
1

Table Look-up
and Interpolation

on the TMS320C2xx

Application Report
Literature Number: BPRA046

2

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor
product or service without notice, and advises its customers to obtain the latest version of relevant information to
verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at
the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each
device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or severe
property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO
BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL
APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license, either
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property
right of TI covering or relating to any combination, machine, or process in which such semiconductor products or
services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

3

Table of Contents

1. Overview.. 5

2. Interpolation principle ... 5

3. Fixed step table ... 6

4. Generic table Look-up and interpolation in an ordered table....... 9

5. Annexe..14

5.1 Fixed Step Table example...14

5.2 Generic Table example ...17

4

5

1. Overview
In digital motor control applications, table interpolation is an operation which is
always performed, wheel round after round. The rapidity of the table
interpolation conditions a correct working of the system, so the DSP should be
able to do it as quickly as possible. Saving time for table interpolation will
allow more possibilities for other software.

Different kinds of tables may be used: constant or non-constant steps, 2D or 3D,
group of abscissa followed by the group of corresponding ordinates, and so on.

In order to help the customer to understand table interpolation, we have in this
document presented different solutions for table look-up and interpolation.
These solutions should be table size optimized, speed optimized, and precision
optimized.

2. Interpolation principle
The general formula for calculating the table interpolation value Y of a number
X is:

ii+1
x - x

Y = y +
i+1 i

y - y)(
X - x i

i

r = ratio

Figure 1: formula

x xi i+1

y

y

i

i+1

X

Y = ?

x

y

Figure 2: interpolation

where: {xi} = {first coordinates of the table},
{yi} = {second coordinates of the table},
i chosen so that xi < X < xi+1.

6

Table interpolation can be divided into two steps:
• table look-up: it consists of looking through the whole table in order to find

in which interval [xi, xi+1[the considered point X is located,
 with xi < X < xi+1.

• interpolation: it consists of realizing the above calculation
(see Figure 1: formula) in order to obtain Y.

3. Fixed step table
With a fixed step table, it is possible to have a correspondence between the
address of a point in the table and its abscissa. In this way the table look up is
instantaneous and constant in execution and the table size is reduced, only
ordinates are stored, and abscissa are memory addressed .

Values are uniformly spaced, in this way a simple linear interpolation can be
used to compute the value between table entries. The simple linear interpolation
uses the values of two consecutive table entries as the end point of a line
segment. Sample points for parameters values falling between table entries
assume values on the line segment between the points.

Constraint :
• Table must have constant steps.
• Integer power of 2 step abscissa (2p with p equal from 1 to 16).

Advantage :
• Easy table Look-up.
• Short table.

Example of a fixed table step table:

0h y(0) The ordinate y(0) corresponds to x(0) = 0.
1h y(1*2p) The ordinate y(1) corresponds to x(1) = 1*2p.
2h y(2*2p) The ordinate y(2) corresponds to x(2) = 2*2p.
3h y(3*2p) The ordinate y(3) corresponds to x(3) = 3*2p.
4h y(4*2p) The ordinate y(4) corresponds to x(4) = 4*2p.

With this table organization, it is easy to point to the good address. Division
from the 2p value gives the position of the ordinate in the table and the
remainder is used for interpolation.

7

x

y

X

Y = ?

step

y
y

0
1

y
i

i step r step

0

Example:

Suppose p=4,
Each step is 24 =16 The table looks like this:

1010h 7
1011h 20
1012h 30
1013h 50

This can be translated into: p=4h, y(0)=7h, y(16)=20h, y(32)=30h, y(48)=50h.

In this way, to find Y(16), we have to divide 16 by 24, result is 1, this value is
added to beginning of the table 1010h, and the address pointed contains the
result.

To find Y(18), we have to divide 16 by 24 , the integer result is 1, the remainder,
not equal zero is used for interpolation.

The sample TMS320C2xx implementation of this linear interpolation scheme
given in Annexe, is an enhancement of the table look-up table. Each time this
subroutine is called, the next sample point is calculated.

