

 1

GUI Quick Start Guide:
InstaSPIN UNIVERSAL

Version 1.0.1 Motor Solutions

Overview
InstaSPIN UNIVERSAL is a GUI Composer developed GUI that allows you to instrument and interact
over a JTAG connection with an appropriate MotorWare generated target binary (.out) to evaluate
InstaSPIN™-FOC on an appropriate Piccolo MCU. GUI Composer is included with latest CCStudio IDE
installations.

 Supports:

- Piccolo InstaSPIN enabled controllers
o LAUNCHXL-F28027F LaunchPad for InstaSPIN-FOC

 Includes on-card XDS100v2 JTAG (isolated)
o TMDSCNCD28027F controlCARD for InstaSPIN-FOC

 Does NOT include on-card emulation or isolation
 Note that you will have to select the XDS100v1 emulator when

executing the GUI
o TMDSCNCD28069MISO controlCARD for InstaSPIN-FOC and InstaSPIN-

MOTION
 Includes on-card XDS100v2 JTAG (isolated)

- Any InstaSPIN enabled Piccolo devices on custom hardware with a JTAG
connection

- 3-phase Inverters

o The GUI itself has no dependence on the inverter
o Build an appropriate MotorWare binary using the supplied board/inverter

specific projects
o Build a MotorWare based binary for your own custom inverter

 2

Version: 1.0.1

Revision History:

1.0.1 October 30, 2013 First release

 3

Table of Contents

Installation .. 4

Hardware Set-up ... 5

Overview of Process for using the GUI .. 5
Create Binary ...6
GUI Connection ...7
Running the GUI ..8

Standalone GUI .exe ... 8

GUI inside CCStudio IDE ... 9

Use Example ... 12
Hardware Set-up ... 13
Software Projects .. 14
Updating software for your motor (user.h) ... 16
Using the GUI ... 21

Start-up Options .. 21

Motor ID ... 22

Motor ID Tips ... 23

Motor ID Sanity Checks ... 25

Update user.h settings ... 26

Controller Tuning ... 27

Next Steps ... 29

 4

Installation
1. Run the UNIVERSAL GUI installation .exe using the latest version from

http://www.ti.com/tool/instaspinfocmotorwaregui
a. Accept the license agreement

b. Recommended to keep default destination location

2. Install Code Composer Studio v5.5+ from

http://processors.wiki.ti.com/index.php/Download_CCS

http://www.ti.com/tool/instaspinfocmotorwaregui
http://processors.wiki.ti.com/index.php/Download_CCS

 5

Hardware Set-up
1. Please review the quick start and/or hardware guides for your particular controlCARD /

LaunchPad and motor drive kit – available through MotorWare - for details of hardware set-
up, including jumper and switch settings

Overview of Process for using the GUI
1. Create Binary from MotorWare Project using CCStudio

2. Launch GUI Composer UNIVERSAL GUI using either method:

a. Standalone

b. Inside of CCStudio

http://www.ti.com/tool/motorware

 6

Create Binary
1. This GUI only allows you to instrument bound variables that exist in the compiled .out

that will be loaded onto the Piccolo MCU

a. Variables that you interact with are primarily in the gMotorVars structure

b. A variable existing in gMotorVars does NOT mean that the variable is being used in the
source project

i. Ex: the ability to change the Speed Kp is not made available until proj_lab05b

1. CTRL_setKp(ctrlHandle,CTRL_Type_PID_spd,gMotorVars.Kp_spd);

ii. If you compile and load proj_lab03.c do not be surprised when changing Speed
Kp has no effect!!

c. Insure variables you want to instrument are actually interfaced to in the .c that is
compiled. Doing a text search in the .c for the gMotorVars.xxxx will tell you if it is
being updated in that project.

