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This C macro implements a basic summing junction and PID control algorithm. 

 

 
 

 
Macro file PID_grando.h 
 
 
Module Summary 
 

CPU Dependency C28x 
Device Dependency None 
Application Digital control 
C-based initialization No 
ASM interrupt initialization Yes 
ASM run-time macro Yes 
Multiple instanciation support Yes 
Re-entrant No 
Accessible from C Yes 
Full configuration from C Yes 

Input/Output format Q24 
 
 
 
General description 
 
The PID_grando module implements a basic summing junction and PID control law with the following features: 

 Programmable output saturation 
 Independent reference weighting on proportional path 
 Independent reference weighting on derivative path 
 Anti-windup integrator reset 
 Programmable derivative filter 

 
All intput, output and internal data is in I8Q24 fixed-point format. A block diagram of the internal controller structure is 
shown below. 

 
 
 
 

PID controller module   PID_GRANDO 
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The code is supplied as a C macro in a single header file named “PID_grando.h”. The controller variables are 
grouped into three short C structures as follows. 

 
1. Terminals 
Ref      // Input: reference set-point 
Fdb      // Input: feedback 
Out     // Output: controller output  
c1     // Internal: derivative filter coefficient 
c2     // Internal: derivative filter coefficient 
 
2. Parameters 
Kr  // Parameter: proportional reference 
Kp  // Parameter: proportional loop gain 
Ki  // Parameter: integral gain 
Kd   // Parameter: derivative gain 
Km   // Parameter: derivative reference weighting 
Umax  // Parameter: upper saturation limit 
Umin  // Parameter: lower saturation limit 
 
3. Data 
up  // Data: proportional term 
ui  // Data: integral term 
ud  // Data: derivative term 
v1  // Data: pre-saturated controller output 
i1  // Data: integrator storage: ui(k-1) 
d1  // Data: differentiator storage: ud(k-1) 
d2  // Data: differentiator storage: d2(k-1)  
w1  // Data: saturation record: [u(k-1) - v(k-1)] 
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Technical description 
 

a) Proportional path 
 
The proportional term is taken as the difference between the reference and feedback terms. A feature of this 
controller is that sensitivity to the reference input can be weighted differently to the feedback path. This provides an 
extra degree of freedom when tuning the controller response to a dynamic input.  The proportional law is: 
 

)()()( kykrKku rp  .................................................................................................. (1) 

 
 

Note that “proportional” gain is applied to the sum of all three terms and will be described in section d).  
 
 

b) Integral path 
 
The integral path consists of a discrete integrator which is pre-multiplied by a term derived from the output module. 
The term w1 is either zero or one, and provides a means to disable the integrator path when output saturation occurs. 
This prevents the integral term from “winding up” and improves the response time on recovery from saturation. The 
integrator law used is based on a backwards approximation. 
 

 )()()1()( kykrKkuku iii  ............................................................................... (2) 

 
 

c) Derivative path 
 
The derivative term is a backwards approximation of the difference between the current and previous inputs. The 
input is the difference between the reference and feedback terms, and like the proportional term, the reference path 
can be weighted independently to provide an additional variable for tuning.  

 
A first order digital filter is applied to the derivative term to reduce nose amplification at high frequencies. Filter cutoff  
frequency is determined by two coefficients (c1 & c2). The derivative law is shown below. 

 

)()()( kykrKke m  .................................................................................................... (3) 
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Filter coefficients are based on the cut-off frequency (a) and sample period (T) as follows: 
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d) Output path 
 
The output path contains a multiplying term (Kp) which acts on the sum of the three controller parts. The result is then 
saturated according to user programmable upper and lower limits to give the output term.  
 
The pre-and post-saturated terms are compared to determine whether saturation has occurred, and if so, a zero or 
one term is produced which is used to disable the integral path (see above). The output path law is defined as follows. 
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Tuning the controller 
 
Default values for the controller coefficients are defined in the macro header file which apply unity gain through the 
proportional path, and disable both integral and derivative paths. A suggested general technique for tuning the 
controller is now described.  
 
Steps 1-4 are based on tuning a transient produced either by a step load change or a set-point step change. 
 
Step 1. Ensure integral and derivative gains are set to zero. Ensure also the reference weighting coefficients (Kr & 
Km) are set to one.  
 
Step 2.  Gradually adjust proportional gain variable (Kp) while observing the step response to achieve optimum rise 
time and overshoot compromise. 
 
Step 3. If necessary, gradually increase integral gain (Ki) to optimize the return of the steady state output to nominal. 
This will probably be accompanied by an increase in overshoot and oscillation, so it may be necessary to slightly 
decrease the Kp term again to find the best balance. 
 
Step 4. If the transient response exhibits excessive oscillation, this can sometimes be reduced by applying a small 
amount of derivative gain. To do this, first ensure the coefficients c1 & c2 are set to one and zero respectively. Next, 
slowly add a small amount of derivative gain (Kd). The controller will be very sensitive to this term and may become 
unstable so be sure to start with a very small number.  
 
Steps 5 & 6 only apply in the case of tuning a transient set-point. In the regulator case, or where the set-point is fixed 
and tuning is conducted against changing load conditions, they are not useful. 

Step 5. Overshoot and oscillation following a set-point transient can sometimes be improved by lowering the 
reference weighting in the proportional path. To do this, gradually reduce the Kr term from its nominal unity value to 
optimize the transient. Note that this will change the loop sensitivity to the input reference, so the steady state 
condition will change unless integral gain is used. 