8

Here is the main part of this function:

The Y data table organization is :

Begin of the Y table : Y(0)
Y(1*2p)
Y(2*2p)
 ..
 ..
Y(n*2p)

2p is the constant abscissa step.

The value to interpolate is Y(Xdata), with Xdata<n*2p

Program :

LAC Xdata,16-d ;isolate the indice by a 2^p division
SACH indice ;fixed position in the table
SACL reste ;remainder
LALK begin_Y_table ;address of beginning of the table
ADD indice ;address of the nearest first indice
TBLR Y1 ;Load Y1 with the ordonate of the

nearest 1st indice
ADD #1
TBLR Y2 ;Load Y2 with the ordonate of the

nearest 2nd indice
LAC Y2
SUB Y1 ;difference between the two Y value
SACL tmp
LT reste
MPY tmp
SPH tmp ;interpolation between Y1 and Y2
LAC Y1
ADD tmp ;Y(Xdata) in ACCU

9

Processor utilization
Function Cycles Execution Time

Interpolation 21 1.05µs

Memory utilization
Function ROM (words) Stack levels Registers used RAM (words)

Interpolation 17+tables none none 5

If this part of s/w is inserted directly in line with the code of a master program,
avoiding the overhead of a subroutine, a sample can be computed in only 1.05
microsecond. If the program is used as a subroutine, each sample can be
computed in 1.3 microsecond.

An implementation with boundary conditions, abscissa out of range, is given in
the Annexe.

4. Generic table Look-up and interpolation in an ordered
table

Generic means that there is no particular constraint for the ordered data table.
Steps are not constant. Abscissas and corresponding ordinates are present in
table. In this case, the look-up is more complex than in the fixed step table.

Example of a generic table:

0h X(0) Y(X(0))
1h X(1) Y(X(1))
2h X(2) Y(X(2))
3h X(3) Y(X(3))
4h X(4) Y(X(4))
...

There are many ways to implement the table look-up and interpolation in an
ordered table.
• The first method used with small table is to read each abscissa of the table in

order to determine in which interval the searched abscissa is located.
• The second method takes advantage of the TMS320C2xx capability of

performing bit reversed addressing by proceeding by comparison between the
searched abscissa and the middle point of an interval which will be divided
by two at each iteration. In this case, we assume that the size of the search

10

table is some integer power of 2 (2n). In this case a maximum of n iterations
is required to complete the search.

A total solution with the second look-up method and a linear interpolation is
presented.

The following function returns the ordinate of the searched abscissa which is
stored in accumulator. The carry bit is set to signify that the search was
unsuccessful, abscissa is outside of the range.

Processor utilization
Function Cycles max. Execution Time max
table_look 87+n*19 (87+n*19)*50ns

Memory utilization
Function ROM (words) Stack levels Registers used RAM (words)
table_look 104+tables none 3 7

.bss X_look,1,1

.bss temp,1,1

.bss X1,1,1

.bss X2,1,1

.bss Y1,1,1

.bss Y2,1,1

.bss remainder,1,1

size .set xxx ;size of the array
iterations

.set xxx ;number of iterations to complete the
;search,
;the size of this array is ;2^(xxx+1)
;for example for a 2^9 valuestable,
;xxx is ;equal 8

.text
•
•
•
CALL table_look
•
•
•

table_look
LDP #temp
SACL X_look ;load in Accu the searched abscissa
LAR AR0,#size ;load in AR0, the size of array
MAR *,AR0

11

MAR *BR0+,AR3 ;half the size of the array
LAR AR3,#TableX

;AR3 points to the beginning of the array
LAR AR4,#iterations

;Number of iterations, table size is 2^n

SAR AR3,temp ;Load Accu with address of the first
LAC temp ;value in abscissa table
TBLR temp ;Transfert the first abscissa in

