//###########################################################################
//
// FILE: Example_2803xECanBack2Back.c
//
// TITLE: eCAN back to back example
//
//! \addtogroup f2803x_example_list
//!
eCAN back to back (ecan_back2back)
//!
//! This example tests eCAN by transmitting data back-to-back at high speed
//! without stopping. The received data is verified. Any error is flagged.
//! MBX0 transmits to MBX16, MBX1 transmits to MBX17 and so on....
//!
//! This example uses the self-test mode of the CAN module. i.e. the
//! transmission/reception happens within the module itself (even the required
//! ACKnowldege is generated internally in the module). Therefore, there is no
//! need for a CAN transceiver to run this particular test case and no activity
//! will be seen in the CAN pins/bus. Because everything is internal, there is
//! no need for a 120-ohm termination resistor. Note that a real-world CAN
//! application needs a CAN transceiver and termination resistors on both ends
//! of the bus.
//!
//! \b Watch \b Variables \n
//! - PassCount
//! - ErrorCount
//! - MessageReceivedCount
//
//
//###########################################################################
// $TI Release: F2803x Support Library v2.02.00.00 $
// $Release Date: Sun Oct 4 16:06:22 IST 2020 $
// $Copyright:
// Copyright (C) 2009-2020 Texas Instruments Incorporated - http://www.ti.com/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// Neither the name of Texas Instruments Incorporated nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// $
//###########################################################################
//
// Included Files
//
#include "DSP28x_Project.h" // Device Headerfile and Examples Include File
//
// Prototype statements
//
void mailbox_check(int32 T1, int32 T2, int32 T3);
void mailbox_read(int16 i);
//
// Globals
//
Uint32 ErrorCount;
Uint32 PassCount;
Uint32 MessageReceivedCount;
Uint32 TestMbox1 = 0;
Uint32 TestMbox2 = 0;
Uint32 TestMbox3 = 0;
//
// Main
//
void main(void)
{
Uint16 j;
//
// eCAN control registers require read/write access using 32-bits. Thus we
// will create a set of shadow registers for this example. These shadow
// registers will be used to make sure the access is 32-bits and not 16.
//
struct ECAN_REGS ECanaShadow;
//
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2803x_SysCtrl.c file.
//
InitSysCtrl();
//
// Step 2. Initialize GPIO:
// This example function is found in the DSP2803x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
//
// InitGpio(); // Skipped for this example
//
// For this example, configure CAN pins using GPIO regs here
// This function is found in DSP2803x_ECan.c
//
// InitECanGpio();
//
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
//
DINT;
//
// Initialize PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2803x_PieCtrl.c file.
//
InitPieCtrl();
//
// Disable CPU interrupts and clear all CPU interrupt flags:
