
Texas Instruments Inc., 2010 1

IQN

This C macro implements a basic summing junction and PID control algorithm.

Macro file PID_grando.h

Module Summary

CPU Dependency C28x
Device Dependency None
Application Digital control
C-based initialization No
ASM interrupt initialization Yes
ASM run-time macro Yes
Multiple instanciation support Yes
Re-entrant No
Accessible from C Yes
Full configuration from C Yes

Input/Output format Q24

General description

The PID_grando module implements a basic summing junction and PID control law with the following features:

 Programmable output saturation
 Independent reference weighting on proportional path
 Independent reference weighting on derivative path
 Anti-windup integrator reset
 Programmable derivative filter

All intput, output and internal data is in I8Q24 fixed-point format. A block diagram of the internal controller structure is
shown below.

PID controller module PID_GRANDO

Texas Instruments Inc., 2010 2

The code is supplied as a C macro in a single header file named “PID_grando.h”. The controller variables are
grouped into three short C structures as follows.

1. Terminals
Ref // Input: reference set-point
Fdb // Input: feedback
Out // Output: controller output
c1 // Internal: derivative filter coefficient
c2 // Internal: derivative filter coefficient

2. Parameters
Kr // Parameter: proportional reference
Kp // Parameter: proportional loop gain
Ki // Parameter: integral gain
Kd // Parameter: derivative gain
Km // Parameter: derivative reference weighting
Umax // Parameter: upper saturation limit
Umin // Parameter: lower saturation limit

3. Data
up // Data: proportional term
ui // Data: integral term
ud // Data: derivative term
v1 // Data: pre-saturated controller output
i1 // Data: integrator storage: ui(k-1)
d1 // Data: differentiator storage: ud(k-1)
d2 // Data: differentiator storage: d2(k-1)
w1 // Data: saturation record: [u(k-1) - v(k-1)]

Texas Instruments Inc., 2010 3

Technical description

a) Proportional path

The proportional term is taken as the difference between the reference and feedback terms. A feature of this
controller is that sensitivity to the reference input can be weighted differently to the feedback path. This provides an
extra degree of freedom when tuning the controller response to a dynamic input. The proportional law is:

)()()(kykrKku rp  .. (1)

Note that “proportional” gain is applied to the sum of all three terms and will be described in section d).

b) Integral path

The integral path consists of a discrete integrator which is pre-multiplied by a term derived from the output module.
The term w1 is either zero or one, and provides a means to disable the integrator path when output saturation occurs.
This prevents the integral term from “winding up” and improves the response time on recovery from saturation. The
integrator law used is based on a backwards approximation.

 )()()1()(kykrKkuku iii  ... (2)

c) Derivative path

The derivative term is a backwards approximation of the difference between the current and previous inputs. The
input is the difference between the reference and feedback terms, and like the proportional term, the reference path
can be weighted independently to provide an additional variable for tuning.

A first order digital filter is applied to the derivative term to reduce nose amplification at high frequencies. Filter cutoff
frequency is determined by two coefficients (c1 & c2). The derivative law is shown below.

)()()(kykrKke m  .. (3)

 )1()()1()(112  keckeckucKku idd .. (4)

Filter coefficients are based on the cut-off frequency (a) and sample period (T) as follows:

aT

a
c




11 .. (5)

aT
c




1

1
2 ... (6)

Texas Instruments Inc., 2010 4

d) Output path

The output path contains a multiplying term (Kp) which acts on the sum of the three controller parts. The result is then
saturated according to user programmable upper and lower limits to give the output term.

The pre-and post-saturated terms are compared to determine whether saturation has occurred, and if so, a zero or
one term is produced which is used to disable the integral path (see above). The output path law is defined as follows.

 )()()()(1 kukukuKkv dipp  .. (7)














max1min1

min1min

max1max

)(:)(

)(:

)(:

)(

UkvUkv

UkvU

UkvU

ku ... (8)









)()(:1

)()(:0
)(

1

1
1 kukv

kukv
kw .. (9)

Texas Instruments Inc., 2010 5

Tuning the controller

Default values for the controller coefficients are defined in the macro header file which apply unity gain through the
proportional path, and disable both integral and derivative paths. A suggested general technique for tuning the
controller is now described.

Steps 1-4 are based on tuning a transient produced either by a step load change or a set-point step change.

Step 1. Ensure integral and derivative gains are set to zero. Ensure also the reference weighting coefficients (Kr &
Km) are set to one.

Step 2. Gradually adjust proportional gain variable (Kp) while observing the step response to achieve optimum rise
time and overshoot compromise.

Step 3. If necessary, gradually increase integral gain (Ki) to optimize the return of the steady state output to nominal.
This will probably be accompanied by an increase in overshoot and oscillation, so it may be necessary to slightly
decrease the Kp term again to find the best balance.

Step 4. If the transient response exhibits excessive oscillation, this can sometimes be reduced by applying a small
amount of derivative gain. To do this, first ensure the coefficients c1 & c2 are set to one and zero respectively. Next,
slowly add a small amount of derivative gain (Kd). The controller will be very sensitive to this term and may become
unstable so be sure to start with a very small number.

Steps 5 & 6 only apply in the case of tuning a transient set-point. In the regulator case, or where the set-point is fixed
and tuning is conducted against changing load conditions, they are not useful.

