//########################################################################### // // FILE: Example_2803xECanBack2Back.c // // TITLE: eCAN back to back example // //! \addtogroup f2803x_example_list //!

eCAN back to back (ecan_back2back)

//! //! This example tests eCAN by transmitting data back-to-back at high speed //! without stopping. The received data is verified. Any error is flagged. //! MBX0 transmits to MBX16, MBX1 transmits to MBX17 and so on.... //! //! This example uses the self-test mode of the CAN module. i.e. the //! transmission/reception happens within the module itself (even the required //! ACKnowldege is generated internally in the module). Therefore, there is no //! need for a CAN transceiver to run this particular test case and no activity //! will be seen in the CAN pins/bus. Because everything is internal, there is //! no need for a 120-ohm termination resistor. Note that a real-world CAN //! application needs a CAN transceiver and termination resistors on both ends //! of the bus. //! //! \b Watch \b Variables \n //! - PassCount //! - ErrorCount //! - MessageReceivedCount // // //########################################################################### // $TI Release: F2803x Support Library v2.02.00.00 $ // $Release Date: Sun Oct 4 16:06:22 IST 2020 $ // $Copyright: // Copyright (C) 2009-2020 Texas Instruments Incorporated - http://www.ti.com/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // // Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the // distribution. // // Neither the name of Texas Instruments Incorporated nor the names of // its contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // $ //########################################################################### // // Included Files // #include "DSP28x_Project.h" // Device Headerfile and Examples Include File // // Prototype statements // void mailbox_check(int32 T1, int32 T2, int32 T3); void mailbox_read(int16 i); // // Globals // Uint32 ErrorCount; Uint32 PassCount; Uint32 MessageReceivedCount; Uint32 TestMbox1 = 0; Uint32 TestMbox2 = 0; Uint32 TestMbox3 = 0; // // Main // void main(void) { Uint16 j; // // eCAN control registers require read/write access using 32-bits. Thus we // will create a set of shadow registers for this example. These shadow // registers will be used to make sure the access is 32-bits and not 16. // struct ECAN_REGS ECanaShadow; // // Step 1. Initialize System Control: // PLL, WatchDog, enable Peripheral Clocks // This example function is found in the DSP2803x_SysCtrl.c file. // InitSysCtrl(); // // Step 2. Initialize GPIO: // This example function is found in the DSP2803x_Gpio.c file and // illustrates how to set the GPIO to it's default state. // // InitGpio(); // Skipped for this example // // For this example, configure CAN pins using GPIO regs here // This function is found in DSP2803x_ECan.c // // InitECanGpio(); // // Step 3. Clear all interrupts and initialize PIE vector table: // Disable CPU interrupts // DINT; // // Initialize PIE control registers to their default state. // The default state is all PIE interrupts disabled and