//
IER = 0x0000;
IFR = 0x0000;
//
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2803x_DefaultIsr.c.
// This function is found in DSP2803x_PieVect.c.
//
InitPieVectTable();
//
// Step 4. Initialize all the Device Peripherals:
// Not required for this example
//
//
// Step 5. User specific code, enable interrupts:
//
MessageReceivedCount = 0;
ErrorCount = 0;
PassCount = 0;
InitECana(); // Initialize eCAN-A module
//
// Mailboxes can be written to 16-bits or 32-bits at a time
// Write to the MSGID field of TRANSMIT mailboxes MBOX0 - 15
//
ECanaMboxes.MBOX0.MSGID.all = 0x9555AAA0;
ECanaMboxes.MBOX1.MSGID.all = 0x9555AAA1;
ECanaMboxes.MBOX2.MSGID.all = 0x9555AAA2;
ECanaMboxes.MBOX3.MSGID.all = 0x9555AAA3;
ECanaMboxes.MBOX4.MSGID.all = 0x9555AAA4;
ECanaMboxes.MBOX5.MSGID.all = 0x9555AAA5;
ECanaMboxes.MBOX6.MSGID.all = 0x9555AAA6;
ECanaMboxes.MBOX7.MSGID.all = 0x9555AAA7;
ECanaMboxes.MBOX8.MSGID.all = 0x9555AAA8;
ECanaMboxes.MBOX9.MSGID.all = 0x9555AAA9;
ECanaMboxes.MBOX10.MSGID.all = 0x9555AAAA;
ECanaMboxes.MBOX11.MSGID.all = 0x9555AAAB;
ECanaMboxes.MBOX12.MSGID.all = 0x9555AAAC;
ECanaMboxes.MBOX13.MSGID.all = 0x9555AAAD;
ECanaMboxes.MBOX14.MSGID.all = 0x9555AAAE;
ECanaMboxes.MBOX15.MSGID.all = 0x9555AAAF;
//
// Write to the MSGID field of RECEIVE mailboxes MBOX16 - 31
//
ECanaMboxes.MBOX16.MSGID.all = 0x9555AAA0;
ECanaMboxes.MBOX17.MSGID.all = 0x9555AAA1;
ECanaMboxes.MBOX18.MSGID.all = 0x9555AAA2;
ECanaMboxes.MBOX19.MSGID.all = 0x9555AAA3;
ECanaMboxes.MBOX20.MSGID.all = 0x9555AAA4;
ECanaMboxes.MBOX21.MSGID.all = 0x9555AAA5;
ECanaMboxes.MBOX22.MSGID.all = 0x9555AAA6;
ECanaMboxes.MBOX23.MSGID.all = 0x9555AAA7;
ECanaMboxes.MBOX24.MSGID.all = 0x9555AAA8;
ECanaMboxes.MBOX25.MSGID.all = 0x9555AAA9;
ECanaMboxes.MBOX26.MSGID.all = 0x9555AAAA;
ECanaMboxes.MBOX27.MSGID.all = 0x9555AAAB;
ECanaMboxes.MBOX28.MSGID.all = 0x9555AAAC;
ECanaMboxes.MBOX29.MSGID.all = 0x9555AAAD;
ECanaMboxes.MBOX30.MSGID.all = 0x9555AAAE;
ECanaMboxes.MBOX31.MSGID.all = 0x9555AAAF;
//
// Configure Mailboxes 0-15 as Tx, 16-31 as Rx
// Since this write is to the entire register (instead of a bit field)
// a shadow register is not required.
//
ECanaRegs.CANMD.all = 0xFFFF0000;
//
// Enable all Mailboxes
// Since this write is to the entire register (instead of a bit field)
// a shadow register is not required.
//
ECanaRegs.CANME.all = 0xFFFFFFFF;
//
// Specify that 8 bits will be sent/received
//
ECanaMboxes.MBOX0.MSGCTRL.bit.DLC = 8;
ECanaMboxes.MBOX1.MSGCTRL.bit.DLC = 8;
ECanaMboxes.MBOX2.MSGCTRL.bit.DLC = 8;
ECanaMboxes.MBOX3.MSGCTRL.bit.DLC = 8;
ECanaMboxes.MBOX4.MSGCTRL.bit.DLC = 8;
ECanaMboxes.MBOX5.MSGCTRL.bit.DLC = 8;
ECanaMboxes.MBOX6.MSGCTRL.bit.DLC = 8;
ECanaMboxes.MBOX7.MSGCTRL.bit.DLC = 8;
ECanaMboxes.MBOX8.MSGCTRL.bit.DLC = 8;
ECanaMboxes.MBOX9.MSGCTRL.bit.DLC = 8;
ECanaMboxes.MBOX10.MSGCTRL.bit.DLC = 8;
ECanaMboxes.MBOX11.MSGCTRL.bit.DLC = 8;
ECanaMboxes.MBOX12.MSGCTRL.bit.DLC = 8;
