/*
 * Inner_current_loop.c
 *
 * Created on: 14-May-2022
 * Author: HE_MA
 */
//###
//PEAK CURRENT MODE CONTROL
//###
#include "F28x_Project.h"
/////////////////
// Defines
///////////////////////
//definitions for selecting DACH reference
#define REFERENCE_VDDA 0
#define REFERENCE_VDAC 1
//definitions for COMPH input selection
#define NEGIN_DAC 0
#define NEGIN_PIN 1
//definitions for CTRIPH/CTRIPOUTH output selection
#define CTRIP_ASYNCH 0
#define CTRIP_SYNCH 1
#define CTRIP_FILTER 2
#define CTRIP_LATCH 3
////////////////////
//definitions for selecting output pin
#define GPIO_CTRIP_PIN_NUM 10 //EPWM6A is mux'd with GPIO10
#define GPIO_CTRIP_PER_NUM 1 //EPWM6A is peripheral option 1 for GPIO10
///
////////////////////
//
// Function Prototypes
//
void InitCMPSS(void);
void InitEPWM(void);
////////////////////////////////////
// Main
#define EPWM6_TIMER_TBPRD 4999
#define EPWM6_TIMER_CMPA 1999
#define EPWM6_BLANK_WND_OFFSET 4949
#define EPWM6_BLANK_WND 100

#define CMPSS1_RAMPMAXREFS 40910
#define CMPSS1_RAMPDECVALS 9
//
////////////////////////////////////
void main(void)
{
 //////////////////
 InitSysCtrl();

 ///////////////////////
 InitEPwm6Gpio();
 ///////////////////
 DINT;
 ////////////////
 InitPieCtrl();
 ///////////////////
 IER = 0x0000;
 IFR = 0x0000;
 ///////////////////
 //////////////////////////////////
 InitCMPSS();
 /////////////////////////////////////
 EALLOW;
 CpuSysRegs.PCLKCR0.bit.TBCLKSYNC = 0
 EDIS;
 /////////////////////////////////
 InitEPWM();
 ///////////////////////////////////
 EALLOW;
 CpuSysRegs.PCLKCR0.bit.TBCLKSYNC = 1
 EDIS;
 //////////////////////////////////////

 /////////////////////////////////// Enable PWM
 GPIO_SetupPinMux(GPIO_CTRIP_PIN_NUM, GPIO_MUX_CPU1, GPIO_CTRIP_PER_NUM);
 ///
 while(1)
 {

 }
////////////////
}
/////////////////////////////////
// InitCMPSS - Initialize CMPSS1 and configure settings
/////////////////////////////////
void InitCMPSS(void)
{
 EALLOW;
 //
 //Enable CMPSS
 //
 Cmpss1Regs.COMPCTL.bit.COMPDACE = 1;
 //
 //NEG signal comes from DAC
 //
 Cmpss1Regs.COMPCTL.bit.COMPHSOURCE = NEGIN_DAC;
 //
 //Use VDDA as the reference for DAC
 //
 Cmpss1Regs.COMPDACCTL.bit.SELREF = REFERENCE_VDDA;
 //
 ///////////////
 //Select synchronous or asynchronous comparator triggering
 Cmpss1Regs.COMPCTL.bit.ASYNCHEN = 1;
 //Invert comparator output?
 Cmpss1Regs.COMPCTL.bit.COMPHINV = 0;
 ////////////////

 //Configure Digital Filter
 //Maximum SAMPWIN value provides largest number of samples (5-bits
 Cmpss1Regs.CTRIPHFILCTL.bit.SAMPWIN = 0x1F;/
 //Maximum THRESH value requires static value for entire window }
 //(5-bits THRESH should be GREATER than half of SAMPWIN
 Cmpss1Regs.CTRIPHFILCTL.bit.THRESH = 0x1F;
 //Maximum CLKPRESCALE value provides the most time between samples (12-bits
 Cmpss1Regs.CTRIPHFILCLKCTL.bit.CLKPRESCALE = 0x3FF;///
 //Reset filter logic & start filtering
 Cmpss1Regs.CTRIPHFILCTL.bit.FILINIT = 1;
 //Clear latch////
 Cmpss1Regs.COMPSTSCLR.bit.HLATCHCLR = 1;//////
 //
 // Configure CTRIPOUT path
 // Asynch output feeds CTRIPH
 //
 Cmpss1Regs.COMPCTL.bit.CTRIPHSEL = CTRIP_FILTER;/////////////////CTRIP_ASYNCH;
 //
 //sync clear enable
 ////High comparator latch EPWMSYNCPER clear. Enable EPWMSYNCPER reset of high comparator digital filter output latch COMPSTS[COMPHLATCH].
 Cmpss1Regs.COMPSTSCLR.bit.HSYNCCLREN = 1;///////
 ////////////////////

