begin col-
lecting data as soon as you run your program. It will stop collecting data when
the defined conditions are met. The analysis interface monitors the progress
of the defined events while your program is running. The basic syntax for the
RUN command is:

run [expression]

You can use any of the debugger run commands (STEP, CSTEP, NEXT, etc.)
described in Chapter 8, Loading, Displaying, and Running Code, except the
RUNF (run free) command.

Note:

The conditions for the analysis session must be defined before your analysis
session begins; you cannot change conditions during execution of your pro-
gram.

12.6 Viewing the Analysis Data

You can monitor the status of the analysis interface by selecting View on the
Analysis menu. This window displays an ongoing progress report of the analy-
sis module’s activity. Through this window, you can monitor the status of the
break events. An example of the Analysis window is shown below.

Figure 12-5. Analysis Interface View Window, Displaying an Ongoing Status Report

12-8

Status field STAT Prog

Analysis

The STAT field displays a list of the events that caused the processor to halt.
If the analysis interface itself did not halt the processor, but something else
(such as a software breakpoint) did, then the status line will display: “No event
detected”.

Multiple events can cause the processor to halt at the same time; these events
are reflected in the STAT field of the Analysis window.

Chapter 13

Profiling Code Execution

The profiling environment is a special debugger environment that lets you
collect execution statistics for your code. This environment is available only
with the simulator.

Note that the profiling environment is separate from the basic debugging envi-
ronment; the only way to switch between the two environments is by exiting
and then reinvoking the debugger.

Topic Page
13.1 An Overview of the Profiling Processoutt 13-2
13.2 Entering the Profiling Environmentcc00, 13-3
13.3 Defining Areas for Profilingcccoiiiiiiii i, 13-5
13.4 Defining a StoppingPoint, 13-13
13.5 Running a Profiling Sessioncoiiiiiiiiinnn 13-15
13.6 ViewingProfileDatacoiiiiiiiiiiiiiiiiii e 13-17
13.7 Saving Profile DatatoaFile...................cooviiiiinnn.s. 13-22

13-1

An Overview of the Profiling Process

13.1 An Overview of the Profiling Process

Profiling consists of five simple steps:

Enter the profiling environment.

See Entering the Profiling Envi-
ronment, page 13-3.

Sion?, /

Identify the areas of code where
you’d like to collect statistics.

See Defining Areas for Profiling,
page 13-5.

Sieps| \/

Identify the profiling session
stopping points.

See Defining a Stopping Point,
page 13-13.

Em \/

Begin profiling.

See Running a Profiling Ses-
sion, page 13-15.

Steps) \/

View the profile data.

See Viewing Profile Data, page
13-17.

Note:

When you compile a program that will be profiled, you must use the -g and
the —as options. The —g option includes symbolic debugging information; the
—as option ensures that you will be able to include ranges as profile areas.

A profiling strategy

The profiling environment provides a method for collecting execution statistics
about specific areas in your code. This gives you immediate feedback on your
application’s performance. Here’s a suggestion for a basic approach to opti-

mizing the performance of your program.

Unmark all the functions.

session.

13-2

Mark all the functions in your program as profile areas.
Run a profiling session; find the busiest functions.

Mark the individual lines in the busy functions and run another profiling

13.2 Entering the Profiling Environment

Entering the Profiling Environment

The profiling environment is available with the simulator only. To enter the pro-
filing environment, invoke the debugger with the -profile option. At the system
command line, enter the appropriate command:

sim2xx —-profile

Use any additional debugger options that you desire (-b, —-p, etc.).

Restrictions of the profiling environment

Some restrictions apply to the profiling environment:

a
a

Table 13-1.

You’'ll always be in mixed mode.

COMMAND, DISASSEMBLY, FILE, and PROFILE are the only windows
available; additional windows, such as the WATCH window, cannot be

opened.

Breakpoints cannot be set. (However, you can use a similar feature called
stopping points when you mark sections of code for profiling.)

The profiling environment supports only a subset of the debugger
commands. Table 13-1 lists the debugger commands that can and can’t

be used in the profiling environment.

Debugger Commands That Can/Can’t Be Used in the Profiling Environment

Can be used Can’t be used

? ML ADDR MIX

ALIAS MOVE ASM MS

CD MR BA NEXT

CLS PROMPT BD PATCH

DASM QuIT BL RETURN

DIR RELOAD BORDER RUN

ECHO RESET g RUNF
RESTART

EVAL SCONFIG CALLS SCOLOR

FILE SIZE CNEXT SETF

FUNC SLOAD COLOR SOUND

IF/ELSE/ENDIF CSTEP SSAVE

LOAD SYSTEM DISP STEP

LOOP/ENDLOOP TAKE FILL WA

MA UNALIAS GO WD

MAP USE HALT WHATIS

MC VERSION MEM WR

MD WIN

MI ZOOM

Be sure you don’t use any of the “can’t be used” commands in your initial-

ization batch file.

Profiling Code Execution 13-3

Entering the Profiling Environment

Using pulldown menus in the profiling environment

13-4

The debugger displays a different menu bar in the profiling environment:

Load mAp Mark Enable Disable Unmark View Stop—-points Profile

The Load menu corresponds to the Load menu in the basic debugger environ-
ment. The mAp menu provides memory map commands available from the
basic Memory menu. The other entries provide access to profiling commands
and features.

The profiling environment’s pulldown menus operate similarly to the basic
debugger pulldown menus. However, several of the menus have additional
submenus. A submenu is indicated by a > character following a menu item. For
example, here’s one of the submenus for the Mark menu:

Mark

Asm level > Line areas >

Range areas > Explicitl
Function areas > in one Function

Chapter 5, Summary of Commands and Special Keys, shows which debugger
commands are associated with the menu items in the basic debugger pull-
down menus. Because the profiling environment supports over 100 profile-
specific commands, it's not practical to show the commands associated with
the menu choices. Here’s a tip to help you with the profiling commands: the
highlighted menu letters form the name of the corresponding debugger com-
mand. For example, if you prefer the function-key approach to using menus,
the highlighted letters in Mark— C level—Line areas—in one Function show
that you could press), @, O, @. This also shows that the correspond-
ing debugger command is MCLF.

Defining Areas for Profiling

13.3 Defining Areas for Profiling

Marking an area

Within the profiling environment, you can collect statistics on three types of
areas:

J Individual lines in C or disassembly
(1 Ranges in C or disassembly
(1 Functions in C only

To identify any of these areas for profiling, mark the line, range, or function. You
can disable areas so that they won't affect the profile data, and you can reen-
able areas that have been disabled. You can also unmark areas that you are
no longer interested in.

The mouse is the simplest way to mark, disable, enable, and unmark tasks.
The pulldown menus also support these tasks and more complex tasks.

The following subsections explain how to mark, disable, reenable, and unmark

profile areas by using the mouse or the pulldown menus. The individual com-

mands are summarized irljestrictions of the profiling environment on page
43-3. Restrictions on profiling areas are summarized on pagq3-12.

Marking an area qualifies it for profiling so that the debugger can collect timing
statistics about the area.

Remember, to display C code, use the FILE or FUNC command; to display dis-
assembly, use the DASM command.

Notes:

1) Marking an area in C does not mark the associated code in disassembly.

2) Areas can be nested; for example, you can mark a line within a marked
range. The debugger will report statistics for both the line and the func-
tion.

3) Ranges cannot overlap, and they cannot span function boundaries.

Profiling Code Execution 13-5

Defining Areas for Profiling

.@ Marking a line. These instructions apply to both C and disassembly.

o 4) Point to the line you want to mark.

ID 5) Click the left mouse button.
The beginning of the line will be highlighted with a blinking >>.

1D 6) Click the left mouse button again.
The beginning of the line will be highlighted with Le> (line enabled).

Marking a range. These instructions apply to both C and disassembly.

AN 1) Point to the first line of the range you want to mark.

1D 2) Click the left mouse button.
The beginning of the line will be highlighted with a blinking >>.

o 3) Point to the last line of the range.

IU 4) Click the left mouse button again.
The beginning of the line will be highlighted with Re> (range enabled),
marking the beginning of the range. The last line will be highlighted with
<<, marking the end of the range.

Marking a function. These instructions apply to C only.

= 1) Point to the statement that declares the function you want to mark.

ID 2) Click the left mouse button.
The beginning of the line will be highlighted with Fe> (function enabled).

13-6

Defining Areas for Profiling

key

Table 13-2 lists the menu selections for marking areas. The highlighted areas
show the keys that you can use if you prefer to use the function-key method
of selecting menu choices.

Table 13-2. Menu Selections for Marking Areas

Disabling an area

C only: Disassembly only:
To mark this area Mark—C level Mark—Asm level
Lines —Line areas —Line areas
O By line numberf —Explicitly —Explicitly
1 Alllines in a function —in one Function —in one Function
Ranges —Range areas —Range areas
[By line numbers® —Explicitly —Explicitly
Functions —Function areas
(1 By function name —Explicitly

. . . not applicable
[Allfunctions in a module —in one Module

(1 Allfunctions everywhere —Globally

t C areas are identified by line number; disassembly areas are identified by address.

At times, it is useful to identify areas that you don’t want to impact profile statis-
tics. To do this, you should disable the appropriate area. Disabling effectively
subtracts the timing information of the disabled area from all profile areas that
include or call the disabled area. Areas must be marked before they can be
disabled.

For example, if you have marked a function that calls a standard C function
such as malloc(), you may not want malloc() to affect the statistics for the call-
ing function. You could mark the line that calls malloc(), and then disable the
line. This way, the profile statistics for the function would not include the statis-
tics for mallocy).

Note:

If you disable an area after you've already collected statistics on it, that infor-
mation will be lost.

Profiling Code Execution 13-7

Defining Areas for Profiling

The simplest way to disable an area is to use the mouse, as described below.

-g Disabling a line area:

N 1) Point to the marked line.

0 2) Click the left mouse button once.
The beginning of the line will be highlighted with Ld> (line disabled).

Disabling a range area:

AN 1) Point to the marked line.

i 2) Click the left mouse button once.
The beginning of the line will be highlighted with Rd> (range disabled).

Disabling a function area:

SN 1) Point to the marked statement that declares the function.

0 2) Click the left mouse button once.
The beginning of the line will be highlighted with Fd> (function disabled).

13-8

Defining Areas for Profiling

key

Table 13-3. Menu Selections for Disabling Areas

Table 13-3 lists the menu selections for disabling areas. The highlighted areas
show the keys that you can use if you prefer to use the function-key method
of selecting menu choices.

To disable this area

C only:
Disable—C level

Disassembly only:

Disable—Asm level

C and disassembly:
Disable—Both levels

Lines

O By line numbert

[Alllines in a function
O Alllines in a module

[Alllines everywhere

Ranges

O By line numberst

O Allranges in a function
1 Allranges in a module

1 Allranges everywhere

Functions
1 By function name
d Allfunctions in a module

O All functions everywhere

All areas
d Allareas in a function
[Allareas in a module

1 All areas everywhere

—Line areas
—Explicitly

—in one Function
—in one Module

—Globally

—Range areas
—Explicitly

—in one Function
—in one Module

—Globally

—Function areas
—Explicitly
—in one Module

—Globally

—All areas
—in one Function
—in one Module

—Globally

—Line areas
—Explicitly

—in one Function
—in one Module

—Globally

—Range areas
—Explicitly

—in one Function
—in one Module

—Globally

not applicable

—All areas
—in one Function
—in one Module

—Globally

—Line areas

not applicable
—in one Function
—in one Module

—Globally

—Range areas
not applicable
—in one Function
—in one Module

—Globally

—Function areas
not applicable
—in one Module

—Globally

—All areas
—in one Function
—in one Module

—Globally

T C areas are identified by line number; disassembly areas are identified by address.

Profiling Code Execution 13-9

Defining Areas for Profiling

Reenabling a disabled area

When an area has been disabled and you would like to profile it once again,
you must enable the area. To use the mouse, just point to the line, the function,
or the first line of a range, and click the left mouse button; the range will once
again be highlighted in the same way as a marked area.

Table 13-4. Menu Selections for Enabling Areas

In addition to using the mouse, you can enable an area by using one of the
commands listed in Table 13-4. However, the easiest way to enter these com-
mands is by accessing them from the Enable menu.

To enable this area

C only:
Enable—C level

Disassembly only:

Enable—Asm level

C and disassembly:
Enable—Both levels

Lines

O By line numbert

(1 Alllines in a function
1 Alllines in a module

[Alllines everywhere

Ranges

(O By line numbers®

(1 Allranges in a function
(1 Allranges in a module

O Allranges everywhere

Functions
(1 By function name
[Allfunctions in a module

(1 All functions everywhere

All areas
[Allareas in a function
1 All areas in a module

(1 All areas everywhere

—Line areas
—Explicitly

—in one Function
—in one Module

—Globally

—Range areas
—Explicitly

—in one Function
—in one Module

~Globally

—Function areas
—Explicitly
—in one Module

—Globally

—All areas
—in one Function
—in one Module

—Globally

—Line areas
—Explicitly

—in one Function
—in one Module

—Globally

—Range areas
—Explicitly

—in one Function
—in one Module

~Globally

not applicable

—All areas
—in one Function
—in one Module

—Globally

—Line areas

not applicable
—in one Function
—in one Module

—Globally

—Range areas
not applicable
—in one Function
—in one Module

~Globally

—Function areas
not applicable
—in one Module

—Globally

—All areas
—in one Function
—in one Module

—Globally

t C areas are identified by line number; disassembly areas are identified by address.

13-10

Defining Areas for Profiling

Unmarking an area

If you want to stop collecting information about a specific area, unmark it. You
can use the mouse or key method.

.% Unmarking a line area:

" 1) Point to the marked line.

0 2) Click the right mouse button once.

The line will no longer be highlighted.
Unmarking a range area:
= 1) Point to the marked line.

0 2) Click the right mouse button once.

The line will no longer be highlighted.

Unmarking a function area:

= 1) Point to the marked statement that declares the function.

0 2) Click the right mouse button once.

The line will no longer be highlighted.

Profiling Code Execution 13-11

Defining Areas for Profiling

key

Table 13-5 lists the selections on the Unmark menu.

Table 13-5. Menu Selections for Unmarking Areas

C only: Disassembly only: C and disassembly:
To unmark this area Unmark—C level Unmark—Asm level Unmark—Both levels
Lines —Line areas —Line areas —Line areas
O By line numberf —Explicitly —Explicitly not applicable
[Alllines in a function —in one Function —in one Function —in one Function
O Alllines in a module —in one Module —in one Module —in one Module
O Alllines everywhere —Globally —Gilobally —Globally
Ranges —Range areas —Range areas —Range areas
[By line numbers® —Explicitly —Explicitly not applicable
(O Allranges in a function —in one Function —in one Function —in one Function
(O Allranges in a module —in one Module —in one Module —in one Module
O Allranges everywhere —Gilobally —Globally —Globally
Functions —Function areas —Function areas
(O By function name —Explicitly not applicable

not applicable

(1 Allfunctions in a module —in one Module —in one Module
(O Allfunctions everywhere —Gilobally —Globally
All areas —All areas —All areas —All areas
(O Allareas in a function —in one Function —in one Function —in one Function
(1 All areas in a module —in one Module —in one Module —in one Module
[All areas everywhere —Globally —Globally —Globally

t C areas are identified by line number; disassembly areas are identified by address.

Restrictions on profiling areas
The following restrictions apply to profiling areas:

(O There must be a minimum of three instructions between a delayed branch
and the beginning of an area.

(O An area cannot begin or end on the RPTS instruction or on the instruction
to be repeated.

[An area cannot begin or end on the last instruction of a repeat block.

13-12

Defining a Stopping Point

13.4 Defining a Stopping Point

Before you run a profiling session, you must identify the point where the debug-
ger should stop collecting statistics. By default, C programs contain an exit la-
bel, and this is defined as the default stopping point when you load your pro-
gram. (You can delete exit as a stopping point, if you wish.) If your program
does not contain an exit label, or if you prefer to stop at a different point, you
can define another stopping point. You can set multiple stopping points; the
debugger will stop at the first one it finds.

Each stopping point is highlighted in the FILE or DISASSEMBLY window with
a * character at the beginning of the line. Even though no statistics can be
gathered for areas following a stopping point, the areas will be listed in the
PROFILE window.

You can use the mouse or commands to add or delete a stopping point; you
can also use commands to list or reset all the stopping points.

Note:

You cannot set a stopping point on a statement that has already been defined
as a part of a profile area.

1

To set a stopping point:

1) Point to the statement that you want to add as a stopping point.

2) Click the right mouse button.

To remove a stopping point:

1) Point to the statement marking the stopping point that you want to delete.

2) Click the right mouse button.

Profiling Code Execution 13-13

Defining a Stopping Point

The debugger supports several commands for adding, deleting, resetting, and

listing stopping points (described below); all of these commands can also be
entered from the Stop-points menu.

sa To add a stopping point, use the SA (stop add) command. The syntax for this
command is:

sa address

This adds address as a stopping point. The address parameter can be a label,
a function name, or a memory address.

sd To delete a stopping point, use the SD (stop delete) command. The syntax for
this command is:

sd address

This deletes address as a stopping point. As for SA, the address can be a label,
a function name, or a memory address.

sr To delete all the stopping points at once, use the SR (stop reset) command.
The syntax for this command is:

Ssr

This deletes all stopping points, including the default exit (if it exists).

sl To see a list of all the stopping points that are currently set, use the SL (stop
listy command. The syntax for this command is:

sl

13-14

Running a Profiling Session

13.5 Running a Profiling Session

pq

Once you have defined profile areas and a stopping point, you can run a profil-
ing session. You can run two types of profiling sessions:

1 A full profile collects a full set of statistics for the defined profile areas.

[A quick profile collects a subset of the available statistics (it doesn’t
collect exclusive or exclusive max data, which are described in Section
13.6, Viewing Profile Data). This reduces overhead because the debugger
doesn’t have to track entering/exiting subroutines within an area.

The debugger supports commands for running both types of sessions. In addi-
tion, the debugger supports a command that helps you to resume a profiling
session. All of these commands can also be entered from the Profile menu.

To run a full profiling session, use the PF (profile full) command. The syntax
for this command is:

pf starting point [, update rate]

To run a quick profiling session, use the PQ (profile quick) command. The
syntax for this command is:

pq starting point [, update rate]

The debugger will collect statistics on the defined areas between the starting
point and the stopping point. The starting point parameter can be a label, a
function name, or a memory address. There is no default starting point.

The update rate is an optional parameter that determines how often the statis-
tics listed in the PROFILE window will be updated. The update rate parameter
can have one of these values:

0 An update rate of 0 means that the statistics listed in the PROFILE
window are not updated until the profiling session is halted. A
“spinning wheel” character will be shown at the beginning of the
PROFILE window label line to indicate that a profiling session is in
progress. 0 is the default value.

1 If a number greater than or equal to 1 is supplied, the statistics in the
PROFILE window are updated during the profiling session. If a value
of 1 is supplied, the data will be updated as often as possible. When
larger numbers are supplied, the data is updated less often.

<0 If a negative number is supplied, the statistics listed in the PROFILE
window are not updated until the profiling session is halted. The “spin-
ning wheel” character is not displayed.

Profiling Code Execution 13-15

Running a Profiling Session

13-16

pr

No matter which update rate you choose, you can force the PROFILE window
to be updated during a profiling session by pointing to the window header and
clicking a mouse button.

After you enter a PF or PQ command, your program restarts and runs to the
defined starting point. Profiling begins when the starting point is reached and
continues until a stopping point is reached or until you halt the profiling session
by pressing EsO.

Use the PR command to resume a profiling session that has halted. The syntax
for this command is:

pr [clear data [, update rate]]

The optional clear data parameter tells the debugger whether or not it should
clear out the previously collected data. The clear data parameter can have one
of these values:

0 The profiler will continue to collect data (adding it to the existing
data for the profiled areas) and to use the previous internal profile
stacks. 0 is the default value.

nonzero All previously collected profile data and internal profile stacks are
cleared.

The update rate parameter is the same as for the PF and PQ commands.

Viewing Profile Data

13.6 Viewing Profile Data

The statistics collected during a profiling session are displayed in the
PROFILE window. Figure 13-1 shows an example of this window.

Figure 13-1. An Example of the PROFILE Window

profile data
PROFILE
Area Name Count Inclusive Incl-Max Exclusive Excl-Max A

AR 00£00001-00£00008 1 65 65 19 19
profile< CL <sample>#58 1 50 50 7 7
areas CR <sample>#59-64 1 87 87 44 44

CF call() 24 1623 99 1089 55

AL meminit 1 3 3 3 3 v

AL 00£00059 disabled

The example in Figure 13-1 shows the PROFILE window with some default
conditions:

(1 Column headings show the labels for the default set of profile data,
including Count, Inclusive, Incl-Max, Exclusive, and Excl-Max.

(1 The data is sorted on the address of the first line in each area.
[d All marked areas are listed, including disabled areas.

You can modify the PROFILE window to display selected profile areas or
different data; you can also sort the data differently. The following subsections
explain how to do these things.

Note:

To reset the PROFILE display back to its default characteristics, use
View—Reset.

Viewing different profile data

By default, the PROFILE window shows a set of statistics labeled as Count,
Inclusive, Incl-Max, Exclusive, and Excl-Max. The Address field, which is not
part of the default statistics, can also be displayed. Table 13-6 describes the
statistic that each field represents.

Profiling Code Execution 13-17

Viewing Profile Data

Table 13-6. Types of Data Shown in the PROFILE Window

Label Profile data

Count The number of times a profile area is entered during a session.

Inclusive The total execution time (cycle count) of a profile area, including the execution time
of any subroutines called from within the profile area.

Incl-Max The maximum inclusive time for one iteration of a profile area.

(inclusive maximum)

Exclusive

Excl-Max
(exclusive maximum)

Address

If the profiled code contains no flow control (such as conditional processing), inclu-
sive-maximum will equal the inclusive timing divided by the count.

The total execution time (cycle count) of a profile area, excluding the execution time
of any subroutines called from within the profile area.

In general, the exclusive data provides the best statistics for comparing the execution
time of one profile area to another area.

The maximum exclusive time for one iteration of a profile area.

The memory address of the line. If the area is a function or range, the Address field
shows the memory address of the first line in the area.

13-18

In addition to viewing this data in the default manner, you can view each of
these statistics individually. The benefit of viewing them individually is that in
addition to a cycle count, you are also supplied with a percentage indication
and a histogram.

In order to view the fields individually, you can use the mouse—just point to the
header line in the PROFILE window and click a mouse button. You can also
use the View—Data menu to select the field you'd like to display. When you
use the left mouse button to click on the header, fields are displayed individ-
ually in the order listed below on the left. (Use the right mouse button to go in
the opposite direction.) On the right are the corresponding menu selections.

Colunt — View—Data —Count
IncILIJSive —lnclusive
Incl-lmax —lInclusive Max
Exclusive —Exclusive
Excll-max —Exclusive Max
Address —Address

De1!ault —— —All

One advantage of using the mouse is that you can change the display while
you're profiling.

Data accuracy

Sorting profile data

Viewing Profile Data

During a profiling session, the debugger sets many internal breakpoints and
issues a series of RUNB commands. As a result, the processor is momentarily
halted when entering and exiting profiling areas. This stopping and starting
can affect the cycle count information (due to pipeline flushing and the
mechanics of software breakpoints) so that it varies from session to session.
This method of profiling is referred to as intrusive profiling.

Treat the data as relative, not absolute. The percentages and histograms are
relevant only to the cycle count from the starting point to the stopping
point—not to overall performance. Even though the cycle counts may change
if you profiled the same area twice, the relationship of that area to other profiled
areas should not change.

By default, the data displayed in the PROFILE window is sorted according to
the memory addresses of the displayed areas. The area with the least signifi-
cant address is listed first, followed by the area with the most significant
address, etc. When you view fields individually, the data is automatically sorted
from highest cycle count to lowest (instead of by address).

You can sort the data on any of the data fields by using the View—Sort menu.
For example, to sort all the data on the basis of the values of the Inclusive field,
use View—Sort—lInclusive; the area with the highest Count field will display
first, and the area with the lowest Count field will display last. This applies even
when you are viewing individual fields.

Viewing different profile areas

By default, all marked areas are listed in the PROFILE window. You can modify
the window to display selected areas. To do this, use the selections on the
View—Filter pulldown menu; these selections are summarized in Table 13-7.

Profiling Code Execution 13-19

Viewing Profile Data

Table 13-7. Menu Selections for Displaying Areas in the PROFILE Window

To view these areas

C only:

View—Filter—C level

Disassembly only:
View—Filter—Asm level

C and disassembly:
View—Filter—Both levels

Lines

(1 By line number

(1 Alllines in a function
(Alllines in a module

(1 Alllines everywhere

Ranges

(1 By line numbers

(1 Allranges in a function
(O Allranges in a module

(1 Allranges everywhere

Functions
(1 By function name
O Allfunctions in a module

(1 All functions everywhere

All areas
(1 Allareas in a function
(1 All areas in a module

(1 All areas everywhere

—Line areas
—Explicitly

—in one Function
—in one Module

—Globally

—Range areas
—Explicitly

—in one Function
—in one Module

—Globally

—Function areas
—Explicitly
—in one Module

—Gilobally

—Range areas
—in one Function
—in one Module

—Globally

—Line areas
—Explicitly

—in one Function
—in one Module

—Globally

—Range areas
—Explicitly

—in one Function
—in one Module

—Globally

not applicable

—Range areas
—in one Function
—in one Module

—Globally

—Line areas

not applicable
—in one Function
—in one Module

—Globally

—Range areas
not applicable
—in one Function
—in one Module

—Globally

—Function areas
not applicable
—in one Module

—Globally

—Range areas
—in one Function
—in one Module

—Globally

Interpreting session data

General information about a profiling session is displayed in the COMMAND
window during and after the session. This information identifies the starting
and stopping points. It also lists statistics for three important areas:

(1 Run cycles shows the number of execution cycles consumed by the
program from the starting point to the stopping point.

(O Profile cycles equals the run cycles minus the cycles consumed by
disabled areas.

(1 Hits shows the number of internal breakpoints encountered during the
profiling session.

13-20

Viewing Profile Data

Viewing code associated with a profile area

You can view the code associated with a displayed profile area. The debugger
will update the display so that the associated C or disassembly statements are
shown in the FILE or DISASSEMBLY windows.

Use the mouse to select the profile area in the PROFILE window and display
the associated code:

1) Point to the appropriate area name in the PROFILE window.

2) Click the right mouse button.

The area name and the associated C or disassembly statement will be
highlighted. To view the code associated with another area, point and click
again.

If you are attempting to show disassembly, you may have to make several
attempts because program memory can be accessed only when the target is
not running.

Profiling Code Execution 13-21

Saving Profile Data to a File

13.7 Saving Profile Data to a File

@ vac
XL

13-22

vaa

You may want to run several profiling sessions during a debugging session.
Whenever you start a new profiling session,the results of the previous session
are lost. However, you can save the results of the current profiling session to
a system file. You can use two commands to do this:

To save the contents of the PROFILE window to a system file, use the VAC
(view save current) command. The syntax for this command is:

vac filename

This saves only the current view; if, for example, you are viewing only the
Count field, then only that information will be saved.

To save all data for the currently displayed areas, use the VAA (view save all)
command. The syntax for this command is:

vaa filename

This saves all views of the data—including the individual count, inclusive,
etc.—with the percentage indications and histograms.

Both commands write profile data to filename. The filename can include path
information. There is no default filename. If filename already exists, the
command will overwrite the file with the new data.

Note that if the PROFILE window displays only a subset of the areas that are
marked for profiling, data is saved only for those areas that are displayed. (For
VAC, the currently displayed data will be saved for the displayed areas. For
VAA, all data will be saved for the displayed areas.) If some areas are hidden
and you want to save all the data, be sure to select View—Reset before saving
the data to a file.

The file contents are in ASCII and are formatted in exactly the same manner
as they are displayed (or would be displayed) in the PROFILE window. The
general profiling-session information that is displayed in the COMMAND
window is also written to the file.

Chapter 14

Basic Information
About C Expressions

Many of the debugger commands take C expressions as parameters. This
allows the debugger to have a relatively small, yet powerful, instruction set.
Because C expressions can have side effects—that is, the evaluation of some
types of expressions can affect existing values—you can use the same com-
mand to display or to change a value. This reduces the number of commands
in the command set.

This chapter contains basic information that you’ll need to know in order to use
C expressions as debugger command parameters.

Topic Page

14.1 C Expressions for Assembly Language Programmers 14-2

14.2 Using Expression Analysis in the Debugger 14-4

14-1

C Expressions for Assembly Language Programmers

14.1 C Expressions for Assembly Language Programmers

14-2

It's not necessary for you to be an experienced C programmer in order to use
the debugger. However, in order to use the debugger’s full capabilities, you
should be familiar with the rules governing C expressions. You should obtain
a copy of The C Programming Language (first or second edition) by Brian W.
Kernighan and Dennis M. Ritchie, published by Prentice-Hall, Englewood
Cliffs, New Jersey. This book is referred to in the C community, and in Texas
Instruments documentation, as K&R.

Note:

A single value or symbol is a legal C expression.

K&R contains a complete description of C expressions; to get you started,
here’s a summary of the operators that you can use in expression parameters.

1 Reference operators

-> indirect structure reference . direct structure reference
[array reference * indirection (unary)
& address (unary)

(O Arithmetic operators

+ addition (binary) - subtraction (binary)
multiplication / division
% modulo - negation (unary)

(type) typecast

1 Relational and logical operators

> greater than >= greater than or equal to
< less than <= less than or equal to
== is equal to I= is not equal to

&& logical AND || logical OR

! logical NOT (unary)

C Expressions for Assembly Language Programmers

Increment and decrement operators

++ increment - — decrement

These unary operators can precede or follow a symbol. When the operator
precedes a symbol, the symbol value is incremented/decremented before
it is used in the expression; when the operator follows a symbol, the sym-
bol value is incremented/decremented after it is used in the expression.
Because these operators affect the symbol’s final value, they have side
effects.

