#ifndef _USER_H_
#define _USER_H_

#include "sw/modules/types/src/types.h"
#include "sw/modules/motor/src/32b/motor.h"
#include "sw/modules/est/src/32b/est.h"
#include "sw/modules/est/src/est_states.h"
#include "sw/modules/est/src/est_Flux_states.h"
#include "sw/modules/est/src/est_Ls_states.h"
#include "sw/modules/est/src/est_Rs_states.h"
#include "sw/modules/ctrl/src/32b/ctrl_obj.h"

#include "sw/modules/fast/src/32b/userParams.h"

#ifdef __cplusplus
extern "C" {
#endif

#define USER_IQ_FULL_SCALE_FREQ_Hz (800.0)
#define USER_IQ_FULL_SCALE_VOLTAGE_V (800.0
#define USER_ADC_FULL_SCALE_VOLTAGE_V (765.0)
#define USER_VOLTAGE_SF ((float_t)((USER_ADC_FULL_SCALE_VOLTAGE_V)/(USER_IQ_FULL_SCALE_VOLTAGE_V)))
#define USER_IQ_FULL_SCALE_CURRENT_A (62.5)
#define USER_ADC_FULL_SCALE_CURRENT_A (125)
#define USER_CURRENT_SF ((float_t)((USER_ADC_FULL_SCALE_CURRENT_A)/(USER_IQ_FULL_SCALE_CURRENT_A)))
#define USER_NUM_CURRENT_SENSORS (3)
#define USER_NUM_VOLTAGE_SENSORS (3)

#define I_A_offset (1.006788850)
#define I_B_offset (1.009521067)
#define I_C_offset (1.013614953)
#define V_A_offset (0.3385268450)
#define V_B_offset (0.3384960294)
#define V_C_offset (0.3403902650)

#define USER_SYSTEM_FREQ_MHz (90.0)
#define USER_PWM_FREQ_kHz (8.0)
#define USER_MAX_VS_MAG_PU (2.0/3.0)
#define USER_CTRL_HANDLE_ADDRESS (0x13C40)
#define USER_EST_HANDLE_ADDRESS (0x13840)
#define USER_VD_SF (0.95)
#define USER_PWM_PERIOD_usec (1000.0/USER_PWM_FREQ_kHz)
#define USER_ISR_FREQ_Hz ((float_t)USER_PWM_FREQ_kHz * 1000.0 / (float_t)USER_NUM_PWM_TICKS_PER_ISR_TICK)
#define USER_ISR_PERIOD_usec (USER_PWM_PERIOD_usec * (float_t)USER_NUM_PWM_TICKS_PER_ISR_TICK)

#define USER_NUM_PWM_TICKS_PER_ISR_TICK (1)
#define USER_NUM_ISR_TICKS_PER_CTRL_TICK (1)
#define USER_NUM_CTRL_TICKS_PER_CURRENT_TICK (1)
#define USER_NUM_CTRL_TICKS_PER_EST_TICK (1)
#define USER_NUM_CTRL_TICKS_PER_SPEED_TICK (8)
#define USER_NUM_CTRL_TICKS_PER_TRAJ_TICK (15)
#define USER_CTRL_FREQ_Hz (uint_least32_t)(USER_ISR_FREQ_Hz/USER_NUM_ISR_TICKS_PER_CTRL_TICK)
#define USER_EST_FREQ_Hz (uint_least32_t)(USER_CTRL_FREQ_Hz/USER_NUM_CTRL_TICKS_PER_EST_TICK)
#define USER_TRAJ_FREQ_Hz (uint_least32_t)(USER_CTRL_FREQ_Hz/USER_NUM_CTRL_TICKS_PER_TRAJ_TICK)
#define USER_CTRL_PERIOD_usec (USER_ISR_PERIOD_usec * USER_NUM_ISR_TICKS_PER_CTRL_TICK)
#define USER_CTRL_PERIOD_sec ((float_t)USER_CTRL_PERIOD_usec/(float_t)1000000.0)