flags // are cleared. // This function is found in the DSP2803x_PieCtrl.c file. // InitPieCtrl(); // // Disable CPU interrupts and clear all CPU interrupt flags: // IER = 0x0000; IFR = 0x0000; // // Initialize the PIE vector table with pointers to the shell Interrupt // Service Routines (ISR). // This will populate the entire table, even if the interrupt // is not used in this example. This is useful for debug purposes. // The shell ISR routines are found in DSP2803x_DefaultIsr.c. // This function is found in DSP2803x_PieVect.c. // InitPieVectTable(); // // Step 4. Initialize all the Device Peripherals: // Not required for this example // // // Step 5. User specific code, enable interrupts: // MessageReceivedCount = 0; ErrorCount = 0; PassCount = 0; InitECana(); // Initialize eCAN-A module // // Mailboxes can be written to 16-bits or 32-bits at a time // Write to the MSGID field of TRANSMIT mailboxes MBOX0 - 15 // ECanaMboxes.MBOX0.MSGID.all = 0x9555AAA0; ECanaMboxes.MBOX1.MSGID.all = 0x9555AAA1; ECanaMboxes.MBOX2.MSGID.all = 0x9555AAA2; ECanaMboxes.MBOX3.MSGID.all = 0x9555AAA3; ECanaMboxes.MBOX4.MSGID.all = 0x9555AAA4; ECanaMboxes.MBOX5.MSGID.all = 0x9555AAA5; ECanaMboxes.MBOX6.MSGID.all = 0x9555AAA6; ECanaMboxes.MBOX7.MSGID.all = 0x9555AAA7; ECanaMboxes.MBOX8.MSGID.all = 0x9555AAA8; ECanaMboxes.MBOX9.MSGID.all = 0x9555AAA9; ECanaMboxes.MBOX10.MSGID.all = 0x9555AAAA; ECanaMboxes.MBOX11.MSGID.all = 0x9555AAAB; ECanaMboxes.MBOX12.MSGID.all = 0x9555AAAC; ECanaMboxes.MBOX13.MSGID.all = 0x9555AAAD; ECanaMboxes.MBOX14.MSGID.all = 0x9555AAAE; ECanaMboxes.MBOX15.MSGID.all = 0x9555AAAF; // // Write to the MSGID field of RECEIVE mailboxes MBOX16 - 31 // ECanaMboxes.MBOX16.MSGID.all = 0x9555AAA0; ECanaMboxes.MBOX17.MSGID.all = 0x9555AAA1; ECanaMboxes.MBOX18.MSGID.all = 0x9555AAA2; ECanaMboxes.MBOX19.MSGID.all = 0x9555AAA3; ECanaMboxes.MBOX20.MSGID.all = 0x9555AAA4; ECanaMboxes.MBOX21.MSGID.all = 0x9555AAA5; ECanaMboxes.MBOX22.MSGID.all = 0x9555AAA6; ECanaMboxes.MBOX23.MSGID.all = 0x9555AAA7; ECanaMboxes.MBOX24.MSGID.all = 0x9555AAA8; ECanaMboxes.MBOX25.MSGID.all = 0x9555AAA9; ECanaMboxes.MBOX26.MSGID.all = 0x9555AAAA; ECanaMboxes.MBOX27.MSGID.all = 0x9555AAAB; ECanaMboxes.MBOX28.MSGID.all = 0x9555AAAC; ECanaMboxes.MBOX29.MSGID.all = 0x9555AAAD; ECanaMboxes.MBOX30.MSGID.all = 0x9555AAAE; ECanaMboxes.MBOX31.MSGID.all = 0x9555AAAF; // // Configure Mailboxes 0-15 as Tx, 16-31 as Rx // Since this write is to the entire register (instead of a bit field) // a shadow register is not required. // ECanaRegs.CANMD.all = 0xFFFF0000; // // Enable all Mailboxes // Since this write is to the entire register (instead of a bit field) // a shadow register is not required. // ECanaRegs.CANME.all = 0xFFFFFFFF; // // Specify that 8 bits will be sent/received // ECanaMboxes.MBOX0.MSGCTRL.bit.DLC = 8; ECanaMboxes.MBOX1.MSGCTRL.bit.DLC = 8; ECanaMboxes.MBOX2.MSGCTRL.bit.DLC = 8; ECanaMboxes.MBOX3.MSGCTRL.bit.DLC = 8; ECanaMboxes.MBOX4.MSGCTRL.bit.DLC = 8; ECanaMboxes.MBOX5.MSGCTRL.bit.DLC = 8; ECanaMboxes.MBOX6.MSGCTRL.bit.DLC = 8; ECanaMboxes.MBOX7.MSGCTRL.bit.DLC = 8; ECanaMboxes.MBOX8.MSGCTRL.bit.DLC = 8; ECanaMboxes.MBOX9.MSGCTRL.bit.DLC = 8; ECanaMboxes.MBOX10.MSGCTRL.bit.DLC = 8; ECanaMboxes.MBOX11.MSGCTRL.bit.DLC = 8; ECanaMboxes.MBOX12.MSGCTRL.bit.DLC = 8; ECanaMboxes.MBOX13.MSGCTRL.bit.DLC = 8; ECanaMboxes.MBOX14.MSGCTRL.bit.DLC = 8; ECanaMboxes.MBOX15.MSGCTRL.bit.DLC = 8; // // Write to the mailbox RAM field of MBOX0 - 15 // ECanaMboxes.MBOX0.MDL.all = 0x9555AAA0; ECanaMboxes.MBOX0.MDH.all = 0x89ABCDEF; ECanaMboxes.MBOX1.MDL.all = 0x9555AAA1; ECanaMboxes.MBOX1.MDH.all = 0x89ABCDEF; ECanaMboxes.MBOX2.MDL.all = 0x9555AAA2; ECanaMboxes.MBOX2.MDH.all = 0x89ABCDEF; ECanaMboxes.MBOX3.MDL.all = 0x9555AAA3; ECanaMboxes.MBOX3.MDH.all = 0x89ABCDEF; ECanaMboxes.MBOX4.MDL.all = 0x9555AAA4; ECanaMboxes.MBOX4.MDH.all = 0x89ABCDEF; ECanaMboxes.MBOX5.MDL.all = 0x9555AAA5; ECanaMboxes.MBOX5.MDH.all = 0x89ABCDEF; ECanaMboxes.MBOX6.MDL.all = 0x9555AAA6; ECanaMboxes.MBOX6.MDH.all = 0x89ABCDEF; ECanaMboxes.MBOX7.MDL.all = 0x9555AAA7; ECanaMboxes.MBOX7.MDH.all = 0x89ABCDEF; ECanaMboxes.MBOX8.MDL.all = 0x9555AAA8; ECanaMboxes.MBOX8.MDH.all = 0x89ABCDEF; ECanaMboxes.MBOX9.MDL.all = 0x9555AAA9; ECanaMboxes.MBOX9.MDH.all = 0x89ABCDEF; ECanaMboxes.MBOX10.MDL.all = 0x9555AAAA; ECanaMboxes.MBOX10.MDH.all = 0x89ABCDEF; ECanaMboxes.MBOX11.MDL.all = 0x9555AAAB; ECanaMboxes.MBOX11.MDH.all = 0x89ABCDEF; ECanaMboxes.MBOX12.MDL.all = 0x9555AAAC; ECanaMboxes.MBOX12.MDH.all = 0x89ABCDEF; ECanaMboxes.MBOX13.MDL.all = 0x9555AAAD; ECanaMboxes.MBOX13.MDH.all = 0x89ABCDEF; ECanaMboxes.MBOX14.MDL.all = 0x9555AAAE; ECanaMboxes.MBOX14.MDH.all = 0x89ABCDEF; ECanaMboxes.MBOX15.MDL.all = 0x95544444; ECanaMboxes.MBOX15.MDH.all = 0x89ABCDEF; // // Since this write is to the entire register (instead of a bit field) // a shadow register is not required. // EALLOW; ECanaRegs.CANMIM.all = 0xFFFFFFFF; // // Configure the eCAN for self test mode // Enable the enhanced features of the eCAN. // EALLOW; ECanaShadow.CANMC.all = ECanaRegs.CANMC.all; ECanaShadow.CANMC.bit.STM = 0; // Configure CAN for normal mode ECanaRegs.CANMC.all = ECanaShadow.CANMC.all; EDIS; // // Begin transmitting // for(;;) { while(ECanaRegs.CANRMP.all != 0xFFFF0000 ) { } ECanaRegs.CANRMP.all = 0x00000000; // // Read from Receive mailboxes and begin checking for data // for(j=16; j<32; j++) // Read & check 16 mailboxes { mailbox_read(j); // This func reads the indicated mailbox data // // Checks the received data // mailbox_check(TestMbox1,TestMbox2,TestMbox3); } } } // // mailbox_read - This function reads out the contents of the indicated // by the Mailbox number (MBXnbr). MSGID of a rcv MBX is transmitted as the // MDL data. // void mailbox_read(int16 MBXnbr) { volatile struct MBOX *Mailbox; Mailbox = &ECanaMboxes.MBOX0 + MBXnbr; TestMbox1 = Mailbox->MDL.all; // = 0x9555AAAn (n is the MBX number) TestMbox2 = Mailbox->MDH.all; // = 0x89ABCDEF (a constant) TestMbox3 = Mailbox->MSGID.all; // = 0x9555AAAn (n is the MBX number) } // // mailbox_check - // void mailbox_check(int32 T1, int32 T2, int32 T3) { if((T1 != T3) || ( T2 != 0x89ABCDEF)) { ErrorCount++; } else { GpioDataRegs.GPASET.bit.GPIO11 = 1; PassCount++; } } // // End of File //