Bitwise operators

& bitwise AND | bitwise OR

" bitwise exclusive-OR << left shift

>> right shift ~ 1s complement (unary)

Assignment operators
assignment += assignment with addition
assignment with subtraction /= assignment with division
assignment with modulo &= assignment with bitwise AND
assignment with bitwise XOR |= assignment with bitwise OR
assignment with left shift >>= assignment with right shift

assignment with multiplication

These operators support a shorthand version of the familiar binary expres-
sions; for example, X = X + Y can be written in C as X += Y. Because these
operators affect a symbol’s final value, they have side effects.

Basic Information 14-3

Using Expression Analysis in the Debugger

14.2 Using Expression Analysis in the Debugger

Restrictions

Additional features

14-4

The debugger’s expression analysis is based on C expression analysis. This
includes all mathematical, relational, pointer, and assignment operators.
However, a few limitations, as well as a few additional features, are not
described in K&R C.

The following restrictions apply to the debugger’s expression analysis
features.

a
4

The sizeof operator is not supported.

The comma operator (,) is not supported (commas are used to separate
parameter values for the debugger commands).

Function calls and string constants are currently not supported in expres-
sions.

The debugger supports a limited capability of type casts; the following
forms are allowed:

(basic type)

(basic type *...)

([structure/union/enum] structure/union/enum tag)

([structure/union/enum] structure/union/enum tag * ...)

Note that you can use up to six *s in a cast.

All floating-point operations are performed in double precision using stan-
dard widening. (This is transparent.) Floats are represented in IEEE floa-
ting-point format.

All registers can be referenced by name. The TMS320C2xx’s auxiliary
registers are treated as integers and/or pointers.

Void expressions are legal (treated like integers).

The specification of variables and functions can be qualified with context
information. Local variables (including local statics) can be referenced
with the expression form:

function name.local name

Using Expression Analysis in the Debugger

This expression format is useful for examining the automatic variables of a
function that is not currently being executed. Unless the variable is static,
however, the function must be somewhere in the current call stack. Note
that if you want to see local variables from the currently executing function,
you need not use this form; you can simply specify the variable name (just
as in your C source).

File-scoped variables (such as statics or functions) can be referenced with
the following expression form:

filename.function name
or filename.variable name

This expression format is useful for accessing a file-scoped static variable
(or function) that may share its name with variables in other files.

Note that in this expression, filename does not include the file extension;
the debugger searches the object symbol table for any source filename
that matches the input name, disregarding any extension. Thus, if the vari-
able ABC is in file source.c, you can specify it as source.ABC.

Note that these expression forms can be combined into an expression of
the form:

filename.function name.variable name

Any integral or void expression can be treated as a pointer and used with
the indirection operator (*). Here are several examples of valid use of a
pointer in an expression:

*123

*AR5

*(AR2 + 123)

*(I*J)

By default, the values are treated as integers (that is, these expressions
point to integer values).

Any expression can be typecast to a pointer to a specific type (overriding
the default of pointing to an integer, as described above).

Hint: You can use casting with the WA and DISP commands to display
data in a desired format.

For example, the expression:

*(float *)10

treats 10 as a pointer to a floating-point value at location 10 in memory. In
this case, the debugger fetches the contents of memory location 10 and
treats the contents as a floating-point value. If you use this expression as a
parameter for the DISP command, the debugger displays memory con-
tents as an array of floating-point values within the DISP window, begin-
ning with memory location 10 as array member [0].

Basic Information 14-5

Using Expression Analysis in the Debugger

14-6

Note how the first expression differs from the expression:

(float)*10

In this case, the debugger fetches an integer from address 10 and con-
verts the integer to a floating-point value.

You can also typecast to user-defined types such as structures. For exam-
ple, in the expression:

((struct STR *)10)—>field

the debugger treats memory location 10 as a pointer to a structure of type
STR (assuming that a structure is at address 10) and accesses a field from
that structure.

Appendix O

What the Debugger Does
During Invocation

In some circumstances, you may find it helpful to know the steps that the
debugger goes through during the invocation process. These are the steps,
in order, that the debugger performs. Note that the PDM executes the first step.
(For more information on the environment variables mentioned below, refer to
your installation guide.)

1) Establishes the connection between the processor name that you provide
and the actual processor.

2) Reads options from the command line.

3) Reads any information specified with the D_OPTIONS environment vari-
able.

4) Reads information from the D_DIR and D_SRC environment variables.
5) Looks for the init.clr screen configuration file.

(The debugger searches for the screen configuration file in directories
named with D_DIR.)

6) Initializes the debugger screen and windows but initially displays only the
COMMAND window.

7) Finds the batch file that defines your memory map by searching in directo-
ries named with D_DIR. The debugger expects this file to set up the
memory map and follows these steps to look for the batch file:

[When you invoke the debugger, it checks to see if you've used the -t
debugger option. If it finds the -t option, the debugger reads and
executes the specified file.

[[If you have not used the -t option, the debugger looks for the default
initialization batch file. The batch file name differs for each version of
the debugger:

[For the emulator, this file is named emuinit.cmd.
[For the simulator, this file is named siminit.cmd.

If the debugger finds the file corresponding to your tool, it reads and
executes the file.

14-1

What the Debugger Does During Invocation

If the debugger does not find the -t option or the initialization batch file, it
looks for a file called init.cmd. This allows you to have one initialization
batch file for more than one debugger tool. To set up this file, you can use
the IF/ELSE/ENDIF commands (see Controlling command execution in a
batch file on page 5-18 for more information) to indicate which memory
map applies to each tool.

8) Loads any object filenames specified with D_OPTIONS or specified on the
command line during invocation.

9) Determines the initial mode (auto, assembly, mixed, or minimal) and dis-
plays the appropriate windows on the screen.

At this point, the debugger is ready to process any commands that you enter.

14-2

Appendix A

Customizing the Analysis Interface

The interface to the 'C2xx analysis module is register-based. In most cases,
the Analysis Break Events dialog box provides a sufficient means of setting
hardware breakpoints. In some cases, however, you may want to define more
complex conditions for the processor to detect. Or, you may want to write a
batch file that defines breakpoint conditions. In either case, you can accom-
plish these tasks by accessing the analysis registers through the debugger.
This appendix explains how to access these registers.

Topic Page

A.1 Summary of Aliased Commandsccciviivrnnnnnnns 14-2

A.2 Using the Analysis Registerscciiiiiiiinnnnnnnnn 14-7

14-1

Summary of Aliased Commands

A.1 Summary of Aliased Commands

A basic set of analysis commands is defined in the analysis.cmd file supplied
in your 'C2xx debugger package. These commands, like the analysis dialog
boxes, load the analysis registers with your specified values. You must TAKE
the analysis.cmd file before you can use any of these commands. To do this,
enter:

take analysis.cmd

By default, the debugger echoes the file to the display area of the COMMAND
window. However, you can view the entire file by using the FILE command to
display its contents in the FILE window. Table A-1 shows the predefined com-
mands along with their menu equivalents.

The aliased commands, created in the analysis.cmd file, are provided to help
you familiarize yourself with the analysis registers and how they work. The
aliases are simply a starting point for you to build upon to create your own com-
mands.

Table A-1. The Analysis Commands Found in the analysis.cmd File

14-2

Menu -

Command Dialog Box Description Page

asys_emuOout Emulator pins — Set EMUO pin to output |:1|4-3
EMUO trigger out

asys_emuiout Emulator pins — Set EMU1 pin to output |:t|4-3
EMUO trigger out

asys_off Analysis — Turn off the analysis interface |-_1|4-3
Enable/Disable

asys_on Analysis — Turn on the analysis interface |:1|4-3
Disable/Enable

asys_reset none Reset the analysis interface |:t|4-6

prog_brk_add ad- Break — Set a breakpoint on a program |:1|4-4

dress or function ~ Program bus: address

name Address field

prog_qual_iaq Break — Program instruction acquisition |:1|4-5
Program bus:
Fetch

prog_qual_r Count/Break — Program read qualifier |:1|4-5
Program bus:
Read

Summary of Aliased Commands

Table A-1. The Analysis Commands Found in the analysis.cmd File (Continueq)

Menu -

Command Dialog Box Description Page

prog_qual_rw Count/Break — Program read/write qualifier [14-5
Program bus: Ac-
cess

prog_qual_w Count/Break — Program write qualifier |-_1|4-5
Program bus:
Write

stop_emu0 Break — Halt the processor when the |:||4-5
EMUO driven low ~ EMUO pin is low

stop_emut Break — Halt the processor when the |:||4-5
EMU1 driven low EMU1 pin is low

stop_off none Disable break events 45

stop_prog Break — Halt the processor on a program |:1|4-4
Program bus bus access

In addition to these predefined commands, you can create your own by using
the ALIAS and EVAL commands. Refer to Section 5.5, Defining Your Own
Command Strings, on page 5-21 and Section 9.2, Basic Commands for Man-
aging Data, on page 9-2 for more information on ALIAS and EVAL. The follow-
ing subsections briefly describe the use of the analysis commands.

Enabling the analysis interface

Enabling the analysis interface is simply a matter of typing in a command. The
basic syntax for this command is:

asys_on
To disable the analysis interface, enter:

asys_off

Enabling the EMUO/1 pins

To set the EMUOQ/1 pins to output or to use the external counter, enter the
appropriate command:

To do this... Enter this...
Set the EMUO pin to output asys_emulout
Set the EMU1 pin to output asys_emulout

Customizing the Analysis Interface 14-3

Summary of Aliased Commands

Setting breakpoints on a single program address

The simplest events to detect are those that identify a single address. To define
this type of event, follow the command with a C expression. For example, to
set a program address breakpoint, enter:

asys_on Turn the analysis interface on
prog_qual_iaq Qualify on a program instruction
acquisition

prog_brk_add main Set a program address breakpoint on
function_name

stop_prog Enable the processor to stop on the
breakpoint condition

run Run the program
prog_brk_add My Function Set a new program address

breakpoint on function_name2
run Run to the new breakpoint

The commands shown in bold represent the actual breakpoint commands
used. Main and My _Function represent the addresses on which the processor
will break. These function names can be replaced by specific address loca-
tions. Table A-2 shows the breakpoint commands for setting single address
breakpoints; their respective menu selections can be found in the Analysis
Break Events dialog box. You can set breakpoints on any combination of these
events.

Table A-2. Breakpoint Commands for Program Addresses

14-4

Dialog Box

Command Selection Description

prog_brk_add address Program Set a program breakpoint address
bus: Addr

prog_qual_iaq Program Program instruction acquisition
bus: Fetch

stop_off none Disable break events

stop_prog Program Stop the processor when the program
bus breakpoint condition executes

Summary of Aliased Commands

Breaking on event occurrences

You can set conditions on various types of processor operations. To define
these conditions or events, simply enter the command. For example, to stop
the processor when it detects either EMU pin reaching a logic low, enter:

asys_on Turn the analysis interface on

stop_emu0 Enable the processor to stop when it
detects an interrupt

stop_emul Enable the processor to stop when it
detects a call taken

Table A-3 shows the commands for stopping the processor when an event
occurs. You can set breakpoints on any combination of these events.

Table A-3. Breakpoint Commands for Event Occurrences

Command Menu Selection Description

stop_emu0 EMUO driven low Stop the processor when the EMUO pin
reaches a logic low of zero

stop_emut EMU1 driven low Stop the processor when the EMU1 pin
reaches a logic low of zero

stop_off none Disable break events

Qualifying on a read or a write
Program accesses can be qualified, depending on whether the memory cycle
is a read or write. Table A-4 shows the qualifier commands for data and pro-

gram break events. You can use only one of these commands at a time.

Table A-4. Read and Write Qualifying Commands for Data and Program Accesses

Command Menu Selection Description

prog_qual_iaq Program bus: Fetch Program instruction acquisition
prog_qual_r Program bus: Read Look only at data reads
prog_qual_rw Program bus: Access Look at both data reads and writes
prog_qual_w Program bus: Write Look only at data writes

Customizing the Analysis Interface 14-5

Summary of Aliased Commands

Resetting the analysis interface

14-6

Whenever you begin a new analysis session, you may want to define new
parameters or qualifier expressions. You can do this without manually dese-
lecting each defined condition. Just enter the ASYS_RESET command. To
reset the analysis interface, type:

asys_reset

Note:

To clear conditions or qualifier expressions previously defined via the Analy-
sis menu, you must open the Analysis Count Events and Analysis Break
Events dialog boxes and deselect each defined condition.

Using the Analysis Registers

A.2 Using the Analysis Registers

By manipulating the analysis registers, you can customize commands for
more complex instructions that do not exist on the Break or Count dialog
boxes. Use the alias and evaluate commands to create your own commands.
The basic syntax for creating customized analysis commands is:

alias command_name, "eval register name = code”

For example, to create a new command for turning on the analysis interface,
enter:

alias analysis on, "eval anaenbl = 1"

To create your own analysis commands, you must familiarize yourself with the
analysis registers and how they work. The following subsections discuss the
analysis registers briefly. (The registers are in alphabetical order.)

anaenbl (Enable Analysis)

You can enable and disable the analysis module by using the anaenbl register.
Set the bit to 1 to enable or to 0 to disable.

Bit Number Description

0 enable analysis module
1 reserved (set to 0)

2 reserved (set to 0)

4 enable EMUO output

5 enable EMU1 output

When you disable analysis, all registers except anaenbl retain their previous
state.
anastat (Analysis Status)

The anastat register records the occurrence of enabled events. The status bits
are defined below:

Bit Number Definition

5 program address

9 EMUO detected low
10 EMU1 detected low

Run commands will not interfere with the status bits, because they are cleared
before command execution.

Customizing the Analysis Interface 14-7

Using the Analysis Registers

hbpenbl (Select Hardware Breakpoints)

By setting the appropriate enable bit to 1 in the hbpenbl register, the 'C2xx can
break on multiple events. Setting the bit to 0 disables the breakpoint and clears
the register. The breakpoint enable bits are defined below.

Bit Number Definition

5 program address

9 EMUOQ detected low
10 EMU1 detected low

pgabrkp (Program Address Breakpoint)

You can specify a breakpoint address for the program bus in the ’C2xx path.
When a valid bus cycle occurs and the bus value matches the breakpoint
address, then a breakpoint condition can occur.

pgaqual (Program Breakpoint Qualifier)

The program address breakpoint register has four qualifier bits. The qualifier
definitions are shown below.

Qualifier Code Definition

0 read

1 write

2 program instruction acquisition
3 read/write

14-8

Appendix B

Describing Your Target System
to the Debugger

In order for the debugger to understand how you have configured your target
system, you must supply a file for the debugger to read.

[J [If you're using an emulation scan path that contains only one 'C2xx and
no other devices, you can use the board.dat file that comes with the *C2xx
emulator kit. This file describes to the debugger the single 'C2xx in the
scan path and gives the 'C2xx the name CPU_A. Since the debugger
automatically looks for a file called board.dat in the current directory and
in the directories specified with the D_DIR environment variable, you can
skip this appendix.

[[If you plan to use a different target system, you must follow these steps:
Step 1: Create the board configuration text file.

Step 2: Translate the board configuration text file to a binary, structured
format so that the debugger can read it.

Step 3: Specify the formatted configuration file when invoking the
debugger.

These steps are described in this appendix.

Topic Page

B.1 Step 1: Create the Board Configuration TextFile................ 14-2

B.2 Step 2: Translate the Configuration File to a
Debugger-Readable Formatccciiiiiiiiiians 14-5

B.3 Step 3: Specify the Configuration File When Invoking
U PET T canoooaoonncoaoo00000000000000000000000000000000 14-5

14-1

Step 1: Create the Board Configuration Text File

B.1 Step 1: Create the Board Configuration Text File

To describe the emulation scan path of your target system to the debugger, you
must create a board configuration file. The file consists of a series of entries,
each describing one device on your scan path. You must list, in order, the indi-
vidual devices on your system in the board configuration file for the debugger
to work. The text version of the configuration file will be referred to as board.cfg

in this book.

Example B-1 shows a board.cfg file that describes a possible 'C2xx device
chain. It lists six octals named A1-AB6, followed by five ’'C2xx devices named
CPU_A, CPU_B, CPU_C, CPU_D, and CPU_E.

Example B-1. A Sample 'C2xx Device Chain

14-2

(a) A sample board.cfg file

Device Name Device Type = Comments

"Al" BYPASSO08 ;the first device nearest TDO
; (test data out)

"A2" BYPASSO08 ;the next device nearest TDO

"A3" BYPASS08

"A4" BYPASSO08

"A5" BYPASSO08

"A6" BYPASS08

"CPU_A" TI320C2xx sthe first ’'C2xx

"CPU_B" TI320C2xx

"CPU_C” TI320C2xx

"CPU_D" TI320C2xx

"CPU_E” TI320C2xx ;the last ’'C2xx nearest TDI

; (test data in)

(b) A sample ‘C2xx device chain

TDI| CPU_E| CPU_D| CPU_C| CPU_B| CPU_A| A6 | | A2 | A1 |TDO

Step 1: Create the Board Configuration Text File

The order in which you list each device is important. The emulator scans the
devices, assuming that the data from one device is followed by the data of the
next device on the chain. Data from the device that is closest to the emulation
header’s TDO reaches the emulator first. Moreover, in the board.cfg file, the
devices should be listed in the order in which their data reaches the emulator.
For example, the device whose data reaches the emulator first is listed first in
the board.cfg file; the device whose data reaches the emulator last is listed last
in the board.cfg file.

The board.cfg file can have any number of each of the three types of entries:

[0 Debugger devices such as the 'C2xx. These are the only devices that the
debugger can recognize.

[The TI ACT8997 scan path linker, or SPL. The SPL allows you to have
up to four secondary scan paths that can each contain debugger devices
('C2xxs) and other devices.

[Other devices. These are any other devices in the scan path. For exam-
ple, you can have devices such as the TI BCT 8244 octals that are used
on the 'C4x PPDS board. These devices cannot be debugged and must
be worked around or “bypassed” when trying to access the 'C2xxs.

Each entry in the board.cfg file consists of at least two pieces of data:

[J The name of the device. The device name always appears first and is
enclosed in double quotes:

“device name”

This is the same name that you use with the —n debugger option, which
tells the debugger the name of the 'C2xx. The device name can consist of
up to eight alphanumeric characters or underscore characters and must
begin with an alphabetic character.

[d The type of the device. The debugger supports the following device
types:

B TI320C2xx is an example of a debugger-device type.

TI320C2xx describes the 'C2xx.
TI320C4x describes the 'C4x.
TI320C5x describes the 'C5x.
TI320C5xx describes the 'C54x.
TI320C8x describes the 'C8x.

Describing Your Target System to the Debugger 14-3

Step 1: Create the Board Configuration Text File

W SPL specifies the scan path linker and must be followed by four sub-
paths, as in this syntax:

"device name” SPL {subpath0} {subpath1} {subpath2} {subpath3}

Each subpath can contain any number of devices. However, an SPL
subpath cannot contain another SPL.

B BYPASS## describes devices other than the debugger devices or
SPL. The ## is the hexadecimal number that describes the number of
bits in the device’s JTAG instruction register. For example, TI BCT
8244 octals have a device type of BYPASSO08.

Example B-2 shows a file that contains an SPL.

Example B-2. A board.cfg File Containing an SPL

Device Name

Device Type = Comments

WAL"
WA w
"CPU_A"
"HUB"
{
npn
npn
"CPU_B"
}

{
el N

"c2 ”
"CPU_C"

P N e T o

wp1w
wpo
”CPU_D"
}

"CPU_E"

BYPASS08 ;the first device nearest TDO
BYPASSO08
TI320C2xx ;the first ’'C2xx
SPL ;the scan path linker
;first subpath
BYPASSO08
BYPASS08
TI320C2xx ;the second 'C2xx
;second subpath
BYPASSO08
BYPASSO08
TI320C2xx ;the third 'C2xx
;third subpath (contains nothing)
; fourth subpath
BYPASSO08
BYPASS08
TI320C2xx ;the fourth 'C2xx
TI320C2xx ;the last ’'C2xx nearest TDI

Note: The indentation in the file is for readability only.

14-4

Step 2: Translate the Configuration File / Step 3: Specify the Configuration File

B.2 Step 2: Translate the Configuration File to a Debugger-Readable Format

After you have created the board.cfg file, you must translate it from text to a
binary, conditioned format so that the debugger can understand it. To translate
the file, use the composer utility that is included with the emulator kit. At the
system prompt, enter the following command:

composer [input file [output file]]

(1 The input file is the name of the board.cfg file that you created in step 1;
if the file isn’t in the current directory, you must supply the entire pathname.
If you omit the input filename, the composer utility looks for a file called
board.cfg in your current directory.

1 Theoutput file is the name that you can specify for the resulting binary file;
ideally, use the name board.dat. If you want the output file to reside in a
directory other than the current directory, you must supply the entire path-
name. If you omit an output filename, the composer utility creates a file
called board.dat and places it in the current directory.

To avoid confusion, use a .cfg extension for your text filenames and a .dat
extension for your binary filenames. If you enter only one filename on the com-
mand line, the composer utility assumes that it is an input filename.

B.3 Step 3: Specify the Configuration File When Invoking the Debugger

When you invoke a debugger (either from the PDM or at the system prompt),
the debugger must be able to find the board.dat file so that it knows how you
have set up your scan path. The debugger looks for the board.dat file in the
current directory and in the directories named with the D_DIR environment
variable.

If you used a name other than board.dat or if the board.dat file is not in the cur-
rent directory nor in a directory named with D_DIR, you must use the —f option
when you invoke the debugger. The —f option allows you to specify a board
configuration file (and pathname) that will be used instead of board.dat. The
format for this option is:

-t filename

Describing Your Target System to the Debugger 14-5

14-6

Appendix C

Debugger and PDM Messages

This appendix contains an alphabetical listing of the progress and error mes-
sages that the debugger or PDM might display in the display area of the COM-
MAND window or in the PDM display area. Each message contains both a
description of the situation that causes the message and an action to take if
the message indicates a problem or error.

Topic Page
C.1 Associating Sound With Error Messages 14-2
C.2 Alphabetical Summary of Debugger Messages 14-2
C.3 Alphabetical Summary of PDM Messagescceuuuns 14-22
C.4 Additional Instructions for Expression Errors 14-27
C.5 Additional Instructions for Hardware Errors 14-27

14-1

Associating Sound With Error Messages / Alphabetical Summary of Debugger Messages

C.1 Associating Sound With Error Messages

You can associate a beeping sound with the display of error messages. To do
this, use the SOUND command. The format for this command is:

sound {on | off}

By default, no beep is associated with error messages (SOUND OFF). The
beep is helpful if the COMMAND window is hidden behind other windows.

C.2 Alphabetical Summary of Debugger Messages

14-2

‘7’ expected

Description This is an expression error—it means that the parameter
contained an opening bracket symbol “[” but didn’t contain a
closing bracket symbol “".

Action See Section C.4, Additional Instructions for Expression Errors,
page 14-27.

‘)’ expected

Description This is an expression error—it means that the parameter
contained an opening parenthesis symbol “(” but didn’t con-
tain a closing parenthesis symbol “)”.

Action See Section C.4, Additional Instructions for Expression Errors,
page 14-27.

Aborted by user

Description The debugger halted a long COMMAND display listing (from
WHATIS, DIR, ML, or BL) because you pressed the key.

Action None required; this is normal debugger behavior.

Alphabetical Summary of Debugger Messages

Breakpoint already exists at address

Description

Action

During single-step execution, the debugger attempted to set
a breakpoint where one already existed. (This isn’t neces-
sarily a breakpoint that you set—it may have been an internal
breakpoint that was used for single-stepping).

None should be required; you may want to reset the program
entry point (RESTART) and reenter the single-step com-
mand.

Breakpoint table full

Description

Action

200 breakpoints are already set, and there was an attempt to
set another. The maximum limit of 200 breakpoints includes
internal breakpoints that the debugger may set for
single-stepping. Under normal conditions, this should not be
a problem; it is rarely necessary to set this many breakpoints.

Enter a BL command to see where breakpoints are set in your
program. Use the BR command to delete all software break-
points, or use the BD command to delete individual software
breakpoints.

Cannot allocate host memory

Description

Action

This is a fatal error—it means that the debugger is running out
of memory.

You might try invoking the debugger with the —v option so that
fewer symbols may be loaded. Or you might want to relink
your program and link in fewer modules at a time.

Cannot allocate system memory

Description

Action

This is a fatal error—it means that the debugger is running out
of memory.

You might try invoking the debugger with the —v option so that
fewer symbols may be loaded. Or you might want to relink
your program and link in fewer modules at a time.

Debugger and PDM Messages 14-3

Alphabetical Summary of Debugger Messages

14-4

Cannot detect target power

Description

Action

This hardware error occurs after the emurst command is re-
set. Follow the steps described below and then restart your
emulator.

Check the emulator board to be sure it is installed snugly.

[Check the cable connecting your emulator and target
system to be sure it is not loose.

Check your target board to be sure it is getting the correct
voltage.

EI
[Check your emulator scan path to be sure it is uninter-
rupted.

EI

Ensure that your port address is set correctly:

B Check to be sure the —p option used with the
D_OPTIONS environment variable matches the I/O
address defined by your switch settings. (Refer to the
TMS320C2xx PC Emulator Installation Guide for
more information.)

B Check to see if you have a conflict in address space
with another bus setting. If you have a conflict,
change the switches on your board to one of the alter-
nate settings listed in the installation guide. Modify
the —-p option of the D_OPTIONS environment vari-
able to reflect the change in your switch settings.

Cannot edit field

Description

Action

Expressions that are displayed in the WATCH window cannot
be edited.

If you attempted to edit an expression in the WATCH window,
you may have actually wanted to change the value of a sym-
bol or register used in the expression. Use the ? or EVAL
command to edit the actual symbol or register. The expres-
sion value will automatically be updated.

Cannot find/open initialization file

Description
Action

The debugger can’t find the init.cmd file.

Be sure that init.cmd is in the appropriate directory. If it isn’t,
copy it from the debugger product diskette. If the file is already
in the correct directory, verify that the D_DIR environment
variable is set up to identify the directory. See Setting Up the
Debugger Environment in the appropriate installation guide.

Alphabetical Summary of Debugger Messages

Cannot halt the processor

Description

Action

This is a fatal erro—for some reason, pressing didn’t
halt program execution.

Exit the debugger. Invoke the autoexec or initdb.bat file; then
invoke the debugger again.

Cannot initialize target system

Description

Action

This error occurs while you are invoking the debugger with the
emulator. Any combination of events may cause this error to
occur.

Check the cable connecting the emulator to the target system
to be sure it is not loose.

[Ensure that your port address is set correctly:

B Check to be sure the -p option used with the
D_OPTIONS environment variable matches the 1/O
address defined by your switch settings.

B Check to see if you have a conflict in address space
with another bus setting. If you have a conflict,
change the switches on your board to one of the alter-
nate settings listed in the installation guide. Modify
the —p option of the D_OPTIONS environment vari-
able to reflect the change in your switch settings.

[Check the end of your autoexec.bat or initdb.bat file for
the emurst.exe command. Execute this command after
powering up the target board.

For more details, refer to the TMS320C2xx PC Emulator
Installation Guide.

Cannot map into reserved memory: ?

Description

Action

The debugger tried to access unconfigured/reserved/nonex-
istent memory.

Remap the reserved memory accesses.

Cannot map port address

Description

Action

You attempted to do a connect/disconnect on an illegal port
address.

Be sure that you are connecting to or disconnecting from an
address that is mapped in as an input, output, or 1/O port.

Debugger and PDM Messages 14-5

Alphabetical Summary of Debugger Messages

14-6

Cannot open config file

Description

Action

The SCONFIG command can’t find the screen-customization
file that you specified.

Be sure that the filename was typed correctly. If it wasn't,
reenter the command with the correct name. If it was, reenter
the command and specify full path information with the
filename.

Cannot open “filename”

Description

Action

The debugger attempted to show filename in the FILE win-
dow but could not find the file.

Be sure that the file exists as named. If it does, enter the USE
command to identify the file’s directory.

Cannot open object file: “filename”

Description

Action

The file specified with the LOAD, SLOAD, or RELOAD
command is not an object file that the debugger can load.

Be sure that you're loading an actual object file. Be sure that
the file was linked (you may want to run dspcl again to create
an executable object file).

Cannot open new window

Description

Action

A maximum of 127 windows can be open at once. The last
request to open a window would have made 128, which isn’t
possible.

Close any unnecessary windows. Windows that can be
closed include WATCH, CALLS, DISP, and additional
MEMORY windows. To close the WATCH window, enter WD.
To close the CALLS, DISP, or a MEMORY window, make the
desired window active and press .

Cannot read processor status

Description

Action

This is a fatal error—for some reason, pressing didn’t
halt program execution.

Exit the debugger. Invoke the autoexec or initdb.bat file, then
invoke the debugger again. If you are using the emulator,
check the cable connections, also.

Alphabetical Summary of Debugger Messages

Cannot reset the processor

Description This is a fatal erro—for some reason, pressing didn’t
halt program execution.

Action Exit the debugger. Invoke the autoexec or initdb.bat file, then
invoke the debugger again. If you are using the emulator,
there may be a problem with the target system; check the
cable connections.

Cannot restart processor

Description If a program doesn’t have an entry point, then RESTART
won'’t reset the PC to the program entry point.

Action Don’t use RESTART if your program doesn’t have an explicit
entry point.

Cannot set/verify breakpoint at address

Description Either you attempted to set a breakpoint in read-only or
protected memory, or there are hardware problems with the
target system. This may also happen when you enable or dis-
able on-chip memory while using breakpoints.

Action Check your memory map. If the address that you wanted to
breakpoint wasn’t in ROM, see Section C.5, Additional
Instructions for Hardware Errors, page 14-27.

Cannot step
Description There is a problem with the target system.

Action See Section C.5, Additional Instructions for Hardware Errors,
page 14-27.

Cannot take address of register

Description This is an expression error. C does not allow you to take the
address of a register.

Action See Section C.4, Additional Instructions for Expression Errors,
page 14-27.

Command “cmd” not found
Description The debugger didn’t recognize the command that you typed.