#define USER_MAX_NEGATIVE_ID_REF_CURRENT_A (-0.5 * USER_MOTOR_MAX_CURRENT)
#define USER_ZEROSPEEDLIMIT (0.5 / USER_IQ_FULL_SCALE_FREQ_Hz)
#define USER_FORCE_ANGLE_FREQ_Hz (2.0 * USER_ZEROSPEEDLIMIT * USER_IQ_FULL_SCALE_FREQ_Hz)
#define USER_MAX_CURRENT_SLOPE_POWERWARP (0.3*USER_MOTOR_RES_EST_CURRENT/USER_IQ_FULL_SCALE_CURRENT_A/USER_TRAJ_FREQ_Hz
#define USER_MAX_ACCEL_Hzps (20.0)

#define USER_MAX_ACCEL_EST_Hzps (2.0)
#define USER_MAX_CURRENT_SLOPE (USER_MOTOR_RES_EST_CURRENT/USER_IQ_FULL_SCALE_CURRENT_A/USER_TRAJ_FREQ_Hz)
#define USER_IDRATED_FRACTION_FOR_RATED_FLUX (1.0)
#define USER_IDRATED_FRACTION_FOR_L_IDENT (1.0)
#define USER_IDRATED_DELTA (0.00002)
#define USER_SPEEDMAX_FRACTION_FOR_L_IDENT (1.0)
#define USER_FLUX_FRACTION (1.0)
#define USER_POWERWARP_GAIN (1.0)
#define USER_R_OVER_L_EST_FREQ_Hz (200)
#define USER_VOLTAGE_FILTER_POLE_Hz (615.0)
#define USER_VOLTAGE_FILTER_POLE_rps (2.0 * MATH_PI * USER_VOLTAGE_FILTER_POLE_Hz)
#define USER_OFFSET_POLE_rps (20.0)
#define USER_FLUX_POLE_rps (100.0)
#define USER_DIRECTION_POLE_rps (6.0)
#define USER_SPEED_POLE_rps (100.0)
#define USER_DCBUS_POLE_rps (100.0)
#define USER_EST_KAPPAQ (1.5)

#define Estun_EMJ_04APB22 101
#define Anaheim_BLY172S 102
#define My_Motor 104
#define GE_pump 105
#define fridge_compressor 106
#define Belt_Drive_Washer_IPM 201
#define Marathon_5K33GN2A 301
#define Marathon_56H17T2011A 302
#define Selni_AHV242N06 303
#define Dayton_3N352C_230 304
#define Dayton_3N352C_460 305
#define Weg_00118ET3E143T_W22_230 306
#define Weg_00118ET3E143T_W22_460 307
#define Oriental_4IK25A_SH_230 308
#define Dayton_2N865T 309
#define SEO_motor					400
#define Fan_motor					401

//#define USER_MOTOR Estun_EMJ_04APB22
//#define USER_MOTOR Anaheim_BLY172S
//#define USER_MOTOR My_Motor
//#define USER_MOTOR GE_pump
//#define USER_MOTOR fridge_compressor
//#define USER_MOTOR Belt_Drive_Washer_IPM
//#define USER_MOTOR Marathon_5K33GN2A
//#define USER_MOTOR Marathon_56H17T2011A
//#define USER_MOTOR Selni_AHV242N06
//#define USER_MOTOR Dayton_3N352C_230
//#define USER_MOTOR Dayton_3N352C_460
//#define USER_MOTOR Weg_00118ET3E143T_W22_230
//#define USER_MOTOR Weg_00118ET3E143T_W22_460
//#define USER_MOTOR Oriental_4IK25A_SH_230
//#define USER_MOTOR Dayton_2N865T
//#define USER_MOTOR SEO_motor
#define USER_MOTOR Fan_motor

#if (USER_MOTOR == Estun_EMJ_04APB22) // Name must match the motor #define
#define USER_MOTOR_TYPE MOTOR_Type_Pm // Motor_Type_Pm (All Synchronous: BLDC, PMSM, SMPM, IPM) or Motor_Type_Induction (Asynchronous ACI)
#define USER_MOTOR_NUM_POLE_PAIRS (4) // PAIRS, not total poles. Used to calculate user RPM from rotor Hz only
#define USER_MOTOR_Rr (NULL) // Induction motors only, else NULL
//#define USER_MOTOR_Rs (2.200221) // Identified phase to neutral resistance in a Y equivalent circuit (Ohms, float)
//#define USER_MOTOR_Ls_d (0.008721023) // For PM, Identified average stator inductance (Henry, float)
//#define USER_MOTOR_Ls_q (0.008721023) // For PM, Identified average stator inductance (Henry, float)
//#define USER_MOTOR_RATED_FLUX (0.3846985) // Identified TOTAL flux linkage between the rotor and the stator (V/Hz)