2. You must use CCStudio to compile an appropriate MotorWare project into a .out

a. CCS version and compiler version notes

i. CCS (download)

1. For using the GUI inside of CCS GUI Composer you must use CCSv5.5+

2. If not using the GUI inside of CCS you may use CCSv5.4

ii. Compiler (download or through Help Check for Updates)

1. Recommend 6.2.3+, or if necessary version 6.1.5

2. Do NOT use compiler versions 6.2.2 or 6.2.1, they include an IQMath
compiler bug

3. You should select the MotorWare project that meets your application needs

4. This project should be built with the appropriate user.h settings selected

a. It is recommended to follow the InstaSPIN Projects & Labs User's Guide in MotorWare

b. See the “Use Example” section of this document for a quick overview and example

http://processors.wiki.ti.com/index.php/Download_CCS
http://processors.wiki.ti.com/index.php/Compiler_Releases

 7

GUI Connection
1. With the DC bus powered, connect USB from your PC to J1 on controlCARD

2. If using the high voltage kit, proceed with connecting to the target before energizing the
high voltage AC input (110-220Vac) or high voltage DC Bus (50-350Vdc)

3. You can verify that you connected to the FTDI XDS100v2 emulator by checking your
Windows Device Manager for Ports: USB Serial Port (COMxxx) and TI XDS100 Channel
A and B

 8

Running the GUI
Standalone GUI .exe

1. Two “webapps” are provided during installation at C:\ti\guicomposer\webapps

a. The only difference between the content of these two folders is the “.appsetting” file,
which assigns the default MCU, Emulator, and points to the .out to be programmed.

i. Default XDS100v2 emulator, F28069 or F28027 MCU, appProgram.out

b. All other content in the folders is 100% identical

2. The compiled .out that you have built must be renamed appProgram.out and copied to
the appropriate webapp folder

a. Note: If you plan to use the standalone GUI often with a new compile from a single
project you can update the default naming of “appProgram.out” to anything you like
(ex: “proj_lab05b.out” or “my_project.out”) to save yourself having to rename the file
each time.

i. Use a text editor to update the .appsettings file

3. Run the executable from the webapp folder: InstaSPIN_UNIVERSAL.exe

4. The GUI Composer application will start

5. GUI Composer will initialize, then:

a. attempt to connect through the XDS100v2 emulator

b. to the Piccolo device

c. load \appProgram.out into the memory of the Piccolo device.

i. a, b, c are all specified in .appsettings and may be permanently changed if
required by using a text editor

 9

d. If you are using a different emulator the connection will fail

i. you can permanently change the default emulator in the .appsettings file or
select the appropriate one from the drop-down menu and then click Initialize

6. This launching process should take less than 1-3 minutes

a. In rare cases we have seen it take an usually long amount of time. This is likely due
to software running on your PC that is redirecting HTTP or browser sockets. Try to
disable any software of this type.

Configuration Tab of a successful GUI Launch

GUI inside CCStudio IDE

1. Zip one of the “webapps” folders, ex:

a. C:\ti\guicomposer\webapps\InstaSPIN_F2802xF_UNIVERSAL

2. In CCSv5.5+, VIEW GUI Composer

3. Select Import Project Icon, and point to the Zip you created

a.

4. This will create a webapp folder in your CCS workspace

a. You select this location each time you start CCStudio

 10

b. ex: C:\workspace\.GUIComposerWS\InstaSPIN_F2802xF_UNIVERSAL

5. The GUI can be selected by double clicking on the Projects app.html file:

6. The GUI opens in edit mode. To view in preview mode (interact like it is a standalone GUI)
select the Play arrow:

7. To use the GUI in CCS you still need to follow the steps that are done automatically by the
standalone .exe

a. Import an emulation+cpu “Target Configuration”

i. View Target Configurations

ii. Right Click

iii. \sw\ide\ccs\ccs5\targetConfigs\TMS320F28027_xds100v2.ccxml

b. Launch deubg session

i. Right Click on the .ccxml file

c. Connect target

i.

d. Load compiled .out Program (or symbols if program is already in MCU flash)

i.

ii.

 11

iii.

iv.

e. Enable silicon realtime mode

i.

ii. To enable realtime mode select

f. Run Resume

i.

g. See the MotorWare InstaSPIN Projects and Labs User’s Guide for more details:

8. You can now use the GUI to instrument the code running on the MCU

9. For details on how to customize this GUI, create your own, or export for standalone use
please see the GUI Composer Wiki Site.