Action Reenter the correct command. Refer to Chapter 5, Sum-
mary of Commands and Special Keys, or the Quick Refer-
ence Card for a list of valid debugger commands.

Debugger and PDM Messages 14-7

Alphabetical Summary of Debugger Messages

14-8

Command timed out, emulator busy

Description

Action

There is a problem with the target system.

See Section C.5, Additional Instructions for Hardware Errors,
page 14-27.

Conflicting map range

Description

Action

A block of memory specified with the MA command overlaps
an existing memory map entry. Blocks cannot overlap.

Use the ML command to list the existing memory map; this will
help you find that existing block that the new block would
overlap. If the existing block is not necessary, delete it with the
MD command and reenter the MA command. If the existing
block is necessary, reenter the MA command with parame-
ters that will not overlap the existing block.

Corrupt call stack

Description

Action

The debugger tried to update the CALLS window and
couldn’t. This may be because a function was called that
didn’t return. Or it could be that the program stack was over-
written in target memory. Another reason you may have this
message is that you are debugging code that has optimiza-
tion enabled (for example, you did not use the —g compile
switch); if this is the case, ignore this message—code execu-
tion is not affected.

If your program called a function that didn’t return, then this is
normal behavior (as long as you intended for the function not
to return). Otherwise, you may be overwriting program
memory.

Disabling window updating

Description

Action

You entered the UPDATE OFF command to tell the debugger
to not update any windows during realtime emulation.

None required.

Alphabetical Summary of Debugger Messages

Emulator 1/0 address is invalid

Description The debugger was invoked with the —p option, and an invalid
port address was used.

Action For valid port address values, refer to the TMS320C2xx PC
Emulator Installation Guide.

Enabling WATCH window updating

Description You entered the UPDATE WA command to tell the debugger
to update only the WATCH window during realtime emulation.

Action None required.

Enabling WATCH/MEMORY/CPU window updating

Description You entered the UPDATE ALL command to tell the debugger
to update the WATCH, MEMORY, and CPU windows during
realtime emulation.

Action None required.

Error in expression
Description This is an expression error.

Action See Section C.4, Additional Instructions for Expression Errors,
page 14-27.

Execution error
Description There is a problem with the target system.

Action See Section C.5, Additional Instructions for Hardware Errors,
page 14-27.

File already tied to port

Description You attempted to connect to an address that already has a file
connected to it.

Action Connect the file to a mapped port that is not connected to a
file.

Debugger and PDM Messages 14-9

Alphabetical Summary of Debugger Messages

14-10

File already tied to this pin

Description You attempted to connect an input file to an interrupt pin that
already has a file connected to it.

Action Use the PINC command to connect the file to another inter-
rupt pin that is not connected to a file.

File does not exist
Description The port file could not be opened for reading.

Action Be sure that the file exists as named. If it does, enter the USE
command to identify the file’s directory.

Files must be disconnected from ports

Description You attempted to delete a memory map that has files con-
nected to it.

Action You must disconnect a port with the Ml command before you
can delete it from the memory map.

File not found
Description The filename specified for the FILE command was not found

in the current directory or any of the directories identified with
D _SRC.

Action Be sure that the filename was typed correctly. If it was, reenter
the FILE command and specify full path information with the
filename.

File not found : “filename”

Description The filename specified for the LOAD, RELOAD, SLOAD, or
TAKE command was not found in the current directory or any
of the directories identified with D_SRC.

Action Be sure that the filename was typed correctly. If it was, reenter
the command and specify full path information with the
filename.

File too large (filename)
Description You attempted to load a file that was more than 65 518 bytes
long.

Action Try loading the file without the symbol table (SLOAD), or use
dsplnk to relink the program with fewer modules.

Alphabetical Summary of Debugger Messages

Float not allowed

Description This is an expression error—a floating-point value was used
incorrectly.

Action See Section C.4, Additional Instructions for Expression Errors,
page 14-27.

Function required

Description The parameter for the FUNC command must be the name of a
function in the program that is loaded.

Action Reenter the FUNC command with a valid function name.

lllegal addressing mode
Description An illegal ’'C2xx addressing mode was encountered.

Action Refer to the TMS320C2xx User’s Guide for valid addressing
modes.

lllegal cast

Description This is an expression error—the expression parameter uses
a cast that doesn’t meet the C language rules for casts.

Action See Section C.4, Additional Instructions for Expression Errors,
page 14-27.

lllegal control transfer instruction

Description The instruction following a delayed branch/call instruction
was modifying the program counter.

Action Modify your source code.

lllegal left hand side of assignment

Description This is an expression error—the lefthand side of an assign-
ment expression doesn’t meet C language assignment rules.

Action See Section C.4, Additional Instructions for Expression Errors,
page 14-27.

Debugger and PDM Messages 14-11

Alphabetical Summary of Debugger Messages

14-12

lllegal memory access
Description Your program tried to access unmapped memory.
Action Modify your source code.

lllegal opcode
Description An invalid ’C2xx instruction was encountered.
Action Modify your source code.

lllegal operand of &

Description This is an expression error—the expression attempts to take
the address of an item that doesn’t have an address.

Action See Section C.4, Additional Instructions for Expression Errors,
page 14-27.

lllegal pointer math

Description This is an expression error—some types of pointer math are
not valid in C expressions.

Action See Section C.4, Additional Instructions for Expression Errors,
page 14-27.

lllegal pointer subtraction

Description This is an expression error—the expression attempts to use
pointers in a way that is not valid.

Action See Section C.4, Additional Instructions for Expression Errors,
page 14-27.

lllegal structure reference

Description This is an expression error—either the item being referenced
as a structure is not a structure, or you are attempting to refer-
ence a nonexistent portion of a structure.

Action See Section C.4, Additional Instructions for Expression Errors,
page 14-27.

lllegal use of structures

Description This is an expression error—the expression parameter is not
using structures according to the C language rules.

Action See Section C.4, Additional Instructions for Expression Errors,
page 14-27.

Alphabetical Summary of Debugger Messages

lllegal use of void expression

Description

Action

This is an expression error—the expression parameter does
not meet the C language rules.

See Section C.4, Additional Instructions for Expression Errors,
page 14-27.

Integer not allowed

Description

Action

This is an expression error—the command did not accept an
integer as a parameter.

See Section C.4, Additional Instructions for Expression Errors,
page 14-27.

Invalid address
--- Memory access outside valid range: address

Description

Action

The debugger attempted to access memory at address,
which is outside the memory map.

Check your memory map to be sure that you access valid
memory.

Invalid argument

Description

Action

One of the command parameters does not meet the require-
ments for the command.

Reenter the command with valid parameters. Refer to the
appropriate command description in Chapter 5, Sum-
mary of Commands and Special Keys.

Invalid attribute name

Description

Action

The COLOR and SCOLOR commands accept a specific set
of area names for their first parameter. The parameter
entered did not match one of the valid attributes.

Reenter the COLOR or SCOLOR command with a valid area
name parameter. Valid area names are listed in Table 11-2
(page 11-3).

Debugger and PDM Messages 14-13

Alphabetical Summary of Debugger Messages

Invalid color name

Description

Action

The COLOR and SCOLOR commands accept a specific set
of color attributes as parameters. The parameter entered did
not match one of the valid attributes.

Reenter the COLOR or SCOLOR command with a valid color
parameter. Valid color attributes are listed in Table 11-1
(page 11-2).

Invalid memory attribute

Description

Action

The third parameter of the MA command specifies the type, or
attribute, of the block of memory that MA adds to the memory
map. The parameter entered did not match one of the valid
attributes.

Reenter the MA command. Use one of the following valid
parameters to identify the memory type:

R, ROM (read-only memory)
W, WOM (write-only memory)
R|W, RAM (read/write memory)
PROTECT (no-access memory)
OUTPORT, P|W (output port)
INPORT, P|R (input port)

IOPORT, P|R|W (input/output port)

Invalid object file

Description

Action

14-14

Either the file specified with the LOAD, SLOAD, or RELOAD
command is not an object file that the debugger can load, or it
has been corrupted.

Be sure that you're loading an actual object file. Be sure that
the file was linked (you may want to run dspcl again to create
an executable object file). If the file you attempted to load was
a valid executable object file, then it was probably corrupted;
recompile, assemble, and link with dspcl.

Alphabetical Summary of Debugger Messages

Invalid watch delete

Description

Action

The debugger can’t delete the parameter supplied with the
WD command. Usually, this is because the watch index
doesn’t exist or because a symbol name was typed instead of
a watch index.

Reenter the WD command. Be sure to specify the watch
index that matches the item you’d like to delete (this is the
number in the left column of the WATCH window). Remem-
ber, you can’t delete items symbolically—you must delete
them by number.

Invalid window position

Description

Action

The debugger can’t move the active window to the XY posi-
tion specified with the MOVE command. Either the XY param-
eters are not within the screen limits, or the active window
may be too large to move to the desired position.

You can use the mouse to move the window.

[[If you don’t have a mouse, enter the MOVE command
without parameters; then use the arrow keys to move the
window. When you're finished, you must press or@.

[If you prefer to use the MOVE command with parameters,
the minimum XY position is 0,1; the maximum position
depends on which screen size you’re using.

Invalid window size

Description

Action

The width and length specified with the SIZE or MOVE com-
mand may be too large or too small. If valid width and length
were specified, then the active window is already at the far
right or bottom of the screen and so cannot be made larger.

You can use the mouse to size the window.

[[f you don’t have a mouse, enter the SIZE command with-
out parameters; then use the arrow keys to move the win-
dow. When you’re finished, you must press or @.

[If you prefer to use the SIZE command with parameters,
the minimum size is 4 by 3; the maximum size depends
on which screen size you’re using.

Debugger and PDM Messages 14-15

Alphabetical Summary of Debugger Messages

14-16

Load aborted

Description

Action

This message always follows another message.

Refer to the message that preceded Load aborted.

Lost power (or cable disconnected)

Description

Action

Either the target cable is disconnected, or the target system is
faulty.

Check the target cable connections. If the target seems to be
connected correctly, see Section C.5, Additional Instructions
for Hardware Errors, page 14-27.

Lost processor clock

Description

Action

Lval required

Description

Action

Either the target cable is disconnected, or the target system is
faulty.

Check the target cable connections. If the target seems to be
connected correctly, see Section C.5, Additional Instructions
for Hardware Errors, page 14-27.

This is an expression error—an assignment expression was
entered that requires a legal left-hand side.

See Section C.4, Additional Instructions for Expression Errors,
page 14-27.

Memory access error at address

Description

Action

Either the processor is receiving a bus fault, or there are
problems with target system memory.

See Section C.5, Additional Instructions for Hardware Errors,
page 14-27.

Alphabetical Summary of Debugger Messages

Memory map table full

Description

Action

Too many blocks have been added to the memory map. This
will rarely happen unless blocks are added word by word
(which is inadvisable).

Stop adding blocks to the memory map. Consolidate any
adjacent blocks that have the same memory attributes.

Name “name” not found

Description

Action

The command cannot find the object named name.

If name is a symbol, be sure that it was typed correctly. If it
wasn’t, reenter the command with the correct name. If it was,
then be sure that the associated object file is loaded.

Nesting of repeats cannot exceed 100

Description

Action

The debugger cannot simulate more than 100 levels of repeat
nesting in an input data file. If this happens, the debugger dis-
connects the input file from the pin.

Correct the input file so that the data does not include nesting
repetition exceeding 100. Use the PINC command to recon-
nect the input file to the desired pin.

No file connected to this pin

Description

Action

You tried to disconnect the input file from a pin that was not
previously connected to that pin.

Use the PINL command to list all of the pins and the files con-
nected to them. Use the PIND command to reenter the correct
pinname and filename.

Non-repeatable instruction

Description

Action

The instruction following the RPT instruction is not a repeat-
able instruction.

Modify your code.

Debugger and PDM Messages 14-17

Alphabetical Summary of Debugger Messages

14-18

Pinname not valid for this chip

Description You attempted to connect or disconnect an input file to an
invalid interrupt pin.

Action Reconnect or disconnect the input file to an unused interrupt

pin (INT1-INT4 or BIO).

Pointer not allowed
Description This is an expression error.

Action See Section C.4, Additional Instructions for Expression Errors,
page 14-27.

Processor is already running

Description One of the RUN commands was entered while the debugger
was running free from the target system.

Action Enter the HALT command to stop the free run, then reenter
the desired RUN command.

Read not allowed for port

Description You attempted to connect a file for input operation to an
address that is not configured for read.

Action Remap the port or correct the access in your source code.

Register access error

Description Either the processor is receiving a bus fault, or there are
problems with target-system memory.

Action See Section C.5, Additional Instructions for Hardware Errors,
page 14-27.

Alphabetical Summary of Debugger Messages

Specified map not found

Description

Action

The MD command was entered with an address or block that
is not in the memory map.

Use the ML command to verify the current memory map.
When using MD, you can specify only the first address of a
defined block.

Structure member not found

Description

Action

This is an expression error—an expression references a non-
existent structure member.

See Section C.4, Additional Instructions for Expression Errors,
page 14-27.

Structure member name required

Description

Action

This is an expression error—a symbol name followed by a
period but no member name.

See Section C.4, Additional Instructions for Expression Errors,
page 14-27.

Structure not allowed

Description

Action

This is an expression error—the expression is attempting an
operation that cannot be performed on a structure.

See Section C.4, Additional Instructions for Expression Errors,
page 14-27.

Take file stack too deep

Description

Action

Batch files can be nested up to 10 levels deep. Batch files can
call other batch files, which can call other batch files, and so
on. Apparently, the batch file that you are TAKEing calls batch
files that are nested more than 10 levels deep.

Edit the batch file that caused the error. Instead of calling
another batch file from within the offending file, you may want
to copy the contents of the second file into the first. This will
remove a level of nesting.

Debugger and PDM Messages 14-19

Alphabetical Summary of Debugger Messages

14-20

Timeout waiting for device - Press Control-C to abort

Description

Action

Too many breakpoints

Description

Action

200 breakpoints are already set, and there was an attempt to
set another. Note that the maximum limit of 200 breakpoints
includes internal breakpoints that the debugger may set for
single-stepping. Under normal conditions, this should not be
a problem; it is rarely necessary to set this many breakpoints.

Enter a BL command to see where breakpoints are set in your
program. Use the BR command to delete all software break-
points or use the BD command to delete individual software
breakpoints.

Too many paths

Description

Action

More than 20 paths have been specified cumulatively with the
USE command, D_SRC environment variable, and i debug-
ger option.

Don’t enter the USE command before entering another com-
mand that has a filename parameter. Instead, enter the sec-
ond command and specify full path information for the file-
name.

Undeclared port address

Description

Action

You attempted to do a connect/disconnect on an address that
isn’t declared as a port.

Verify the address of the port to be connected or discon-
nected.

Updating at rate n

Description

Action

You entered the UPDATE command with a value. The value is
the update rate that the debugger uses to udpate windows in
realtime emulation.

None required.

User halt

Description

Action

Alphabetical Summary of Debugger Messages

The debugger halted program execution because you
pressed the key.

None required; this is normal debugger behavior.

Window not found

Description

Action

The parameter supplied for the WIN command is not a valid
window name.

Reenter the WIN command. Remember that window names
must be typed in uppercase letters. Here are the valid window
names; the bold letters show the smallest acceptable abbre-
viations:

CALLS CPU DISP
COMMAND DISASSEMBLY FILE
MEMORY PROFILE WATCH

Write not allowed for port

Description

Action

You attempted to connect a file for output operation to an
address that is not configured for write.

Either change the *C2xx software to write a port that is config-
ured for write, or change the attributes of the port.

Debugger and PDM Messages 14-21

Alphabetical Summary of PDM Messages

C.3 Alphabetical Summary of PDM Messages

This section contains an alphabetical listing of the error messages that the
PDM might display. Each message contains both a description of the situation
that causes the message and an action to take.

Note:

If errors are detected in a TAKE file, the PDM aborts the batch file execution,
and the file line number of the invalid command is displayed along with the
error message.

Cannot communicate with “‘name”

Description The PDM cannot communicate with the named debugger,
because the debugger either crashed or was exited.

Action Spawn the debugger again.

Cannot communicate with the child debugger

Description This error occurs when you are spawning a debugger. The
PDM was able to find the debugger executable file, but the
debugger could not be invoked for some reason, and the
communication between the debugger and PDM was never
established. This usually occurs when you have a problem
with your target system.

Action Exit the PDM and go back though the installation instructions
in the installation guide. Reinvoke the PDM and try to spawn
the debugger again.

Cannot create mailbox

Description The PDM was unable to create a mailbox for the new debug-
ger that you were trying to spawn; the PDM must be able to
create a mailbox in order to communicate with each debug-
ger. This message usually indicates a resource limitation (you
have more debuggers invoked than your system can handle).

Action If you have numerous debuggers invoked and you’re not
using all of them, close some of them. If you are under a UNIX
environment, use the ipcs command to check your message
queues; use ipcrm to clean up the message queues.

14-22

Alphabetical Summary of PDM Messages

Cannot open log file

Description The PDM cannot find the filename that you supplied when you
entered the DLOG command.

Action Be sure that the file resides in the current directory or in one of
the directories specified by the D_DIR environment variable.

[Check to see if you mistyped the filename.

Cannot open take file

Description The PDM cannot find the batch filename supplied for the
TAKE command. You will also see this message if you try to
execute a batch file that does not have a .pdm extension.

Action Be sure that the file resides in the current directory or in one of
the directories specified by the D_DIR environment variable.

[Check to see whether you mistyped the filename.
[Be sure that the batch filename has a .pdm extension.
[Be sure that the file has executable rights.

Cannot open temporary file
Description The PDM is unable to create a temporary file in the current di-
rectory.

Action Change the permissions of the current directory.

Cannot seek in file

Description While the PDM was reading a file, the file was deleted or
modified.

Action Be sure that the files the PDM reads are not deleted or modi-
fied during the read.

Cannot spawn child debugger

Description The PDM couldn’t spawn the debugger that you specified,
because the PDM couldn’t find the debugger executable file
(emu2xx). The PDM will first search for the file in the current
directory and then search the directories listed with the PATH
statement.

Action Check to see if the executable file is in the current directory or
in a directory that is specified by the PATH statement. Modify
the PATH statement if necessary, or change the current direc-
tory.

Debugger and PDM Messages 14-23

Alphabetical Summary of PDM Messages

14-24

Command error

Description

Action

The syntax for the command that you entered was invalid (for
example, you used the wrong options or arguments).

Reenter the command with valid parameters.

Debugger spawn limit reached

Description

Action

The PDM spawned the maximum number of debuggers that it
can keep track of in its internal tables. The maximum number
of debuggers that the PDM can track is 2048. However, your
system may not have enough resources to support that many
debuggers.

Before trying to spawn an additional debugger, close any
debuggers that you don’t need to run.

lllegal flow control

Description

Action

One of the flow control commands (IF/ELIF/ELSE/ENDIF or
LOOP/BREAK/CONTINUE/ENDLOOP) has an error. This
error usually occurs when there is some type of imbalance in
one of these commands.

Check the flow command construct for such problems as an
IF without an ENDIF, a LOOP without an ENDLOOP, or a
BREAK that does not appear between a LOOP and an
ENDLOOP. Edit the batch file that contains the problem flow
command, or interactively reenter the correct command.

Input buffer overflow

Description

Action

The PDM is trying to execute or manipulate an alias or shell
variable that has been recursively defined.

Use the SET and/or ALIAS commands to check the defini-
tions of your aliases and system variables. Modify them as
necessary.

Alphabetical Summary of PDM Messages

Invalid command

Description
Action

The command that you entered was not valid.

Refer to the command summary in Chapter 5, Summary of
Commands and Special Keys, for a complete list of com-
mands and their syntax.

Invalid expression

Description

Action

The expression that you used with a flow control command or
the @ command is invalid. You may see specific messages
before this one that provide more information about the prob-
lem with the expression. The most common problem is the
failure to use the $ character when evaluating the contents of
a system variable.

Check the expression that you used. Refer to Section 2.7,
Understanding the PDM’s Expression Analysis, page 2-17,
for more information about expression analysis.

Invalid shell variable name

Description

Action

The system variable name that you used the SET command
to assign is invalid. Variable names can contain any alphanu-
meric characters or underscore characters.

Use a different name.

Maximum loop depth exceeded

Description

Action

The LOOP/ENDLOOP command that you tried to execute
had more than 10 nested LOOP/ENDLOOP constructs.
LOOP/ENDLOOQOP constructs can be nested up to 10 deep.

Edit the batch file that contains the LOOP/ENDLOOP
construct, or reenter the LOOP/ENDLOOP command inter-
actively.

Maximum take file depth exceeded

Description

Action

The batch file that you tried to execute with the TAKE com-
mand called or nested more than 10 other batch files. The
TAKE command can handle batch files that are nested up to
10 deep.

Edit the batch file.

Debugger and PDM Messages 14-25

Alphabetical Summary of PDM Messages

Unknown processor name ‘name”

Description The processor name that you specified with the —g option or a
processor name within a group that you specified with the —g
option does not match any of the names of the debuggers that
were spawned under the PDM.

Action Be sure that you've correctly entered the processor name.

14-26

Additional Instructions for Expression Errors / Additional Instructions for Hardware Errors

C.4 Additional Instructions for Expression Errors

Whenever you receive an expression error, you should reenter the command
and edit the expression so that it follows the C language expression rules. If
necessary, refer to a C language manual such as The C Programming
Language by Brian W. Kernighan and Dennis M. Ritchie.

C.5 Additional Instructions for Hardware Errors

If you continue to receive the messages that send you to this section, this indi-
cates persistent hardware problems.

[J If a bus fault occurs, the emulator may not be able to access memory.

[d The 'C2xx must be reset before you can use the emulator. Most target sys-
tems reset the *C2xx at power-up; your target system may not be doing
this.

Debugger and PDM Messages 14-27

Glossary

active window: The window that is currently selected for moving, sizing,
editing, closing, or some other function.

aggregate type: A C data type such as a structure or array in which a vari-
able is composed of multiple variables, called members.

aliasing: A method of customizing debugger commands; aliasing provides
a shorthand method for entering often-used command strings.

ANSI C: A version of the C programming language that conforms to the C
standards defined by the American National Standards Institute.

assembly mode: A debugging mode that shows assembly language code
in the DISASSEMBLY and doesn’t show the FILE window, no matter
what type of code is currently running.

autoexec.bat: A batch file that contains DOS commands for initializing your
PC.

auto mode: A context-sensitive debugging mode that automatically
switches between showing assembly language code in the
DISASSEMBLY window and C code in the FILE window, depending on
what type of code is currently running.

batch file: One of two different types of files. One type contains DOS com-
mands for the PC to execute. A second type of batch file contains debug-
ger commands for the debugger to execute. The PC doesn’t execute
debugger batch files, and the debugger doesn’t execute PC batch files.

benchmarking: A type of program execution that allows you to track the
number of CPU cycles consumed by a specific section of code.

breakpoint: A point within your program where execution will halt because
of a previous request from you.

break event: An event that causes the processor to halt.

15-1

Glossary

15-2

C: A high-level, general-purpose programming language useful for writing
compilers and operating systems and for programming microproces-
Sors.

CALLS window: A window that lists the functions called by your program.

casting: A feature of C expressions that allows you to use one type of data
as if it were a different type of data.

children: Additional windows opened for aggregate types that are members
of a parent aggregate type displayed in an existing DISP window.

click: To press and release a mouse button without moving the mouse.

code-display windows: Windows that show code, text files, or code-
specific information. This category includes the DISASSEMBLY, FILES,
and CALLS windows.

COFF: Common Object File Format. An implementation of the object file
format of the same name developed by AT&T. The TMS320 fixed-point
DSP compiler, assembler, and linker use and generate COFF files.

command line: The portion of the COMMAND window where you can enter
commands.

command-line cursor: A block-shaped cursor that identifies the current
character position on the command line.

COMMAND window: A window that provides an area for you to enter com-
mands and for the debugger to echo command entry, show command
output, and list progress or error messages.

CPU window: A window that displays the contents of ‘C2xx on-chip regis-
ters, including the program counter, status register, A-file registers, and
B-file registers.

current-field cursor: A screen icon that identifies the current field in the ac-
tive window.

cursor: Anicon on the screen (such as a rectangle or a horizontal line) that
is used as a pointing device. The cursor is usually under mouse or
keyboard control.

Glossary

data-display windows: Windows for observing and modifying various
types of data. This category includes the MEMORY, CPU, DISP, and
WATCH windows.

D_DIR: An environment variable that identifies the directory containing the
commands and files necessary for running the debugger.

debugger: A window-oriented software interface that helps you to debug
'C2xx programs running on a ’C2xx emulator or simulator.

disassembly: Assembly language code formed from the reverse-assembly
of the contents of memory.

DISASSEMBLY window: A window that displays the disassembly of
memory contents.

discontinuity: A state in which the addresses fetched by the debugger be-
come nonsequential as a result of instructions that load the PC with new
values, such as branches, calls, and returns.

DISP window: A window that displays the members of an aggregate data
type.

display area: The portion of the COMMAND window or PDM window where
the debugger echoes command entry, shows command output, and lists
progress or error messages.

D_OPTIONS: An environment variable that you can use for identifying often-
used debugger options.

drag: To move the mouse while pressing one of the mouse buttons.

dspcl: A shell utility that invokes the TMS320C1x/C2x/C2xx/C5x compiler,
assembler, and linker to create an executable object file version of your
program.

D_SRC: An environment variable that identifies directories containing
program source files.

EGA: Enhanced Graphics Adaptor. An industry standard for video cards.

EISA: Extended Industry Standard Architecture. A standard for PC buses.

Glossary 15-3

Glossary

15-4

emulator: A debugging tool that is external to the target system and pro-
vides direct control over the *C2xx processor that is on the target system.

emurst: A utility that resets the emulator.

environment variable: A special system symbol that the debugger uses for
finding directories or obtaining debugger options.

FILE window: A window that displays the contents of the current C code.
The FILE window is intended primarily for displaying C code but can be
used to display any text file.

init.cmd: A batch file that contains debugger-initialization commands. If this
file isn’t present when you first invoke the debugger, then all memory is
invalid.

I/0 switches: Hardware switches on the emulator or EVM board that identify
the PC I/O memory space used for emulator-debugger or
EVM-debugger communications.

ISA: Industry Standard Architecture. A subset of the EISA standard.

memory map: A map of memory space that tells the debugger which areas
of memory can and can’t be accessed.

MEMORY window: A window that displays the contents of memory.

menu bar: A row of pulldown menu selections found at the top of the debug-
ger display.

minimal mode: A debugging mode that displays the COMMAND window,
WATCH window, and DISP window only.

mixed mode: A debugging mode that simultaneously shows both assembly
language code in the DISASSEMBLY window and C code in the FILE
window.

mouse cursor: A block-shaped cursor that tracks mouse movements over
the entire display.

Glossary

open-collector output: An output circuit that actively drives both high and
low logic levels.

PC: Personal computer or program counter, depending on the context and
where it's used in this book: 1) In installation instructions or information
relating to hardware and boards, PC means personal computer (as in
IBM PC). 2) In general debugger and program-related information, PC
means program counter, which is the register that identifies the current
statement in your program.

PDM: Parallel Debug Manager. A program used for creating and controlling
multiple debuggers for the purpose of debugging code in a parallel-
processing environment.

point: To move the mouse cursor until it overlays the desired object on the
screen.

port address: The PC I/O memory space that the debugger uses for
communicating with the emulator or EVM. The port address is selected
via switches on the emulator or EVM board and communicated to the
debugger with the —p debugger option.

pulldown menu: A command menu that is accessed by name or with the
mouse from the menu bar at the top of the debugger display.

ripple-carry output signal: An output signal from a counter indicating that
the counter has reached its maximum value.

scalar type: A C type in which the variable is a single variable, not composed
of other variables.

scrolling: A method of moving the contents of a window up, down, left, or
right to view contents that weren’t originally shown.

side effects: A feature of C expressions in which using an assignment
operator in an expression affects the value of one of the components
used in the expression.

Glossary 15-5

Glossary

15-6

simulator: A development tool that simulates the operation of the ‘C2xx and
lets you execute and debug applications programs by using the 'C2xx
debugger.

single-step: A form of program execution that allows you to see the effects
of each statement. The program is executed statement by statement; the
debugger pauses after each statement to update the data-display
windows.

symbol table: A file that contains the names of all variables and functions
in your 'C2xx program.

target system: A 'C2xx board that works with the emulator; the emulator
doesn’t contain a ’C2xx device, so it must use a 'C2xx target board.
Usually, the target system is a board that you have designed; you use the
emulator and debugger to help you debug your design.

totem-pole output: An output circuit that actively drives both high and low
logic levels.

VGA: Video Graphics Array. An industry standard for video cards.

WATCH window: A window that displays the values of selected expres-
sions, symbols, addresses, and registers.

window: A defined rectangular area of virtual space on the display.

This template is for the “See” and “See also” references in your index. Since these en-
tries do not have a page number associated with them, it's extremely difficult to locate
one if you need to modify or delete it and you don’t remember which chapter it’s in.
By using this template, you can alphabetize your entries according to the first letter
of the first level entry.

EEEERERDEREDOE

15-1

< - == o B o - I~ I - - >

= > I > N

15-3

Chapter 5

Summary of Commands
and Special Keys

This chapter summarizes the basic debugger, profiling, and parallel debug
manager (PDM) commands and the debugger’s special key sequences.

Topic Page
5.1 Functional Summary of Debugger Commands 16-2
5.2 How the Menu Selections Correspond to Commands 16-10
5.3 Alphabetical Summary of Debugger and PDM Commands 16-13
5.4 Summary of Profiling Commands (Simulator Only) 16-71
5.5 Summaryof Special Keysccciiiiiiiiiiiiiiiinnn. 16-75

16-1

Functional Summary of Debugger Commands

5.1

16-2

Functional Summary of Debugger Commands

This section summarizes the debugger commands according to these catego-
ries:

(1 Managing multiple debuggers. These commands allow you to group
debuggers, run code on multiple processors, and send commands to a
group of debuggers.