 ///Configure DAC and slope compensation

 // Emulation mode behavior, stop ramp immediately, after current ramp, or free-run?
 Cmpss1Regs.COMPDACCTL.bit.FREESOFT = 2;//////////Ramp generator runs freely
 //////////////
 //DAC source select. Determines whether DACHVALA is updated from DACHVALS or from the ramp generator
 //
 Cmpss1Regs.COMPDACCTL.bit.DACSOURCE = 1; // 0 DAC updated from DACHVALS, 1 DAC updated from the ramp generator
 //
 //Ramp generator source select. Determines which EPWMSYNCPER signal is used within the CMPSS module
 //
 Cmpss1Regs.COMPDACCTL.bit.RAMPSOURCE = 5; // 5 EPWM6SYNCPER,
 /////////////////
 // Load ramp from shadow or immediate
 Cmpss1Regs.COMPDACCTL.bit.RAMPLOADSEL = 1;/////////////RAMPSTS is loaded from RAMPMAXREFS
 ///////////////
 EDIS;
 /////////////////////////////////
 /////////////CMPSS Ramp Decrement Value Shadow Register
 Cmpss3Regs.RAMPDECVALS = CMPSS1_RAMPDECVALS;
//////////////////////////////////Ramp maximum reference shadow
 Cmpss3Regs.RAMPMAXREFS = CMPSS1_RAMPMAXREFS;
}
//
// InitEPWM - Initialize EPWM1 module settings
//
void InitEPWM(void)
{
 EALLOW;
 //CpuSysRegs.PCLKCR0.bit.TBCLKSYNC = 0;
 //Configure EPWM to run at SYSCLK

 EPwm6Regs.TBCTL.bit.PRDLD = 0;//////////////
 EPwm6Regs.TBCTL.bit.CLKDIV = 0;// Don't divide the PWM clock from the system clock
 EPwm6Regs.TBCTL.bit.HSPCLKDIV = 0;
 //Initialize dummy values for EPWM CTR/PRD
 EPwm6Regs.TBCTR = 0x0000;
 EPwm6Regs.TBPRD = EPWM6_TIMER_TBPRD; // 40kHz PWM
 /////////EPwm6Regs.CMPA.bit.CMPA = EPWM6_TIMER_CMPA
 // TB_DISABLE:Phase loading disabled
 EPwm6Regs.TBCTL.bit.PHSEN = 0;///////////
 // Enable PWM
 EPwm6Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP;
 //CpuSysRegs.PCLKCR0.bit.TBCLKSYNC = 1;
 //////////////
 // TB_SYNC_DISABLE: Output sync signal disconnected
 // (i.e. ePWMn+1 module will not be synced to the current, ePWMn, module)
 EPwm6Regs.TBCTL.bit.SYNCOSEL = 3;//////////
 EPwm6Regs.TBCTL2.bit.SYNCOSELX = 0;/////////////
 //////////////
 // Free run TB module when stopped in debut mode
 EPwm6Regs.TBCTL.bit.FREE_SOFT = 0x3;////////////////////
 // Load new compare value when counter == period
 EPwm6Regs.CMPCTL.bit.LOADAMODE = 0; // load on CTR=PRD//////
 // Use shadow register when updating compare register
 EPwm6Regs.CMPCTL.bit.SHDWAMODE = 0;////////
 /////////////////////////////////////
 ////////////// Set actions
 EPwm6Regs.AQCTLA.bit.ZRO = 0x2; // Set PWMxA on CTR=Zero;Set: force EPWMxA output high.
 //////////////When TBCTR = CMPA on Up Count; Clear PWMxA on event A, up count; Clear: force EPWMxA output low