;temporary variable
LAC X_look
SUB temp ;compare the searched abscissa with

;pointed abscissa
BCND outside,LT ;error if the abscissa is smaller

;than the first abscissa of the table

again
BCND found,EQ ;if searched abscissa is equal pointed

abscissa
BCND inf,GT ;if searched abscissa is greater

; than pointed abscissa
MAR *0-,AR0 ;if too high on array, jump back

;in the table
B end_sup

inf MAR *0+,AR0 ;if too low on array, jump
;foward in the table

end_sup
MAR *BR0+,AR4 ;half the search part
SAR AR3,temp ;Load Accu with address of
LAC temp ;the new pointed abscissa
TBLR temp ;transfert pointed abscissa in temporay

;variable
LAC X_look
SUB temp ;compare searched abscissa with pointed

;abscissa
BANZ again,AR3 ;repeat iteration n times

nothere ;exact abscissa has not been found, an
SAR AR3,temp ;interpolation has to be performed
BCND part_pos,GT;test if searched abscissa is greater

;or smaller ;than pointed abscissa

;if abscissa pointed is greater than
;searched abscissa.

LAC temp ;
TBLR X2 ;X2=min abscissa of the interval
SUB #1h
TBLR X1 ;X1=max abscissa of the interval

SUB #TableX ;point to the Y table
ADD #TableY

TBLR Y1 ;Y1=ordinate of X1
ADD #1h
TBLR Y2 ;Y2=ordinate of X2
B interpolate

12

part_pos
;if abscissa pointed is smaller than
;searched abscissa.

LAC temp
TBLR X1 ;X1=min abscissa of the interval
ADD #1h
TBLR X2 ;X2=max abscissa of the interval

SUB #TableX ;point to Y table
ADD #TableY

TBLR Y2 ;Y2=ordinate of X2
SUB #1h
TBLR Y1 ;Y1=ordinate of X1

;interpolation
;Y=Y1+(x_look-X1)/(X2-X1)*(Y2-Y1)

interpolate
LAC X2
SUB X1 ;calculate X2-X1
BCND outside,LT ;error if x_look is geater

;than last abscissa
SACL remainder

LAC #8000h
ABS
RPTK 15
SUBC remainder ;calculate 1/(X2-X1) << 15
SACL temp
LT temp
LAC X_look
SUB X1 ;calculate x_look-X1
SACL temp
MPY temp ;calculate ratio =(x_look-X1)/(X2-X1)<<15
SPL temp
LT temp

LAC Y2
SUB Y1 ;calculate Y2-Y1
SACL temp

MPY temp ;calculate ratio*(Y2-Y1)
PAC
SFL
SACH temp
LAC Y1
ADD temp ;calculate Y=Y1+(x_look-X1)/(X2-X1)

;*(Y2-Y1)
B end_interp

outside
ZAC ;Accu is zeroed
SETC C ;set the carry to inform main program

;that the search was unsuccessful
B end_interp

found ;exact abscissa has been found

13

SAR AR3,temp
LAC temp ;point to good address in TableY
SUB #TableX
ADD #TableY
TBLR temp ;Store Y(x_look) in temporary register
LAC temp ;Y(x_look) in Accu

end_interp
RET

TableX .word X(0) ;table of abscissa in program data space
.word X(1)
.word X(2)
.word X(3)
.word X(4)
.word X(5)
.word X(6)
.word X(7)
•
•

TableY .word Y(10h) ;table of ordinate in program data space
.word Y(20h)
.word Y(30h)
.word Y(40h)
.word Y(50h)
.word Y(60h)
.word Y(70h)
.word Y(80h)
•
•

.end

This function could be easily modified if the size of the search table is not a
power of 2.

An implementation of this function in a main program with an example is given
in the annexe.

