TMDSDCDCLEDKIT

e DC/DC SEPIC power stage;
e (2000 Piccolo TMS320F28035 Microcontroller with CPU frequency equal to 60MHz;

e 4 LED dimming stages PWM each managing a pair of LED strings for a total of 8 strings

(see Figure below)

DC-DC LED Lighting Hardware Block Diagram

DC L v ' -~
12t0 36 V D' ~
+ G &
LA N ]
= I a Ya
L] L] Ll
_(E.Z . . .
= — - . H
& = a
F2803x -_I -_I ._l
“Ha: 2 3 eee ¢
cro | Bl s
32 bit : N N
AH—4 3
- [ ]
2 > ADC ) AH @S
= e T
s | 12bi 1 -
ve e Pl S
AH@H -
12C PWM-5 N |
—p| SPI ©
UART

iH



SEPIC MOSFET (red label 1) opens and closes with a frequency that is the switching
frequency= 100kHz.

LED strings MOSFETs (red labels 2.8) switch at a frequency that is the dimming
frequency=20kHz.

SETUP fs'witching efdimming in the CODE

39

18 J it e et

1 #if (INCR_BUILD == 3) // Closed Loop SEPIC + Closed Loop LED Strings

12 Jf =

13 #if (DSP2802x_DEVICE_H || DSP28@3x_DEVICE_H)

14 #define prd_sepic 600 // Period count = 100 KHz @ 6@ MHz
15 #define prd_led 3000 // Period count = 20 KHz @ 68 MHz
16 #endif

W7

fepu 60M
J = L —_— —
fsw #ticks 600 100kHz

fepu __ 60M

J . = o —
faim #ticks 3000 20kHz

PWM MODULES CONFIGURATION

There are 5 PWM modules whose configuration is made by two distinct functions.

The function which generates the ePWM1A signal to regulate the SEPIC is BuckSingle CNF.
This function takes in input the period, the mode (1 for MASTER and 0 for SLAVE) and the
phase.

3
L BuckSingle_CNF(1, prd_sepic, 1, @); // ePWMLA Period=prd, Master, Phase=Don't Care

The other function BuckDualCNF configures the 4 modules that control the strings by
generating the signals ePWMXxA, B. The LED strings aren’t turned on and off together but they
are out of phase by % of the dimming period. The first PWM module is the MASTER and so the
first to be activated. The SLAVE modules are synchronized with it.

?

// Spread LED power draw over full 58us (1/20kHz);

7 BuckDual _CNF(2, prd_led, 1, @); // ePWM2A,B, Period=prd, Master, Phase = @degrees
H BuckDual_CNF(3, prd_led, @, 750); // ePWM3A,B, Period=prd, Slave, Phase = 9@degrees
) BuckDual CNF(4, prd_led, @, 1500); // ePWM4A,B, Period=prd, Slave, Phase = 180degrees
} BuckDual_CNF(5, prd_led, ®, 2258); // ePWM5A,B, Period=prd, Slave, Phase = 27@degrees

We expect that the ePWM1A (SEPIC) and ePWM2A or ePWM2B signals (MASTER
module that manages the first two strings of LEDs) are synchronized. This does not
happen, just look at the screenshots of the oscilloscope below.



Blu signal: ePWM2A output (15t LED string)
Yellow signal: ePWM1A output (SEPIC)

The image was captured with the oscilloscope in AUTO MODE.

Measure P1:freq(C1) P2:freq(C2) P3:freq(C1) P4:- - -
value 100.35231 kHz 20.094894 kHz 100.35231 kHz

3
20.0 psidiv Auto 164V
100kS 500 MSis Fronte Posilivo

The following images were captured with the oscilloscope in STOP MODE in two different
moments.