1 Changing operating modes. These commands (listed on pagg6-4)
enable you to switch between real-time mode and stop mode.

(O Changing debugging modes. These commands (listed on pagqj6-4)
enable you to switch between the debugging modes (auto, mixed,
minimal, and assembly).

(1 Managing windows. These commands (listed on page|j6-4) enable
you to select the active window and move or resize the active window.

1 Displaying and changing data. These commands (listed on pagg6-5)
enable you to display and evaluate a variety of data items.

1 Using extended addressing. These commands (listed on pagqj6-5)
allow you to access the extended memory that you built in your target sys-
tem.

[Performing system tasks. These commands (listed on page|:||6—6)
enable you to perform several DOS-like functions and provide you with
some control over the target system.

(0 Managing breakpoints. These commands (listed on page |:||6-6)
provide you with a command line method for controlling software break-
points.

(O Displaying files and loading programs. These commands (listed on
page[16-7) enable you to change the displays in the FILE and
DISASSEMBLY windows and to load object files into memory.

(1 Customizing the screen. These commands (listed on pager_1|6—7) allow
you to customize the debugger display, then save and later reuse the
customized displays.

[Memory mapping. These commands (listed on pagg—{6-8) enable you
to define the areas of target memory that the debugger can access.

(1 Running programs. These commands (listed on page|-_1|6—8) provide
you with a variety of methods for running your programs in the debugger
environment.

[Profiling commands. These commands (listed on pagqje-g) enable
you to collect execution statistics for your code.

Functional Summary of Debugger Commands

Managing multiple debuggers

Use this
To do this command See page
Assign a variable to the result of an expression @ |-_1|6-1 4
Use the command history ! |:1|6-14
Define a custom command string alias |:1|6-16
Record the information shown in the PDM display dlog |:t|6-25
area
Display a string to the PDM display area echo [16-26
Evaluate an expression in a debugger or group of eval |-_1|6-27
debuggers and set a variable to the result
List available PDM commands help |:1|6-31
View the description of a PDM command help |-_1|6-31
List the last twenty commands history |:t|6-31
Conditionally execute PDM commands if/elif/else/endif [16-32
Loop through PDM commands loop/break/con- [f6-34

tinue/endloop
Pause the PDM pause |:1|6-45
Halt code execution pesc |:1|6-45
Perform a global halt phalt |:1|6-46
Run code globally prun |-_1|6-49
Run free globally prunf |:1|6-49
Single-step globally pstep |:1|6-50
Exit any debugger and/or the PDM quit |:1|6-50
Send a command to an individual processor or a send |:1|6-56
group of processors
Change the PDM prompt set |-_1|6-57
Create your own system variables set |:1|6-57
Define or modify a group of processors set |:1|6-57
List all system variables or groups of processors set |:1|6-57
Set the default group set |:1|6-57
Invoke an individual debugger spawn |:1|6-61
Find the execution status of a processor or a group stat |:1|6-62
of processors
Enter an operating-system command system |:1|6-63
Execute a batch file take |:1|6-64
Delete an alias definition unalias |:1|6-64
Delete a group or system variable unset 16-65

Summary of Commands and Special Keys 16-3

Functional Summary of Debugger Commands

Using the real-time features

Changing debugging modes

Managing windows

16-4

Use this
To put the debugger in command See page
Switch to real-time mode realtime |:||6-50
Switch to stop mode stopmode |:t|6-63
update 16-65
Use this
To put the debugger in command See page
Assembly mode asm |:1|6-1 6
Auto mode for debugging C code c |:I|6-19
Minimal mode minimal |:||6-40
Mixed mode mix 6-41
Use this
To do this command See page
Reposition the active window move |-_1|6-42
Resize the active window size |:|]6-59
Select the active window win |:1|6-69
Make the active window as large as possible zoom 6-70

Running Title—Attribute Reference

Displaying and changing data

Use this
To do this command See page
Evaluate and display the result of a C expression ? [f6-13
Display the values in an array or structure or display disp |:1|6-23
the value that a pointer is pointing to
Evaluate a C expression without displaying the results eval |-_1|6-27
Display a different range of memory in a MEMORY mem |:1|6-39
window or display an additional MEMORY window
Change the default format for displaying data values setf |:1|6-58
Continuously display the value of a variable, register, wa |:1|6-67
or memory location within a WATCH window
Delete a data item from a WATCH window wd |:1|6-68
Show the type of a data item whatis |-_1|6-69
Delete all data items from a WATCH window and wr |:t|6-69
close the WATCH window

Using extended addressing

Use this
To do this command See page
Enable or disable extended addressing ext_addr |:1|6-28

Describe your extended memory system to the ext_addr_def |:1|6-28
debugger

Chapter Title—Attribute Reference 16-5

Functional Summary of Debugger Commands

Performing system tasks

Use this
To do this command See page
Define your own command string alias [16-16
Change the current working directory from within the cd/chdir |:||6-19
debugger environment
Clear all displayed information from the display area cls |:1|6-20
of the COMMAND window
List the contents of the current directory or any other dir |:t|6-23
directory
Record the information shown in the display area of dlog |:||6-25
the COMMAND window
Display a string to the COMMAND window while echo

executing a batch file

Conditionally execute debugger commands in a batch
file

Loop debugger commands in a batch file

if/else/endif

loop/endloop

|:1|6-26
he-33
|:T|6-35

Managing breakpoints

16-6

Exit the debugger quit |:I|6-50
Reconnects the debugger and the emulator reconnect |:1|6-51
Reset the target system reset |:1|6-51
Set safehalt mode to control target device halting safehalt [16-53
Associate a beeping sound with the display of error sound |:||6-61
messages
Execute commands from a batch file take |:I|6-64
Delete an alias definition unalias |-_1|6-64
Name additional directories that can be searched use |:1|6-66
when you load source files

Use this
To do this command See page
Add a software breakpoint ba |:||6-17
Delete a software breakpoint bd |:1|6-1 7
Display a list of all the software breakpoints that are bl |-_1|6-17
set
Reset (delete) all software breakpoints br r6-18

Functional Summary of Debugger Commands

Displaying files and loading programs

Use this
To do this command See page
Display C and/or assembly language code at a addr |:1|6-15
specific point
Reopen the CALLS window calls |:1|6-1 9
Display assembly language code at a specific dasm |-_1|6-22
address
Display a text file in the FILE window file |:1|6-29
Display a specific C function func |:1|6-30
Load an object file load [16-33
Modify disassembly with the patch assembler patch |:1|6-44
Load only the object-code portion of an object file reload |:1|6-51
Load only the symbol-table portion of an object file sload 16-60

Customizing the screen

Use this
To do this command See page
Change the border style of any window border |:1|6-1 8
Change the screen colors, but don’t update the color |-_1|6-21
screen immediately
Change the command-line prompt prompt |:1|6-48
Change the screen colors and update the screen scolor |-_1|6-54
immediately
Load and use a previously saved custom screen sconfig |:1|6-55
configuration
Save a custom screen configuration ssave [16-62

Summary of Commands and Special Keys 16-7

Functional Summary of Debugger Commands

Memory mapping

Running programs

16-8

Use this
To do this command See page
Initialize a block of memory fill |:t|6-30
Add an address range to the memory map ma |-_1|6-35
Enable or disable memory mapping map |:1|6-36
Connect a simulated 1/O port to an input or output file mc |:t|6-37
(simulator only)
Delete an address range from the memory map md |:||6-38
Disconnect a simulated 1/O port (simulator only) mi |:1|6-40
Display a list of the current memory map settings ml |-_1|6-41
Reset the memory map (delete all ranges) mr |:1|6-43
Save a block of memory to a system file ms |:1|6-43
Connect an input file to the pin (simulator only) pinc |-_1|6-47
Disconnect the input file from the pin (simulator only) pind |:1|6-47
List the pins that are connected to the input files (simu- pinl |:1|6-47
lator only)

Use this
To do this command See page
Single-step through assembly language or C code, cnext |:1|6-20
one C statement at a time; step over function calls
Single-step through assembly language or C code, cstep |-_1|6-22
one C statement at a time
Run a program up to a certain point go |:1|6-31
Single-step through assembly language or C code; next |:1|6-44
step over function calls
Reset the target system reset |:||6-51
Reset the program entry point restart |:1|6-52
Execute code in a function and return to the function’s return |:t|6-52
caller
Run a program run |:1|6-52
Disconnect the emulator from the target system and runf |:1|6-53
run free
Single-step through assembly language or C code step [16-63
Execute commands from a batch file take 6-64

Functional Summary of Debugger Commands

Profiling commands (Simulator only)

All of the profiling commands can be entered from the pulldown menus. In
many cases, using the pulldown menus is the easiest way to use some of these
commands. For this reason and also because there are over 100 profiling
commands, most of these commands are not described individually in this
chapter (as the basic debugger commands are).

Listed below are some of the profiling commands that you might choose to
enter from the command line instead of from a menu; these commands are
also described in the alphabetical command summary. The remaining profiling
commands are summarized in Section 5.4, Summary of Profiling Commands
(Simulator Only), on page 16-71.

Use this
To do this command See page
Run a full profiling session pf |-_1|6-46
Run a quick profiling session pq |:t|6-48
Resume a profiling session pr [f6-48
Add a stopping point sa |:1|6-53
Delete a stopping point sd |:1|6-55
List all the stopping points sl |:1|6-60
Delete all the stopping points sr |:1|6-61
Save all the profile data to a file vaa |:1|6-66
Save currently displayed profile data to a file vac |:1|6-66
Reset the display in the PROFILE window to show all vr |:t|6-67

areas and the default set of data

Summary of Commands and Special Keys 16-9

How the Menu Selections Correspond to Commands

5.2 How the Menu Selections Correspond to Commands

The following sample screens illustrate the relationship of the basic debugger
commands to the menu bar and pulldown menus.

You can use the menus with or without a mouse. To access a menu from the
keyboard, press the key and the letter that’s highlighted in the menu
name. (For example, to display the Load menu, press .) Then, to make
a selection from the menu, press the letter that’s highlighted in the command
you've selected. (For example, on the Load menu, to execute File, press (8).)
If you don’t want to execute a command, press to close the menu.

Note:

Because the profiling environment supports over 100 profile-specific
commands, it's not practical to show the commands associated with the
profile menu choices.

Program-execution commands

RUN command
(without a parameter)

STEP command
(without a parameter)

NEXT command
(without a parameter)

Run=F5 —
Step=F8 -

Next=F10 —

File/load commands
a N
Load ~—— LOAD command
Load]
Reload 44— RELOAD command
Symbols SLOAD command
REstart RESTART command
Resel 47— — RESET command
File ———
\\ FILE command /
Breakpoint commands

Delete BD command
Reset™ [—7™———
BR command

List \-
BL command

Break =~~~ == —— BAcommand
Add A

16-10

How the Menu Selections Correspond to Commands

Watch commands

watch = WAcommand
Add —H
Delete WD command
Reset —4———— WR command
Memory commands
~ N

MA command
Memory ,///

Add — - — MD command
Delete —T]

——— MR command
Reset —1

List ML command
Enable—4t—— ===
MAP command

Filzy —H—
- FILL command
ave -
Connect——\ MS command
DisConn "\ MC command

\ MI command /

Note: The Connect and DisConn entries are for the simulator only.

Screen-configuration commands

Color == SCONFIG command

Load —

save I —————— SSAVE command
Config SCOLOR command
Border BORDER command
B O PROMPT command

Mode commands

Mode ~~~——— Ccommand

C (auto)
asm — R ASM command
Mixed MIX command

MiNimal ;mn —n—

MINIMAL command

Summary of Commands and Special Keys 16-11

How the Menu Selections Correspond to Commands

Interrupt-simulation commands (Simulator only)

Bin — PINC command
Connect — |
Disconnect PIND command
List PINL command

Analysis menu (Emulator only)

The Analysis pulldown menu does not correspond to specific debugger
commands. Instead, the selections on this menu enable and disable the inter-
face, as well as open dialog boxes that control the interface. Here are the func-
tions of the Analysis menu selections.

Analysis | ——— Enable/Disable analysis interface
ble — .
ii:ake___ Open the Break dialog box

EMU Open the Emulator Pins dialog box
view — Open the Analysis window

16-12

Alphabetical Summary of Debugger and PDM Commands?

5.3 Alphabetical Summary of Debugger and PDM Commands

Syntax

Menu selection

Environments

Description

Most of the commands can be used in the basic debugger environment and/or
the profiling environment. Other commands can be used only by the parallel
debug manager (PDM). A few commands can be used in two or more environ-
ments. Each command description identifies the applicable environments for
the command.

Commands are not case sensitive; to emphasize this, command names are
shown in both uppercase and lowercase throughout this book.

Evaluate Expression

? expression |, display format]

none

basic debugger |:| PDM profiling

The ? (evaluate expression) command evaluates an expression and shows
the result in the display area of the COMMAND window. The expression can
be any C expression, including an expression with side effects; however, you
cannot use a string constant or function call in the expression. If the expression
identifies an address, you can follow it with one of these suffixes:

To identify . . . Use this suffix. ..
Program memory @prog

Extended program memoryt @prog16

Data memory @data

Extended data memoryt @data16

t Valid only when extended addressing is enabled.

Without the suffix, the debugger treats an address expression as a program-
memory location.

If the result of expression is not an array or structure, then the debugger
displays the results in the COMMAND window. If expression is a structure or
array, ? displays the entire contents of the structure or array; you can halt long
listings by pressing EsO .

When you use the optional display format parameter, data will be displayed in
one of the following formats:

Summary of Commands and Special Keys 16-13

!, @AIphabetical Summary of Debugger and PDM Commands

Syntax

Menu selection

Environments

Description

Syntax

Menu selection

Environments

Description

16-14

Parameter Result Parameter Result
* Default for the data type o Octal
c ASCII character (bytes) P Valid address
d Decimal s ASCII string
e Exponential floating point u Unsigned decimal
f Decimal floating point X Hexadecimal

Use the PDM Command History

Yprompt number | string}
n

none

|:| basic debugger PDM |:| profiling

The PDM supports a command history that is similar to the UNIX command
history. The PDM prompt identifies the number of the current command. This
number is incremented with every command. The PDM command history
allows you to reenter any of the last twenty commands.

[Thenumber parameter is the number of the PDM prompt that contains the
command that you want to reenter.

[The string parameter tells the PDM to execute the last command that
began with string.

1 The ! command tells the PDM to execute the last command that you
entered.

Substitute Result of an Expression

@ variable name = expression

none

|:| basic debugger PDM |:| profiling

Unlike the SET command, the @ command first evaluates the expression, and
then sets the variable name to the result. The expression can be any expres-
sion that uses the symbols described in Section 2.7, Understanding the PDM’s
Expression Analysis, on page 2-17. The variable name can consist of up to 128
alphanumeric characters or underscore characters.

Syntax

Menu selection

Environments

Description

Alphabetical Summary of Debugger and PDM Commandsaddr

Display Code at Specified Address

addr address[{@prog | @data | @io | @prog16 | @data16}]
addr function name

none

basic debugger |:| PDM |:| profiling

Use the ADDR command to display C code or the disassembly at a specific
point. ADDR’s behavior changes, depending on the current debugging mode:

d In assembly mode, ADDR works like the DASM command, positioning the
code starting at address or at function name as the first line of code in the
DISASSEMBLY window.

1 Ina C display, ADDR works like the FUNC command, displaying the code
starting at address or at function name in the FILE window.

1 In mixed mode, ADDR affects both the DISASSEMBLY and FILE
windows.

By default, the address parameter is treated as a program-memory address.
However, you can follow it with one of these suffixes:

To identify . . . Use this suffix. ..
Program memory @prog

Extended program memory* @prog16

Data memory @data

Extended data memoryT @data16

1/0 space® @io

t Valid only when extended addressing is enabled.
¥ Valid only with the emulator.

Note:

ADDR affects the FILE window only if the specified address is in a C function.

Summary of Commands and Special Keys 16-15

alias, asmaAIiphabetical Summary of Debugger and PDM Commands

Syntax

Menu selection

Environments

Description

Syntax

Menu selection

Environments

Description

16-16

Define Custom Command String

alias [alias name [, "command string”]]

none

basic debugger PDM profiling

You can use the ALIAS command to define customized command strings for
the debugger or for the PDM:

[The debugger version of the ALIAS command allows you to associate one
or more debugger commands with a single alias name.

[The PDM version of the ALIAS command allows you to associate one or
more PDM commands with a single alias name or associate one or more
debugger commands with a single alias name.

You can include as many commands in the command string as you like, as long
you separate them with semicolons and enclose the entire string of commands
in quotation marks. You can also identify command parameters by a percent
sign followed by a number (%1, %2, etc.). The total number of characters for
an individual command (expanded to include parameter values) is limited to
132 (this restriction applies to the debugger version of the ALIAS command
only).

Previously defined alias names can be included as part of the definition for a
new alias.

To find the current definition of an alias, enter the ALIAS command with the
alias name only. To see a list of all defined aliases, enter the ALIAS command
with no parameters.

Enter Assembly Mode

asm

MoDe—Asm

basic debugger |:| PDM |:| profiling

The ASM command changes from the current debugging mode to assembly
mode. If you're already in assembly mode, the ASM command has no effect.

Syntax

Menu selection

Environments

Description

Syntax

Menu selection

Environments

Description

Syntax
Menu selection

Environments

Description

Alphabetical Summary of Debugger and PDM Commandsba, bd, bl

Add Software Breakpoint

ba address

Break—Add

basic debugger |:| PDM |:| profiling

The BA command sets a software breakpoint at a specific address. This
command is useful because it doesn’t require you to search through code to
find the desired line. The address can be an absolute address, any C expres-
sion, the name of a C function, or the name of an assembly language label.

Breakpoints can be set in program memory (RAM) only; the address param-
eter is treated as a program-memory address.

Delete Software Breakpoint

bd address

Break— Delete

basic debugger |:| PDM |:| profiling

The BD command clears a software breakpoint at a specific address. The
address can be an absolute address, any C expression, the name of a C func-
tion, or the name of an assembly language label. The address is treated as a
program-memory address.

List Software Breakpoints

bl
Break—List
basic debugger |:| PDM |:| profiling

The BL command provides an easy way to get a complete listing of all the soft-
ware breakpoints that are currently set in your program. It displays a table of
breakpoints in the display area of the COMMAND window. BL lists all the
breakpoints that are set, in the order in which you set them.

Summary of Commands and Special Keys 16-17

border, brAiphabetical Summary of Debugger and PDM Commands

Syntax

Menu selection

Environments

Description

Syntax

Menu selection

Environments

Description

16-18

Change Style of Window Border

border [active window style] [, [inactive window style] [,resize window style]]

Color—Border

basic debugger |:| PDM |:| profiling

The BORDER command changes the border style of the active window, the
inactive windows, and the border style of any window that you’re resizing. The
debugger supports nine border styles. Each parameter for the BORDER
command must be one of the numbers that identify these styles:

Index Style
0 Double-lined box
1 Single-lined box
2 Solid 1/2-tone top, double-lined sides/bottom
3 Solid 1/4-tone top, double-lined sides/bottom
4 Solid box, thin border
5 Solid box, heavy sides, thin top/bottom
6 Solid box, heavy borders
7 Solid 1/2-tone box
8 Solid 1/4-tone box

Note that you can execute the BORDER command as the Border selection on
the Color pulldown menu. The debugger displays a dialog box so that you can
enter the parameter values; in the dialog box, active window style is called
foreground, and inactive window style is called background.

Reset Software Breakpoint

br
Break—Reset
basic debugger |:| PDM |:| profiling

The BR command clears all software breakpoints that are set.

Syntax

Menu selection

Environments

Description

Syntax

Menu selection

Environments

Description

Syntax

Menu selection

Environments

Description

Alphabetical Summary of Debugger and PDM Commandsc, calls, cd, chdir

Enter Auto Mode

Cc

MoDe—C (auto)

basic debugger |:| PDM

The C command changes from the current debugging mode to auto mode. If
you’re already in auto mode, then the C command has no effect.

|:| profiling

Open CALLS Window

calls

none

basic debugger |:| PDM |:| profiling

The CALLS command displays the CALLS window. The debugger displays
this window automatically when you are in auto/C or mixed mode. However,
you can close the CALLS window; the CALLS command opens the window
again.

Change Directory

cd [directory name]
chdir [directory name]

none

basic debugger |:| PDM profiling

The CD or CHDIR command changes the current working directory from within
the debugger. You can use relative pathnames as part of the directory name.
If you don't use a pathname, the CD command displays the name of the current
directory. Note that this command can affect any other command whose
parameter is a filename, such as the FILE, LOAD, and TAKE commands, when
used with the USE command. You can also use the CD command to change
the current drive. For example,

cd c:

cd d:\csource
cd c:\c2xxhll

Summary of Commands and Special Keys 16-19

cls, cnextAiphabetical Summary of Debugger and PDM Commands

EON Clxr Screen

Syntax cls

Menu selection none

Environments basic debugger |:| PDM profiling
Description The CLS command clears all displayed information from the display area of

the COMMAND window.

m Single-Step C, Next Statement

Syntax cnext [expression]

Menu selection Next=F10 (in C code)

Environments basic debugger |:| PDM |:| profiling
Description The CNEXT command is similar to the CSTEP command. It runs a program

one C statement at a time, updating the display after executing each state-
ment. If you're using CNEXT to step through assembly language code, the
debugger won'’t update the display until it has executed all assembly language
statements associated with a single C statement. Unlike CSTEP, CNEXT
steps over function calls rather than stepping into them—you don'’t see the
single-step execution of the function call.

The expression parameter specifies the number of statements that you want
to single-step. You can also use a conditional expression for conditional single-
step execution (Running code conditionally, page 8-18, discusses this in
detail).

16-20

Syntax

Menu selection

Environments

Description

Alphabetical Summary of Debugger and PDM Commandscolor

Change Screen Colors

color area name, attribute; [attributes [attributes [attributes]]]

none

basic debugger |:| PDM |:| profiling

The COLOR command changes the color of specified areas of the debugger
display. COLOR doesn’t update the display; the changes take effect when
another command, such as SCOLOR, updates the display. The area name
parameter identifies the areas of the display that are affected. The attributes
identify how the areas are affected. The first two attribute parameters usually
specify the foreground and background colors for the area. If you do not supply
a background color, the debugger uses black as the background.

Valid values for the attribute parameters include:

black blue green cyan
red magenta yellow white
bright blink

Valid values for the area name parameters include:

menu_bar menu_border menu_entry menu_cmd
menu_hilite menu_hicmd win_border win_hiborder
win_resize field_text field_hilite field_edit
field_label field_error cmd_prompt cmd_input
cmd_cursor cmd_echo asm_data asm_cdata
asm_label asm_clabel background blanks
error_msg file_line file_eof file_text
file_brk file_pc file_pc_brk

You don’t have to type an entire attribute or area name; you need to type only
enough letters to uniquely identify the attribute. If you supply ambiguous
attribute names, the debugger interprets the names in this order: black, blue,
bright, blink. If you supply ambiguous area names, the debugger interprets
them in the order that they’re listed above (left to right, top to bottom).

Summary of Commands and Special Keys 16-21

cstep, dasmaAiphabetical Summary of Debugger and PDM Commands

Syntax

Menu selection

Environments

Description

Syntax

Menu selection

Environments

Description

16-22

Single-Step C

cstep [expression]
Step=F8 (in C code)

basic debugger |:| PDM |:| profiling

The CSTEP single-steps through a program one C statement at a time,
updating the display after executing each statement. If you're using CSTEP
to step through assembly language code, the debugger won’t update the
display until it has executed all assembly language statements associated with
a single C statement.

If you’re single-stepping through C code and encounter a function call, the
STEP command shows you the single-step execution of the called function
(assuming that the function was compiled with the compiler’s —-g debug
option). When function execution completes, single-step execution returns to
the caller. If the function wasn’t compiled with the debug option, the debugger
executes the function but doesn’t show single-step execution of the function.

The expression parameter specifies the number of statements that you want
to single-step. You can also use a conditional expression for conditional single-
step execution (Running code conditionally, page 8-18, discusses this in
detail).

Display Disassembly at Specified Address

dasm address[{@prog | @data | @prog16 | @data16}]
dasm function name

none

basic debugger |:| PDM profiling

The DASM command displays code beginning at a specific point within the
DISASSEMBLY window. By default, the address parameter is treated as a
program-memory address. However, you can follow it with one of these suf-
fixes:

To identify . . . Use this suffix. . .
Program memory @prog

Extended program memory*t @prog16

Data memory @data

Extended data memoryt @data16

1 Valid only when extended addressing is enabled.

Syntax

Menu selection

Environments

Description

Syntax

Menu selection

Environments

Description

Alphabetical Summary of Debugger and PDM Commandsdir, disp

List Directory Contents

dir [directory name]

none

basic debugger |:| PDM profiling

The DIR command displays a directory listing in the display area of the
COMMAND window. If you use the optional directory name parameter, the
debugger displays a list of the specified directory’s contents. If you don’t use
a directory name, the debugger lists the contents of the current directory.

You can list only files that match a specific format within a directory by using
the asterisk (*) wildcard character. If the directory name ends in a partial file-
name with an asterisk, the debugger lists only the files which match the wild-
card string. For example, to list every file in the home directory that has a cmd
extension, you would enter:

dir /home/*.cmd

Open DISP Window

disp expression [, display format]

none

basic debugger |:| PDM |:| profiling

The DISP command opens a DISP window to display the contents of an array,
structure, or pointer expressions to a scalar type (of the form *pointer). If the
expression is not one of these types, then DISP acts like a ? command. If the
expression identifies an address, you can follow it with one of these suffixes:

To identify . . . Use this suffix. ..
Program memory @prog

Extended program memory* @prog16

Data memory @data

Extended data memoryt @data16

1/O spacet @io

1 Valid only when extended addressing is enabled.
¥ Valid only with the emulator.

Without the suffix, the debugger treats an address expression as a program-
memory location.

Summary of Commands and Special Keys 16-23

dispAlphabetical Summary of Debugger and PDM Commands

16-24

Once you open a DISP window, you may find that a displayed member is itself
an array, structure, or pointer:

A member that is an array looks like this [...]
A member that is a structure looks like this {..}
A member that is a pointer looks like an address 0x0000

If a DISP window contains a long list of members, you can use (PAGEDGWN),
, or arrow keys to scroll through the window. If the window contains an
array of structures, you can use (CoNTROL) (FAGEDOWN) and to
scroll through the array.

You can display the additional data (the data pointed to or the members of the
array or structure) in another DISP window by using the DISP command again,
using the arrow keys to select the field and then pressing , Or pointing the
mouse cursor to the field and pressing the left mouse button. You can have up
to 120 DISP windows open at the same time.

When you use the optional display format parameter, data will be displayed in
one of the following formats:

Parameter Result Parameter Result
* Default for the data type o Octal
c ASCII character (bytes) o] Valid address
d Decimal s ASCII string
e Exponential floating point u Unsigned decimal
f Decimal floating point X Hexadecimal

The display format parameter can be used only when you are displaying a
scalar type, an array of scalar type, or an individual member of an aggregate

type.

You can also use the DISP command with a typecast expression to display
memory contents in any format. Here are some examples:

disp *0

disp *(float *)123

disp *(char *)0x111

This shows memory in the DISP window as an array of locations; the location
that you specify with the expression parameter is member [0], and all other
locations are offset from that location.

Syntax

Menu selection

Environments

Description

Alphabetical Summary of Debugger and PDM Commandsdlog

Record Display Window

dlog filename [{a | w}]
or
dlog close

none

basic debugger PDM profiling

The DLOG command allows you to record the information displayed in the
COMMAND window or in the PDM display area into a log file.

[d To begin recording the information shown in the display area of the
COMMAND window or in the display area of the PDM, use:

dlog filename

Log files can be executed with the TAKE command. When you use DLOG
to record the information from the display area into a log file called file-
name, the debugger (or PDM) automatically precedes all error or progress
messages and command results with a semicolon to turn them into
comments. This way, you can easily reexecute the commands in your log
file by using the TAKE command.

(1 To end the recording session, enter:
dlog close

If necessary, you can write over existing log files or append additional informa-
tion to existing files. The optional parameters of the DLOG command control
how existing log files are used:

1 Appending to an existing file. Use the a parameter to open an existing
file to which to append the information in the display area.

[Writing over an existing file. Use the w parameter to open an existing
file to write over the current contents of the file. Note that this is the default
action if you specify an existing filename without using either the a or w
options; you will lose the contents of an existing file if you don’t use the
append (a) option.

Summary of Commands and Special Keys 16-25

echo, elif, else, endif, endloopAiphabetical Summary of Debugger and PDM Commands

Syntax

Menu selection

Environments

Description

Description

Description

Description

Description

Echo String to Display Area

echo string

none

basic debugger PDM profiling

The ECHO command displays string in the display area of the COMMAND
window or in the display area of the PDM. You can’t use quote marks around
the string, and any leading blanks in your command string are removed when
the ECHO command is executed.

[You can execute the debugger version of the ECHO command only in a
batch file.

[You can execute the PDM version of the ECHO command in a batch file
or from the command line.

Test for Alternate Condition

ELIF provides an alternative test by which you can execute PDM commands
in the IF/ELIF/ELSE/ENDIF command sequence. See pagq16-32 for more
information about these commands.

Execute Alternative Commands

ELSE provides an alternative list of debugger or PDM commands in the IF/
ELSE/ENDIF or IF/ELIF/ELSE/ENDIF command sequences, respectively.
See pagesr_1|6-33 anqu-SZ for more information about these commands.

Terminate Conditional Sequence

ENDIF identifies the end of a conditional-execution command sequence
begun with an IF command. See pageg46-32 an¢46-33 for more information
about these commands.

Terminate Looping Sequence

ENDLOOP identifies the end of the LOOP/ENDLOOP command sequence.
See page§{6-34 an¢-46-35 for more information about the LOOP/ENDLOOP
commands.

Syntax

Menu selection

Environments

Description

Syntax

Menu selection

Environments

Description

Alphabetical Summary of Debugger and PDM Commandseval

Evaluate Expression

eval expression
e expression

none

basic debugger |:| PDM profiling

The EVAL command evaluates an expression like the ? command does but
does not show the result in the display area of the COMMAND window. EVAL
is useful for assigning values to registers or memory locations in a batch file
(where it’'s not necessary to display the result).