14

5. Annexe

5.1 Fixed Step Table example
**
*File Name: M_table.asm *
*Project: DMC Mathematical Library *
*Originator: Pascal DORSTER (Texas Intruments) *
* *
*Description: Simple main which call a table Look-up *
* function with fixed step table *
* *
* *
*Processor: C2xx *
* *
*Status: *
* *
*Last Update: 20 Sept 96 *
__
*Date of Mod | DESCRIPTION *
---------------|--
* | *
* | *
**

.mmregs

.sect "vectors"
b _c_int0
b $

* Variable

.bss Xdata,1,1
.bss indice,1,1
.bss remainder,1,1
.bss Y1,1,1
.bss Y2,1,1
.bss temp,1,1

**
* Main routine
**

.text

_c_int0:
LAC #18h
CALL Look_fixed_table

15

**
*Routine Name: look_fixed_table *
*Project: DMC Mathematical Library *
*Originator: Pascal DORSTER (Texas Intruments) *
* *
*Description: Look-up Table + Interpolation program for *
* C2xx fixed step table *
* Assembly calling funtion *
* *
*Status: *
* *
*Processor: C2xx *
* *
*Calling convention: *
* Input : in Accu abscissa *
* Output : Y(abscissa) in Accu *
* *
*Last Update: 20 Sept 96 *
__
*Date of Mod |DESCRIPTION *
---------------|--
* | *
* | *
**

Look_fixed_table
LDP #Xdata ;isolate the indice by a /8
SACL Xdata
LAC Xdata,16-3 ;integer position in the table
SACH indice ;remainder
SACL remainder ;
LALK tableY ;address of beginning of the table
ADD indice ;address of the nearest first indice
SACL indice ;temporary
SUB #tableY_end
BCND outside,GT
BCND last,EQ
LAC remainder
TBLR Y1
ADD #1h
TBLR Y2 ;Load Y2 with the ordonate of the

;nearest second indice
LAC Y2
SUB Y1 ;difference between the two Y value
SACL temp
LT remainder
MPY temp
SPH temp ;interpolation between Y1 and Y2
LAC Y1
ADD temp ;Y(Xdata) in ACCU
B end_interp

outside ;abscissa is out of range
ZAC

16

SETC C
B end_interp
last ;abscissa point to the last table

;value
LAC remainder
TBLR Y1
LAC Y1

end_interp
RET

**
* Table
**

tableY .word 10 ;Y(0) =10
.word 40 ;Y(8) =40
.word 80 ;Y(16) =80

tableY_end
.word 200 ;Y(24) =200
.end

17

5.2 Generic Table example
**
*File Name: M_table.asm *
*Project: DMC Mathematical Library *
*Originator: Pascal DORSTER (Texas Intruments) *
* *
*Description: Simple main which call a table Look-up *
* function not fixed step table *
* *
*Processor: C2xx *
* *
*Status: *
* *
*Last Update: 20 Sept 96 *
__
*Date of Mod | DESCRIPTION *
---------------|--
* | *
* | *

.mmregs

.sect "vectors"
b _c_int0
b $

**
* Variables *
**
.bss X_look,1,1
.bss temp,1,1
.bss X1,1,1
.bss X2,1,1
.bss Y1,1,1
.bss Y2,1,1
.bss remainder,1,1

size .set 08h ;size of the array
iterations.set 2h ;number of iterations to complete

;the search,the size of this array
;is 2^(xxx+1)
;for example for a 2^9 values table,
:xxx is equal 8

.text

**
* Main *
**
_c_int0:

18

LAC #32h
CALL table_look

**
*Routine Name: table_look *
*Project: DMC Mathematical Library *
*Originator: Pascal DORSTER (Texas Intruments) *
* *
*Description: Look-up Table + Interpolation program *
* for C2xx *
* not fixed step table *
* bit reversed table look-up *
* Linear Interpolation *
* Tables in Program Memory *
* Size table is an integer power of 2 *
* Boundary condition management: abscissa *
* out of range *
* Assembly calling funtion *
* *
*Status: *
* *
*Processor: C2xx *
* *
*Calling convention: *
* Input : Abscissa in Accu *
* Output: ordonates Y(x_look) in Accu *
* Carry bit is set if out of range *
* *
*Last Update: 20 Sept 96 *
__
* Date of Mod | DESCRIPTION *
---------------|--
* | *
* | *
**

table_look
LDP #temp
SACL X_look ;load in Accu the searched abscissa
LAR AR0,#size ;load in AR0, the size of array
MAR *,AR0
MAR *BR0+,AR3 ;half the size of the array
LAR AR3,#TableX ;AR3 points to the beginning