 EPwm6Regs.AQTSRCSEL.bit.T2SEL = 0x1; // configure DCA_EVT2 as trigger for T2 event;
 EPwm6Regs.AQCTLA2.bit.T2U = 0x1;// Action when event occurs on T2 in UP-Count; Clear: force EPWMxA output low.
 /////////////////////////////////////
 EPwm6Regs.CMPA.all = 0;
 EPwm6Regs.TBPHS.bit.TBPHS = 0;/////
 // enable or disable loading of a PWM module's phase register into time-base coutner
 EPwm6Regs.TBCTL.bit.PHSEN = 0;
 // configure sync signal output select
 EPwm6Regs.TBCTL.bit.SYNCOSEL = 1;/
 EPwm6Regs.TZSEL.bit.DCAEVT2 = 1;// Enable DCAEVT2 as a CBC trip source for this ePWM module
 // Configure PWM channel action when trip zone triggered;//When a trip event occurs the following action is taken on output EPWMxA.
 // 2(TZ_FORCE_LO): Force EPWMxA to a low state)
 //EPwm6Regs.TZCTL.bit.TZA = 2;///
 ///////////////////////////////////////
 // Enable and configure dead-band module
 EPwm6Regs.DBCTL.bit.OUT_MODE = 3;
 // Enable and configure dead-band module
 EPwm6Regs.DBCTL.bit.IN_MODE = 0;
 // A and B channel polarity
 EPwm6Regs.DBCTL.bit.POLSEL = 2;
 // Configure falling- and rising-edge delay in TBCLK units
 EPwm6Regs.DBFED.bit.DBFED = 0;
 EPwm6Regs.DBRED.bit.DBRED = 0;
 ///////////////////////////////////////
 // Select Digital Compare event to cause a trip zone event
 // DCxEVT2/Event 2 signifies cycle-by-cycle event
 EPwm6Regs.TZDCSEL.bit.DCAEVT2 = 2;//////////010: DCAH = high, DCAL = don't care
 // Select Digital Compare high event from TRIP4IN
 EPwm6Regs.DCTRIPSEL.bit.DCAHCOMPSEL = 3;
 EPwm6Regs.DCACTL.bit.EVT2SRCSEL = 0; // 0: Source Is DCAEVT2 Signal; ///
 EPwm6Regs.DCACTL.bit.EVT2FRCSYNCSEL = 1;//1: Source is passed through asynchronously//
 ////////////////////////////////
 //////////(DCFCTL:Digital Compare Filter Control Register;SRCSEL:Filter Block Signal Source Select;
 EPwm6Regs.DCFCTL.bit.SRCSEL = 1; // 01: Source Is DCAEVT2 Signal
 ///(BLANKE:Blanking Window Enable/Disable;DC_BLANK_ENABLE:Blanking window is enabled)
 EPwm6Regs.DCFCTL.bit.BLANKE = 1; // 1: Blanking window is enabled
 EPwm6Regs.DCFCTL.bit.BLANKINV = 0; // 0: Blanking window not inverted; 1: Blanking window inverted
 //////PULSESEL:Pulse Select For Blanking & Capture Alignment
 EPwm6Regs.DCFCTL.bit.PULSESEL = 1; // 01: Time-base counter equal to zero;
 //////////////////////////////
 EPwm6Regs.HRPCTL.bit.PWMSYNCSELX = 0; // EPWMSYNCPER is defined by PWMSYNCSEL
 EPwm6Regs.HRPCTL.bit.PWMSYNCSEL = 1; // 1:CTR = zero; 0:CTR = PRD(PWMSYNC Source Select Bit: This bit selects the source for the
 //Configure TRIP4 to be CTRIP3H
 EPwmXbarRegs.TRIP4MUX0TO15CFG.bit.MUX4 = 0;
 //Enable TRIP4 Mux for Output
 EPwmXbarRegs.TRIP4MUXENABLE.bit.MUX4 = 1; ///EPWMSYNCPER signal that goes to the CMPSS)
 ////////
 EDIS;
 ////////////
 EPwm6Regs.DCFOFFSET = EPWM6_BLANK_WND_OFFSET;
 EPwm6Regs.DCFWINDOW = EPWM6_BLANK_WND;
 //////////////////
}
//