http://processors.wiki.ti.com/index.php/Category:Gui_Composer

 12

Use Example
Controller: LAUNCHXL-F28027F

Inverter: BOOSTXL-DRV8301

Motor: Anaheim Automation BLY172S-24V-4000: 24V, 8 poles, 4K RPM

 13

Hardware Set-up
• Per the Kit Readme First and HW Guide Documents, set-up hardware

o Example for LAUNCHXL-F28027F and BOOSTXL-DRV8301

o LaunchPad

 Removed JP1, 2, 3 so power can come from BoosterPack

 S1 set to ON-ON-ON to allow JTAG

 S4 set to OFF to allow LaunchPad to drive the BoosterPack Fault LEDs

o BoosterPack

 Motor phase wires connected (order only effects direction of motor)

 DC power with appropriate 6-24V bus and up to 14A peak currents

 14

Software Projects
• In CCS, Projects Import and point to the latest version of the MotorWare “CCS5” directory

for your combination of solution, board, and MCU
Ex: InstaSPIN_FOC, the BoosterPack, F2802xF
C:\ti\motorware\motorware_01_01_00_10\sw\solutions\instaspin_foc\boards\boostxldrv8301_rev
B\f28x\f2802xF\projects\ccs5

o You may select any or all of the projects

 Make sure you do NOT select to “Copy projects into workspace” or the project
will not find appropriate file references during build. We recommend working
directly out of the C:\ti\motorware\ directory.

 The main projects you will likely want to use, in order

• Lab5b – interface to tune the current and speed controllers

• Lab9 – field weakening

• Lab10a – over-modulation

• Lab5a – Torque control with PI tuning, no speed controller

 15

 16

Updating software for your motor (user.h)
• Open the associated src\user.h file in CCS Project Explorer or using a text editor

C:\ti\motorware\motorware_01_01_00_10\sw\solutions\instaspin_foc
\boards\boostxldrv8301_revB\f28x\f2802xF\src\user.h

• User.h can look overwhelming, but do not fear!

o Most #define variables should not be modified and many are pre-compile
calculations

 In future MotorWare versions this will be updated so only the most relevant are
made visible and the rest will be accessible if required

• Update these key user.h variables in each section

o //! \brief CURRENTS AND VOLTAGES

 #define USER_IQ_FULL_SCALE_FREQ_Hz (600.0)

• Set to the highest speed you want to run,
where Hz = RPM * poles / 120

• My example

o 4 kRPM 8 pole motor = 267 Hz, but unloaded it will run faster
and I expect to use field weakening to double my speed

o Use (600) Hz as my maximum

 #define USER_IQ_FULL_SCALE_VOLTAGE_V (42.0)

• We will use the GUI Variable Overflow Checks to set this value once we
identify the flux

• For very low flux motors often used with the BoosterPack+LaunchPad to
maximize variable resolution we may be updating to as low as half of
#define USER_ADC_FULL_SCALE_VOLTAGE_V (26.314)

• This variable effects the SMALLEST flux value that can be identified

o Ex: 0.002 V/Hz is a very small flux typically seen in high speed
12V hobby motors

o Smallest flux = IQ_FULL_SCALE / Effective Estimation
Frequency / 0.7

 Effective Estimation Frequency is set in the
DECIMATION section below and = PWM_FREQ /
PWM_TICKS_PER_ISR / ISR_TICKS_PER_CTRL /
EST_TICKS_PER_CTRL

 Ex for 45V and 10 kHz effective estimation, smallest flux
value = 0.0064 V/Hz

 To give some headroom we could solve for 0.0015 V/Hz
* 0.7 / 15 kHz estimation = 15.75 V

 17

 For Motor ID an IQ_FULL_SCALE value of (15) with
estimation frequency of 15 KHz should work

• My example
o Using default of (42.0), may update after ID

o //! \brief CLOCKS & TIMERS

 #define USER_PWM_FREQ_kHz (30.0)

• Very low inductance, high short circuit currrent motors will require 45-60
kHz typical; most other motors you will PWM in the 8-30 KHz range,
using lower PWMs when possible to reduce switchign losses.