#define USER_MOTOR_Rs (2.425783) // Identified phase to neutral resistance in a Y equivalent circuit (Ohms, float)
#define USER_MOTOR_Ls_d (0.008207544) // For PM, Identified average stator inductance (Henry, float)
#define USER_MOTOR_Ls_q (0.008207544) // For PM, Identified average stator inductance (Henry, float)
#define USER_MOTOR_RATED_FLUX (0.3859799) // Identified TOTAL flux linkage between the rotor and the stator (V/Hz)

#define USER_MOTOR_MAGNETIZING_CURRENT (NULL) // Induction motors only, else NULL
#define USER_MOTOR_RES_EST_CURRENT (1.0) // During Motor ID, maximum current (Amperes, float) used for Rs estimation, 10-20% rated current
#define USER_MOTOR_IND_EST_CURRENT (-1.0) // During Motor ID, maximum current (negative Amperes, float) used for Ls estimation, use just enough to enable rotation
#define USER_MOTOR_MAX_CURRENT (3.82) // CRITICAL: Used during ID and run-time, sets a limit on the maximum current command output of the provided Speed PI Controller to the Iq controller
#define USER_MOTOR_FLUX_EST_FREQ_Hz (20.0) // During Motor ID, maximum commanded speed (Hz, float), ~10% rated

#elif (USER_MOTOR == Anaheim_BLY172S)
#define USER_MOTOR_TYPE MOTOR_Type_Pm
#define USER_MOTOR_NUM_POLE_PAIRS (4)
#define USER_MOTOR_Rr (NULL)
#define USER_MOTOR_Rs (0.4110007)
#define USER_MOTOR_Ls_d (0.0007092811)
#define USER_MOTOR_Ls_q (0.0007092811)
#define USER_MOTOR_RATED_FLUX (0.03279636)
#define USER_MOTOR_MAGNETIZING_CURRENT (NULL)
#define USER_MOTOR_RES_EST_CURRENT (1.0)
#define USER_MOTOR_IND_EST_CURRENT (-1.0)
#define USER_MOTOR_MAX_CURRENT (5.0)
#define USER_MOTOR_FLUX_EST_FREQ_Hz (20.0)

#elif (USER_MOTOR == My_Motor)
#define USER_MOTOR_TYPE MOTOR_Type_Pm
#define USER_MOTOR_NUM_POLE_PAIRS (2)
#define USER_MOTOR_Rr (NULL)
#define USER_MOTOR_Rs (0.3918252)
#define USER_MOTOR_Ls_d (0.00023495)
#define USER_MOTOR_Ls_q (0.00023495)
#define USER_MOTOR_RATED_FLUX (0.03955824)
#define USER_MOTOR_MAGNETIZING_CURRENT (NULL)
#define USER_MOTOR_RES_EST_CURRENT (3.0)
#define USER_MOTOR_IND_EST_CURRENT (-0.5)
#define USER_MOTOR_MAX_CURRENT (20.0)
#define USER_MOTOR_FLUX_EST_FREQ_Hz (20.0)

#elif (USER_MOTOR == GE_pump)
#define USER_MOTOR_TYPE MOTOR_Type_Pm
#define USER_MOTOR_NUM_POLE_PAIRS (4)
#define USER_MOTOR_Rr (NULL)
#define USER_MOTOR_Rs (0.1931403)
#define USER_MOTOR_Ls_d (0.0001903657)
#define USER_MOTOR_Ls_q (0.0001903657)
#define USER_MOTOR_RATED_FLUX (0.06034314)
#define USER_MOTOR_MAGNETIZING_CURRENT (NULL)
#define USER_MOTOR_RES_EST_CURRENT (1.0)
#define USER_MOTOR_IND_EST_CURRENT (-1.0)
#define USER_MOTOR_MAX_CURRENT (8.0)
#define USER_MOTOR_FLUX_EST_FREQ_Hz (20.0)

