
Digital Control Systems (DCS) Group 1
Texas Instruments

Description This software module calculates the rotor position and motor speed

based on two resolver signals (i.e., sin and cos signals).

SinIn

CosIn pu

pu
pu

pu

Q0 SpeedRpm

Speed

aOutputThet

RESOLVER

Availability This IQ module is available in one interface format:

1) The C interface version

Module Properties Type: Target Independent, Application Dependent

 Target Devices: x281x or x280x

C Version File Names: resolver.c, resolver.h

 IQmath library files for C: IQmathLib.h, IQmath.lib

Item C version Comments

Code Size□

(x281x/x280x)

877/877 words

Data RAM 0 words•

xDAIS ready No

XDAIS component No IALG layer not implemented

Multiple instances Yes

Reentrancy Yes

• Each pre-initialized “_iq” RESOLVER structure consumes 157 words in
the data memory

□ Code size mentioned here is the size of the calc() function

Position and Speed Calculations for Resolver SensorRESOLVER

Digital Control Systems (DCS) Group 2
Texas Instruments

C Interface

C Interface

Object Definition

The structure of RESOLVER object is defined by following structure definition

typedef struct {
 _iq SinIn; // Input: Measured sine signal (pu)
 _iq CosIn; // Input: Measured cos signal (pu)
 _iq FilteredSin; // Variable: Filtered sine signal (pu)
 _iq FilteredCos; // Variable: Filtered cos signal (pu)
 _iq DemodSin; // Variable: Demodulated sine signal (pu)
 _iq DemodCos; // Variable: Demodulated cos signal (pu)
 _iq PreviousSin[18]; // History: Past sine signals (pu)
 _iq PreviousCos[18]; // History: Past cos signals (pu)
 _iq FilterGain[18]; // Parameter: FIR 17-order low-pass, Hamming Windows
 _iq OutputTheta; // Output: Motor electrical position angle (pu)
 _iq FilterTheta; // Variable: FilterTheta = FilterTheta1 - FilterTheta2 (pu)
 _iq FilterTheta1; // Variable: Mechanical angle by filtered sin/cos signal (pu)
 _iq FilterTheta2; // Variable Mechanical angle by filtered cos/sin signal (pu)
 Uint32 DemodConst; // Variable: Downsampling by factor K
 _iq SignalGain; // Parameter: Sin and cos gain (pu)
 _iq SpeedGain; // Parameter: Speed calculation gain (pu)
 Uint32 CounterMax; // Parameter: Maximum count for finding zero crossing (Q0)
 _iq AmplifiedSin; // Variable: Amplified sine signal (pu)
 _iq AmplifiedCos; // Variable: Amplified cos signal (pu)
 _iq PreviousDemodSin[4]; // History: Past demodulated sine signals (pu)
 _iq PreviousDemodCos[4]; // History: Past demodulated cos signals (pu)
 Uint32 ThetaCounter; // Variable: Counter for finding zero crossing (Q0)
 Uint32 ThetaCounterMax; // Variable: Maximum counter for finding zero crossing (Q0)
 _iq ElecTheta; // Variable: Electrical angle before angle compensation (pu)
 _iq MechTheta; // Variable: Mechanical angle before angle comp. (pu)
 _iq Speed; // Output: Speed in per-unit (pu)
 _iq OldTheta; // History: Mechanical angle at previous step (pu)
 Uint32 PolePairs; // Parameter: Number of pole pairs (Q0)
 Uint32 BaseRpm; // Parameter: Base speed in rpm (Q0)
 _iq21 K1; // Parameter: Constant for differentiator (Q21)
 int32 SpeedRpm; // Output : Motor speed in rpm (Q0)
 Uint32 SignalCounter; // Variable: Sign change counter 0-3 (Q0)
 _iq RefTheta; // Variable: Filtered mechanical angle before angle comp. (pu)
 Uint32 SignFlag; // Variable: Sign change of FilterTheta (pu)
 Uint32 OldSignFlag; // History: Sign change of FilterTheta at previous step (pu)
 _iq CalibratedAngle; // Parameter: Offset between resolver's signal & winding (pu)
 void (*calc)(); // Pointer to the calculation function
 } RESOLVER; // Data type created

typedef RESOLVER *RESOLVER_handle;

Digital Control Systems (DCS) Group 3
Texas Instruments

C Interface

Module Terminal Variables/Functions

Item Name Description Format* Range(Hex)
SinIn Measured sin signal GLOBAL_Q 80000000-7FFFFFFF Inputs
CosIn Measured cos signal GLOBAL_Q 80000000-7FFFFFFF

OutputTheta Motor electrical position angle GLOBAL_Q 00000000-7FFFFFFF
(0 – 360 degree)