• My example

o Using default of (30) KHz

o //! \brief DECIMATION

 Determines rates of the control loops and effects interrupt loading

 ISR = PWM_FREQ / USER_NUM_PWM_TICKS_PER_ISR_TICK

• Uses ePWM 1st/2nd/3rd event hardware to trigger the ADC start of
conversion; the ADC conversion done interrupt acts as the main ISR for
the control system

• Best if ISR is <= 15 KHz maximum, and <= 10 KHz typical

o If not possible be sure to test using FEM and CPU_USAGE
functions using lab3b

 CTRL = ISR / ISR_TICKS_PER_CTRL

• Insure CTRL is effective <=15 kHz

o Be careful of 15 KHz rates on 60 MHz MCUs, you may over flow
the interrupt as more system code is added, especially during
the motor identification process

o If unsure, test using FEM and CPU_USAGE functions using
lab3b

• CURRENT = CTRL / CTRL_TICKS_PER_CURRENT

o 5-15 KHz typical

• EST = CTRL / CTRL_TICKS_PER_EST

o Whole divisor of CURRENT, 2.5-15 KHz typical

• SPEED = CTRL / CTRL_TICKS_PER_SPEED

o 1 KHz typical

• TRAJ = CTRL / CTRL_TICKS_PER_TRAJ

 18

o Same as speed, 1 KHz typical

 My example

• ISR (3) to get effective 30 kHz / 3 = 10 kHz ISR

• CTRL (1) for 10 kHz

• EST (1) and CURRENT (1) for 10 kHz

• TRAJ (10) and SPEED (10) for 1 kHz

o //! \brief LIMITS

 #define USER_ZEROSPEEDLIMIT (0.002)

• ZEROPSPEEDLIMIT * USER_IQ_FULL_SCALE_FREQ_Hz
If the ForceAngle flag is set during opertation, this will be the +/- Hz
region where the angle feedback used in the control is generated from a
ForceAngle instead of FAST estimation

• My example

o USER_ZEROSPEEDLIMIT (0.005)

o ForceAngle = 0.005 * 600 = 3 Hz = +/- 45 RPM

o //! \brief USER MOTOR & ID SETTINGS

 Each motor saved must have a unique enumeration

• #define Anaheim_BLY172S 102

• #define My_Motor 103

 Comment out (//) all but one USER_MOTOR selection

 19

• //#define USER_MOTOR Anaheim_BLY172S

• #define USER_MOTOR My_Motor

 Set-up your motor

• #elif (USER_MOTOR == My_Motor)

• #define USER_MOTOR_TYPE MOTOR_Type_Pm

• #define USER_MOTOR_NUM_POLE_PAIRS (4)

o if # of poles is incorrect it only effects the relationship between
the RPM command (which is coverted to a Hz command based
on the POLE_PAIRS) and the real shaft of the motor as well as
the Torque calculation; there is no effect on the quality of control

o If you don’t know your pole pair number exactly you can take a
guess to start, and once motor is identified and running you can
command a multiple of 60 RPM to see if the motor is making the
expected number of revolutions per second (60 RPM = 1
rev/sec; 180 RPM = 3 rev/sec, etc)

 faster than 1 rev/sec then poles should be reduced

 slower than 1 rev/sec then poles should be increased

• #define USER_MOTOR_Rr (NULL)

o ID’d for ACI motors only

• #define USER_MOTOR_MAGNETIZING_CURRENT (NULL)

o ID’d for ACI motors only

• #define USER_MOTOR_Rs (NULL)

o Update after Motor ID

• #define USER_MOTOR_Ls_d (NULL)

o Update after Motor ID

• #define USER_MOTOR_Ls_q (NULL)

o Update after Motor ID

o Set same as Ls_d unless different Ls_d and Ls_q are known by
design; FAST can compensate for this saliency

• #define USER_MOTOR_RATED_FLUX (NULL)

o Update after Motor ID

• #define USER_MOTOR_RES_EST_CURRENT (0.4)

o ~10% of rated current

 20

o Used to ineject current for Rs test AND to start-up motor for
Ramp_Up. For high cogging torque motors increase
RES_EST_CURRENT until the motor spins

• #define USER_MOTOR_IND_EST_CURRENT (-0.4)

o NEGATIVE ~10% of rated current

o Used to weaken the field during Ls testing

• #define USER_MOTOR_MAX_CURRENT (4.0)

o Rated current of motor

o This is maximum Iq torque command produced by the Speed PI
controller, IF using the speed PI controller