#elif (USER_MOTOR == fridge_compressor)
#define USER_MOTOR_TYPE MOTOR_Type_Pm
#define USER_MOTOR_NUM_POLE_PAIRS (2)
#define USER_MOTOR_Rr (NULL)
#define USER_MOTOR_Rs (4.707864)
#define USER_MOTOR_Ls_d (0.1728041)
#define USER_MOTOR_Ls_q (0.1728041)
#define USER_MOTOR_RATED_FLUX (0.418879)
#define USER_MOTOR_MAGNETIZING_CURRENT (NULL)
#define USER_MOTOR_RES_EST_CURRENT (0.3)
#define USER_MOTOR_IND_EST_CURRENT (-0.3)
#define USER_MOTOR_MAX_CURRENT (5.0)
#define USER_MOTOR_FLUX_EST_FREQ_Hz (40.0)

#elif (USER_MOTOR == Belt_Drive_Washer_IPM)
#define USER_MOTOR_TYPE MOTOR_Type_Pm
#define USER_MOTOR_NUM_POLE_PAIRS (4)
#define USER_MOTOR_Rr (NULL)
#define USER_MOTOR_Rs (2.70544)
#define USER_MOTOR_Ls_d (0.0115)
#define USER_MOTOR_Ls_q (0.0135)
#define USER_MOTOR_RATED_FLUX (0.5022156)
#define USER_MOTOR_MAGNETIZING_CURRENT (NULL)
#define USER_MOTOR_RES_EST_CURRENT (1.0)
#define USER_MOTOR_IND_EST_CURRENT (-1.0)
#define USER_MOTOR_MAX_CURRENT (4.0)
#define USER_MOTOR_FLUX_EST_FREQ_Hz (20.0)

#elif (USER_MOTOR == Marathon_5K33GN2A) // Name must match the motor #define
#define USER_MOTOR_TYPE MOTOR_Type_Induction // Motor_Type_Pm (All Synchronous: BLDC, PMSM, SMPM, IPM) or Motor_Type_Induction (Asynchronous ACI)
#define USER_MOTOR_NUM_POLE_PAIRS (2) // PAIRS, not total poles. Used to calculate user RPM from rotor Hz only
#define USER_MOTOR_Rr (5.574939) // Identified phase to neutral in a Y equivalent circuit (Ohms, float)
#define USER_MOTOR_Rs (10.71121) // Identified phase to neutral in a Y equivalent circuit (Ohms, float)
#define USER_MOTOR_Ls_d (0.04282236) // For Induction, Identified average stator inductance (Henry, float)
#define USER_MOTOR_Ls_q USER_MOTOR_Ls_d // For Induction, Identified average stator inductance (Henry, float)
#define USER_MOTOR_RATED_FLUX (0.8165*220.0/60.0) // sqrt(2/3)* Rated V (line-line) / Rated Freq (Hz)
#define USER_MOTOR_MAGNETIZING_CURRENT (1.514201) // Identified magnetizing current for induction motors, else NULL
#define USER_MOTOR_RES_EST_CURRENT (1.0) // During Motor ID, maximum current (Amperes, float) used for Rs estimation, 10-20% rated current
#define USER_MOTOR_IND_EST_CURRENT (NULL) // not used for induction
#define USER_MOTOR_MAX_CURRENT (2.0) // CRITICAL: Used during ID and run-time, sets a limit on the maximum current command output of the provided Speed PI Controller to the Iq controller
#define USER_MOTOR_FLUX_EST_FREQ_Hz (5.0) // During Motor ID, maximum commanded speed (Hz, float). Should always use 5 Hz for Induction.

#elif (USER_MOTOR == Marathon_56H17T2011A)
#define USER_MOTOR_TYPE MOTOR_Type_Induction
#define USER_MOTOR_NUM_POLE_PAIRS (2)
#define USER_MOTOR_Rr (5.076565)
#define USER_MOTOR_Rs (7.777135)
#define USER_MOTOR_Ls_d (0.02756402)
#define USER_MOTOR_Ls_q USER_MOTOR_Ls_d
#define USER_MOTOR_RATED_FLUX (0.8165*230.0/60.0)
#define USER_MOTOR_MAGNETIZING_CURRENT (1.130457)
#define USER_MOTOR_RES_EST_CURRENT (1.0)
#define USER_MOTOR_IND_EST_CURRENT (NULL)
#define USER_MOTOR_MAX_CURRENT (5.0)
#define USER_MOTOR_FLUX_EST_FREQ_Hz (5.0)