Measure P1:freg(C1) P2:freg(C2) P3:freg(C1) P4i- - -
value 100.36800 kHz 20.100760 kHz 100.36800 kHz

Trigger DC
20.0 psidiv Stop 164V
100kS 500 MSis Fronte Positivo




S Y — S 3 NE—

iRkl

Measure P1:freq(Cl) P2:freq(C2) P3:freq(C1)
value 100.33512 kHz 20.093033 kHz 100.33512 kHz

20.0 psidiv Stop 164V
100kS 500MSis Fronte Positivo

For completeness, we report the functions that deal with the configuration of the PWM
modules and the code of the interruption in which the control laws are calculated and the
ePWM signals are generated.

The interruption occurs at each switching frequency, such as every 100 kHz (10us). At each
interruption, only one of the ePWMxA, B signals relating to the LED strings is generated. In
contrast, the ePWM1A signal for SEPIC regulation is always generated every 10us.

BuckSingle CNF function

o

57veid BuckSingle_CNF(intl6 n, intl6 period, intl6 mode, intlé phase)

58{

59 (*ePWM[n]).TBCTL.bit.PRDLD = TB_IMMEDIATE; // set Immediate load

60 (*ePWM[n]).TBPRD = period; // PWM frequency = 1 / period
61 (*ePWM[n]).TBPHS.half.TBPHS = @;

62 (*ePWM[n]).CMPA.half.CMPA = @; // set duty 0% initially
63 (*ePWM[n]).CMPB = 0; // set duty 8% initially
64 (*ePWM[n]).TBCTR = 0;

65 (*ePWM[n]).TBCTL.bit.CTRMODE = TB_COUNT UP;

66 (*ePWM[n]).TBCTL.bit.HSPCLKDIV = TB_DIV1;

67 (*ePWM[n]) .TBCTL.bit.CLKDIV = TB_DIV1;

68

69 if(mode == 1) // config as a Master

70 {

71 (*ePWM[n]).TBCTL.bit.PHSEN = TB_DISABLE;

72 (*ePWM[n]).TBCTL.bit.SYNCOSEL = TB_CTR_ZERO; // sync "down-stream”
73}

74

75 if(mode == @) // config as a Slave (Note: Phase+2 value used to compensate for logic
76

77 (*ePWM[n]).TBCTL.bit.PHSEN = TB ENABLE;

78 (*ePWM[n]).TBCTL.bit.SYNCOSEL = TB SYNC IN;

79

80 if( 0 <= phase <= 2) (*ePWM[n]).TBPHS .half.TBPHS = (2-phase);
81 if( phase > 2 ) (*ePWM[n]).TBPHS.half_TBPHS = (period-phase+2);
82 3}

83

84 (*ePWM[n]).CMPCTL.bit.SHDWAMODE = CC_SHADOW;

85 (*ePWM[n]).CMPCTL.bit.LOADAMODE = CC_CTR_PRD;

87 (*ePWM[n]).AQCTLA.bit.ZRO = AQ SET;

88 (*ePWM[n]).AQCTLA.bit.CAU = AQ_CLEAR;

89

99 (*ePWM[n]).AQCTLB.bit.ZRO = AQ NO ACTION;

91 (*ePWM[n]).AQCTLB.bit.CAU = AQ NO_ACTION;

92 (*ePWM[n]) .AQCTLB.bit.PRD = AQ_NO_ACTION;

/ Enable HiRes option
EALLOW;
(*ePWM[n]) .HRCNFG.all = 0x8;
(*ePWM[n]) .HRCNFG.bit.EDGMODE = HR_FEP;
(*ePWM[n]) .HRCNFG.bit.CTLMODE = HR_CMP;
(*ePWM[n]) .HRCNFG.bit.HRLOAD = HR_CTR_PRD;
//(*ePWM[n]) .HRCNFG.bit .HRLOAD = HR_CTR_ZERO;
EDIS;




BuckDual CNF function

void BuckDual_CNF(int16 n, int16 period, intl6 mode, intl6 phase)