• #define USER_MOTOR_FLUX_EST_FREQ_Hz (30.0)

o ~10% of rated max speed = 267 Hz * 10%

o Important to that this is high enough as we measure the voltage
produced by flux (V/Hz) which will be larger at higher Hz,
especialy for low flux (high speed) motors

o Also note resolution comments in the
USER_IQ_FULL_SCALE_VOLTAGE_V section

• After saving the user.h file, Right Click on and build the appropriate project

 21

 Using the GUI
• For Standalone Mode, follow the instructions in the section above:

Running the GUI Standalone GUI .exe

o Copy the .out just built to the appropriate Webapp folder, and rename to
“appProgram.out” ex:

…\sw\solutions\instaspin_foc\boards\boostxldrv8301_revB\f28x\f2802xF\projects\ccs5\pr
oj_lab05b\Flash\proj_lab05b.out

to the appropriate webapp folder:

C:\ti\guicomposer\webapps\InstaSPIN_F2802xF_UNIVERSAL\appProgram.out

o Run the executable
C:\ti\guicomposer\webapps\InstaSPIN_F2802xF_UNIVERSAL\InstaSPIN_UNIVERSAL.e
xe

Start-up Options

RsRecalc

If ENABLED - when Run is enabled - Performs a recalculation of Rs.

If DISABLED – when Run is first enabled – uses the most recent value of Rs.

Rs accuracy is critical for low speed operation. Rs changes as the motor windings heat from high current
usage = high torque demanded from the motor. Loaded washing agitation is a good example. See the
Rs On-line (always running recalibration) feature in MotorWare Lab7 if required.

OffsetCalc

If ENABLED – when Run is enabled - performs a recalculation of the ADC offsets.

Length of this recalibration is adjustable, see the User’s Guide.

Values can be saved and loaded from user.h, bypassing this calculation in the future.

Important Notes:

• If the USER_IQ_FULL_SCALE_VOLTAGE or CURRENT values are changed the saved
offsets must be changed as well.

• If DISABLED the offset values / adcBias will be loaded from user.h settings only. Only ever
DISABLE if the final values are in user.h!!!

 22

ForceAngle

Force Angle can be thought of as trajectory generation for the angle feedback (replacing FAST over a
user set area) to the FOC controller. It creates an estimated angle that rotates at a user set rate (in
user.h).

It should be used whenever FAST is not producing an accurate angle estimate, i.e. at initial start-up and if
trying to operate continuously at very low speeds.

It should be ENABLED when first starting and then DISABLED for normal operation, unless you plan to
run continuously at very low speed or have a very slow transition through zero speed.

While application/motor/sense/acceleration dependent, once the motor is running you will often continue
to track through zero speed well enough (depending on Bemf and deceleration rate).

Motor ID

To perform a Motor Identification:

• SELECT Enable System

• user.h Params is NOT selected

• Start-up Options

o Recommend keeping OffsetCalc, RsRecal and ForceAngle selected

• SELECT Run

user.h Params

If user.h Params is enabled when Run is selected, the control system will bypass Motor ID and

• Load all settings from user.h, including Offsets and all USER_MOTOR settings

• Do not select until you have updated the user.h fully

Motor Identification States

This is fully covered in the User’s Guide Chapter 6. Following is the example for the PM Synchronous
Motor.

• OffsetRecalc is performed before the Motor ID process begins

 23

• EST_State_

o RoverL

 Injects ½ of USER_MOTOR_RES_EST_CURRENT at
USER_R_OVER_L_EST_FREQ_Hz

o Rs

 Injects USER_MOTOR_RES_EST_CURRENT

o RampUp

 Starts motor using current amplitude of USER_MOTOR_RES_EST_CURRENT
at a rate of USER_MAX_ACCEL_EST_Hzps until speed of
USER_MOTOR_FLUX_EST_FREQ_Hz

 Motor must continue spinning until Idle or ID results should be considered
invalid

o RatedFlux

 Current is minimized while keeping speed to detect Flux

o Ls

 Injects USER_MOTOR_IND_EST_CURRENT into Id (field weakening) to detect
the inductance

o RampDown

 ID process ends and motor slows to 0 speed

o Idle

• While you should insure that the Motor Identified light turns green, this does NOT mean that the
identified parameters are correct, just that the identification state finished without a serious error

o You can start ID without a motor even attached and still get a green light. This only alerts
you to very specific and serious errors