ECanaMboxes.MBOX13.MSGCTRL.bit.DLC = 8;
ECanaMboxes.MBOX14.MSGCTRL.bit.DLC = 8;
ECanaMboxes.MBOX15.MSGCTRL.bit.DLC = 8;
//
// Write to the mailbox RAM field of MBOX0 - 15
//
ECanaMboxes.MBOX0.MDL.all = 0x9555AAA0;
ECanaMboxes.MBOX0.MDH.all = 0x89ABCDEF;
ECanaMboxes.MBOX1.MDL.all = 0x9555AAA1;
ECanaMboxes.MBOX1.MDH.all = 0x89ABCDEF;
ECanaMboxes.MBOX2.MDL.all = 0x9555AAA2;
ECanaMboxes.MBOX2.MDH.all = 0x89ABCDEF;
ECanaMboxes.MBOX3.MDL.all = 0x9555AAA3;
ECanaMboxes.MBOX3.MDH.all = 0x89ABCDEF;
ECanaMboxes.MBOX4.MDL.all = 0x9555AAA4;
ECanaMboxes.MBOX4.MDH.all = 0x89ABCDEF;
ECanaMboxes.MBOX5.MDL.all = 0x9555AAA5;
ECanaMboxes.MBOX5.MDH.all = 0x89ABCDEF;
ECanaMboxes.MBOX6.MDL.all = 0x9555AAA6;
ECanaMboxes.MBOX6.MDH.all = 0x89ABCDEF;
ECanaMboxes.MBOX7.MDL.all = 0x9555AAA7;
ECanaMboxes.MBOX7.MDH.all = 0x89ABCDEF;
ECanaMboxes.MBOX8.MDL.all = 0x9555AAA8;
ECanaMboxes.MBOX8.MDH.all = 0x89ABCDEF;
ECanaMboxes.MBOX9.MDL.all = 0x9555AAA9;
ECanaMboxes.MBOX9.MDH.all = 0x89ABCDEF;
ECanaMboxes.MBOX10.MDL.all = 0x9555AAAA;
ECanaMboxes.MBOX10.MDH.all = 0x89ABCDEF;
ECanaMboxes.MBOX11.MDL.all = 0x9555AAAB;
ECanaMboxes.MBOX11.MDH.all = 0x89ABCDEF;
ECanaMboxes.MBOX12.MDL.all = 0x9555AAAC;
ECanaMboxes.MBOX12.MDH.all = 0x89ABCDEF;
ECanaMboxes.MBOX13.MDL.all = 0x9555AAAD;
ECanaMboxes.MBOX13.MDH.all = 0x89ABCDEF;
ECanaMboxes.MBOX14.MDL.all = 0x9555AAAE;
ECanaMboxes.MBOX14.MDH.all = 0x89ABCDEF;
ECanaMboxes.MBOX15.MDL.all = 0x95544444;
ECanaMboxes.MBOX15.MDH.all = 0x89ABCDEF;
//
// Since this write is to the entire register (instead of a bit field)
// a shadow register is not required.
//
EALLOW;
ECanaRegs.CANMIM.all = 0xFFFFFFFF;
//
// Configure the eCAN for self test mode
// Enable the enhanced features of the eCAN.
//
EALLOW;
ECanaShadow.CANMC.all = ECanaRegs.CANMC.all;
ECanaShadow.CANMC.bit.STM = 0; // Configure CAN for normal mode
ECanaRegs.CANMC.all = ECanaShadow.CANMC.all;
EDIS;
//
// Begin transmitting
//
for(;;)
{
while(ECanaRegs.CANRMP.all != 0xFFFF0000 )
{
}
ECanaRegs.CANRMP.all = 0x00000000;
//
// Read from Receive mailboxes and begin checking for data
//
for(j=16; j<32; j++) // Read & check 16 mailboxes
{
mailbox_read(j); // This func reads the indicated mailbox data
//
// Checks the received data
//
mailbox_check(TestMbox1,TestMbox2,TestMbox3);
}
}
}
//
// mailbox_read - This function reads out the contents of the indicated
// by the Mailbox number (MBXnbr). MSGID of a rcv MBX is transmitted as the
// MDL data.
//
void
mailbox_read(int16 MBXnbr)
{
volatile struct MBOX *Mailbox;
Mailbox = &ECanaMboxes.MBOX0 + MBXnbr;
TestMbox1 = Mailbox->MDL.all; // = 0x9555AAAn (n is the MBX number)
TestMbox2 = Mailbox->MDH.all; // = 0x89ABCDEF (a constant)
TestMbox3 = Mailbox->MSGID.all; // = 0x9555AAAn (n is the MBX number)
}
//
// mailbox_check -
//
void
mailbox_check(int32 T1, int32 T2, int32 T3)
{
if((T1 != T3) || ( T2 != 0x89ABCDEF))
{
ErrorCount++;
}
else
{
GpioDataRegs.GPASET.bit.GPIO11 = 1;
PassCount++;
}
}
//
// End of File
//