Step 5. Overshoot and oscillation following a set-point transient can sometimes be improved by lowering the
reference weighting in the proportional path. To do this, gradually reduce the Kr term from its nominal unity value to
optimize the transient. Note that this will change the loop sensitivity to the input reference, so the steady state
condition will change unless integral gain is used.

Step 6. If derivative gain has been applied, transient response can often be improved by changing the reference
weighting, in the same way as step 6 except that in the derivative case steady state should not be affected. Slowly
reduce the Km variable from it’s nominal unity value to optimize overshoot and oscillation. Note that in many cases
optimal performance is achieved with a reference weight of zero in the derivative path, meaning that the differential
term acts on purely the output, with no contribution from the input reference.

The derivative path introduces a term which has a frequency dependent gain. At higher frequencies, this can cause
noise amplification in the loop which may degrade servo performance. If this is the case, it is possible to filter the
derivative term using a first order digital filter in the derivative path. Steps 7 & 8 describe the derivative filter.

Step 7. Select a filter roll-off frequency in radians/second. Use this in conjunction with the system sample period (T)
to calculate the filter coefficients c1 & c2 (see equations 5 & 6).

Step 8. Note that the c1 coefficient will change the derivative path gain, so adjust the value of Kd to compensate for
the filter gain. Repeat steps 5 & 6 to optimize derivative path gain.

Texas Instruments Inc., 2010 6

Code listing

/* ---
File name: PID_grando.h

Originator: C2000 System Applications, Texas Instruments

Description: Data and macro definitions for "grando" PID controller
---*/

#ifndef __PID_GRANDO_H__
#define __PID_GRANDO_H__

typedef struct { _iq Ref; // Input: reference set-point
 _iq Fbk; // Input: feedback
 _iq Out; // Output: controller output
 _iq c1; // Internal: derivative filter coefficient 1
 _iq c2; // Internal: derivative filter coefficient 2
 } PID_GRANDO_TERMINALS;
 // note: c1 & c2 placed here to keep structure size under 8 words

typedef struct { _iq Kr; // Parameter: reference set-point weighting
 _iq Kp; // Parameter: proportional loop gain
 _iq Ki; // Parameter: integral gain
 _iq Kd; // Parameter: derivative gain
 _iq Km; // Parameter: derivative weighting
 _iq Umax; // Parameter: upper saturation limit
 _iq Umin; // Parameter: lower saturation limit
 } PID_GRANDO_PARAMETERS;

typedef struct { _iq up; // Data: proportional term
 _iq ui; // Data: integral term
 _iq ud; // Data: derivative term
 _iq v1; // Data: pre-saturated controller output
 _iq i1; // Data: integrator storage: ui(k-1)
 _iq d1; // Data: differentiator storage: ud(k-1)
 _iq d2; // Data: differentiator storage: d2(k-1)
 _iq w1; // Data: saturation record: [u(k-1) - v(k-1)]
 } PID_GRANDO_DATA;

typedef struct { PID_GRANDO_TERMINALS term;
 PID_GRANDO_PARAMETERS param;
 PID_GRANDO_DATA data;
 } PID_GRANDO_CONTROLLER;

typedef PID_GRANDO_CONTROLLER *PID_handle;

/*---
Default initalisation values for the PID_GRANDO objects
---*/

#define PID_TERM_DEFAULTS { \
 0, \
 0, \
 0, \
 0, \
 0 \
 }

#define PID_PARAM_DEFAULTS { \
 _IQ(1.0), \
 _IQ(1.0), \
 _IQ(0.0), \
 _IQ(0.0), \
 _IQ(1.0), \
 _IQ(1.0), \
 _IQ(-1.0) \
 }

#define PID_DATA_DEFAULTS { \
 _IQ(0.0), \
 _IQ(0.0), \
 _IQ(0.0), \
 _IQ(0.0), \
 _IQ(0.0), \

Texas Instruments Inc., 2010 7

 _IQ(0.0), \
 _IQ(0.0), \
 _IQ(1.0) \
 }

/*--
 PID_GRANDO Macro Definition
--*/

#define PID_GR_MACRO(v)
 \
 \
 /* proportional term */ \
 v.data.up = _IQmpy(v.param.Kr, v.term.Ref) - v.term.Fbk; \
 \
 /* integral term */ \
 v.data.ui = _IQmpy(v.param.Ki, _IQmpy(v.data.w1, (v.term.Ref - v.term.Fbk))) + v.data.i1; \
 v.data.i1 = v.data.ui; \
 \
 /* derivative term */ \
 v.data.d2 = _IQmpy(v.param.Kd, _IQmpy(v.term.c1, (_IQmpy(v.term.Ref, v.param.Km) - v.term.Fbk))) -
v.data.d2; \
 v.data.ud = v.data.d2 + v.data.d1; \
 v.data.d1 = _IQmpy(v.data.ud, v.term.c2); \
 \
 /* control output */ \
 v.data.v1 = _IQmpy(v.param.Kp, (v.data.up + v.data.ui + v.data.ud)); \
 v.term.Out= _IQsat(v.data.v1, v.param.Umax, v.param.Umin); \
 v.data.w1 = (v.term.Out == v.data.v1) ? _IQ(1.0) : _IQ(0.0);

#endif // __PID_GRANDO_H__