Motor ID Tips

• Scaling of hardware Vph and USER_IQ_FULL_SCALE_VOLTAGE is critical, especially for
low inductance (high speed motors)

• Note that during Motor ID there are wait time time-outs established for each step. These times
may need to be increased for the RampUp especially if you increase the ID speed or decrease
the Estimation Frequency

o See “user.c”

• RoverL

 24

o If RoverL is >= 2000 there is a variable overflow, so you MUST use lab2c to attempt ID
(this happens with low Ls / high speed motors)

o Can also increase USER_R_OVER_L_EST_FREQ_Hz to (300) for low Ls motors

• Rs

o Be very sure to use 10% of I-rated for USER_MOTOR_RES_EST_CURRENT

o important not to overheat the motor with too high a current

• Ramp_Up

o High Cogging Torque motors may not start-up

 Increase USER_MOTOR_RES_EST_CURRENT

o When USER_MOTOR_FLUX_EST_FREQ_Hz is increased (see Ls) the Ramp_Up may
time out

 Increase USER_MAX_ACCEL_EST_Hzps to hit the target speed before time-
out

• Rated_Flux

o If the motor stops spinning increase USER_MOTOR_FLUX_EST_FREQ_Hz

o The smallest flux that can be ID’d =
USER_IQ_FULL_SCALE_VOLTAGE_V / FAST_EST_Hz / 0.7

 For small flux machines (small motors, high speed) lower
USER_IQ_FULL_SCALE_VOLTAGE_V to increase the resolution

• Ls

o If the motor stops spinning or the Ls values are not stable and consistent increase
USER_MOTOR_FLUX_EST_FREQ_Hz

o Increase PWM frequency to 30, 45, 60, and use lab2c

Values Returned for this example

 25

Motor ID Sanity Checks

• Rs / Ls

o R/L gives a theoretical limitation of speed with a stable voltage source

 Note: the GUI displays Ls in mH, not H

o Is this larger than your MAX_Hz? Does it seem reasonable for your motor?

 ~2.5x my rated max frequency is reasonable

o Note that High speed motors are often mis-designed with very low Ls, resulting in Rs / Ls
much larger than MAX_Hz

• Flux / 2pi / Ls = Short Circuit Current = Isc

o Typically 2x+ the rated current and often much larger for small Ls machines

o Large Isc = low Ls = high speed, high current

o Larger Isc will require faster PWM (30-60 KHz) and possibly faster current control (15
KHz)

• Overflow / Resolution Checks, adjustment of IQ_VOLTAGE

o Minimize Full Scale Voltage vs. Full Scale Frequency to maximize resolution

 For Low flux motors this often means reducing the IQ_FULL_SCALE_VOLTAGE

• For my example, I will update user.h to (24.0)

 For High flux motors this often means increasing the
IQ_FULL_SCALE_VOLTAGE to support the Bemf voltage at highest speeds

• For example a 1.2 V/Hz motor will produce 1200V at 1KHz!

o FAST Frequency vs. Full Scale Voltage

 Alerts that low flux motors should use a smaller IQ_FULL_SCALE_VOLTAGE to
increase resolution or run the FAST EST_FREQ at a higher rate

 26

Update user.h settings

adcBias (Offsets) for Example Hardware

• Copy and paste the adcBias 0/1/2 values to the I_A/B/C_offset and V_A/B/C_offset #defines

o Note, since I chose to change my IQ_VOLTAGE from (42.0) to (24.0) in previous section
these offsets are no longer valid as they change with your IQ scaling.

o After recompiling and running again, update the adcBias in user.h

• Copy and paste the identified motor parameters to the USER_MOTOR #defines

o Note: The GUI displays inductance in mH while the user.h is in H.

o Be sure to paste the GUI Ls_d / Ls_q value with a leading 0.000

• Recompile and use the .out with your GUI if you want to be able to skip Motor ID in the future
(enable the user.h Params before you select Run)

 27

Controller Tuning

Default Controller Tuning

 Speed Current & Torque

Note that both current and speed controller gains are effected by the IQ scaling variables and
decimation timing, they will need to be changed as well if you update these user.h settings.