If the expression identifies an address, you can follow it with one of these suf-
fixes:

To identify . .. Use this suffix . . .
Program memory @prog

Extended program memoryt @prog16

Data memory @data

Extended data memoryt @data16

I/0 spacet @io

1 Valid only when extended addressing is enabled.
* Valid only with the emulator.

Without the suffix, the debugger treats an address expression as a program-
memory location.

Evaluate Expression and Set to Variable

eval [-g{group | processor name}] variable name=expression|, format]

none

|:| basic debugger PDM |:| profiling

The EVAL command evaluates an expression in a debugger and sets a vari-
able to the result of the expression.

(1 The -g option specifies the group or processor that EVAL should be sent
to. If you don’t use this option, the command is sent to the default group
(dgroup).

(1 When you send the EVAL command to more than one processor, the PDM
takes the variable name that you supply and appends a suffix for each

Summary of Commands and Special Keys 16-27

Running Title—AttributeReference

Syntax

Menu selection

Environments

Description

ext_addr_def

Syntax

Menu selection

Environments

Description

16-28

processor. The suffix consists of the underscore character (_) followed by
the name that you assigned the processor.

(1 The expression can be any expression that uses the symbols described
in Section 2.7, Understanding the PDM'’s Expression Analysis, on
page 2-17.

[When you use the optional format parameter, the value that the variable
is set to will be in one of the following formats:

Parameter Result Parameter Result
* Default for the data type o Octal
c ASCII character (bytes) p Valid address
d Decimal s ASCII string
e Exponential floating point u Unsigned decimal
f Decimal floating point X Hexadecimal

Enable Extended Addressing

ext_addr {on | off}

none

basic debugger PDM profiling

The EXT _ADDR ON command enables extended addressing. The
EXT_ADDR OFF command disables extended addressing. You cannot en-
able extended addressing before you define your extened memory configura-
tion with the EXT_ADDR_DEF command.

Define Extended Memory Configuration

ext_addr_def map start {@prog | @data}], reg addr [{@prog | @data | @io}], mask

none

basic debugger PDM profiling

The EXT_ADDR_DEF command describes your extended memory system to
the debugger.

Syntax

Menu selection

Environments

Description

Alphabetical Summary of Debugger and PDM Commands eval, file

(1 The map start parameter defines the beginning of the mapped memory
range. By default, the map start parameter is treated as a program-
memory address. However, you can follow it with @prog to identify
program memory or with @data to identify data memory.

[Thereg addr parameter defines the location of the memory mapped regis-
ter (PMR or DMR).

B If you are defining program memory, use the address for the PMR.
W If you are defining data memory, use the address for the DMR.

By default, the reg addr parameter is treated as a program-memory
address. However, you can follow it with @prog to identify program
memory, with @data to identify data memory, or with @io to identify 1/O
space.

(1 The mask parameter is a bit-mask that represents the size of the PMR or
DMR.

Display Text File

file filename

Load—File

basic debugger |:| PDM profiling

The FILE command displays the contents of any text file in the FILE window.
The debugger continues to display this file until you run a program and halt in
a C function. This command is intended primarily for displaying C source code.
You can view only one text file at a time.

You are restricted to displaying files that are 400K bytes long or less.

Summary of Commands and Special Keys 16-29

fill, func Alphabetical Summary of Debugger and PDM Commands

I ' Verory

Syntax

Menu selection

Environments

Description

Syntax

Menu selection

Environments

Description

16-30

fill address, page, length, data

Memory—rFill

basic debugger |:| PDM |:| profiling
The FILL command fills a block of memory with a specified value.
[The address parameter identifies the first address in the block.

(1 The page parameter is a one-digit number that identifies the type of
memory (program or data) to fill:

To save this type of memory Use this value as the page parameter

Program memory 0
Data memory 1
I/O space 2 (emulator only)

[The length parameter defines the number of words to fill.

(1 The data parameter is the value that is placed in each word in the block.

Display Function

func function name
func address

none

basic debugger |:| PDM profiling

The FUNC command displays a specified C function in the FILE window. You
can identify the function by its name or its address; an address parameter is
treated as a program-memory address. Note that FUNC works the same way
FILE works, but with FUNC you don'’t need to identify the name of the file that
contains the function.

Alphabetical Summary of Debugger and PDM Commands g0, halt, help, history

Syntax

Menu selection

Environments

Description

Syntax

Menu selection

Environments

Description

Syntax

Menu selection

Environments

Description

Syntax

Menu selection

Environments

Description

Run to Specified Address

go [address]

none

basic debugger |:| PDM |:| profiling

The GO command executes code up to a specific point in your program. The
address parameter is treated as a program-memory address. If you don’t
supply an address, then GO acts like a RUN command without an expression
parameter.

Halt Target System Emulator Only
halt
none
basic debugger |:| PDM |:| profiling

The HALT command halts the target system after you’ve entered a RUNF
command. When you invoke the debugger, it automatically executes a HALT
command. Thus, if you enter a RUNF, quit the debugger, and later reinvoke
the debugger, you will effectively reconnect the emulator to the target system
and run the debugger in its normal mode of operation.

List PDM Commands

help [command]

none

|:| basic debugger PDM |:| profiling

The HELP command provides a brief description of the requested PDM
command. If you omit the command parameter, the PDM lists all of the avail-
able PDM commands.

List the Last Twenty PDM Commands

history

none

|:| basic debugger PDM |:| profiling

The HISTORY command displays the last twenty PDM commands that you've
entered.

Summary of Commands and Special Keys 16-31

if/elif/else/endif Alphabetical Summary of Debugger and PDM Commands

if/elif/else/endif

Syntax

Menu selection

Environments

Description

16-32

Conditionally Execute PDM Commands

if expression
PDM commands
[elif expression
PDM commands]
[else

PDM commands]
endif

none

|:| basic debugger PDM |:| profiling

These commands allow you to execute PDM commands conditionally in a
batch file or from the command line.

[If the expression for the IF is nonzero, the PDM executes all commands
between the IF and ELIF, ELSE, or ENDIF.

(1 The ELIF is optional. If the expression for the ELIF is nonzero, the PDM
executes all commands between the ELIF and ELSE or ENDIF.

[The ELSE is optional. If the expressions for the IF and ELIF (if present) are
false (zero), the PDM executes the commands between the ELSE and
ENDIF.

The IF/ELIF/ELSE/ENDIF can be entered interactively or included in a batch
file that is executed by the TAKE command. When you enter IF from the PDM
command line, a question mark (?) prompts you for the next entry. The PDM
continues to prompt you for input using the ? until you enter ENDIF. After you
enter ENDIF, the PDM immediately executes the IF command.

If you are in the middle of interactively entering an IF statement and want to
abort it, type ©.

if/else/endif

Syntax

Menu selection

Environments

Description

Syntax
Menu selection

Environments

Description

Alphabetical Summary of Debugger and PDM Commands if/else/endif, load

Conditionally Execute Debugger Commands

if expression
debugger commands
[else

debugger commands]
endif

none

basic debugger |:| PDM profiling

These commands allow you to execute debugger commands conditionally in
a batch file. If the expression if nonzero, the debugger executes the
commands between the IF and the ELSE or ENDIF. Note that the ELSE portion
of the command sequence is optional.

You can substitute a keyword for the expression. Keywords evaluate to true
(1) or false (0). You can use the following keywords with the IF command:

O $$EMUSS (tests for the emulator version of the debugger)
O $$SIM$$ (tests for the simulator version of the debugger)

The conditional commands work with the following provisions:

[d You can use conditional commands only in a batch file.
[d You must enter each debugger command on a separate line in the file.
[You can’t nest conditional commands within the same batch file.

Load Executable Object File

load object filename

Load— Load

basic debugger |:| PDM profiling

The LOAD command loads both an object file and its associated symbol table
into memory. In effect, the LOAD command performs both a RELOAD and an
SLOAD. If you don’t supply an extension, the debugger looks for filename.out.
Note that the LOAD command clears the old symbol table and closes the
WATCH and DISP windows.

Summary of Commands and Special Keys 16-33

loop/break/continue/endloop Alphabetical Summary of Debugger and PDM Commands

Syntax

Menu selection

Environments

Description

16-34

loop/break/ Loop Through PDM Commands
continue/endloop

loop Boolean expression
PDM commands

[break]

[continue]

endloop

none

|:| basic debugger PDM |:| profiling

The LOOP/BREAK/CONTINUE/ENDLOOP commands allow you to set up a
looping situation in a batch file or from the command line. Unlike the debugger
version of the LOOP/ENDLOOP commands, the PDM version of the LOOP
command evaluates only Boolean expressions:

[If the Boolean expression evaluates to true (1), the PDM executes all
commands between the LOOP and BREAK, CONTINUE, or ENDLOOP.

(O [f the Boolean expression evaluates to false (0), the loop is not entered.

The optional BREAK command allows you to exit the loop without having to
reach the ENDLOOP. This is helpful when you are testing a group of proces-
sors and want to exit if an error is detected.

The CONTINUE command, which is also optional, acts as a goto and returns
command flow to the enclosing LOOP command. CONTINUE is useful when
the part of the loop that follows is complicated; returning to the top of the loop
avoids further nesting.

The LOOP/BREAK/CONTINUE/ENDLOOP commands can be entered inter-
actively or included in a batch file that is executed by the TAKE command.
When you enter LOOP from the PDM command line, a question mark (?)
prompts you for the next entry. The PDM continues to prompt you for input
using the ? until you enter ENDLOOP. After you enter ENDLOOP, the PDM
immediately executes the LOOP command.

If you are in the middle of interactively entering an LOOP statement and want
to abort it, type ©.

loop/endloop

Syntax

Menu selection

Environments

Description

Alphabetical Summary of Debugger and PDM Commands loop/endloop, ma

Loop Through Debugger Commands

loop expression
debugger commands
endloop

none

basic debugger |:| PDM profiling

The LOOP/ENDLOOP commands allow you to set up a looping situation in a
batch file. These looping commands evaluate in the same method as in the run
conditional command expression:

[d If you use an expression that is not Boolean, the debugger evaluates the
expression as a loop count.

[If you use a Boolean expression, the debugger executes the command
repeatedly as long as the expression is true.

The LOOP/ENDLOOP commands work under the following conditions:

(1 You can use LOOP/ENDLOOP commands only in a batch file.
[You must enter each debugger command on a separate line in the file.
] You can’'t nest LOOP/ENDLOOP commands within the same file.

EEE Aoc Block to Memory Map

Syntax
Menu selection
Environments

Description

ma address, page, length, type

Memory—Add

basic debugger |:| PDM profiling

The MA command identifies valid ranges of target memory. Note that a new
memory map must not overlap an existing entry; if you define a range that over-
laps an existing range, the debugger ignores the new range.

(1 The address parameter defines the starting address of a range in data or
program memory. This parameter can be an absolute address, any C
expression, the name of a C function, or an assembly language label.

Summary of Commands and Special Keys 16-35

ma, map Alphabetical Summary of Debugger and PDM Commands

Syntax

Menu selection

Environments

Description

16-36

[The page parameter is a one-digit number that identifies the type of
memory (program, data, or 1/O) that the range occupies:

To identify this page, Use this value as the page parameter
Program memory 0
Data memory 1
I/O space 2

(1 Thelength parameter defines the length of the range. This parameter can
be any C expression.

(O Thetype parameter identifies the read/write characteristics of the memory
range. The type must be one of these keywords:

Use this keyword as the type

To identify this kind of memory, parameter

Read-only memory R, ROM, or READONLY
Write-only memory W, WOM, or WRITEONLY
Read/write memory WR or RAM

No-access memory PROTECT

Input port INPORT or P|R

Output port OUTPORT or P|W
Input/output port IOPORT or P|R|W

You can use the INPORT, OUTPORT, and IOPORT type parameters and the
page 2 parameter in conjunction with the MC command to simulate 1/O ports.

Enable Memory Mapping

map {on | off}

Memory—Enable

basic debugger |:| PDM profiling

The MAP command enables or disables memory mapping. In some instances,
you may want to explicitly enable or disable memory. Note that disabling
memory mapping can cause bus fault problems in the target because the
debugger may attempt to access nonexistent memory.

Syntax
Menu selection

Environments

Description

Alphabetical Summary of Debugger and PDM Commands mMC

Connect Simulated I/O Port to a File Simulator Only

mc port address, page, length, filename, {READ | WRITE}

Memory—Connect

basic debugger |:| PDM |:| profiling

The MC command connects INPORT, OUTPORT, or IOPORT to an input or
output file. Before you can connect the port, you must add it to the memory map
with the MA command.

[The port address parameter defines the address of the 1/0O port. This
parameter can be an absolute address, any C expression, the name of a
C function, or an assembly language label.

(1 The page parameter is a one-digit number that identifies the page that the
port occupies.

To identify this page, Use this value as the page parameter
Program memory 0
Data memory 1
1/0 space 2

[d Thelength parameter defines the length of the range. This parameter can
be any C expression.

(1 The filename parameter can be any filename. If you connect a port to read
from a file, the file must exist or the MC command will fail.

(1 The final parameter is specified as READ or WRITE and defines how the
file will be used (for input or output, respectively).

The file is accessed during an IN or OUT instruction to the associated port
address. Any port in I/O space can be connected to a file. A maximum of one
input and one output file can be connected to a single port; multiple ports can
be connected to a single file. Memory-mapped ports can also be connected
to files; any instruction that reads or writes to the memory-mapped port will
read or write to the associated file.

Summary of Commands and Special Keys 16-37

md Alphabetical Summary of Debugger and PDM Commands

L Dc/ete Block From Memory Map

Syntax md address, page

Menu selection Memory—Delete

Environments basic debugger |:| PDM profiling

Description The MD command deletes a range of memory from the debugger’s memory
map.

(4 The address parameter identifies the starting address of the range of
program, data, or /O memory. If you supply an address that is not the
starting address of a range, the debugger displays this error message in
the display area of the COMMAND window:

Specified map not found

[The page parameter is a one-digit number that identifies the type of
memory (program, data, or I/O) that the range occupies:

To identify this page, Use this value as the page parameter
Program memory 0
Data memory 1
I/O space 2
Note:

If you want to use the MD command to remove a simulated 1/O port, you must
first disconnect the port with the Ml command.

16-38

Syntax
Menu selection

Environments

Description

Alphabetical Summary of Debugger and PDM Commands mem

Modify MEMORY Window Display

mem expression |, display format] [, window name] |

none

] ppom

The MEM command identifies a new starting address for the block of memory
displayed in the MEMORY window. The optional window name parameter
opens an additional MEMORY window, allowing you to view a separate block
of memory. The debugger displays the contents of memory at expression in
the first data position in the MEMORY window. The end of the range is defined
by the size of the window. The expression can be an absolute address, a
symbolic address, or any C expression.

basic debugger |:| profiling

By default, the MEMORY window displays data memory. You can display other
types of memory using one of these suffixes after the expression:

To identify . . . Use this suffix... MEMORY window label
Program memory @prog MEMORY [PROG]
Extended program memory? ~ @prog16 MEMORY [PROG16]
Data memory @data MEMORY

Extended data memoryt @data16 MEMORY [DATA16]

I/O space? @io MEMORY [IO]

T Valid only when extended addressing is enabled.
* Valid only with the emulator.

When you use the optional display format parameter, memory is displayed in
one of the following formats:

Parameter Result Parameter Result
* Default for the data type o Octal
c ASCII character (bytes) p Valid address
d Decimal u Unsigned decimal
e Exponential floating point X Hexadecimal
f Decimal floating point

Summary of Commands and Special Keys 16-39

mi, minimal Alphabetical Summary of Debugger and PDM Commands

Syntax

Menu selection

Environments

Description

Syntax

Menu selection

Environments

Description

16-40

Disconnect I/O Port Simulator Only

mi port address, page, {READ | WRITE}

Memory—DisConn

basic debugger |:| PDM profiling

The MI command disconnects a simulated 1/O port from its associated system
file.

[The port address parameter identifies the address of the I/O port, which
must have been previously defined with the MC command.

[The page parameter is a one-digit number that identifies the type of
memory (program, data, or 1/0) that the port occupies:

To identify this page, Use this value as the page parameter
Program memory 0
Data memory 1
I/O space 2

The page parameter for the Ml command must match the page parameter
that was used with the MC command to connect the port.

Enter Minimal Mode

minimal
MoDe—MiNimal

basic debugger |:| PDM |:| profiling

The MINIMAL command changes from the current debugging mode to
minimal mode. If you're already in minimal mode, the MINIMAL command has
no effect.

Syntax

Menu selection

Environments

Description

Syntax

Menu selection

Environments

Description

Alphabetical Summary of Debugger and PDM Commands mixX, mli

Enter Mixed Mode

mix
MoDe—Mixed

basic debugger |:| PDM |:| profiling

The MIX command changes from the current debugging mode to mixed mode.
If you're already in mixed mode, the MIX command has no effect.

List Memory Map

ml

Memory—List

basic debugger |:| PDM profiling

The ML command lists the memory ranges that are defined for the debugger’s
memory map. The ML command lists the starting address, ending address,
and read/write characteristics of each defined memory range.

Summary of Commands and Special Keys 16-41

move Alphabetical Summary of Debugger and PDM Commands

Syntax
Menu selection

Environments

Description

16-42

Move Active Window

move [X position, Y position [, width, length]]
none

basic debugger |:| PDM profiling

The MOVE command moves the active window to the specified XY position.
If you choose, you can resize the window while you move it (see the SIZE
command for valid width and length values). You can use the MOVE command
in one of two ways:

(1 By supplying a specific X position and Y position or

(J By omitting the X position and Y position parameters and using function
keys to interactively move the window.

You can move a window by defining a new XY position for the window’s upper
left corner. Valid X and Y positions depend on the screen size and the window
size. X positions are valid if the X position plus the window width in characters
is less than or equal to the screen width in characters. Y positions are valid if
the Y position plus the widow height is less than or equal to the screen height
in lines.

For example, if the window is 10 characters wide and 5 lines high and the
screen size is 80 x 25, the command move 70, 20 would put the lower right-
hand corner of the window in the lower right-hand corner of the screen. No X
value greater than 70 or Y value greater than 20 would be valid in this example.

If you enter the MOVE command without X position and Y position parameters,
you can use arrow keys to move the window.

@) Moves the active window down one line.

Moves the active window up one line.

Moves the active window left one character position.
Moves the active window right one character position.

When you're finished using the arrow keys, you must press or (2).

Syntax

Menu selection

Environments

Description

Syntax
Menu selection

Environments

Description

Alphabetical Summary of Debugger and PDM Commands mr, ms

Reset Memory Map

mr

Memory—Reset

basic debugger |:| PDM profiling

The MR command resets the debugger’s memory map by deleting all defined
memory ranges from the map.

Save Memory Block to File

ms address, page, length, filename

Memory—Save

basic debugger |:| PDM profiling

The MS command saves the values in a block of memory to a system file; files
are saved in COFF format.

(1 The address parameter identifies the first address in the block.

1 The page is a one-digit number that identifies the type of memory
(program, data, or I/O) to save:

To save this type of memory Use this value as the page parameter

Program memory 0
Data memory 1
1/0 space 2 (emulator only)

(1 The length parameter defines the length, in words, of the block. This
parameter can be any C expression.

4 The filename is a system file. If you don’t supply an extension, the
debugger adds an .obj extension.

Summary of Commands and Special Keys 16-43

next, patch Aiphabetical Summary of Debugger and PDM Commands

Syntax

Menu selection

Environments

Description

Syntax

Menu selection

Environments

Description

16-44

Single-Step, Next Statement

next [expression]

Next=F10 (in disassembly)
basic debugger |:| PDM |:| profiling

The NEXT command is similar to the STEP command. If you're in C code, the
debugger executes one C statement at a time. In assembly or mixed mode,
the debugger executes one assembly language statement at a time. Unlike
STEP, NEXT never updates the display when executing called functions;
NEXT always steps to the next consecutive statement. Unlike STEP, NEXT
steps over function calls rather than stepping into them—you don’t see the
single-step execution of the function call.

The expression parameter specifies the number of statements that you want
to single-step. You can also use a conditional expression for conditional single-
step execution (Running code conditionally, page 8-18, discusses this in
detail).

Patch Assemble

patch address, assembly language instruction

none

basic debugger |:| PDM |:| profiling

The PATCH command allows you to patch-assemble disassembly state-
ments. The address parameter identifies the address of the statement you
want to change. The assembly language instruction parameter is the new
statement you want to use at address.

Syntax

Menu selection

Environments

Description

Syntax

Menu selection

Environments

Description

Alphabetical Summary of Debugger and PDM Commands pause, pesc

Pause Execution

pause

none

basic debugger PDM |:| profiling

The PAUSE command allows you to pause the debugger or PDM while
running a batch file or executing a flow control command. Pausing is especially
helpful in debugging the commands in a batch file.

When the debugger or PDM reads this command in a batch file or during a flow
control command segment, the debugger/PDM stops execution and displays
the following message:

<< pause - type return >>

To continue processing, press &.

Send ESC Key to Debuggers

pesc [-g {group | processor name}]

none

|:| basic debugger PDM |:| profiling

The PESC command sends the key to an individual debugger or to a
group of debuggers. PESC halts program execution, but all processors in a
group don’t halt at the same real time; individual processors halt in the order
in which they were added to the group.

The -g option identifies the group or processor that the command should be
sent to. If you don’t use this option, the key is sent to the default group

(dgroup).

Summary of Commands and Special Keys 16-45

pf, phalt Alphabetical Summary of Debugger and PDM Commands

Syntax

Menu selection

Environments

Description

Syntax

Menu selection

Environments

Description

16-46

Profile, Full Simulator Only

pf starting point [, update rate]

Profile—Full

basic debugger |:| PDM profiling

The PF command initiates a RUN and collects a full set of statistics on the
defined areas between the starting point and the first-encountered stopping
point. The starting point parameter can be a label, a function name, or a
memory address.

The optional update rate parameter determines how often the PROFILE
window will be updated. The update rate parameter can have one of these
values:

Value Description

0 This is the default. Statistics are not updated until the session is halted
(although you can force an update by clicking the mouse in the window
header). A “spinning wheel” character is shown to indicate that a profiling
session is in progress.

2>1 Statistics are updated during the session. A value of 1 means that data
is updated as often as possible.

<0 Statistics are not updated until the profiling session is halted, and the
“spinning wheel” character is not displayed.

Halt Processors in Parallel

phalt [{-g group | processor name}]

none

|:| basic debugger PDM |:| profiling

The PHALT command halts one or more processors. If you send a PRUN or
PRUNF command to a group or to an individual processor, you can use PHALT
to halt the group or the individual processor. Each processor in a group is
halted at the same real time. If you don’t use the —g option to specify a group
or a processor name, the PHALT command will be sent to the default group
(dgroup).

Syntax

Menu selection

Environments

Description

Syntax

Menu selection

Environments

Description

Syntax
Menu selection
Environments

Description

Alphabetical Summary of Debugger and PDM Commands ~ pinc, pind, pinl

Connect Pin Simulator Only

pinc pinname, filename

Pin—Connect

basic debugger |:| PDM |:| profiling

The PINC command connects an input file to interrupt pin.

[The pinname parameter identifies the interrupt pin and must be one of the
five interrupt pins (INT1-INT4 or BIO).

(4 The filename parameter is the name of your input file.

Disconnect Pin Simulator Only

pind pinname

Pin—Disconnect

basic debugger |:| PDM |:| profiling

The PIND command disconnects an input file from an interrupt pin. The
pinname parameter identifies the interrupt pin and must be one of the five
interrupt pins, (INT1-INT4 or BIO).

List Pin Simulator Only
pinl

Pin—List

basic debugger |:| PDM |:| profiling

The PINL command displays all of the pins—unconnected pins first, followed
by the connected pins. For a connected pin, the simulator displays the name
of the pin and the absolute pathname of the file in the COMMAND window.

Summary of Commands and Special Keys 16-47

pPg, pr, prompt Alphabetical Summary of Debugger and PDM Commands

Syntax

Menu selection

Environments

Description

Syntax

Menu selection

Environments

Description

Syntax

Menu selection

Environments

Description

16-48

Profile, Quick Simulator Only

pq starting point [, update rate)

Profile—Quick

|:| basic debugger |:| PDM profiling

The PQ command initiates a RUN command and collects a subset of the avail-
able statistics on the defined areas between the starting point and the first-en-
countered stopping point. PQ is similar to PF, except that PQ doesn’t collect
exclusive or exclusive max data.

The update rate parameter is the same as for the PF command.

Resume Profiling Session Simulator Only

pr |[clear data [, update rate]]

Profile—Resume

|:| basic debugger |:| PDM profiling

The PR command resumes the last profiling session (initiated by PF or PQ),
starting from the current program counter.

The optional clear data parameter tells the debugger whether or not it should
clear out the previously collected data. The clear data parameter can have one
of these values:

Value Description

0 This is the default. The profiler will continue to collect data, adding it to
the existing data for the profiled areas, and to use the previous internal
profile stacks.

nonzero All previously collected profile data and internal profile stacks are
cleared.

The update rate parameter is the same as for the PF and PQ commands.

Change Command-Line Prompt

prompt new prompt

Color—Prompt

basic debugger |:| PDM profiling

The PROMPT command changes the command-line prompt. The new prompt
can be any string of characters (note that a semicolon or comma ends the
string).

Syntax

Menu selection

Environments

Description

Syntax

Menu selection

Environments

Description

Alphabetical Summary of Debugger and PDM Commands ~ prun, prunf

Run Code in Parallel

prun [-r] [-g{group | processor name}]

none

|:| basic debugger PDM |:| profiling

The PRUN command is the basic command for running an entire program. You
enter the command from the PDM command line to begin execution at the
same real time for an individual processor or a group of processors. The -g
option identifies the group or processor that the command should be sent to.
If you don’t use this option, then code will run on the default group (dgroup).
You can use the PHALT command to stop a global run.

The -r (return) option for the PRUN command determines when control
returns to the PDM command line:

(0 Without -r, control is not returned to the command line until each
debugger in the group finishes running code. If you want to to break out
of a synchronous command and regain control of the PDM command line,
press in the PDM window. This will return control to the PDM
command line. However, no debugger executing the command will be
interrupted.

[d With -r, control is returned to the command line immediately, even if a
debugger is still executing a command. You can type nhew commands, but
the processors can’t execute the commands until they finish with the
current command; however, you can perform PHALT, PESC, and STAT
commands when the processors are still executing.

Run Free in Parallel

prunf [-g {group | processor name}]

none

|:| basic debugger PDM |:| profiling

The PRUNF command starts the processors running free, which means they
are disconnected from the emulator. RUNF synchronizes the debuggers to
cause the processors to begin execution at the same real time. The —g option
identifies the group or processor that the command should be sent to. If you
don’t use this option, then code will run on the default group (dgroup).

The PHALT command stops a PRUNF; note that the debugger automatically
executes a PHALT when the debugger is invoked.

Summary of Commands and Special Keys 16-49

pstep, quit Alphabetical Summary of Debugger and PDM Commands

Syntax

Menu selection

Environments

Description

Syntax

Menu selection

Environments

Description

Syntax

Menu selection

Environments

Description

16-50

Single-Step in Parallel

pstep [-g {group | processor name}] [count]

none

|:| basic debugger PDM |:| profiling

The PSTEP command single-steps synchronously through assembly
language code with interrupts disabled. RUNF synchronizes the debuggers to
cause the processors to begin execution at the same real time. The -g option
identifies the group or processor that the command should be sent to. If you
don’t use this option, then code will run on the default group (dgroup). You can
use the PHALT command to stop a global run.

You can use the count parameter to specify the number of statements that you
want to single-step.

Note:

If the current statement that a processor is pointing to has a breakpoint, that
processor will not step synchronously with the other processors when you
use the PSTEP command. However, that processor will still single-step.

Exit Debugger

quit
none

basic debugger PDM profiling

The QUIT command exits the debugger and returns to the operating system.
If you enter this command from the PDM, the PDM and all debuggers running
under the PDM are exited.

Switch to the Real-Time Mode

realtime

none

basic debugger PDM profiling

The REALTIME command switches the debugger from stop mode to real-time
mode. When you use the REALTIME command, the debugger deletes all
breakpoints that you might have set in stop mode.

Alphabetical Summary of Debugger and PDM Commands

Syntax

Menu selection

Environments

Description

reload

Syntax

Menu selection

Environments

Description

Syntax

Menu selection

Environments

Description

reconnect, reload, reset

Before you use the REALTIME command, you must load the real-time monitor
program into target memory or embed the monitor program in your application
code. For more information, see the Switching to the real-time mode subsec-
tion on page 1-24.

Reset Communication With Emulator

reconnect

none

basic debugger PDM profiling

The RECONNECT command reinitializes communication between the
debugger and the emulator. This command can be used after an unrecover-
able fatal error.

Note that any software breakpoints set before a reconnect may still reside in
memory after the reconnect. However, the debugger will not recognize that the
breakpoints are set. You should reload memory in order to clear out any
residual breakpoints.

Reload Object Code

reload [object filename]

Load—Reload

basic debugger |:| PDM profiling

The RELOAD command loads only an object file without loading its
associated symbol table. This is useful for reloading a program when target
memory has been corrupted. If you enter the RELOAD command without
specifying a filename, the debugger reloads the file that you loaded last.

Reset Target System

reset

Load—ReseT

basic debugger |:| PDM profiling

The RESET command resets the target system (emulator only) or simulator
and reloads the monitor. Note that this is a software reset.

If you are using the simulator and execute the RESET command, the simulator
simulates the ’C2xx processor and peripheral reset operation, putting the
processor in a known state.

Summary of Commands and Special Keys 16-51

restart, return, run

Syntax

Menu selection

Environments

Description

Syntax

Menu selection

Environments

Description

Syntax

Menu selection

Environments

Description

16-52

Alphabetical Summary of Debugger and PDM Commands

Reset PC to Program Entry Point

restart
rest

Load—REstart

basic debugger |:| PDM profiling

The RESTART or REST command resets the program to its entry point. (This
assumes that you have already used one of the load commands to load a
program into memory.)