#elif (USER_MOTOR == Selni_AHV242N06)
#define USER_MOTOR_TYPE MOTOR_Type_Induction
#define USER_MOTOR_NUM_POLE_PAIRS (1)
#define USER_MOTOR_Rr (0.6519378)
#define USER_MOTOR_Rs (1.863846)
#define USER_MOTOR_Ls_d (0.01710425)
#define USER_MOTOR_Ls_q USER_MOTOR_Ls_d
#define USER_MOTOR_RATED_FLUX (0.8165*190.0/200.0)
#define USER_MOTOR_MAGNETIZING_CURRENT (1.246659)
#define USER_MOTOR_RES_EST_CURRENT (1.0)
#define USER_MOTOR_IND_EST_CURRENT (NULL)
#define USER_MOTOR_MAX_CURRENT (5.0)
#define USER_MOTOR_FLUX_EST_FREQ_Hz (5.0)

#elif (USER_MOTOR == Dayton_3N352C_230)
#define USER_MOTOR_TYPE MOTOR_Type_Induction
#define USER_MOTOR_NUM_POLE_PAIRS (2)
#define USER_MOTOR_Rr (2.064656)
#define USER_MOTOR_Rs (2.858907)
#define USER_MOTOR_Ls_d (0.02556416)
#define USER_MOTOR_Ls_q USER_MOTOR_Ls_d
#define USER_MOTOR_RATED_FLUX (0.8165*230.0/60.0)
#define USER_MOTOR_MAGNETIZING_CURRENT (2.938731)
#define USER_MOTOR_RES_EST_CURRENT (1.0)
#define USER_MOTOR_IND_EST_CURRENT (NULL)
#define USER_MOTOR_MAX_CURRENT (5.0)
#define USER_MOTOR_FLUX_EST_FREQ_Hz (5.0)

#elif (USER_MOTOR == Dayton_3N352C_460)
#define USER_MOTOR_TYPE MOTOR_Type_Induction
#define USER_MOTOR_NUM_POLE_PAIRS (2)
#define USER_MOTOR_Rr (9.077622)
#define USER_MOTOR_Rs (11.106)
#define USER_MOTOR_Ls_d (0.0713708)
#define USER_MOTOR_Ls_q USER_MOTOR_Ls_d
#define USER_MOTOR_RATED_FLUX (0.8165*460.0/60.0)
#define USER_MOTOR_MAGNETIZING_CURRENT (1.462848)
#define USER_MOTOR_RES_EST_CURRENT (1.0)
#define USER_MOTOR_IND_EST_CURRENT (NULL)
#define USER_MOTOR_MAX_CURRENT (4.0)
#define USER_MOTOR_FLUX_EST_FREQ_Hz (5.0)

#elif (USER_MOTOR == Weg_00118ET3E143T_W22_230)
#define USER_MOTOR_TYPE MOTOR_Type_Induction
#define USER_MOTOR_NUM_POLE_PAIRS (2)
#define USER_MOTOR_Rr (1.067204)
#define USER_MOTOR_Rs (2.406377)
#define USER_MOTOR_Ls_d (0.05482391)
#define USER_MOTOR_Ls_q USER_MOTOR_Ls_d
#define USER_MOTOR_RATED_FLUX (0.8165*230.0/60.0)
#define USER_MOTOR_MAGNETIZING_CURRENT (2.17855)
#define USER_MOTOR_RES_EST_CURRENT (1.0)
#define USER_MOTOR_IND_EST_CURRENT (NULL)
#define USER_MOTOR_MAX_CURRENT (6.0)
#define USER_MOTOR_FLUX_EST_FREQ_Hz (5.0)

#elif (USER_MOTOR == Weg_00118ET3E143T_W22_460)
#define USER_MOTOR_TYPE MOTOR_Type_Induction
#define USER_MOTOR_NUM_POLE_PAIRS (2)
#define USER_MOTOR_Rr (2.934001)
#define USER_MOTOR_Rs (9.537757)
#define USER_MOTOR_Ls_d (0.2160697)
#define USER_MOTOR_Ls_q USER_MOTOR_Ls_d
#define USER_MOTOR_RATED_FLUX (0.8165*460.0/60.0)
#define USER_MOTOR_MAGNETIZING_CURRENT (1.086798)
#define USER_MOTOR_RES_EST_CURRENT (1.0)
#define USER_MOTOR_IND_EST_CURRENT (NULL)
#define USER_MOTOR_MAX_CURRENT (5.0)
#define USER_MOTOR_FLUX_EST_FREQ_Hz (5.0)