Step 6. If derivative gain has been applied, transient response can often be improved by changing the reference 
weighting, in the same way as step 6 except that in the derivative case steady state should not be affected. Slowly 
reduce the Km variable from it’s nominal unity value to optimize overshoot and oscillation. Note that in many cases 
optimal performance is achieved with a reference weight of zero in the derivative path, meaning that the differential 
term acts on purely the output, with no contribution from the input reference. 

The derivative path introduces a term which has a frequency dependent gain. At higher frequencies, this can cause 
noise amplification in the loop which may degrade servo performance. If this is the case, it is possible to filter the 
derivative term using a first order digital filter in the derivative path. Steps 7 & 8 describe the derivative filter. 

Step 7. Select a filter roll-off frequency in radians/second. Use this in conjunction with the system sample period (T) 
to calculate the filter coefficients c1 & c2 (see equations 5 & 6). 

Step 8. Note that the c1 coefficient will change the derivative path gain, so adjust the value of Kd to compensate for 
the filter gain. Repeat steps 5 & 6 to optimize derivative path gain.
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Code listing 
 
/* ----------------------------------------------------------------------------------- 
File name:     PID_grando.h 
 
Originator: C2000 System Applications, Texas Instruments 
 
Description:  Data and macro definitions for "grando" PID controller 
-------------------------------------------------------------------------------------*/ 
 
#ifndef __PID_GRANDO_H__ 
#define __PID_GRANDO_H__ 
 
typedef struct {  _iq  Ref;      // Input: reference set-point 
      _iq  Fbk;     // Input: feedback 
      _iq  Out;     // Output: controller output  
      _iq  c1;     // Internal: derivative filter coefficient 1 
      _iq  c2;     // Internal: derivative filter coefficient 2 
    } PID_GRANDO_TERMINALS; 
    // note: c1 & c2 placed here to keep structure size under 8 words 
 
typedef struct {  _iq  Kr;    // Parameter: reference set-point weighting  
      _iq  Kp;  // Parameter: proportional loop gain 
      _iq  Ki;  // Parameter: integral gain 
      _iq  Kd;   // Parameter: derivative gain 
      _iq  Km;   // Parameter: derivative weighting 
      _iq  Umax;  // Parameter: upper saturation limit 
      _iq  Umin;  // Parameter: lower saturation limit 
    } PID_GRANDO_PARAMETERS; 
 
typedef struct {  _iq  up;    // Data: proportional term 
      _iq  ui;  // Data: integral term 
      _iq  ud;  // Data: derivative term 
      _iq  v1;  // Data: pre-saturated controller output 
      _iq  i1;  // Data: integrator storage: ui(k-1) 
      _iq  d1;  // Data: differentiator storage: ud(k-1) 
      _iq  d2;  // Data: differentiator storage: d2(k-1)  
      _iq  w1;  // Data: saturation record: [u(k-1) - v(k-1)] 
    } PID_GRANDO_DATA; 
 
 
typedef struct {  PID_GRANDO_TERMINALS term; 
     PID_GRANDO_PARAMETERS  param; 
     PID_GRANDO_DATA   data; 
  } PID_GRANDO_CONTROLLER; 
 
 
typedef PID_GRANDO_CONTROLLER *PID_handle; 
 
 
/*----------------------------------------------------------------------------- 
Default initalisation values for the PID_GRANDO objects 
-----------------------------------------------------------------------------*/                      
 
#define PID_TERM_DEFAULTS {    \ 
      0,    \ 
                            0,    \ 
                            0,    \ 
                            0,    \ 
    0    \ 
                } 
 
#define PID_PARAM_DEFAULTS {  \ 
                           _IQ(1.0), \ 
                           _IQ(1.0),  \ 
                           _IQ(0.0), \ 
                           _IQ(0.0), \ 
                           _IQ(1.0), \ 
                           _IQ(1.0), \ 
                           _IQ(-1.0)  \ 
                   } 
 
#define PID_DATA_DEFAULTS {           \ 
                           _IQ(0.0), \ 
                           _IQ(0.0),  \ 
                           _IQ(0.0), \ 
                           _IQ(0.0), \ 
                           _IQ(0.0),  \ 
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                           _IQ(0.0), \ 
                           _IQ(0.0), \ 
                           _IQ(1.0)  \ 
                   } 
 
 
/*------------------------------------------------------------------------------ 
  PID_GRANDO Macro Definition 
------------------------------------------------------------------------------*/ 
 
#define PID_GR_MACRO(v)           
           \ 
           \ 
 /* proportional term */        \ 
 v.data.up = _IQmpy(v.param.Kr, v.term.Ref) - v.term.Fbk;   \ 
           \ 
 /* integral term */         \ 
 v.data.ui = _IQmpy(v.param.Ki, _IQmpy(v.data.w1, (v.term.Ref - v.term.Fbk))) + v.data.i1; \ 
 v.data.i1 = v.data.ui;        \ 
           \ 
 /* derivative term */         \ 
 v.data.d2 = _IQmpy(v.param.Kd, _IQmpy(v.term.c1, (_IQmpy(v.term.Ref, v.param.Km) - v.term.Fbk))) - 
v.data.d2; \ 
 v.data.ud = v.data.d2 + v.data.d1;      \ 
 v.data.d1 = _IQmpy(v.data.ud, v.term.c2);     \ 
           \ 
 /* control output */         \ 
 v.data.v1 = _IQmpy(v.param.Kp, (v.data.up + v.data.ui + v.data.ud)); \ 
 v.term.Out= _IQsat(v.data.v1, v.param.Umax, v.param.Umin);   \ 
 v.data.w1 = (v.term.Out == v.data.v1) ? _IQ(1.0) : _IQ(0.0); 
  
#endif // __PID_GRANDO_H__ 
 
 