Return to Function’s Caller

return
ret

none

basic debugger |:| PDM |:| profiling

The RETURN or RET command executes the code in the current C function
and halts when execution reaches the caller. Breakpoints do not affect this
command, but you can halt execution by pressing the left mouse button or
pressing EsO).

Run Code

run [expression]

Run=F5
basic debugger |:| PDM |:| profiling

The RUN command is the basic command for running an entire program. The
command’s behavior depends on the type of parameter you supply:

O [f you don’t supply an expression, the program executes until it encounters
a breakpoint or until you press the left mouse button or press &O .

(O If you supply a logical or relational expression, the run becomes
conditional (Running code conditionally, page 8-18, discusses this in
detail).

[[f you supply any other type of expression, the debugger treats the expres-
sion as a count parameter. The debugger executes count instructions,
halts, and updates the display.

Syntax

Menu selection

Environments

Description

Syntax

Menu selection

Environments

Description

Syntax
Menu selection

Environments

Description

Alphabetical Summary of Debugger and PDM Commands runf, sa, safehalt

Run Free Emulator Only
runf
none
basic debugger |:| PDM |:| profiling

The RUNF command disconnects the emulator from the target system while
code is executing. When you enter RUNF, the debugger clears all breakpoints,
disconnects the emulator from the target system, and causes the processor
to begin execution at the current PC. You can quit the debugger, or you can
continue to enter commands. However, any command that causes the
debugger to access the target at this time produces an error.

The HALT command stops a RUNF; note that the debugger automatically
executes a HALT when the debugger is invoked.

Add Stopping Point Simulator Only

sa address

Stop-points—Add

|:| basic debugger |:| PDM profiling

The SA command adds a stopping point at address. The address can be a
label, a function name, or a memory address.

Toggle Safehalt Mode

safehalt {on | off}

none

basic debugger PDM profiling

The SAFEHALT command places the debugger in safehalt mode. When safe-
halt mode is off (the default), you can halt a running target device either by
pressing or by cllicking a mouse button. When safehalt mode is on, you
can halt a running target device only by pressing (Es©; mouse clicks are
ignored.

Summary of Commands and Special Keys 16-53

scolor Alphabetical Summary of Debugger and PDM Commands

B Change Screen Colors

Syntax

Menu selection

Environments

Description

16-54

scolor area name, attribute; [, attributes [, attributes [, attribute4]1]]

Color—Config

basic debugger |:| PDM |:| profiling

The SCOLOR command changes the color of specified areas of the debugger
display and updates the display immediately. The area name parameter identi-
fies the area of the display that is affected. The attributes identify how the area
is affected. The first two attribute parameters usually specify the foreground
and background colors for the area. If you do not supply a background color,
the debugger uses black as the background.

Valid values for the attribute parameters include:

black blue green cyan
red magenta yellow white
bright blink

Valid values for the area name parameters include:

menu_bar menu_border menu_entry menu_cmd
menu_hilite menu_hicmd win_border win_hiborder
win_resize field_text field_hilite field_edit
field_label field_error cmd_prompt cmd_input
cmd_cursor cmd_echo asm_data asm_cdata
asm_label asm_clabel background blanks
error_msg file_line file_eof file_text
file_brk file_pc file_pc_brk

You don’t have to type an entire attribute or area name; you need to type only
enough letters to uniquely identify the attribute. If you supply ambiguous
attribute names, the debugger interprets the names in this order: black, blue,
bright, blink. If you supply ambiguous area names, the debugger interprets
them in the order that they’re listed above (left to right, top to bottom).

Syntax

Menu selection

Environments

Description

Syntax

Menu selection

Environments

Description

Alphabetical Summary of Debugger and PDM Commands sconfig, sd

Load Screen Configuration

sconfig [filename]

Color—Load

basic debugger |:| PDM profiling

The SCONFIG command restores the display to a specified configuration.
This restores the screen colors, window positions, window sizes, and border
styles that were saved with the SSAVE command into filename. If you don’t
supply a filename, the debugger looks for init.clr. The debugger searches for
the specified file in the current directory and then in directories named with the
D_DIR environment variable.

When you use the SCONFIG command to restore a configuration that includes
multiple WATCH or MEMORY windows, the additional windows are not dis-
played automatically. However, when you open an additional window using the
same name that you used before you saved the configuration, the debugger
displays the window in the correct location.

Delete Stopping Point Simulator Only

sd address

Stop-points—Delete

|:| basic debugger |:| PDM profiling

The SD command deletes the stopping point at address.

Summary of Commands and Special Keys 16-55

send Alphabetical Summary of Debugger and PDM Commands

B2 Scid Debugger Command to Individual Debuggers

Syntax send [-r] [-g{group | processor name}] debugger command

Menu selection none

Environments |:| basic debugger PDM |:| profiling
Description The SEND command sends any debugger command to an individual

processor or to a group of processors. If the command produces a message,
it will be displayed in the COMMAND window for the appropriate debugger(s)
and also in the PDM window.

[The -g option specifies the group or processor that the debugger
command should be sent to. If you don’t use this option, the command is
sent to the default group (dgroup).

[The -r (return) option determines when control returns to the PDM
command line:

B Without -r, control is not returned to the command line until each
debugger in the group finishes running code. Any results that are
printed in the COMMAND window of the individual debuggers will also
be echoed in the PDM command window. These results will be
displayed by processor.

If you want to break out of a synchronous command and regain control
of the PDM command line, press in the PDM window. This
will return control to the PDM command line. However, no debugger
executing the command will be interrupted.

B With -r, control is returned to the command line immediately, even if a
debugger is still executing a command. When you use -r, you do not
see the results of the commands that the debuggers are executing.

16-56

Syntax

Menu selection

Environments

Description

Alphabetical Summary of Debugger and PDM Commands set

Set a Variable to a String

set [group name |[= list of processor names]]

set

[variable [= string valuel]]

none

|:| basic debugger PDM |:| profiling

The SET command allows you to create groups of processors to which you can
send commands. With the SET command you can:

a

Define a group of processors. It is useful to define a group when you
plan to send commands to the same set of processors. The commands
are sent to the processors in the same order in which you added the
processors to the group. To define a group, specify a group name and then
list the processors you want in the group.

Set the default group. Defining a default group provides you with a short-
hand method of maintaining members in a group or of sending commands
to the same group. To set up the default group, use the SET command with
a special group name called dgroup.

Modify an existing group or creating a group based on another
group. Once you've created a group, you can add processors to it by
using the SET command and preceding the existing group name with a
dollar sign ($) in the list of processors. You can also use a group as part
of another group by preceding the existing group’s name with a dollar sign.
The dollar sign tells the PDM to use the processors listed previously in the
group as part of the new list of processors.

List all groups of processors. You can use the SET command without
any parameters to list all the processors that belong to a group, in the order
in which they were added to the group.

You can also use the SET command with system-defined variables to:

a

Change the prompt for the PDM. To change the PDM prompt, use the
SET command with the system variable called prompt. For example, to
change the PDM prompt to 3PROCs, enter:

set prompt = 3PROCs

Summary of Commands and Special Keys 16-57

set, setf Alphabetical Summary of Debugger and PDM Commands

Syntax

Menu selection

Environments

Description

16-58

[Check the execution status of the processors. In addition to displaying
the execution status of a processor or group of processors, the STAT
command (described on pagqj6—62) sets a system variable called status.
If all of the processors in the specified group are running, the status vari-
able is set to 1. If one or more of the processors in the group is halted, the
status variable is set to 0.

You can use this variable when you want an instruction loop to execute
until a processor halts (the LOOP/ENDLOOP command is described on

pagqj6-34):

(1 Create your own system variables. You can use the SET command to
create your own system variables that you can use with PDM commands.
For more information about creating your own system variables, see
page 2-18.

Set Default Data-Display Format

setf [data type, display format]

none

basic debugger |:| PDM |:| profiling

The SETF command changes the display format for a specific data type. If you
enter SETF with no parameters, the debugger lists the current display format
for each data type.

(O The data type parameter can be any of the following C data types:

char short uint ulong double
uchar int long float ptr

(O The display format parameter can be any of the following characters:

Parameter Result Parameter Result
* Default for the data type o Octal
c ASCII character (bytes) o] Valid address
d Decimal s ASCII string
e Exponential floating point u Unsigned decimal
f Decimal floating point X Hexadecimal

Syntax
Menu selection

Environments

Description

Alphabetical Summary of Debugger and PDM Commands setf, size

Only a subset of the display formats can be used for each data type. Listed
below are the valid combinations of data types and display formats.

Data Valid Display Formats Data Valid Display Formats
Type cdoxe f ps ujType cdoxe f psu
char(c) V v v Viflongd) v v N
uchar (d) v v v Vifulong (@) v v N N
short(d) v ~ + « v || float (e) v AN

int (d) NN A A v || double (e) VoA

uint (d) N oA NN v || ptr (p) \A v A
To return all data types to their default display format, enter:

setf *

Size Active Window

size [width, length]

none

basic debugger |:| PDM profiling

The SIZE command changes the size of the active window. You can use the
SIZE command in one of two ways:

(1 By supplying a specific width and length or

(1 By omitting the width and length parameters and using function keys to
interactively resize the window.

Valid values for the width and length depend on the screen size and the
window position on the screen. If the window is in the upper left corner of the
screen, the maximum size of the window is the same as the screen size minus
one line. (The exira line is needed for the menu bar.) For example, if the screen
size is 80 characters by 25 lines, the largest window size is 80 characters by
24 lines.

If a window is in the middle of the display, you can’t size it to the maximum
height and width—you can size it only to the right and bottom screen borders.
The easiest way to make a window as large as possible is to zoom it (see
Zooming a window on page 4-24).

Summary of Commands and Special Keys 16-59

size, sl, sload, sound Alphabetical Summary of Debugger and PDM Commands

Syntax

Menu selection

Environments

Description

Syntax

Menu selection

Environments

Description

16-60

If you enter the SIZE command without width and length parameters, you can
use arrow keys to size the window.

Makes the active window one line longer.

Makes the active window one line shorter.

Makes the active window one character narrower.
Makes the active window one character wider.

oo

When you're finished using the arrow keys, you must press or (2]

List Stopping Point Simulator Only

sl

Stop-points—List

|:| basic debugger |:| PDM profiling

The SL command lists all of the currently set stopping points.

Load Symbol Table

sload object filename

Load—Symbols

basic debugger |:| PDM profiling

The SLOAD command loads the symbol table of the specified object file.
SLOAD is useful in a debugging environment in which the debugger cannot,
or need not, load the object code (for example, if the code is in ROM). SLOAD
clears the existing symbol table before loading the new one but does not
modify memory or set the program entry point. Note that SLOAD closes the
WATCH and DISP windows.

Syntax

Menu selection

Environments

Description

Syntax

Menu selection

Environments

Description

Syntax

Menu selection

Environments

Description

Alphabetical Summary of Debugger and PDM Commands Spawhn, Sr

Enable Error Beeping

sound {on | off}

none

basic debugger |:| PDM |:| profiling

You can cause a beep to sound every time a debugger error message is
displayed. This is useful if the COMMAND window is hidden (because you
wouldn’t see the error message). By default, sound is off.

Invoke the 'C2xx Debugger

spawn emu2xx -nprocessor name [invocation options]

none

|:| basic debugger PDM |:| profiling

You must invoke a debugger for each processor that you want the PDM to
control. To invoke a debugger, use the SPAWN command.

[emu2xx is the executable that invokes the debugger. Note that emu2xx
refers to the emu2xx, emu2xxo, emu2xxw, and emu2xxwm executables.

The PDM associates the processor name with the actual processor
according to which executable you use. In order to invoke a debugger, the
PDM must be able to find the executable file for that debugger. The PDM
will first search the current directory and then search the directories listed
with the PATH statement.

[-n processor name supplies a processor name. You must use the -n
option since the PDM uses processor names to identify the various debug-
gers that are running. The processor name can consist of up to eight
alphanumeric or underscore characters and must begin with an alphabetic
character. Note that the name is not case sensitive. The processor name
must match one of the names defined in your board configuration file (see
Appendix B, Describing Your Target System to the Debugger).

Reset Stopping Point Simulator Only

Sr

Stop-points—Reset

|:| basic debugger |:| PDM profiling

The SR command resets (deletes) all currently set stopping points.

Summary of Commands and Special Keys 16-61

ssave, stat Alphabetical Summary of Debugger and PDM Commands

ssave

Syntax

Menu selection

Environments

Description

Syntax

Menu selection

Environments

Description

16-62

Save Screen Configuration

ssave [filename]

Color—Save

basic debugger |:| PDM |:| profiling

The SSAVE command saves the current screen configuration to a file. This
saves the screen colors, window positions, window sizes, and border styles.
The SSAVE command also saves the location of multiple WATCH and
MEMORY windows.

The filename parameter names the new screen configuration file. You can
include path information (including relative pathnames); if you don’t supply
path information, the debugger places the file in the current directory. If you
don’t supply a filename, then the debugger saves the current configuration into
a file named init.clr and places the file in the current directory.

Find the Execution Status of Processors

stat [{-g group | processor name}|

none

|:| basic debugger PDM |:| profiling

The STAT command tells you whether a processor is running or halted. If a
processor is halted when you execute this command, then the PDM also lists
the current PC value for that processor. If you don't use the —g option, the PDM
displays the status of the processors in the default group (dgroup).

Syntax

Menu selection

Environments

Description

Syntax

Menu selection

Environments

Description

Syntax

Menu selection

Environments

Description

Alphabetical Summary of Debugger and PDM Commands ~ step, system

Single-Step

step [expression]

Step=F8 (in disassembly)
basic debugger |:| PDM |:| profiling

The STEP command single-steps through assembly language or C code. If
you're in C code, the debugger executes one C statement at a time. In
assembly or mixed mode, the debugger executes one assembly language
statement at a time.

If you're single-stepping through C code and encounter a function call, the
STEP command shows you the single-step execution of the called function
(assuming that the function was compiled with the compiler’s —g debug
option). When function execution completes, single-step execution returns to
the caller. If the function wasn’t compiled with the debug option, the debugger
executes the function but doesn’t show single-step execution of the function.

The expression parameter specifies the number of statements that you want
to single-step. You can also use a conditional expression for conditional single-
step execution (Running code conditionally, page 8-18, discusses this in
detail).

Switch to the Stop Mode

stopmode

none

basic debugger PDM profiling

The STOPMODE command switches the debugger from real-time mode to
stop mode. When you use the STOPMODE command, the debugger deletes
all breakpoints that you might have set in real-time mode.

Enter Operating-System Command

system operating-system command

none

PDM (] profiling

The SYSTEM command allows you to enter a single operating-system
command without explicitly exiting the PDM environment.

|:| basic debugger

Summary of Commands and Special Keys 16-63

take, unalias Aiphabetical Summary of Debugger and PDM Commands

Syntax

Menu selection

Environments

Description

Syntax

Menu selection

Environments

Description

16-64

Execute Batch File

Basic debugger: take baich filename |, suppress echo flag]
PDM: take batch filename

none

basic debugger PDM profiling

The TAKE command tells the debugger or the PDM to read and execute
commands from a batch file. The batch filename parameter identifies the file
that contains commands. If you don’t supply a pathname as part of the file-
name, the PDM first looks in the current directory and then searches directo-
ries named with the D_DIR environment variable.

The batch filename for the PDM version of this command must have a .pdm
extension, or the PDM will not be able to read the file. In addition, the batch
file that the PDM reads can contain only PDM commands.

By default, the debugger echoes the commands to the display area of the
COMMAND window and updates the display as it reads the commands from
the batch file. For the debugger, you can change this behavior:

O If you don'’t use the suppress echo flag parameter, or if you use it but supply
a nonzero value, then the debugger behaves in the default manner.

1 If you would like to suppress the echoing and updating, use the value 0 for
the suppress echo flag parameter.

Delete Alias Definition

unalias alias name
unalias *

none

basic debugger PDM profiling
The UNALIAS command deletes defined aliases.
(O To delete a single alias, enter the UNALIAS command with an alias name.
For example, to delete an alias named NEWMAP, enter:
unalias NEWMAP
[0 To delete all aliases, enter an asterisk instead of an alias name:
unalias *
Note that the * symbol does not work as a wildcard.

Syntax

Menu selection

Environments

Description

Syntax
Menu selection

Environments

Description

Running Title—Attribute Reference

Delete Group

unset group name
unset *

none

|:| basic debugger PDM |:| profiling

The UNSET command deletes a group of processors. You can use this
command in conjunction with the SET command to remove a particular
processor from a group.

To delete all groups, enter an asterisk instead of a group name:
unset *

Note that the * symbol does not work as a wildcard.

Note:

When you use UNSET * to delete all of your system variables and processor
groups, variables such as prompt, status, and dgroup are also deleted.

Control

update [{off | wa | all | value}]

basic debugger PDM |:| profiling
The UPDATE command
Use this
To... command ...
Update the values in all windows (one time) update
Update the values in all windows as the values change update all

Update the values in the WATCH window as the values change update wa
Set the update period (value can be in tenths of a second) update value

Disable the periodic update of windows update off

Chapter Title—Attribute Reference 16-65

unset, use, vaaAiphabetical Summary of Debugger and PDM Commands

Syntax

Menu selection

Environments

Description

vaa

Syntax

Menu selection

Environments

Description

vac

Syntax

Menu selection

Environments

Description

version

Syntax

Menu selection

Environments

Description

16-66

Use New Directory

use [directory name]

none

basic debugger |:| PDM profiling

The USE command allows you to name an additional directory that the
debugger can search when looking for source files. You can specify only one
directory at a time.

If you enter the USE command without specifying a directory name, the
debugger lists all of the current directories.

Save All Profile Data to a File Simulator Only

vaa filename

View—Save—All views

[] Pom profiling

The VAA command saves all statistics collected during the current profiling
session. The data is stored in a system file.

|:| basic debugger

Save Displayed Profile Data to a File Simulator Only

vac filename

View—Save—Current view

] Pom profiling

The VAC command saves all statistics currently displayed in the PROFILE
window. (Statistics that aren’t displayed aren’t saved.) The data is stored in a
system file.

|:| basic debugger

Display the Current Debugger Version

version

none

basic debugger |:| PDM profiling

The VERSION command displays the debugger’s copyright date and the
current version number of the debugger, silicon, XDS, etc.

Syntax

Menu selection

Environments

Description

Syntax

Menu selection

Environments

Description

Alphabetical Summary of Debugger and PDM Commands Wa

Reset PROFILE Window Display Simulator Only
vr

View—Reset

|:| basic debugger |:| PDM profiling

The VR command resets the display in the PROFILE window so that all
marked areas are listed and statistics are displayed with default labels and in
the default sort order.

Add Item to WATCH Window

wa expression [,[label] [, [display format] [, window name]]]

Watch—Add

basic debugger |:| PDM |:| profiling

The WA command displays the value of expression in the WATCH window. If
the WATCH window isn’t open, executing WA opens the WATCH window. The
expression parameter can be any C expression, including an expression that
has side effects. If the expression identifies an address, you can follow it with
one of these suffixes:

To identify . . . Use this suffix . . .
Program memory @prog

Extended program memory* @prog16

Data memory @data

Extended data memoryt @data16

I/0 spacet @io

t Valid only when extended addressing is enabled.
* Valid only with the emulator.

Without the suffix, the debugger treats an address expression as a program-
memory location.

Summary of Commands and Special Keys 16-67

wd, whatis, win Alphabetical Summary of Debugger and PDM Commands

Syntax

Menu selection

Environments

Description

16-68

WA is most useful for watching an expression whose value changes over time;
constant expressions serve no useful function in the watch window. The label
parameter is optional. When used, it provides a label for the watched entry. If
you don'’t use a label, the debugger displays the expression in the label field.

When you use the optional display format parameter, data will be displayed in
one of the following formats:

Parameter Result Parameter Result
* Default for the data type o Octal
c ASCII character (bytes) p Valid address
d Decimal s ASCII string
e Exponential floating point u Unsigned decimal
f Decimal floating point X Hexadecimal

If you want to use a display format parameter without a label parameter, just
insert an extra comma. For example:

wa PC,,d

You can open additional WATCH windows by using the window name parame-
ter. When you open an additional WATCH window, the debugger appends the
window name to the WATCH window label. You can create as many WATCH
windows as you need.

If you omit the window name parameter, the debugger displays the expression
in the default WATCH window (labeled WATCH).

Delete Item From WATCH Window

wd index number [, window name]

Watch—Delete

basic debugger |:| PDM |:| profiling

The WD command deletes a specific item from the WATCH window. The WD
command’s index number parameter must correspond to one of the watch
indexes listed in the WATCH window. The optional window name parameter
is used to specify a particular WATCH window.

Syntax

Menu selection

Environments

Description

Syntax

Menu selection

Environments

Description

Syntax

Menu selection

Environments

Description

Alphabetical Summary of Debugger and PDM Commands WF, ZOOm

Find Data Type

whatis symbol

none

basic debugger |:| PDM |:| profiling

The WHATIS command shows the data type of symbol in the display area of
the COMMAND window. The symbol can be any variable (local, global, or
static), a function name, structure tag, typedef name, or enumeration constant.

Select Active Window

win WINDOW NAME

none

basic debugger |:| PDM profiling

The WIN command allows you to select the active window by name. Note that
the WINDOW NAME is in uppercase (matching the name exactly as
displayed). You can spell out the entire window name, but you really need to
specify only enough letters to identify the window.

If several windows of the same type are visible on the screen, don’t use the
WIN command to select one of them. If you supply an ambiguous name (such
as C, which could stand for CPU or CALLS), the debugger selects the first
window it finds whose name matches the name you supplied. If the debugger
doesn’t find the window you asked for (because you closed the window or
misspelled the name), then the WIN command has no effect.

Close WATCH Window

wr [{* | window name} |

Waich—Reset

basic debugger |:| PDM |:| profiling

The WR command deletes all items from a WATCH window and closes the
window.

[To close the default WATCH window, enter:
wr

Summary of Commands and Special Keys 16-69

Running Title—AttributeReference

[To close one of the additional WATCH windows, use this syntax:

wr windowname

[To close all WATCH windows, enter:
wr *

m Zoom Active Window

Syntax

Menu selection

Environments

Description

16-70

Zzoom

none

basic debugger |:| PDM profiling

The ZOOM command makes the active window as large as possible. To
unzoom a window, enter the ZOOM command a second time; this returns the
window to its prezoom size and position.

Summary of Profiling Commands (Simulator Only)

5.4 Summary of Profiling Commands (Simulator Only)

The following tables summarize the profiling commands that are used for
marking, enabling, disabling, and unmarking areas and for changing the
display in the PROFILE window. These commands are easiest to use from the
pulldown menus, so they are not included in the alphabetical command
summary. The syntaxes for these commands are provided here so that you
can include them in batch files.

Table 5-1. Marking Areas

To mark this area C only Disassembly only

Lines

1 By line number, address MCLE filename, line number MALE address

d Alllines in a function MCLF function MALF function

Ranges

1 By line numbers MCRE filename, line number, line number MARE address, address
Functions

1 By function name MCFE function not applicable

d All functions in a module MCFM filename

[All functions everywhere MCFG

Table 5-2. Disabling Marked Areas

To disable this area C only Disassembly only C and disassembly
Lines

1 By line number, address DCLE filename, line number DALE address not applicable

[Alllines in a function DCLF function DALF function DBLF function
d Alllines in a module DCLM filename DALM filename DBLM filename
1 Alllines everywhere DCLG DALG DBLG

Ranges

1 By line numbers, addresses DCRE filename, line number DARE address not applicable

[Allranges in a function DCRF function DARF function DBRF function
O Allranges in a module DCRM filename DARM filename DBRM filename
[Allranges everywhere DCRG DARG DBRG

Summary of Commands and Special Keys

16-71

Summary of Profiling Commands (Simulator Only)

Table 5-2. Disabling Marked Areas (Continued)

To disable this area C only Disassembly only C and disassembly
Functions

(O By function name DCFE function not applicable not applicable

[Allfunctions in a module DCFM filename DBFM filename

(O All functions everywhere DCFG DBFG

All areas

(1 Allareas in a function DCAF function DAAF function DBAF function

(1 All areas in a module DCAM filename DAAM filename DBAM filename

(1 All areas everywhere DCAG DAAG DBAG

Table 5-3. Enabling Disabled Areas

To enable this area C only Disassembly only C and disassembly
Lines

(1 By line number, address ECLE filename, line number EALE address not applicable

(a1 Alllines in a function ECLF function EALF function EBLF function
1 Alllines in a module ECLM filename EALM filename EBLM filename
[Alllines everywhere ECLG EALG EBLG

Ranges

(O By line numbers, addresses ECRE filename, line number EARE address not applicable

(O Allranges in a function ECRF function EARF function EBRF function
[Allranges in a module ECRM filename EARM filename EBRM filename
(O Allranges everywhere ECRG EARG EBRG
Functions

(1 By function name ECFE function not applicable not applicable

(a1 All functions in a module ECFM filename EBFM filename
(1 All functions everywhere ECFG EBFG

All areas

[Allareas in a function ECAF function EAAF function EBAF function
(1 Allareas in a module ECAM filename EAAM filename EBAM filename
(1 All areas everywhere ECAG EAAG EBAG

16-72

Table 5-4. Unmarking Areas

Summary of Profiling Commands (Simulator Only)

To unmark this area

C only

Disassembly only

C and disassembly

Lines

1 By line number, address
g Alllines in a function

d Alllines in a module

O Alllines everywhere
Ranges

1 By line numbers, addresses
O Allranges in a function
O Allranges in a module
1 Allranges everywhere
Functions

1 By function name

[All functions in a module
d All functions everywhere
All areas

d Allareas in a function

1 Allareas in a module

1 All areas everywhere

UCLE
UCLF
UCLM
UCLG

UCRE
UCRF
UCRM
UCRG

UCFE
UCFM
UCFG

UCAF
UCAM
UCAG

filename, line number
function

filename

filename, line number
function

filename

function

filename

function

filename

UALE address
UALF function
UALM filename
UALG

UARE address
UARF function
UARM filename
UARG

not applicable

UAAF function
UAAM filename
UAAG

not applicable
UBLF function
UBLM filename
UBLG

not applicable
UBRF function
UBRM filename
UBRG

not applicable
UBFM filename
UBFG

UBAF function
UBAM filename
UBAG

Summary of Commands and Special Keys 16-73

Summary of Profiling Commands (Simulator Only)

Table 5-5. Changing the PROFILE Window Display

(a) Viewing specific areas

To view this area C only Disassembly only C and disassembly
Lines
(1 By line number, address VFCLE filename, line number VFALE address not applicable
(a1 Alllines in a function VFCLF function VFALF function VFBLF function
O Alllines in a module VFCLM filename VFALM filename VFBLM filename
[Alllines everywhere VFCLG VFALG VFBLG
Ranges
(1 By line numbers, addresses VFCRE filename, line number VFARE address not applicable
(O Allranges in a function VFCREF function VFARF function VFBRF function
(O Allranges in a module VFCRM filename VFARM filename VFBRM filename
(1 Allranges everywhere VFCRG VFARG VFBRG
Functions
(1 By function name VFCFE function not applicable not applicable
(1 All functions in a module VFCFM filename VFBFM filename
(1 All functions everywhere VFCFG VFBFG
All areas
(O Allareas in a function VFCAF function VFAAF function VFBAF function
(1 All areas in a module VFCAM filename VFAAM filename VFBAM filename
(1 All areas everywhere VFCAG VFAAG VFBAG
(b) Viewing different data (c) Sorting the data

Use this Use this
To view this information command To sort on this data command
Count vDC Count VSC
Inclusive VDI Inclusive VSI
Inclusive, maximum VDN Inclusive, maximum VSN
Exclusive VDE Exclusive VSE
Exclusive, maximum VDX Exclusive, maximum VSX
Address VDA Address VSA
All VDL Data VSD

16-74

Summary of Special Keys

5.5 Summary of Special Keys

The debugger provides function key, cursor key, and command key
sequences for performing a variety of actions:

Editing text on the command line
Using the command history

Switching modes

Halting or escaping from an action
Displaying the pulldown menus
Running code

Selecting or closing a window

Moving or sizing a window

Scrolling through a window’s contents
Editing data or selecting the active field

[E NN NN

Editing text on the command line

Use these
To do this function keys

Move back over text without erasing characters
or

Move forward through text without erasing characters
Move back over text while erasing characters
Move forward through text while erasing characters

Insert text into the characters that are already on the command
line

Using the command history

Use these
To do this function keys
Repeat the last command that you entered

Move backward, one command at a time, through the command
history

Move forward, one command at a time, through the command
history

Summary of Commands and Special Keys 16-75

Summary of Special Keys

Switching modes

To do this

Use this
function key

Switch debugging modes in this order:

<—>auto —» assembly ———» mixed4>->

Halting or escaping from an action

The escape key acts as an end or undo key in several situations.

To do this

Use this
function key

Halt program execution
Close a pulldown menu

Undo an edit of the active field in a data-display window
(pressing this key leaves the field unchanged)

Halt the display of a long list of data in the display area of
the COMMAND window

ESC

Displaying pulldown menus

16-76

To do this

Use these
function keys

Display the Load menu
Display the Break menu
Display the Watch menu
Display the Memory menu
Display the Color menu
Display the MoDe menu
Display an adjacent menu

Execute any of the choices from a displayed pulldown menu

G ®
Do =

Press the high-
lighted letter
corresponding
to your choice

Summary of Special Keys

Running code

Use these
To do this function keys

Run code from the current PC (equivalent to the RUN command
without an expression parameter)

Single-step code from the current PC (equivalent to the STEP
command without an expression parameter)

Single-step code from the current PC; step over function calls F10
(equivalent to the NEXT command without an expression
parameter)

Selecting or closing a window

Use these
To do this function keys

Select the active window (pressing this key makes each window
active in turn; stop pressing the key when the desired window
becomes active)

Close the CALLS, WATCH, DISP, or additional MEMORY window
(the window must be active before you can close it)

Moving or sizing a window

You can use the arrow keys to interactively move a window after entering the
MOVE or SIZE command without parameters.