Speed Motor speed in pu GLOBAL_Q 80000000-7FFFFFFF

Outputs

SpeedRpm Motor speed in rpm Q0 00000000-7FFFFFFF
FilterGain[18] Low-pass filter gains (FIR 17-

order, Hamming windows)
GLOBAL_Q 80000000-7FFFFFFF

SignalGain Sin and cos gain GLOBAL_Q 80000000-7FFFFFFF
SpeedGain Speed calculation gain GLOBAL_Q 80000000-7FFFFFFF
PolePairs Number of pole pairs Q0 00000000-7FFFFFFF
BaseRpm Base speed in rpm Q0 00000000-7FFFFFFF

K1 Constant for differentiator Q21 00000000-7FFFFFFF

RESOLVER
parameter

CalibratedAng
le

Offset between resolver’s signal
and phase-a winding

GLOBAL_Q 80000000-7FFFFFFF

FilteredSin Filtered sin signal GLOBAL_Q 80000000-7FFFFFFF
FilteredCos Filtered cos signal GLOBAL_Q 80000000-7FFFFFFF
DemodSin Demodulated sin signal GLOBAL_Q 80000000-7FFFFFFF
DemodCos Demodulated cos signal GLOBAL_Q 80000000-7FFFFFFF

AmplifiedSin Amplified sin signal GLOBAL_Q 80000000-7FFFFFFF
AmplifiedCos Amplified cos signal GLOBAL_Q 80000000-7FFFFFFF

FilterTheta FilterTheta1 – FilterTheta2 GLOBAL_Q 80000000-7FFFFFFF
FilterTheta1 Filtered atan(sin/cos) GLOBAL_Q 80000000-7FFFFFFF
FilterTheta2 Filtered atan(cos/sin) GLOBAL_Q 80000000-7FFFFFFF
ElecTheta Electrical angle before comp. GLOBAL_Q 80000000-7FFFFFFF
MechTheta Mechanical angle before comp. GLOBAL_Q 80000000-7FFFFFFF
RefTheta Filtered mechanical angle before

compensation
GLOBAL_Q 80000000-7FFFFFFF

SignFlag Sign change of FilterTheta Q0 0 or 1

Internal

SignalCounter Sign change counter Q0 0,1,2, or 3
 *GLOBAL_Q valued between 1 and 30 is defined in the IQmathLib.h header file.

Special Constants and Data types

 RESOLVER

The module definition is created as a data type. This makes it convenient to instance an
interface to the position and speed calculation module based on resolver signals. To
create multiple instances of the module simply declare variables of type RESOLVER.

RESOLVER_handle
User defined Data type of pointer to RESOLVER module

 RESOLVER_DEFAULTS

Structure symbolic constant to initialize RESOLVER module. This provides the initial
values to the terminal variables as well as method pointers.

Digital Control Systems (DCS) Group 4
Texas Instruments

C Interface

Methods

 void resolver_calc(RESOLVER_handle);

This definition implements one method viz., the position and speed calculation function
based on resolver signals. The input argument to this function is the module handle.

Module Usage

Instantiation

 The following example instances one RESOLVER objects
 RESOLVER res1, res2;

 Initialization

To Instance pre-initialized objects
RESOLVER res1 = RESOLVER_DEFAULTS;
RESOLVER res2 = RESOLVER_DEFAULTS;

Invoking the computation function
res1.calc(&res1);
res2.calc(&res2);

Example
The following pseudo code provides the information about the module usage.

main()
{

res1.FilterGain[0] = parem1_1; // Pass parameters to res1
 . .
 . .
 . .
res1.FilterGain[17] = parem1_17; // Pass parameters to res1
res1.SpeedGain = parem1_18; // Pass parameters to res1
res1.SignalGain = parem1_19; // Pass parameters to res1
res1.K1 = parem1_20; // Pass parameters to res1

res2.FilterGain[0] = parem2_1; // Pass parameters to res2
 . .
 . .
 . .
res2.FilterGain[17] = parem2_17; // Pass parameters to res2
res2.SpeedGain = parem2_18; // Pass parameters to res2
res2.SignalGain = parem2_19; // Pass parameters to res2
res2.K1 = parem2_20; // Pass parameters to res2

}

Digital Control Systems (DCS) Group 5
Texas Instruments

C Interface

void interrupt periodic_interrupt_isr()
{

res1.SinIn = _IQ15toIQ(adc1_SinIn); // Pass Q15 input to res1
res1.CosIn = _IQ15toIQ(adc1_CosIn); // Pass Q15 input to res1

res2.SinIn = _IQ15toIQ(adc2_SinIn); // Pass Q15 input to res2
res2.CosIn = _IQ15toIQ(adc2_CosIn); // Pass Q15 input to res2

res1.calc(&res1); // Call compute function for res1

 res2.calc(&res2); // Call compute function for res2

 speed1 = res1.Speed; // Access the outputs of res1
 position1 = res1.OutputTheta; // Access the outputs of res1

 speed2 = res2.Speed; // Access the outputs of res2
 position2 = res2.OutputTheta; // Access the outputs of res2

