#include "F28x_Project.h" // Device Headerfile and Examples Include File
#include "math.h"
void ConfigureADC(void);
void InitEPwmExample(void);//pin 80,79
void ConfigureEPWM(void);
void SetupADCEpwm(void);
interrupt void adca1_isr(void);
//interrupt void epwm_isr(void);
//buffer for storing conversion results
#define …
int …
float …;
volatile Uint16 bufferFull;
void main(void)
{
 InitSysCtrl();
 InitEPwmGpio(); // Skipped for this example
 DINT;
 InitPieCtrl();
 IER = 0x0000;
 IFR = 0x0000;
 InitPieVectTable();
 EALLOW;
 PieVectTable.ADCA1_INT = &adca1_isr; //function for ADCA interrupt 1
 //PieVectTable.EPWM1_INT = &epwm_isr;
 EDIS;
 ConfigureADC();
 InitEPwmExample();
 ConfigureEPWM();
 SetupADCEpwm();
 PieCtrlRegs.PIEIER1.bit.INTx1 = 1;
 //PieCtrlRegs.PIEIER3.bit.INTx1 = 1;
 IER |= M_INT1; //Enable group 1 interrupts
 // IER |= M_INT3;
 EINT; // Enable Global interrupt INTM
 ERTM; // Enable Global realtime interrupt DBGM
 // initialise controller variables
…………………………………………%%...........................
//Initialize results buffer
 for(resultsIndex = 0; resultsIndex < RESULTS_BUFFER_SIZE; resultsIndex++)
 {
 AdcaResults[resultsIndex] = 0;
 }
 do
 {
 EPwm4Regs.ETSEL.bit.SOCAEN = 1; //enable SOCA
 EPwm4Regs.TBCTL.bit.CTRMODE = 0; //unfreeze, and enter up count mode
 asm(" NOP");
 }
 while (1);
}
void ConfigureADC(void)
{
 EALLOW;
 AdcaRegs.ADCCTL2.bit.PRESCALE = 6; //set ADCCLK divider to /4
 AdcSetMode(ADC_ADCA, ADC_RESOLUTION_12BIT, ADC_SIGNALMODE_SINGLE);
 AdcaRegs.ADCCTL1.bit.INTPULSEPOS = 1;
 AdcaRegs.ADCCTL1.bit.ADCPWDNZ = 1;
 DELAY_US(50);
 EDIS;
}
void ConfigureEPWM(void)
{
 EALLOW;
 EPWM4 declaration
 EDIS;
}

void SetupADCEpwm()
{
 if(ADC_RESOLUTION_12BIT == AdcaRegs.ADCCTL2.bit.RESOLUTION){
 acqps = 14; //75ns
 }
 else { //resolution is 16-bit
 acqps = 63; //320ns
 }
 //Select the channels to convert and end of conversion flag
 EALLOW;
 AdcaRegs.ADCSOC0CTL.bit.CHSEL = 0; //SOC0 will convert pin A0
 AdcaRegs.ADCSOC1CTL.bit.ACQPS = 14;
 AdcaRegs.ADCSOC0CTL.bit.TRIGSEL = 11; //trigger on ePWM1 SOCA/C
 AdcaRegs.ADCINTSEL1N2.bit.INT1SEL = 1;
 AdcaRegs.ADCINTSEL1N2.bit.INT1E = 1; //enable INT1 flag
 AdcaRegs.ADCINTFLGCLR.bit.ADCINT1 = 1; //make sure INT1 flag is cleared
}

void InitEPwmExample()
{
EPWM1,EPWM2,EPWM3 declaration
 }

interrupt void adca1_isr(void)
//interrupt void epwm_isr(void)
{
[bookmark: _GoBack] EPwm1Regs.CMPA.bit.CMPA =(TBPRD*0.5) ;
 // EPwm1Regs.ETCLR.bit.INT = 1;
 Ib=(3.3/4096)*AdcaResultRegs.ADCRESULT2;
 AdcaRegs.ADCINTFLGCLR.bit.ADCINT1 = 1;
 PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;
 // PieCtrlRegs.PIEACK.all =4;
}