Use these
To do this function keys
Move the window down one line @3]
Make the window one line longer
Move the window up one line
Make the window one line shorter
Move the window left one character position
Make the window one character narrower
Move the window right one character position

Make the window one character wider

Summary of Commands and Special Keys 16-77

Summary of Special Keys

Scrolling a window’s contents

These descriptions and instructions for scrolling apply to the active window.
Some of these descriptions refer to specific windows; if no specific window is
named, then the description/instructions refer to any window that is active.

Use these
To do this function keys

Scroll up through the window contents, one window length at
atime

Scroll down through the window contents, one window length PAGE DOWN
atatime

Move the field cursor up, one line at a time

Move the field cursor down, one line at a time

QNGNS I

[FILE window only: Scroll left eight characters at a time

[0 Other windows: Move the field cursor left one field; at the
first field on a line, wrap back to the last fully displayed field
on the previous line

0]

(1 FILE window only: Scroll right eight characters at a time

(1 Other windows: Move the field cursor right one field; at the
last field on a line, wrap around to the first field on the next

line
FILE window only: Adjust the window’s contents so that the first
line of the text file is at the top of the window
FILE window only: Adjust the window’s contents so that the last
line of the text file is at the bottom of the window
DISP windows only: Scroll up through an array of structures
DISP windows only: Scroll down through an array of structures

16-78

Summary of Special Keys

Editing data or selecting the active field

The F9 function key makes the current field (the field that the cursor is pointing
to) active. This has various effects, depending on the field.

Use these
To do this function keys
FILE or DISASSEMBLY window: Set or clear a breakpoint

CALLS window: Display the source to a listed function
Any data-display window: Edit the contents of the current field

DISP window: Open an additional DISP window to display a
member that is an array, structure, or pointer

Summary of Commands and Special Keys 16-79

Icommand 2-13to 2-14, 13-13

? command 8-3, 13-12
display formats 3-25, 8-21, 13-12
examining register contents 8-12
modifying PC 7-12
side effects 8-5

$SEMUSS, 5-19

$$SIM$$, 5-19

@ command 2-19, 13-13

-@ debugger option 1-17

absolute addresses 8-7, 9-3
active window 4-20 to 4-22
breakpoints 9-3
current field 3-7, 4-19
customizing its appearance 10-4
default appearance 4-20
definition E-1
effects on command entry 5-3
identifying 3-6, 4-20
moving 3-9, 4-25 to 4-30, 13-38
selecting 3-6 to 3-7, 4-21 to 4-30, 13-62
function key method 3-6, 4-21, 13-70
mouse method 3-6, 4-21
WIN command 3-6 to 3-7, 4-21, 13-62
sizing 3-7, 4-22 to 4-30, 13-54
zooming 3-8, 4-24 to 4-30, 13-63
ADDR command 7-5, 7-9, 13-14
effect on DISASSEMBLY window 4-8
effect on FILE window 4-9
finding current PC 7-12
addresses
absolute addresses 8-7, 9-3
accessible locations 6-1, 6-2
contents of (indirection) 8-9, 8-17
data-memory notation 3-5, 4-14 to 4-30

Index

hexadecimal notation 8-7
1/0 address space, simulator 6-14 to 6-15
in MEMORY window 3-5, 4-13, 8-7
invalid memory 6-3
nonexistent memory locations 6-2
pointers in DISP window 3-22
program-memory notation 3-5, 4-14 to 4-30
protected areas 6-3, 6-9
symbolic addresses 8-7
undefined areas 6-3, 6-9
aggregate types
definition E-1
displaying 3-21, 4-17,8-13 t0 8-15
ALIAS command 3-28, 5-21 to 5-23, 13-15
See also aliasing
PDM version 2-151to 2-16
supplying parameters 5-21
aliasing 2-15to 2-16, 5-21 to 5-23
ALIAS command 3-28, 5-21 to 5-23, 13-15
PDM version 2-15to 2-16
definition E-1
deleting aliases 5-23
finding alias definitions 5-22
limitations 5-23
listing aliases 5-22
redefining an alias 5-22
Analysis Break Events dialog box 5-13, 11-5
analysis interface 11-1 to 11-8
commands 13-11, A-1to A-8
defining conditions 11-5to 11-7
description 1-5, 11-2
dialog boxes, Analysis Break Events 11-5
disabling 11-4
EMU pins 11-6to 11-7
description 11-2
enabling 11-4
hardware breakpoints 11-2, 11-5
breaking on event comparators 11-6
EMU pins 11-2, 11-6 to 11-7

Index-1

program bus accesses 11-2, 11-5
key features 1-5, 11-2
menu selections 11-4
EMU selection 11-6
process 11-3
running programs 11-8
View window 11-8
viewing analysis data 11-8
interpreting the STAT field 11-8

Analysis menu selections 11-4, 13-11
Break selection 11-5
EMU selection 11-6
View selection 11-8

analysis module. See analysis interface

ANSIC 1-10
definition E-1

area names (for customizing the display)
code-display windows 10-5
COMMAND window 10-4
common display areas 10-3
data-display windows 10-6
menus 10-7
summary of valid names 10-3 to 10-7
window borders 10-4

arithmetic operators 14-2

arrays
displaying/modifying contents 8-14
format in DISP window 3-23, 8-14, 13-22
member operators 14-2

arrow keys
COMMAND window 8-5
editing 8-4
moving a window 3-9, 4-26, 13-70
moving to adjacent menus 5-9
scrolling 3-10, 4-28, 13-71
sizing a window 3-8, 4-24, 13-70

-as shell option 1-13, 12-2

ASM command 3-13, 7-3, 13-15
menu selection 7-3, 13-10

assembler 1-11,1-12

assembly language code
displaying 4-2to 4-3, 4-4,7-4
modifying 7-5to 7-18

assembly mode 3-121to 3-14, 4-4,7-2
ASM command 3-13, 7-3, 13-15
definition E-1
selection 7-3

assignment operators 8-5, 14-3

Index-2

asynchronous serial port control register
(ASPCR) 6-26
asynchronous serial port simulation ('C203)
receive operation 6-29
transmit operation 6-29
asynchronous serial ports
connecting files to 6-29
I/O pins 6-30
simulator programming 6-30
asynchronous serial ports ('C203), simu-
lating 6-25 to 6-30
attributes 10-2
auto mode 3-12to 3-14, 4-21t0 4-3, 7-2
C command 3-13,7-3, 13-18
definition E-1
selection 7-3
autoexec.bat file, definition E-1
auxiliary registers 8-12

-b debugger option 1-18
effect on window positions 4-26
effect on window sizes 4-23
BA command 9-3, 13-16
menu selection 13-9
background 10-3
batch files 5-17
board.cfg C-1to C-5
sample C-2, C-4
board.dat C-1to C-5
controlling command execution 2-11 to 2-12,
5-18 to 5-21
conditional commands 2-11 to 2-14, 5-18 to
5-24, 13-29 to 13-63
looping commands 2-11 to 2-22, 5-20 to
5-24, 13-31, 13-32
definition E-1
displaying 7-9
displaying text when executing 2-13, 5-18,
13-24
echoing messages 2-13, 5-18, 13-24
emuinit.cmd 6-2, 6-12, B-1
execution 13-58
halting execution 5-17
init.clr 10-9, B-1
init.emd 6-3, B-2
definition E-4
init.pdm 1-15

initialization 6-2 to 6-30, B-1
emuinit.cmd 6-2, B-1
initemd 6-3, B-2
initpdm 1-15
siminit.cmd 6-2, B-1

mem.map 6-12

memory maps 6-12

mono.clr 10-9

siminit.cmd 6-2, B-1

TAKE command 5-17, 6-12, 13-58
PDM version 2-9

-bb debugger option 3-3
See also -b debugger option

BD command 9-4, 13-16
menu selection 13-9

benchmarking, definition E-1
BIO pseudoregister 6-16 to 6-30
bitwise operators 14-3

BL command 9-5, 13-16
menu selection 13-9

blanks 10-3

board configuration
creating the file C-21to C-5
naming an alternate file 1-19, C-5
specifying the file C-5
translating the file C-5
board.cfg file C-1to C-5
device names C-3
device types
BYPASS##, C-4
SPL C-4
TI320C2x
C-3
sample C-2,C-4
translating C-5
types of entries C-3to C-5

board.dat file C-1to C-5
default C-1

BORDER command 10-8, 13-17
menu selection 13-10

borders
colors 10-4
styles 10-8

BR command 9-4, 13-17
menu selection 13-9

BREAK command 2-11 to 2-22, 13-31
break event, definition E-1

Index

breakpoints (hardware) 11-5
breaking on event comparators 11-6
breaking on program bus accesses 11-6
definition E-1
global 11-6to 11-7

breakpoints (software) 9-1to 9-5
active window 3-7
adding 9-21t09-3, 13-16

command method 9-3
function key method 9-3, 13-72
mouse method 9-3
clearing 9-4,13-16, 13-17
command method 9-4
function key method 9-4, 13-72
mouse method 9-4
commands 13-5
BA command 9-3, 13-16
BD command 9-4, 13-16
BL command 9-5, 13-16
BR command 9-4, 13-17
menu selections 13-9
definition E-1
listing set breakpoints 9-5, 13-16
restrictions 9-2
setting 3-151t0 3-16, 9-2t0 9-3
command method 9-3
function key method 9-3, 13-72
mouse method 9-3

.bss section, clearing 1-19

bus accesses
See also analysis interface
hardware breakpoints 11-6

BYPASS## device type C-4

C command 3-13,7-3, 13-18
menu selection 7-3, 13-10
—c debugger option 1-19
C expressions 8-5, 14-1to 14-6
See also expressions
C language, definition E-2
C source
displaying 3-11, 4-2to 4-3, 4-4, 7-4, 13-26
managing memory data 8-9
’C203 serial ports
asynchronous. See asynchronous serial ports
('C203)
synchronous. See synchronous serial ports
('C203)

Index-3

CALLS command 4-10, 4-11, 7-9, 13-18
effect on debugging modes 4-5
CALLS window 3-11, 4-6, 4-10 to 4-30, 7-2, 7-9
closing 4-11, 4-30, 13-70
definition E-2
opening 4-11, 13-18
casting 3-24to 3-28, 8-9, 14-4
definition E-2
CHDIR (CD) command 3-21, 5-24, 7-11, 13-18
children
See also DISP window, children
definition E-2
clearing the display area 3-21, 5-5, 13-19
“click and type” editing 3-26, 4-29, 8-4 to 8-22
clicking, definition E-2
closing
awindow 4-30
CALLS window 4-11, 13-70
debugger 1-22, 3-28, 13-45
dialog boxes 5-151t0 5-16
DISP window 3-23, 8-15, 13-70
log files 2-10, 5-6, 13-23
MEMORY window 4-16
PDM 1-22, 13-45
WATCH window 3-19, 8-17, 13-63
CLS command 3-21, 5-5, 13-19
CNEXT command 7-15, 13-19
code, debugging 1-23
code-display windows 4-6, 7-2
CALLS window 3-11, 4-6, 4-10 to 4-30, 7-2, 7-9
definition E-2
DISASSEMBLY window 3-5, 4-6, 4-8, 7-2, 7-4
effect of debugging modes 7-2
FILE window 4-6, 4-9, 7-2, 7-4, 7-8
code-execution (run) commands. See run
commands

COFF
definition E-2
loading 6-3

COLOR command 10-2, 13-19 to 13-20
color.clr 10-9

colors 10-2to 10-7
area names 10-3to 10-7

comma operator 14-4

command history 5-5
function key summary 13-68
PDM version 2-13to 2-14, 13-13

Index-4

command line 4-7, 5-2
changing the prompt 10-12, 13-43
cursor 4-19
customizing its appearance 10-4, 10-12
definition E-2
editing 5-3
function key summary 13-68

COMMAND window 4-6, 4-7, 5-2

colors 10-4

command line 3-4, 4-7,5-2
editing keys 13-68

customizing 10-4

definition E-2

display area 3-4, 4-7,5-2
clearing 13-19

recording information from the display area 5-6,
13-23

commands
alphabetical summary 13-12to 13-63
analysis commands 13-11, A-1 to A-8
See also Analysis menu selections
batch files 5-17
controlling command execution
conditional commands 5-18 to 5-24, 13-30
looping commands 5-20 to 5-24, 13-32
breakpoint commands 9-1 to 9-5, 13-5
See also breakpoints, commands
code-execution (run) commands 7-12, 13-7
See also run commands
command line 5-2to 5-6
command strings 2-15to 2-16, 5-21 to 5-23
conditional commands 2-11 to 2-14, 5-18,
13-29 to 13-63
controlling command execution
conditional commands 2-11 to 2-14, 13-29 to
13-63
looping commands 2-11 to 2-22, 13-31
customizing 2-15to 2-16, 5-21 to 5-23
data-management commands 8-2 to 8-22, 13-4
See also data-management commands
entering and using 5-1 to 5-24
file-display commands 7-4 to 7-9, 13-6
See also file/load commands
load commands 7-10, 13-6
See also load/file commands
looping commands 2-11 to 2-22, 5-20, 13-31,
13-32
memory commands 6-7 to 6-30
See also memory, commands

memory-map commands 13-7
See also memory, mapping, commands
menu selections 5-7
mode commands 7-2to 7-3, 13-4
See also debugging modes, commands
PDM commands 13-3
profiing commands 13-8
See also profiling, commands
run commands. See run commands
screen-customization commands 10-1 to 10-12,
13-6
See also screen-customization commands
system commands 2-16, 13-5
See also system commands
window commands 13-4
See also windows, commands
compiler 1-10, 1-12
key characteristics 1-10
composer utility C-5

conditional commands 2-11 to 2-14, 5-18 to 5-24,
13-29 to 13-63
contacting Texas Instruments, ix
CONTINUE command 2-11 to 2-22, 13-31
CPU window 4-6, 4-16, 8-2, 8-1210 8-13
colors 10-6
customizing 10-6
definition E-2
editing registers 8-4
CSTEP command 3-18, 7-15, 13-20
current directory, changing 5-24, 7-11, 13-18
current field
cursor 4-19
dialog box 5-4
editing 8-4 to 8-22
current PC 3-4, 4-8
finding 7-12
selecting 7-12
cursors 4-19
command-line cursor 4-19
definition E-2
current-field cursor 4-19
definition E-2
definition E-2
mouse cursor 4-19
definition E-4
customizing the display 10-1to 10-12
changing the prompt 10-12
colors 10-2to 10-7

Index

loading a custom display 10-10, 13-50
saving a custom display 10-9, 13-56
window border styles 10-8

-d debugger option 1-19
D_DIR environment variable 1-15, 5-17, 10-10,
13-50
definition E-3
effects on debugger invocation B-1
D_OPTIONS environment variable 1-17 to 1-22
definition E-3
effects on debugger invocation B-1, B-2
ignoring 1-22
D_SRC environment variable 1-14, 1-16, 7-11
definition E-3
effects on debugger invocation B-1
DASM command 7-5, 13-21
effect on debugging modes 4-5
effect on DISASSEMBLY window 4-8
finding current PC = 7-12

data, in MEMORY window 4-13

data formats 8-19
data types 8-20

data memory 4-14 to 4-30
adding to memory map 6-7, 13-32 to 13-33
deleting from memory map 6-11, 13-34
filling 8-11,13-27
saving 8-10, 13-39
data types 8-20
See also display formats
data-display windows 4-6, 8-2
colors 10-6
CPU window 4-6, 4-16, 8-2, 8-12
definition E-3
DISP window 4-6, 4-17, 8-2, 8-13 to 8-15
MEMORY window 4-6, 4-13 to 4-30, 8-2, 8-6 to
8-11
WATCH window 4-6, 4-18, 8-2, 8-16 to 8-17
data-management commands 8-2, 13-4
? command 7-12, 8-3, 8-12, 13-12
controlling data format 8-9
data-format control 8-19 to 8-22
DISP command 8-14, 13-22 to 13-25
EVAL command 7-12, 8-3, 13-25
PDM version 2-21, 13-25
FILL command 8-11, 13-27

Index-5

MEM command 4-14, 4-15, 4-16, 8-7, 13-35 to
13-36

MS command 8-10, 13-39

SETF command 8-19to 8-22, 13-53 to 13-54

side effects 8-5

WA command 5-11, 8-12, 8-16, 13-61 to 13-62

WD command 8-17, 13-62

WHATIS command 8-2, 13-62

WR command 8-17, 13-63

data-display windows

DISP window 3-21
MEMORY window 3-5
WATCH window 3-17 to 3-18

data-management commands 3-22

controlling data format 3-24 to 3-28
DISP command 3-21 to 3-28

MEM command 3-5

SETF command 3-24 to 3-28

WA command 3-17 to 3-18

WD command 3-18

WHATIS command 3-20

WR command 3-19

debugger

analysis interface
description 1-5
key features 1-5
definition E-3
description 1-2to 1-4
display 3-4
basic 1-2
exiting 1-22, 13-45
installation, describing the target system C-1 to
C-5
invocation 3-3, 13-55 to 13-56
options 1-17to 1-22
standalone 1-14
lask ordering B-1 to B-2
under PDM control 1-15to 1-16
key features 1-3to 1-4
messages D-1to D-26
pausing 13-40

debugging modes 3-12 to 3-14, 4-2 t0 4-5, 7-2 to

7-3
assembly mode 3-12to 3-14, 4-4, 7-2
auto mode 3-12to 3-14, 4-2 10 4-3, 7-2
commands 13-4

ASM command 3-13, 7-3, 13-15

C command 3-13, 7-3, 13-18

menu selections 13-10

MINIMAL command 3-13, 7-3, 13-37

Index-6

MIX command 3-13, 7-3, 13-37
default mode 4-2,7-2
menu selections 3-12 to 3-14, 7-3
minimal mode 3-12to 3-14, 4-5, 7-2
mixed mode 3-12to 3-14, 4-4,7-2
restrictions 4-5
selection 3-12to 3-14
command method 3-13, 7-3
function key method 7-3, 13-69
mouse method 3-12, 7-3

decrement operator 14-3

default
data formats 8-19
debugging mode 4-2, 7-2
display 3-4, 4-2, 7-2, 10-11
group 2-4,13-51
memory map 3-27, 6-4
screen configuration file 10-9

monochrome displays 10-9

defining areas for profiling 12-5to 12-12
disabling areas 12-7 to 12-22
enabling areas 12-10 to 12-22
marking areas 12-5to 12-22
restrictions 12-12 to 12-22
unmarking areas 12-11 to 12-22

device name C-3

device types
BYPASSH##, C-4
debugger devices C-3
SPL C-4
TI320C2x
C-3
dgroup 2-4
dialog boxes 5-111t05-16
analysis interface 11-5
closing 5-12to5-16
function key method 5-16
mouse method 5-15
complex 5-12to05-15
components of 5-13
effect on entering other commands 5-4
enabling, parameters 11-5
entering parameters 5-11 to 5-12
modifying text in 5-12
parameters
enabling 5-13
function key method 5-14 to 5-24
mouse method 5-14
predefined 5-12to 5-15

qualifiers
enabling 5-14
function key method 5-14 to 5-24
mouse method 5-14
predefined 5-12to 5-15
selecting parameters 5-12to 5-15
selecting qualifiers 5-12to0 5-15
using 5-111to05-16
DIR command 3-21, 5-24, 13-21

directories
changing current directory 5-24, 13-18
identifying additional source directories 13-59
USE command 13-59
identifying current directory 7-11
listing contents of current directory 5-24, 13-21
relative pathnames 5-24, 13-18
search algorithm 5-17, 7-11, B-1 to B-2
disabling areas 12-7 to 12-22
disassembly, definition E-3
DISASSEMBLY window 3-5, 4-6, 4-8, 7-2, 7-4
colors 10-5
customizing 10-5
definition E-3
modifying display 13-21
discontinuity, definition E-3
DISP command 3-21, 4-17, 8-14, 13-22 to 13-25
display formats 3-25, 8-21, 13-22
effect on debugging modes 4-5
DISP window 3-21, 4-6, 4-17, 8-2, 8-13 t0 8-15
children 3-22, 8-14
closing 3-23
definition E-2
closing 3-23, 4-30, 8-15, 13-70
colors 10-6
customizing 10-6
definition E-3
editing elements 8-4
effects of LOAD command 8-15
effects of SLOAD command 8-15
identifying arrays, structures, pointers 13-22
opening 8-14
opening another DISP window 8-15
DISP command 8-14
function key method 3-23, 8-15, 13-72
mouse method 3-22, 8-15
display area 4-7, 5-2
clearing 3-21, 5-5, 13-19
definition E-3
recording information from 2-10, 5-6, 13-23

Index

display formats 3-24 to 3-28, 8-19 to 8-22
? command 3-25, 8-21, 13-12
casting 3-24
data types 8-20
DISP command 3-24, 3-25, 8-21, 13-22
enumerated types 4-17
EVAL command 2-21, 13-26
floating-point values 4-17
integers 4-17
MEM command 3-25, 8-21, 13-36
pointers 4-17
resetting types 8-20
SETF command 3-24 to 3-28, 8-19 to 8-22,
13-53 to 13-54
WA command 3-24 to 3-28, 8-21, 13-61
displaying
assembly language code 7-4
batch files 7-9
Ccode 7-8to7-18
data in nondefault formats 8-19 to 8-22
source programs 7-4 to 7-9
text files 7-9
text when executing a batch file 5-18, 13-24
DLOG command 5-6 to 5-24, 13-23
ending recording session 2-10, 5-6
PDM version 2-10
starting recording session 2-10, 5-6
dragging, definition E-3
dspcl shell 1-13
definition E-3

E command 13-25
See also EVAL command
ECHO command 5-18, 13-24
PDM version 2-13
“edit’ key (F9) 4-29, 8-4, 13-72
See also F9 key
editing
“click and type” method 3-26, 4-29, 8-4 to 8-22
command line 5-3, 13-68
data values 8-4, 13-72
dialog boxes 5-11to 5-16
disassembly 7-5to 7-9, 13-40 to 13-63
expression side effects 8-5
FILE, DISASSEMBLY, CALLS 4-29
function key method 3-26, 8-4 to 8-22, 13-72
MEMORY, CPU, DISP, WATCH 4-29
mouse method 8-4

Index-7

overwrite method 8-4 to 8-22
window contents 4-29

EGA, definition E-3
EISA, definition E-3

ELIF command 2-11 to 2-14, 13-24, 13-29 to 13-63

ELSE command 5-18 to 5-24, 13-24
See also IF/ELSE/ENDIF commands
debugger version 13-30
PDM version 2-11 to 2-14, 13-29 to 13-63

$SEMUSS constant 5-19

EMU pins 11-6to 11-7
description 11-2

emu2xx command 1-14, 1-15, 3-3, 13-55
options 1-14, 1-17 to 1-22
-@, 1-17
-b 1-18
-c 1-19
-d 1-19
-f 1-19
—-i 1-19, 7-11
-min 1-20
-n 1-20
-p 1-21
-s 1-21,7-10
-t 1-21
-v 1-22
-x 1-22
emuinit.cmd file 6-2, B-1

emulator

definition E-4

describing the target system to the
debugger C-1toC-5
creating the board configuration file C-2 to

C-5

specifying the file C-5
translating the file C-5

$SEMUS$S constant 5-19

invoking the debugger 3-3, 13-55 to 13-56
under PDM control 1-15to 1-16

reconnecting to debugger 13-46

emurst file, definition E-4
enabling areas 12-10 to 12-22
end key, scrolling 4-28, 13-71

ENDIF command 5-18 to 5-24, 13-24
See also IF/ELSE/ENDIF commands
debugger version 13-30
PDM version 2-11 to 2-14, 13-29 to 13-63

Index-8

ENDLOOP command 5-20 to 5-24, 13-24
See also LOOP/ENDLOOP commands
debugger version 13-32
PDM version 2-11 to 2-22, 13-31

entering commands
from menu selections 5-7 to 5-10
from the PDM 1-15, 2-2
on the command line 5-2 to 5-6

entry point 7-12

enumerated types, display format 4-17

environment variables
D DIR 1-15,5-17, 10-10, 13-50

effects on debugger invocation B-1
D_OPTIONS 1-17to 1-22

effects on debugger invocation B-1, B-2
D _SRC 1-14,1-16, 7-11

effects on debugger invocation B-1
definition E-4
for debugger options 1-17 to 1-22

error messages D-1to D-26
beeping 13-55, D-2

EVAL command 8-3, 13-25
display formats 2-21, 13-26
modifying PC 7-12
PDM version 2-21, 13-25
side effects 8-5

event comparators 11-6
hardware breakpoints 11-6

executing code 3-11,7-12to0 7-17
See also run commands
checking execution status 2-20, 13-52
conditionally 3-18 to 3-28, 7-17
finding execution status 2-8, 13-56
function key method 13-70
halting execution 3-15,7-18
program entry point 3-15t0 3-16, 7-12t0 7-17
single stepping 3-18, 13-19, 13-20, 13-39,

13-57
while disconnected from the target
system 7-16, 13-44, 13-48

executing commands 5-3

execution, pausing 2-13, 13-40

exiting the debugger 1-22, 3-28, 13-45

expressions 14-1to 14-6
addresses 8-7
evaluation 2-21, 13-25

by the PDM 2-17
with ? command 8-3, 13-12
with DISP command 13-22to 13-25

with EVAL command 8-3, 13-25
with LOOP command 5-20, 13-31, 13-32
expression analysis 14-4to 14-6
operators 2-17, 14-2 to 14-3
restrictions 14-4
side effects 8-5
void expressions 14-4
extensions 1-13
external interrupts 6-16
connect input file 6-19
disconnect pins 6-21
list pins 6-20
PINC command 6-19
PIND command 6-21
PINL command 6-20
programming simulator 6-19
setting up input file
relative clock cycle 6-17
repetition 6-18
setting up input files 6-16
absolute clock cycle 6-17

-f debugger option 1-19, C-5
F2 key 5-5,13-68
F3 key 7-3,13-69
F4 key 3-21, 3-23, 4-11, 4-16, 4-30, 8-15, 13-70
F5 key 5-10,7-13, 13-9, 13-70
F6 key 3-6, 4-21, 8-4, 13-70
F8 key 5-10, 7-15, 13-9, 13-70
F9 key 3-23, 3-26, 4-8, 4-9, 4-10, 4-11, 4-29, 7-9,
8-4, 8-15,9-3,9-4
clearing a breakpoint 13-72
displaying a function 13-72
editing data 13-72
opening a DISP window 13-72
setting a breakpoint 13-72
F10 key 5-10, 7-15, 13-9, 13-70
FILE command 3-11, 3-14, 7-8, 13-26
changing the current directory 5-24, 13-18
effect on debugging modes 4-5
effect on FILE window 4-9
menu selection 13-9
FILE window 3-11, 3-14, 4-6, 4-9, 7-2, 7-4, 7-8
colors 10-5
customizing 10-5
definition E-4

Index

file/load commands 13-6
ADDR command 7-5, 7-9, 7-12, 13-14
CALLS command 4-10, 4-11, 7-9, 13-18
DASM command 7-5, 7-12, 13-21
FILE command 3-11, 3-14, 7-8, 13-26
FUNC command 3-14, 7-8, 13-27
LOAD command 3-4, 7-10, 13-30
menu selections 13-9
PATCH command 7-5, 13-40
RELOAD command 7-10, 13-46
RESTART command 3-16, 13-47
SLOAD command 7-10, 13-55
files
connecting to
asynchronous serial ports 6-29
synchronous serial ports 6-24
connecting to 1/O ports 6-14, 13-34
disconnecting from 1/O ports 6-15, 13-36 to
13-37
log files 2-10, 5-6, 13-23
saving memory to a file 8-10, 13-39
FILL command 8-11, 13-27
menu selection 13-10
floating point
display format 3-24 to 3-28, 4-17
operations 14-4
frame synchronization pins, synchronous serial
port 6-23
FUNC command 3-14, 7-8, 13-27
effect on debugging modes 4-5
effect on FILE window 4-9
function calls
displaying functions 13-27
keyboard method 4-11
mouse method 4-11
executing function only 13-47, 13-48
in expressions 8-5, 14-4
stepping over 13-19, 13-39
tracking in CALLS window 4-10 to 4-30, 7-9,
13-18

—g shell option 1-12, 1-13, 12-2
GO command 3-11, 7-13, 13-28
grouping/reference operators 14-2
groups
adding a processor 2-4, 13-52
commands
SET command 2-3to 2-5, 13-51 to 13-52

Index-9

UNSET command 2-5, 13-59
defining 2-4to 2-5, 13-51
deleting 2-5, 13-59
examples 2-3
identifying 2-2to 2-5
listing all groups 2-5, 13-52
setting default 2-4, 13-51

HALT command 7-16, 13-28
halting
batch file execution 5-17
debugger 1-22, 3-28, 13-45
PDM 1-22, 13-45
processors in parallel 2-8, 13-41
program execution 1-22, 3-15, 7-12, 7-18,
13-45
function key method 7-18, 13-69
mouse method 7-18
target system 13-28
hardware breakpoints. See breakpoints (hardware)
hardware stacks, accessing 8-13
HELP command 13-28
hex conversion utility 1-11
hexadecimal notation
addresses 8-7
data formats 8-19
history, of commands 2-13 to 2-14, 5-5, 13-13
HISTORY command 2-14, 13-28
home key, scrolling 4-28, 13-71

-i debugger option 1-19, 7-11

I/O memory
adding to memory map 6-7, 13-32 to 13-33
deleting from memory map 6-11, 13-34
simulating 6-14 to 6-15, 13-34, 13-36 to 13-37