Current Controllers

• The Iq and Id Current PI controller gains are numerically calculated & initialized

o Kp = ¼ * Bandwidth

 Bandwidth = [Ls / CTRL_FREQ_Hz * IQ_CURRENT / IQ_VOLTAGE]

 This ¼ factor is just to loosen the controller to support initial motor bring-up

 For high speed and high dynamics you must increase Kp by up to a factor of 4

o Ki = CTRL_FREQ_Hz / Ls * Rs

• These can be changed simply through the GUI, which instruments the following user code

o gMotorVars.Kp_Idq = CTRL_getKp(ctrlHandle,CTRL_Type_PID_Id);

o CTRL_setKp(handle,CTRL_Type_PID_Id,gMotorVars.Kp_Idq);

• Some applications may want to do step response testing to meet desired response of
over/undershoot and settling time

• Note, current controllers can only be updated starting in proj_lab5a, previous to this any
changes to those variables in the GUI will have no effect

Speed Controller

• The PI Speed Control cannot be auto tuned based on the motor or system parameters

 28

o Speed control relies on knowledge of inertia, mechanical linkages, and desired response

o Speed Gains are initialized using a “rule of thumb”, which works decently for larger flux
motors

 Kp = 0.02 * MAX_HZ * MAX_CURRENT / IQ_CURRENT

 Ki = 2.0 * CTRL_HZ * MAX_HZ * MAX_CURRENT / IQ_CURRENT

 Experience shows that for low inertia motors a good starting point is to reduce
the default Kp and Ki by /4

• Tuning

o Tune by testing various speeds and loads or tune by step response inputs (most popular)

o May need to “gain stage”, different KpKi sets for different speeds/loads/accelerations

o May be able to empirically calculate if you know inertia (see Labs/UG)

o Zero Speed tuning & experiment

 Disable ForceAngle

 Set 0 speed

 Quickly rotate the motor shaft 90-180 deg and then let go

• Now set Speed Kp to 0.2, Ki to 0.004

o example for Anaheim motor under test

o Notice how the motor shaft behaves like a spring-damper
system, “compressing” as you turn and then “returning” once you
remove the load

• Increase Kp until the spring feeling is gone

• Increase Ki to increase the stiffness of the motor

• At this point the system might be slightly unstable, the following can help
stabilize the system:

o Increase Kp to increase the dampening

o Reduce Ki to reduce oscillations

• These can be changed simply through the GUI, which instruments the following user code

o gMotorVars.Kp_spd = CTRL_getKp(ctrlHandle,CTRL_Type_PID_spd);

o CTRL_setKp(handle,CTRL_Type_PID_spd,gMotorVars.Kp_spd);

• Note, speed controllers can only be updated starting in proj_lab5b, previous to this any
changes to those variables in the GUI will have no effect

 29

Next Steps
• Continue to follow the InstaSPIN Projects & Labs User's Guide in MotorWare

• Read through the User’s Guide on relevant topics for your application

• Ask questions on the InstaSPIN e2e forum

 WARNING

Do not close the GUI until the drive has been stopped. Failure to do so will leave the
program running or put the processor into an unknown state, causing the system to
continue to draw current, possibly damaging the controlCARD, board, host computer,
motor and posing a fire hazard. After proper shut-down always disconnect the power
supplies and remember that capacitors are charged and will take time to dissipate!

http://e2e.ti.com/support/microcontrollers/c2000/f/902.aspx

	Installation
	Hardware Set-up
	Overview of Process for using the GUI
	Create Binary
	GUI Connection
	Running the GUI
	Standalone GUI .exe
	GUI inside CCStudio IDE

	Use Example
	Hardware Set-up
	Software Projects
	Updating software for your motor (user.h)
	Using the GUI
	Start-up Options
	RsRecalc
	If ENABLED - when Run is enabled - Performs a recalculation of Rs.
	If DISABLED – when Run is first enabled – uses the most recent value of Rs.
	Rs accuracy is critical for low speed operation. Rs changes as the motor windings heat from high current usage = high torque demanded from the motor. Loaded washing agitation is a good example. See the Rs On-line (always running recalibration) feat...
	OffsetCalc
	ForceAngle

	Motor ID
	user.h Params
	Motor Identification States

	Motor ID Tips
	Motor ID Sanity Checks
	Update user.h settings
	Controller Tuning
	Current Controllers
	Speed Controller

	Next Steps