}

Digital Control Systems (DCS) Group 6
Texas Instruments

Technical Background

Technical Background

This software module consists of four functions explained as follows:

demodulator_calc()
This function is to demodulate the sin and cos input signals from the resolver. The
excitation signal’s peaks, which are the envelop of signals, are detected by finding the
maximum value of absolute sin and cos input signals in the moving windows. The window
length is the number of the sampling points per each period of excitation signal (typically,
2-10 kHz). For example, if the sin and cos signals from the resolver are sampled at a
sampling rate of 20 KHz. And the frequency of excitation signal is 5 kHz. Then, the length
of window would be 4. The absolute and demodulated sin signals can be seen in figure 1.

filter_calc()
The FIR 17-order low-pass filter (Hamming Windows) is primarily used for the
demodulated signals performed by demodulator_calc() function. The objective of this low-
pass filter is to filter out or smoothen the demodulated signals because the input signals
would possibly contain the noises from the measurement. The filter gains are easily
obtained by “Digital Filter Design” (FDA Tool) from Matlab/Simulink. The filtered sin signal
can be seen in Figure 1.

(pu))SinIn(mθ

(pu))DemodSin(mθ

(pu))n(FilteredSi mθ

mθ

mθ

mθ

0

0

0

π

π

π

π2

π2

π2

π3

π3

π3

Figure 1: Absolute, demodulated, and filtered sin signals

Digital Control Systems (DCS) Group 7
Texas Instruments

Technical Background

position_speed_calc()
This function calculates the rotor position and motor speed. After the signals are filtered
by the filter_calc() function, the mechanical angles are computed in the following ways:

 FilterTheta1 = tan-1(FilteredSin/FilteredCos) (1)
 FilterTheta2 = tan-1(FilteredCos/FilteredSin) (2)
 FilterTheta = FilterTheta1 - FilterTheta2 (3)

These mechanical angles can be shown in figure 2. As seen in this figure, the FilterTheta
is the bipolar signal. The zero crossings of the FilterTheta is detected and counted by
SignalCounter variable. One mechanical revolution has four zero-crossings, so this
SignalCounter variable will be reset to zero at every fourth zero-crossing (see figure 2).
The mechanical angle is computed in the following ways.

At every zero crossing, the MechTheta is set according to the SignalCounter value as

 MechTheta = SignalCounter*0.25 pu. (4)

where SignalCounter = 0, 1, 2,or 3 and MechTheta is in per-unit (valued between 0 and
1).

Otherwise, the MechTheta will be computed as follows:

 MechTheta = MechTheta + SpeedGain*Speed pu. (5)

where Speed is the computed motor speed (pu),
 SpeedGain = BASE_MECHANICAL_FREQ*SAMPLING_PERIOD.

The motor speed (Speed) is simply calculated by differentiating the FilterTheta1 signal
and then filtering the motor speed by a simple 1-order low-pass filter.

In practice, at every zero crossing the computed MechTheta in (5) may not be exactly the
MechTheta set in (4), thus the MechTheta is averaged three values; that are MechTheta
before zero-crossing, at zero-crossing, and after zero-crossing. Then, the MechTheta is
filtered by a 1-order low-pass filter to smoothen the signal. The RefTheta variable is
defined for the filtered MechTheta.

angle_comp_calc()
This function is to compensate the delays in the rotor position’s calculations. Firstly, the
delays due to the FIR 17-order and 1-order low-pass filters used are handled. These
filters provide the linear phase delay which can be easily compensated by looking at
frequency. As frequency increases, the delay is also increased. The angle delay of FIR
17-order low-pass filter can also be obtained by “Digital Filter Design” (FDA Tool) from
Matlab/Simulink.

Secondly, since MechTheta is calculated based on FilterTheta signal rather than
FilteredSin signal, thus the compensation of mechanical angle 45o (π/4 rad) should be
added (see MechTheta in figure 2).

Thirdly, the position compensation between the resolver’s sin winding and phase-a motor
winding should also be taken in the consideration. Because for the variable
transformation (abc to dq axis) the zero angle is defined at phase-a axis.

Digital Control Systems (DCS) Group 8
Texas Instruments

 Technical Background

0

(pu))n(FilteredSi mθ

(pu))s(FilteredCo mθ

mθ

mθ

mθ

mθ

mθ

mθ

0

0

0

0

0
25.0
50.0
75.0
0.1

25.0

25.0−

25.0

25.0

revolution1

))os(θ/FilteredC)in(θ(FilteredStana1FilterThet mm
-1=

))in(θ/FilteredS)os(θ(FilteredCtana2FilterThet mm
-1=

a2FilterThet-a1FilterThetaFilterThet =

(pu)MechTheta

π π2 π3

π3π2

π2

π

π

2/π

2/π

2/π

2/3π

2/3π

2/3π

2/5π

2/5π

2/5π4/π

4/π 4/9πdelay

0terSignalCoun =
1terSignalCoun =

2terSignalCoun =

3terSignalCoun =

Figure 2: FilteredSin, FilteredCos, FilterTheta1, FilterTheta2, FilterTheta, and MechTheta