I/O pins, asynchronous serial ports 6-30

I/O status register (IOSR) 6-27 to 6-28

I/O switch settings, definition E-4

icons, mouse actions, vi

IF/ELIF/ELSE/ENDIF commands 2-11 to 2-14,
13-29 to 13-63

IF/ELSE/ENDIF commands 5-18 to 5-24, 13-30
conditions 5-21, 13-30

Index-10

creating initialization batch file 5-19
predefined constants 5-19
increment operator 14-3
index numbers, for data in WATCH window 4-18,
8-17
indirection operator (*) 8-9, 8-17
init.clr file 10-9, 10-10, 13-50, B-1
init.cmd file 6-3, B-2
definiton E-4
init.pdm file 1-15
initialization batch files 6-2 to 6-30, B-1
creating using IF/ELSE/ENDIF 5-19
emuinit.cmd 6-2, B-1
init.emd 6-3, B-2
init.pdm 1-15
naming an alternate file 1-21
siminit.cmd 6-2, B-1
integer
display format 4-17
SETF command 8-19
interrupt pins 6-16
invalid memory addresses 6-3, 6-9
invoking
custom displays 10-11
debugger 3-3, 13-55to 13-56
standalone 1-14
under PDM control 1-15to 1-16
parallel debug manager 1-15
shell program 1-13
ISA, definition E-4

key sequences
displaying functions 13-72
displaying previous commands (command
history) 13-68
editing
command line 5-3, 13-68
data values 4-29, 13-72
halting actions 2-6, 2-7, 13-44, 13-51, 13-69
menu selections 13-69
moving a window 4-26, 13-70
opening additional DISP windows 13-72
running code 13-70
scrolling 4-28, 13-71
selecting the active window 4-21, 13-70
setting/clearing software breakpoints 13-72
single stepping 7-15

sizing a window 4-24, 13-70
switching debugging modes 13-69

labels, for data in WATCH window 3-17, 4-18, 8-17
limits
breakpoints 9-2
file size 7-9
open DISP windows 4-17
paths 7-11
window positions 4-26, 13-38
window sizes 4-23, 13-54
linker 1-11, 1-12
LOAD command 3-4, 7-10, 13-30
effect on DISP window 8-15
effect on WATCH window 8-17

load/file commands 13-6
ADDR command 7-5, 7-9, 7-12, 13-14
CALLS command 4-10, 4-11, 7-9, 13-18
DASM command 7-5, 7-12, 13-21
FILE command 3-11, 3-14, 7-8, 13-26
FUNC command 3-14, 7-8, 13-27
LOAD command 3-4, 7-10, 13-30
menu selections 13-9
PATCH command 7-5, 13-40
RELOAD command 7-10, 13-46
RESTART command 3-16, 13-47
SLOAD command 7-10, 13-55

loading

batch files 5-17

COFF files, restrictions 6-3

custom displays 10-10

object code 3-3, 7-10
after invoking the debugger 7-10
symbol table only 7-10, 13-55
while invoking the debugger 1-14, 1-16, 7-10
without symbol table 7-10, 13-46

log files 2-10, 5-6, 13-23
logical operators 14-2
conditional execution 7-17
LOOP/BREAK/CONTINUE/ENDLOOP
commands 2-11 to 2-22, 13-31
LOOP/ENDLOOP commands 5-20 to 5-24, 13-32
conditions 5-21, 13-32
looping commands 2-11 to 2-22, 5-20 to 5-24,
13-31, 13-32

Index

MA command 3-27, 6-4, 6-7, 6-11, 13-32 to 13-33
menu selection 13-10

managing data 8-1 to 8-21
basic commands 8-2 to 8-3

MAP command 6-9, 13-33
menu selection 13-10

mapping. See memory, mapping
marking areas 12-5to 12-22

MC command 6-14, 13-34
menu selection 13-10

MD command 3-27, 6-11, 13-34
menu selection 13-10
MEM command 3-5, 4-13, 4-14, 4-15, 4-16, 8-7,
13-35to 13-36
display formats 3-25, 8-21, 13-36
effect on debugging modes 4-5
MEM1 command. See MEM command
MEM2 command. See MEM command
MEMS3 command. See MEM command

memory
batch file search order 6-2 to 6-3, B-1
commands 13-7
FILL command 8-11, 13-27
menu selections 13-10
MS command 8-10, 13-39
data formats 8-19
data memory 3-27, 4-14 to 4-30
default map 3-27, 6-4
displaying in different numeric format 3-24 to
3-28, 8-9
filing 8-11, 13-27
invalid addresses 6-3
invalid locations 6-9
map
adding ranges 13-32to 13-33
defining 6-2to 6-3
interactively 6-2
definition E-4
deleting ranges 13-34
modifying 6-2 to 6-30
potential problems 6-3
resetting 13-38
simulator sample 6-13
mapping 3-27, 3-28, 6-1 to 6-30
adding ranges 6-7

Index-11

commands 13-7
MA command 3-27, 6-4, 6-7, 6-11, 13-32 to
13-33
MAP command 6-9, 13-33
MD command 3-27, 6-11, 13-34
menu selections 13-10
ML command 3-27, 6-10, 13-37
MR command 6-11, 13-38
deleting ranges 6-11
disabling 6-9
listing current map 6-10
modifying 6-11
multiple maps 6-12
resetting 6-11
returning to default 6-12
simulating I/O ports 6-14, 6-15, 13-34,
13-36 to 13-37
nonexistent locations 6-2
program memory 3-27, 4-14 to 4-30, 8-8
protected areas 6-3, 6-9
saving 8-10, 13-39
simulating
/O memory 6-14 to 6-15, 13-34, 13-36 to
13-37
ports
MC command 6-14, 13-34
menu selections 13-10
MI command 6-15, 13-36 to 13-37
undefined areas 6-3, 6-9
valid types 6-7

MEMORY window 3-5, 4-6, 4-13 to 4-30, 8-2,

8-6 to 8-11, 13-35 to 13-36

additional MEMORY windows 4-14 to 4-30

address columns 4-13

closing 4-16

colors 10-6

customizing 10-6

data columns 4-13

data memory 4-14

definition E-4

displaying
different memory range 4-15
memory contents 8-6 to 8-22
program memory 8-8

editing memory contents 8-4

modifying display 13-35 to 13-36

opening additional windows 4-14 to 4-15, 4-16

program memory 4-14

MEMORY1 window 4-14 to 4-30

See also MEMORY window
closing 4-16

Index-12

MEMORY2 window 4-14 to 4-30
See also MEMORY window
closing 4-16

MEMORYS3 window 4-14 to 4-30
See also MEMORY window
closing 4-16

memory-map commands
See also memory, mapping, commands
menu selections 13-10

menu bar 3-4, 5-7
customizing its appearance 10-7
definition E-4
items without menus 5-10
using menus 5-7 to 5-10

menu selections 5-7, 13-9 to 13-11
colors 10-7
customizing their appearance 10-7
definition (pulldown menu) E-5
entering parameter values 5-11 to 5-12
escaping 5-9
function key methods 5-9, 13-69
list of menus 5-7
mouse methods 5-8 to 5-9
moving to another menu 5-9
profiing 5-8, 12-4
usage 5-8to05-9

messages D-1to D-26

MI command 6-15, 13-36 to 13-37
menu selection 13-10

—-min debugger option 1-20

MINIMAL command 3-13, 7-3, 13-37
menu selection 7-3, 13-10

minimal mode 3-12to 3-14, 4-5, 7-2
definition E-4
—-min option 1-20
MINIMAL command 3-13, 7-3, 13-37
selection 7-3

MIX command 3-13, 7-3, 13-37
menu selection 7-3, 13-10

mixed mode 3-12to 3-14, 4-4,7-2
definition E-4
MIX command 3-13, 7-3, 13-37
selection 7-3

ML command 3-27, 6-10, 13-37
menu selection 13-10

modes. See debugging modes

modifying
assembly language code 7-5to 7-18
colors 10-21to 10-7

command line 5-3
command-line prompt 10-12
current directory 5-24, 13-18
data values 8-4
memory map 6-2 to 6-30
window borders 10-8
mono.clr file 10-9
monochrome monitors 10-9
mouse
cursor 4-19
icon identification, vi
MOVE command 3-9, 4-25, 13-38
effect on entering other commands 5-4
moving a window 4-25 to 4-30, 13-38
function key method 3-9, 4-26, 13-70
mouse method 3-10, 4-25
MOVE command 3-9, 4-25
XY screen limits 4-26, 13-38
MR command 6-11, 13-38
menu selection 13-10
MS command 8-10, 13-39
menu selection 13-10
-mv debugger option 1-20

—-n debugger option 1-16, 1-20, 2-2, 13-56
natural format 3-24 to 3-28, 14-5
NEXT command 3-18, 7-15, 13-39

from the menu bar 5-10

function key entry 5-10, 13-70
nonexistent memory locations 6-2

object files
creating 7-10
loading 1-14, 1-16, 13-30
after invoking the debugger 7-10
symbol table only 1-21, 13-55
while invoking the debugger 1-14, 1-16, 3-3,
7-10
without symbol table 7-10, 13-46
open-collector output, definition E-5
operators 2-17, 14-2to 14-3
& operator 8-7
* operator (indirection) 8-9, 8-17

Index

side effects 8-5
overwrite editing 8-4 to 8-22

—-p debugger option 1-21
page-up/page-down keys, scrolling 4-28, 13-71
parallel debug manager 2-1
adding a processor to a group 2-4, 13-52
assigning processor names 2-2
-n option 1-16, 2-2, 13-56
changing the PDM prompt 2-19, 13-52
checking the execution status 2-20, 13-52
closing 1-22,13-45
command history 2-13to 2-14, 13-13
commands 13-3
lcommand 2-131to 2-14, 13-13
@ command 2-19, 13-13
ALIAS command 2-15to 2-16, 13-15
DLOG command 2-10, 13-23
ECHO command 2-13, 13-24
EVAL command 2-21, 13-25
HELP command 13-28
HISTORY command 2-14, 13-28
IF/ELIF/ELSE/ENDIF commands 2-11 to
2-14, 13-29 to 13-63
LOOP/BREAK/CONTINUE/ENDLOOP
commands 2-11to 2-22, 13-31
PAUSE command 2-13, 13-40
PDM command 1-15
PESC command 2-8, 13-40
PHALT command 2-8, 13-41
PRUN command 2-7, 13-44
PRUNF command 2-7
PSTEP command 2-7, 13-45
QUIT command 1-22, 13-45
RUNF command 13-44
SEND command 2-6, 13-50 to 13-51
SET command 2-3to 2-5, 13-51 to 13-52
creating system variables 2-18to 2-19
SPAWN command 1-15to 1-16, 13-55 to
13-56
STAT command 2-8, 2-20, 13-52, 13-56
SYSTEM command 2-16
TAKE command 2-9, 13-58
UNALIAS command 2-15to 2-16
UNSET command 2-5, 13-59
deleting system variables 2-20
viewing descriptions 13-28
controlling command execution 2-11 to 2-12

Index-13

creating system variables 2-18to 2-19, 13-52
concatenating strings 2-18
substituting strings 2-19

defining a group 2-4, 13-51

definition E-5

deleting a group 2-5, 13-59
UNSET command 2-5, 13-59

deleting system variables 2-20

description 1-8

displaying text strings 2-13, 13-24

expression analysis 2-17

finding the execution status 2-8, 13-56

global halt 2-8, 13-41

grouping processors 2-2 to 2-5
example 2-3
SET command 2-3to 2-5, 13-51 to 13-52

halting code execution 2-8, 13-40

invoking 1-15

listing all groups of processors 2-5, 13-52

listing system variables 2-20

messages D-21to D-26

overview 1-15

pausing 2-13, 13-40

recording information from the display
area 2-10, 13-23

running code 2-7, 13-44

running free 2-7

sending commands to debuggers 2-6, 13-50 to
13-51

setting the default group 2-4, 13-51

single-stepping through code 2-7, 13-45

supported operating systems 1-15

system variables 2-18 to 2-20

using with UNIX 1-15

parameters
dspcl shell 1-13
emu2xx command 1-14
entering in a dialog box 5-11to 5-12
notation, vii
patch assembly 7-5
predefined 5-13
enabling 5-13
function key method 5-14 to 5-24
mouse method 5-14
selecting from dialog boxes 5-12to 5-15
sim2xx command 1-14
SPAWN command 1-15to 1-16, 13-55 to 13-56

PATCH command 7-5, 13-40
path environment variable 1-15
PATH statement 1-15, 13-55

Index-14

PAUSE command 2-13, 13-40
PC 7-12
definition E-5
displaying contents of 3-5
finding the current PC 4-8
PDM, invocation 1-14
PDM command 1-15
peripherals, simulating 6-21
PESC command 2-8, 13-40
PF command 12-15, 13-41
effect on PROFILE window 4-12
PHALT command 2-8, 13-41
pin commands, menu selection 13-11
PINC command 6-19
menu selection 13-11
PIND command 6-21
menu selection 13-11
PINL command 6-20
menu selections 13-11
pointers
displaying/modifying contents 3-22, 8-14
format in DISP window 3-22, 4-17, 8-14, 13-22
natural format 14-5
typecasting 14-5
pointing, definition E-5
port address 1-21
definition E-5
simulator 6-14 1o 6-15
ports, simulating 6-14 to 6-15, 13-34 to 13-72
PQ command 12-15, 13-42, 13-43
effect on PROFILE window 4-12
PR command 12-16, 13-43
processor name 1-20
processors
assigning names 2-2
organizing into groups 2-3to0 2-5
-profile debugger option 1-21
PROFILE window 4-6, 4-12, 12-17 to 12-21
associated code 12-21
data accuracy 12-19
displaying areas 12-19 to 12-22
displaying different data 12-17 to 12-22
sorting data 12-19
profiing 12-1 to 12-22
areas
disabling marked areas 13-64 to 13-65
enabling disabled areas 13-65
marking 13-64

unmarking 13-66
changing display 13-66 to 13-67
collecting statistics
full statistics 12-15, 13-41
subset of statistics 12-15, 13-42, 13-43
commands 13-8
PF command 12-15, 13-41
PQ command 12-15, 13-42, 13-43
PR command 12-16, 13-43
SA command 12-14, 13-48
SD command 12-14, 13-50
SL command 12-14, 13-54
SR command 12-14, 13-56
summary 13-64 to 13-67
VAA command 12-22, 13-59
VAC command 12-22, 13-60
VR command 13-60
compiling a program for profiing 12-2
defining areas 12-5to 12-12
disabling areas 12-7 to 12-22
function key method 12-9
mouse method 12-8
enabling areas 12-10 to 12-22
function key method 12-10
marking areas 12-5to 12-22
function key method 12-7
mouse method 12-6
restrictions 12-12 to 12-22
unmarking areas 12-11 to 12-22
function key method 12-12
mouse method 12-11
description 1-6to 1-7
entering environment 12-3
key features 1-6to 1-7
menu selections 5-8, 12-4
overview 12-2
resetting PROFILE window 13-60
restrictions
available windows 12-3
batch files 12-3
breakpoints 12-3
commands 12-3
modes 12-3
resuming a session 12-16, 13-43
running a session 12-15to 12-16
full 12-15, 13-41
quick 12-15, 13-42, 13-43
saving data to a file 12-22
saving statistics
all views 12-22, 13-59

Index

current view 12-22, 13-60

stopping points 12-13to 12-14
adding 12-14, 13-48
command method 12-14
deleting 12-14, 13-50, 13-56
listing 12-14, 13-54
mouse method 12-13
resetting 12-14, 13-56

strategy 12-2

viewing data 12-17 to 12-21
associated code 12-21
data accuracy 12-19
displaying areas 12-19 to 12-22
displaying different data 12-17 to 12-22
sorting data 12-19

program
debugging 1-23
entry point 7-12
resetting 13-47
execution, halting 1-22, 3-15, 7-12, 7-18, 13-45,
13-69
preparation for debugging 1-12to 1-13

program counter (PC) 8-12

program memory 4-14 to 4-30
adding to memory map 6-7, 13-32 to 13-33
deleting from memory map 6-11, 13-34
displaying 8-8
filling 8-11, 13-27
saving 8-10, 13-39

PROMPT command 10-12, 13-43
menu selection 13-10

PRUN command 2-7, 13-44
PRUNF command 2-7

pseudoregisters
See also registers
daddr 8-18
dins 8-18
faddr 8-18
fins 8-18
raddr 8-18
rins 8-18
xaddr 8-18
xins 8-18

PSTEP command 2-7, 13-45
with breakpoints 2-7

pulldown menus
See also menu selections
definition E-5

Index-15

qualifiers, predefined 5-13
enabling 5-14
function key method 5-14 to 5-24
mouse method 5-14
selecting from dialog boxes 5-12to 5-15

QUIT command 1-22, 3-28, 13-45

receive operation

asynchronous serial port simulation

('C203) 6-29

synchronous serial port simulation 6-23
RECONNECT command 13-46
reconnecting, communication with emulator 13-46
recording COMMAND window displays 5-6, 13-23
reentering commands 5-5, 13-68

registers
displaying/modifying 8-12to 8-13
pipeline pseudoregisters
daddr 8-18
dins 8-18
faddr 8-18
fins 8-18
raddr 8-18
rins 8-18
xaddr 8-18
xins 8-18
program counter (PC) 8-12
referencing by name 14-4
relational operators 14-2
conditional execution 7-17
relative pathnames 5-24, 7-11, 13-18
RELOAD command 7-10, 13-46
menu selection 13-9
repeating commands 2-13 to 2-14, 5-5, 13-13,
13-68
RESET command 3-4, 7-16, 13-46
menu selection 13-9
resetting
memory map 13-38
program entry point 13-47
target system 3-4, 7-16, 13-46
RESTART (REST) command 3-16, 7-12, 13-47
menu selection 13-9

Index-16

restrictions
See also limits; constraints
breakpoints 9-2
C expressions 14-4
debugging modes 4-5
profiling environment 12-3
SSAVE command 10-10
RETURN (RET) command 7-13, 13-47
ripple-carry output signal, definition E-5
RUN command 3-15, 7-13, 13-47
analysis interface 11-8
from the menu bar 5-10
function key entry 5-10, 7-13, 13-70
menu bar selections 5-10
with conditional expression 3-18
run commands 13-7
CNEXT command 7-15, 13-19
conditional parameters 3-18
CSTEP command 3-18, 7-15, 13-20
GO command 3-11, 7-13, 13-28
HALT command 7-16, 13-28
menu bar selections 5-10, 13-9, 13-70
NEXT command 3-18, 7-15, 13-39
PESC command 2-8, 13-40
PHALT command 2-8, 13-41
PRUN command 2-7, 13-44
PRUNF command 2-7
PSTEP command 2-7, 13-45
RESET command 3-4, 7-16
RESTART command 3-16, 7-12
RETURN command 7-13, 13-47
RUN command 3-15, 7-13, 13-47
RUNF command 7-16, 13-44, 13-48
STEP command 3-18, 7-14, 13-57
RUNF command 7-16, 13-44, 13-48

running programs 7-12to 7-17
conditionally 7-17
halting execution 7-18
program entry point 7-12to 7-17
while disconnected from the target system 7-16

-s debugger option 1-21, 7-10
SA command 12-14, 13-48
SAFEHALT command 13-48
saving custom displays 10-9
scalar type, definition E-5

scan path linker C-3
device type C-4
example C-4

SCOLOR command 10-2, 13-49 to 13-50
menu selection 13-10

SCONFIG command 10-10, 13-50
menu selection 13-10
restrictions 10-10

screen-customization commands 13-6
BORDER command 10-8, 13-17
COLOR command 10-2, 13-19 to 13-20
menu selections 13-10
PROMPT command 10-12, 13-43
SCOLOR command 10-2, 13-49 to 13-50
SCONFIG command 10-10, 13-50
SSAVE command 10-9, 13-56

scrolling 3-10, 4-27 to 4-30
definition E-5
function key method 3-10, 4-28, 13-71
mouse method 3-10, 4-27 to 4-28, 8-8

SD command 12-14, 13-50
SEND command 2-6, 13-50 to 13-51

serial ports
asynchronous. See asynchronous serial ports
('C203)
simulation
asynchronous serial ports (‘(C203) 6-25 to
6-30
connecting an I/O port 6-14 to 6-15
synchronous serial ports 6-22 to 6-24
synchronous. See synchronous serial ports
('C203)

SET command 2-3to 2-5, 13-51 to 13-52
adding processors to a group 2-4, 13-52
changing the PDM prompt 2-19, 13-52
creating system variables 2-18to 2-19, 13-52

concatenating strings 2-18
substituting strings 2-19
defining a group 2-4, 13-51
defining the default group 2-4, 13-51
listing all groups 2-5, 13-52
listing system variables 2-20

SETF command 3-24 to 3-28, 8-19 to 8-22,

13-53 to 13-54

shell program 1-13

side effects 8-5, 14-3
definition E-5
valid operators 8-5

Index

signals, BIO 8-18
$$SIM$$ constant 5-19
sim2xx command 1-14, 3-3

options 1-14,1-17 to 1-22
-@, 1-17
-b 1-18
-c 1-19
-d 1-19
-i 1-19, 7-11
-min 1-20
-mv 1-20
-profile 1-21, 12-3
-s 1-21,7-10
-t 1-21
-v 122
-x 1-22

siminit.cmd file 6-2, B-1
simulating interrupts 6-16
simulator

accessing hardware stacks 8-13
aynchronous serial ports ((C203) 6-25 to 6-30
BIO simulation 8-18
definition E-6
external interrupts 6-16 to 6-21
I/O memory 6-14 to 6-15, 13-34, 13-36 to 13-37
invoking the debugger 3-3
standalone 1-14
memory map sample 6-13
pipeline simulation 8-18
$$SIM$$ constant 5-19
synchronous serial ports 6-22 to 6-24

simulator programming

asynchronous serial ports 6-30
synchronous serial ports 6-24

single-step

commands
CNEXT command 7-15, 13-19
CSTEP command 3-18, 7-15, 13-20
menu bar selections 5-10
NEXT command 3-18, 7-15, 13-39
PSTEP command 2-7, 13-45
STEP command 3-18, 7-14, 13-57
definition E-6
execution 7-14
assembly language code 7-14, 13-57
Ccode 7-15, 13-20
function key method 7-15, 13-70
in parallel 2-7, 13-45
with breakpoints 2-7
mouse methods 7-15

Index-17

over function calls 7-15, 13-19, 13-39

SIZE command 3-7, 4-23, 13-54
effect on entering other commands 5-4
sizeof operator 14-4
sizes
display 4-26, 13-38
displayable files 7-9
windows 4-23, 13-54
sizing a window 4-22 to 4-30
function key method 3-8, 4-24, 13-70
mouse method 3-8, 4-23
SIZE command 3-7, 4-23
size limits 4-23, 13-54
while moving it 4-26, 13-38
SL command 12-14, 13-54

SLOAD command 7-10, 13-55
effect on DISP window 8-15
effect on WATCH window 8-17
menu selection 13-9
-s debugger option 1-21

software breakpoints. See breakpoints (software)

SOUND command 13-55, D-2

SPAWN command 1-15to 1-16, 13-55 to 13-56
options 1-16, 1-17 to 1-22

-@, 1-17
-b 1-18
-c 1-19
-d 1-19
-f 1-19
—-i 1-19
-min 1-20
-mv 1-20
-n 1-16, 1-20, 13-56
-p 1-21
-s 1-21
-t 1-21
-v 1-22
-x 1-22
SPL device type C-4
SR command 12-14, 13-56

SSAVE command 10-9, 13-56
menu selection 13-10
STAT command 2-8, 2-20, 13-52, 13-56
STEP command 3-18, 7-14, 13-57
from the menu bar 5-10
function key entry 5-10, 13-70

stopping points 12-13 to 12-14
adding 12-14, 13-48

Index-18

deleting 12-14, 13-50, 13-56
listing 12-14, 13-54
resetting 12-14, 13-56

structures
direct reference operator 14-2
displaying/modifying contents 8-14
format in DISP window 3-23, 8-14, 13-22
indirect reference operator 14-2

switch settings, 1/0 address space 1-21
symbol table

definition E-6

loading without object code 1-22, 7-10, 13-55
symbolic addresses 8-7

synchronous serial port control register
(SSPCR) 6-23
synchronous serial ports
connecting filesto 6-24
simulating 6-22 to 6-24
simulator programming 6-24

SYSTEM command 2-16, 13-57
system command, SAFEHALT command 13-48

system commands 13-5

ALIAS command 3-28, 5-21 to 5-23, 13-15
PDM version 2-15to 2-16

CD command 3-21, 5-24, 7-11, 13-18

CLS command 3-21, 5-5, 13-19

DIR command 3-21, 5-24, 13-21

DLOG command 5-6 to 5-24, 13-23
PDM version 2-10

ECHO command 5-18, 13-24
PDM version 2-13

IF/ELIF/ELSE/ENDIF commands 2-11 to 2-14,
13-29 to 13-63

IF/ELSE/ENDIF commands 5-18 to 5-24, 13-30
conditions 5-21, 13-30
predefined constants 5-19

LOOP/BREAK/CONTINUE/ENDLOOP
commands 2-11 to 2-22, 13-31

LOOP/ENDLOOP commands 5-20 to 5-24,
13-32
conditions 5-21, 13-32

PAUSE command 2-13, 13-40

QUIT command 1-22, 3-28, 13-45

RECONNECT command 13-46

RESET command 3-4, 13-46

SOUND command 13-55, D-2

SYSTEM command 2-16, 13-57

TAKE command 5-17, 6-12, 13-58
PDM version 2-9

UNALIAS command 5-22, 13-58
PDM version 2-151to 2-16
USE command 7-11, 13-59

-t debugger option 1-21
during debugger invocation 6-2, B-1
TAKE command 5-17, 6-12, 13-58
executing log file 2-10, 5-6
PDM version 2-9
reading new memory map 6-12
target system
definition E-6
describing to the debugger C-1to C-5
creating the board configuration file C-2 to
C-5
specifying the file C-5
translating the file C-5
memory definition for debugger 6-1 to 6-30
resetting 3-4, 13-46
terminating the debugger 1-22, 13-45
text files, displaying 3-14, 7-9
TI320C2xx device type C-3
totem-pole output, definition E-6
transmit operation
asynchronous serial port simulation
('C203) 6-29
synchronous serial port simulation 6-23
tutorial, introductory 3-1 to 3-28
type casting 3-24 to 3-28, 14-4
type checking 3-20, 8-2

UNALIAS command 5-22, 13-58
PDM version 2-15to0 2-16

UNIX, using with the PDM 1-15
unmarking areas 12-11 to 12-22

UNSET command 2-5, 13-59
deleting system variables 2-20

USE command 7-11, 13-59

-v debugger option 1-22

Index

VAA command 12-22, 13-59
VAC command 12-22, 13-60

variables
aggregate values in DISP window 3-21 to 3-28,
4-17, 8-13 to 8-15, 13-22 to 13-25
assigning to the result of an expression 2-19,
13-13
determining type 8-2
displaying in different numeric format 3-24 to
3-28, 14-5
displaying/modifying 8-16to 8-17
PDM 2-18to 2-20
scalar values in WATCH window 4-18, 8-16 to
8-17
VGA, definition E-6
viewing profile data 12-17 to 12-21
associated code 12-21
data accuracy 12-19
displaying areas 12-19 to 12-22
displaying different data 12-17 to 12-22
sorting data 12-19
void expressions 14-4

VR command 13-60

WA command 3-17 to 3-18, 4-18, 5-11, 8-12, 8-16,
13-61 to 13-62
display formats 3-24 to 3-28, 8-21, 13-61
menu selection 13-10
watch commands
menu selections 13-10
pulldown menu 8-16
WA command 3-17 to 3-18, 5-11, 8-12, 8-16,
13-61 to 13-62
WD command 3-18, 8-17, 13-62
WR command 3-19, 8-17, 13-63
WATCH window 3-17 to 3-18, 4-6, 4-18, 8-2,
8-16 to 8-17, 13-61 to 13-62, 13-63
adding items 8-16, 13-61 to 13-62
closing 3-19, 4-30, 8-17, 13-63
colors 10-6
customizing 10-6
definition E-6
deleting items 8-17, 13-62
editing values 8-4
effects of LOAD command 8-17
effects of SLOAD command 8-17
labeling watched data 8-17, 13-61 to 13-62

Index-19

opening 8-16, 13-61 to 13-62
WD command 3-18, 4-18, 8-17, 13-62
menu selection 13-10
WHATIS command 3-20, 8-2, 13-62
WIN command 3-6 to 3-7, 4-21, 13-62
window commands 13-4

See also windows, commands

WIN command 3-6to 3-7
windows 4-6to 4-18

active window 4-20 to 4-22

border styles 10-8, 13-17

CALLS window 3-11, 4-6, 4-10 to 4-30, 7-2, 7-9

closing 4-30
COMMAND window 4-6, 4-7, 5-2
commands

MOVE command 3-9, 4-25

SIZE command 3-7, 4-23, 13-54

WIN command 3-6 to 3-7, 4-21, 13-38,

13-62

ZOOM command 3-8, 4-25, 13-63
CPU window 4-6, 4-16, 8-2, 8-12
definition E-6

DISASSEMBLY window 3-5, 4-6, 4-8, 7-2, 7-4

DISP window 3-21 to 3-28, 4-6, 4-17, 8-2,
8-13t0 8-15

editing 4-29

FILE window 3-14, 4-6, 4-9, 7-2, 7-4, 7-8

MEMORY window 3-5, 4-6, 4-13 to 4-30, 8-2,

8-6 to 8-11

moving 3-9, 4-25 to 4-30, 13-38
function keys 4-26, 13-70
mouse method 4-25

Index-20

MOVE command 4-25
XY positions 4-26, 13-38
PROFILE window 4-6, 4-12
resizing 3-7, 4-22 to 4-30
function keys 4-24, 13-70
mouse method 4-23
SIZE command 4-23
size limits 4-23
while moving 4-26, 13-38
scrolling 3-10, 4-27 to 4-30
size limits 4-23
View window 11-8
WATCH window 3-17, 4-6, 4-18, 8-2, 8-16 to
8-17
zooming 3-8, 4-24 to 4-30
WR command 3-19, 4-18, 8-17, 13-63
menu selection 13-10

-x debugger option 1-22

X Window System, displaying debugger on a
different machine 1-19

-z shell option 1-13
ZOOM command 3-8, 4-25, 13-63
zooming a window 4-24 to 4-30
mouse method 3-9, 4-24
ZOOM command 3-8, 4-25, 13-63