;of the array
LAR AR4,#iterations

;Number of iterations,
;table size is 2^n

SAR AR3,temp ;Load Accu with address of
;the first value in

LAC temp ;abscissa table
TBLR temp ;Transfer the first abscissa

:in temporary

19

;variable
LAC X_look
SUB temp ;compare the searched abscissa with

;pointed abscissa
BCND outside,LT ;error if the abscissa is smaller

;than the first abscissa of the table

again
BCND found,EQ ;if searched abscissa is equal

;pointed abscissa
BCND inf,GT ;if searched abscissa is greater

;than pointed abscissa
MAR *0-,AR0 ;if too high on array, jump back

;in the table
B end_sup

inf
MAR *0+,AR0 ;if too low on array, jump

;foward in the table
end_sup
MAR *BR0+,AR4 ;half the search part
SAR AR3,temp ;Load Accu with address of
LAC temp ;the new pointed abscissa
TBLR temp ;transfer pointed abscissa in

;temporary variable
LAC X_look
SUB temp ;compare searched abscissa with

;pointed abscissa
BANZ again,AR3 ;repeat iteration n times

nothere ;exact abscissa has not been found, an
AR AR3,temp ;interpolation has to be performed
BCND part_pos,GT ;test if searched abscissa is greater

;or smaller than pointed abscissa

;if abscissa pointed is greater than
;searched abscissa.

LAC temp ;
TBLR X2 ;X2=min abscissa of the interval
SUB #1h
TBLR X1 ;X1=max abscissa of the interval

SUB #TableX ;point to the Y table
ADD #TableY

TBLR Y1 ;Y1=ordinate of X1
ADD #1h
TBLR Y2 ;Y2=ordinate of X2
B interpolate

part_pos
;if abscissa pointed is smaller
;than searched abscissa.

LAC temp

20

TBLR X1 ;X1=min abscissa of the interval
ADD #1h
TBLR X2 ;X2=max abscissa of the interval

SUB #TableX ;point to Y table
ADD #TableY

TBLR Y2 ;Y2=ordinate of X2
SUB #1h
TBLR Y1 ;Y1=ordinate of X1

;interpolation
;Y=Y1+(x_look-X1)/(X2-X1)*(Y2-Y1)

interpolate
LAC X2
SUB X1 ;calculate X2-X1
BCND outside,LT ;error if x_look is greater than

;last abscissa
SACL remainder

LAC #8000h
ABS
RPTK 15
SUBC remainder ;calculate 1/(X2-X1) << 15
SACL temp
LT temp
LAC X_look
SUB X1 ;calculate x_look-X1
SACL temp
MPY temp ;calculate

;ratio =(x_look-X1)/(X2-X1)<<15
SPL temp
LT temp

LAC Y2
SUB Y1 ;calculate Y2-Y1
SACL temp

MPY temp ;calculate ratio*(Y2-Y1)
PAC
SFL
SACH temp
LAC Y1
ADD temp ;calculate Y=Y1+(x_look-X1)/(X2-X1)

;*(Y2-Y1)
B end_interp

outside
ZAC ;Accu is zeroed
SETC C ;set the carry to inform main program

;that the search was unsuccessful
B end_interp

21

found ;exact abscissa has been found
SAR AR3,temp
LAC temp ;point to good address in TableY
SUB #TableX
ADD #TableY
TBLR temp ;Store Y(x_look) in temporary register
LAC temp ;Y(x_look) in Accu

end_interp
RET

TableX .word 10h ;X(0)
.word 30h ;X(1)
.word 35h ;X(2)
.word 50h ;X(3)
.word 60h ;X(4)
.word 65h ;X(5)
.word 70h ;X(6)
.word 90h ;X(7)

TableY .word 05h ;Y(10h)
.word 10h ;Y(30h)
.word 16h ;Y(35h)
.word 22h ;Y(50h)
.word 40h ;Y(60h)
.word 60h ;Y(65h)
.word 65h ;Y(70h)
.word 85h ;Y(90h)

.end

