[bookmark: _GoBack]//###
//
// FILE: can_ex1_loopback.c
//
// TITLE: CAN External Loopback Example
//
//! \addtogroup driver_example_list
//! <h1> CAN External Loopback </h1>
//!
//! This example shows the basic setup of CAN in order to transmit and receive
//! messages on the CAN bus. The CAN peripheral is configured to transmit
//! messages with a specific CAN ID. A message is then transmitted once per
//! second, using a simple delay loop for timing. The message that is sent is
//! a 2 byte message that contains an incrementing pattern.
//!
//! This example sets up the CAN controller in External Loopback test mode.
//! Data transmitted is visible on the CANTXA pin and is received internally
//! back to the CAN Core.
//!
//! \b External \b Connections \n
//! - None.
//!
//! \b Watch \b Variables \n
//! - msgCount - A counter for the number of successful messages received
//! - txMsgData - An array with the data being sent
//! - rxMsgData - An array with the data that was received
//!
//
//###
// $TI Release: F28004x Support Library v1.05.00.00 $
// $Release Date: Tue Jun 26 03:10:30 CDT 2018 $
// $Copyright:
// Copyright (C) 2018 Texas Instruments Incorporated - http://www.ti.com/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// Neither the name of Texas Instruments Incorporated nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// $
//###

//
// Included Files
//
#include "driverlib.h"
#include "device.h"

//
// Defines
//
#define MSG_DATA_LENGTH 2

//
// Globals
//
volatile unsigned long msgCount = 0;

//
// Main
//
uint16_t txMsgData[2], rxMsgData[2];
void main(void)
{

 //
 // Initialize device clock and peripherals
 //
 Device_init();

 //
 // Initialize GPIO and configure GPIO pins for CANTX/CANRX
 //
 Device_initGPIO();
 GPIO_setPinConfig(DEVICE_GPIO_CFG_CANRXA);
 GPIO_setPinConfig(DEVICE_GPIO_CFG_CANTXA);

 //
 // Initialize the CAN controller
 //
 CAN_initModule(CANA_BASE);

 //
 // Set up the CAN bus bit rate to 500kHz
 // Refer to the Driver Library User Guide for information on how to set
 // tighter timing control. Additionally, consult the device data sheet
 // for more information about the CAN module clocking.
 //
 CAN_setBitRate(CANA_BASE, DEVICE_SYSCLK_FREQ, 500000, 16);

 //
 // Initialize PIE and clear PIE registers. Disables CPU interrupts.
 //
 Interrupt_initModule();

 //
 // Initialize the PIE vector table with pointers to the shell Interrupt
 // Service Routines (ISR).
 //
 Interrupt_initVectorTable();

 //
 // Enable Global Interrupt (INTM) and realtime interrupt (DBGM)
 //
 EINT;
 ERTM;

 //
 // Enable CAN test mode with external loopback
 //
 CAN_enableTestMode(CANA_BASE, CAN_TEST_EXL);

 //
 // Initialize the transmit message object used for sending CAN messages.
 // Message Object Parameters:
 // Message Object ID Number: 1
 // Message Identifier: 0x1234
 // Message Frame: Standard
 // Message Type: Transmit
 // Message ID Mask: 0x0
 // Message Object Flags: None
 // Message Data Length: 2 Bytes
 //
 CAN_setupMessageObject(CANA_BASE, 1, 0x1234, CAN_MSG_FRAME_STD,
 CAN_MSG_OBJ_TYPE_TX, 0, CAN_MSG_OBJ_NO_FLAGS,
 MSG_DATA_LENGTH);

 //
 // Initialize the receive message object used for receiving CAN messages.
 // Message Object Parameters:
 // Message Object ID Number: 2
 // Message Identifier: 0x1234
 // Message Frame: Standard
 // Message Type: Receive
 // Message ID Mask: 0x0
 // Message Object Flags: None
 // Message Data Length: 2 Bytes
 //
 CAN_setupMessageObject(CANA_BASE, 2, 0x1234, CAN_MSG_FRAME_STD,
 CAN_MSG_OBJ_TYPE_RX, 0, CAN_MSG_OBJ_NO_FLAGS,
 MSG_DATA_LENGTH);

 //
 // Start CAN module operations
 //
 CAN_startModule(CANA_BASE);

 //
 // Setup send and receive buffers
 //
 txMsgData[0] = 0x01;
 txMsgData[1] = 0x02;
 *(uint16_t *)rxMsgData = 0;

 //
 // Loop Forever - Send and Receive data continuously
 //
 for(;;)
 {
 //
 // Send CAN message data from message object 1
 //
 CAN_sendMessage(CANA_BASE, 1, MSG_DATA_LENGTH, txMsgData);

 //
 // Delay before receiving the data
 //
 DEVICE_DELAY_US(500000);

 //
 // Read CAN message object 2 and check for new data
 //
 if (CAN_readMessage(CANA_BASE, 2, rxMsgData))
 {
 //
 // Check that received data matches sent data.
 // Device will halt here during debug if data doesn't match.
 //
 if((txMsgData[0] != rxMsgData[0]) ||
 (txMsgData[1] != rxMsgData[1]))
 {
 asm(" ESTOP0");
 }
 else
 {
 //
 // Increment message received counter
 //
 msgCount++;
 }
 }
 else
 {
 //
 // Device will halt here during debug if no new data was received.
 //
 asm(" ESTOP0");
 }

 //
 // Increment the value in the transmitted message data.
 //
 txMsgData[0] += 0x01;
 txMsgData[1] += 0x01;

 //
 // Reset data if exceeds a byte
 //
 if(txMsgData[0] > 0xFF)
 {
 txMsgData[0] = 0;
 }
 if(txMsgData[1] > 0xFF)
 {
 txMsgData[1] = 0;
 }
 }
}

//
// End of File
//