{
(*ePWM[n]).TBCTL.bit.PRDLD = TB_IMMEDIATE; // set Immediate load
(*ePWM[n]).TBPRD = period; // PWM frequency = 1 / period
(*ePWM[n]).TBPHS.half . TBPHS = ©;
(*ePWM[n]).CMPA.half.CMPA = 9; // set duty 0% initially
(*ePWM[n]).CMPB = 9; // set duty @% initially
(*ePWM[n]).TBCTR = @;
(*ePWM[n]).TBCTL.bit.CTRMODE = TB_COUNT_UP;
(*ePWM[n]).TBCTL.bit.HSPCLKDIV = TB_DIV1;
(*ePWM[n]) . TBCTL.bit.CLKDIV = TB DIV1;
if(mode == 1) // config as a Master
(*ePWM[n]).TBCTL.bit.PHSEN = TB DISABLE;
(*ePWM[n]).TBCTL.bit.SYNCOSEL = TB_CTR_ZERO; // sync "down-stream”
}
if(mode == @) // config as a Slave
(*ePWM[n]).TBCTL.bit.PHSEN = TB_ENABLE;
(*ePWM[n]).TBCTL.bit.SYNCOSEL = TB_SYNC_IN;
(*ePWM[n]).TBPHS.half.TBPHS = (period - phase); // set phase = 368 - lag
}
(*ePWM[n]).CMPCTL.bit.LOADAMODE = CC_CTR_PRD;
(*ePWM[n]) .CMPCTL.bit.LOADBMODE = CC_CTR_PRD;
(*ePWM[n]).CMPCTL.bit.SHDWAMODE = CC_SHADOW;
(*ePWM[n]).CMPCTL.bit.SHDWBMODE = CC_SHADOW;
(*ePWM[n]).AQCTLA.bit.ZRO = AQ SET;
(*ePWM[n]).AQCTLA.bit.CAU = AQ CLEAR;
(*ePWM[n]).AQCTLB.bit.ZRO = AQ SET;
(*ePWM[n]).AQCTLB.bit.CBU = AQ_CLEAR;
}

INTERRUPTION TO MANAGE CONTROL ACTIONS

Lif(INCR_BUILD = 3)
;ISR will always run the Sepic controller, but will only run two LED string controllers
; each time an interrupt fires

ADC_NchDRV 12 ; Convert 12 Adc Channels, (i.e. N=12)
Control_3P37 1 ; Perform calculations for SEPIC controller
BuckSingleHR_DRV 1 ; update EPWM1A duty cycle

;LED control is "time-sliced" to save cycles. This can be done because the LED
; control does not need to run at 100kHz
Movw DP, #tsPtr
cMp @tsPtr, #1
B TS1, EQ
cMp @tsPtr, #2
B TS2, EQ
cMp @tsPtr, #3
B TS3, EQ
cMp @tsPtr, #4
B TS4, EQ
cMp @tsPtr, #5
B TS5, GEQ

mov @tsPtr,#1

LB TS_SKIP
TS1:

ControlLaw_2P27

ControlLaw_2P27

BuckDual_DRV

LB TS_SKIP

[SETRN]

; EPWM2A, 2B

T52:
Controllaw_2P27
Controllaw_2P27
BuckDual_DRV
LB TS_SKIP

W

; EPWM3A, 3B

T53:
Controllaw_2P2Z 6
ControllLaw_2P2Z 7
BuckDual DRV 4 ; EPWMAA, 4B
LB TS_SKIP

T54:
Controllaw_2P27 8
Controllaw_2P2Z 9
BuckDual DRV 5 3 EPWMSA, SB
LB TS_SKIP

TS5: ;DO NOTHING

TS_SKIP:
MOVW  DP, #tsPtr
INC @tsPtr
P @tsPtr, #5 5 if new value of tsPtr is 6 or greater reset tsPtr to 1
B TS_FIN, LEQ
MoV @tsPtr, #1

TS_FIN:

;ADC_Reset
NoP
5 MOVW  DP,#ADCTRL2>>6 5 Reset ADC SEQ
5 MOV @ADCTRL2,#0x4101  ; RST_SEQl=1, SOCA-SEQl=1, SOCB-SEQ2=1
.endif