#elif (USER_MOTOR == Oriental_4IK25A_SH_230)
#define USER_MOTOR_TYPE MOTOR_Type_Induction
#define USER_MOTOR_NUM_POLE_PAIRS (2)
#define USER_MOTOR_Rr (64.00807)
#define USER_MOTOR_Rs (128.2861)
#define USER_MOTOR_Ls_d (0.6856454)
#define USER_MOTOR_Ls_q USER_MOTOR_Ls_d
#define USER_MOTOR_RATED_FLUX (0.8165*230.0/60.0)
#define USER_MOTOR_MAGNETIZING_CURRENT (0.166837)
#define USER_MOTOR_RES_EST_CURRENT (0.1)
#define USER_MOTOR_IND_EST_CURRENT (NULL)
#define USER_MOTOR_MAX_CURRENT (0.3)
#define USER_MOTOR_FLUX_EST_FREQ_Hz (5.0)

#elif (USER_MOTOR == Dayton_2N865T)
#define USER_MOTOR_TYPE MOTOR_Type_Induction
#define USER_MOTOR_NUM_POLE_PAIRS (2)
#define USER_MOTOR_Rr (2.540533)
#define USER_MOTOR_Rs (4.681129)
#define USER_MOTOR_Ls_d (0.02621018)
#define USER_MOTOR_Ls_q USER_MOTOR_Ls_d
#define USER_MOTOR_RATED_FLUX (0.8165*230.0/60.0)
#define USER_MOTOR_MAGNETIZING_CURRENT (1.838921)
#define USER_MOTOR_RES_EST_CURRENT (1.0)
#define USER_MOTOR_IND_EST_CURRENT (NULL)
#define USER_MOTOR_MAX_CURRENT (5.0)
#define USER_MOTOR_FLUX_EST_FREQ_Hz (5.0)

#elif (USER_MOTOR == SEO_motor) // Name must match the motor #define
#define USER_MOTOR_TYPE MOTOR_Type_Pm // Motor_Type_Pm (All Synchronous: BLDC, PMSM, SMPM, IPM) or Motor_Type_Induction (Asynchronous ACI)
#define USER_MOTOR_NUM_POLE_PAIRS (3) // PAIRS, not total poles. Used to calculate user RPM from rotor Hz only
#define USER_MOTOR_Rr (NULL) // Induction motors only, else NULL
#define USER_MOTOR_Rs (2.230033) // Identified phase to neutral resistance in a Y equivalent circuit (Ohms, float)
#define USER_MOTOR_Ls_d (0.0104946) // For PM, Identified average stator inductance (Henry, float)
#define USER_MOTOR_Ls_q (0.0104946) // For PM, Identified average stator inductance (Henry, float)
#define USER_MOTOR_RATED_FLUX (0.2369867) // Identified TOTAL flux linkage between the rotor and the stator (V/Hz)
#define USER_MOTOR_MAGNETIZING_CURRENT (NULL) // Induction motors only, else NULL
#define USER_MOTOR_RES_EST_CURRENT (1.0) // During Motor ID, maximum current (Amperes, float) used for Rs estimation, 10-20% rated current
#define USER_MOTOR_IND_EST_CURRENT (-1.0) // During Motor ID, maximum current (negative Amperes, float) used for Ls estimation, use just enough to enable rotation
#define USER_MOTOR_MAX_CURRENT (5.0) // CRITICAL: Used during ID and run-time, sets a limit on the maximum current command output of the provided Speed PI Controller to the Iq controller
#define USER_MOTOR_FLUX_EST_FREQ_Hz (15.0) // During Motor ID, maximum commanded speed (Hz, float), ~10% rated

#elif (USER_MOTOR == Fan_motor) // Name must match the motor #define
#define USER_MOTOR_TYPE MOTOR_Type_Pm // Motor_Type_Pm (All Synchronous: BLDC, PMSM, SMPM, IPM) or Motor_Type_Induction (Asynchronous ACI)
#define USER_MOTOR_NUM_POLE_PAIRS (1) // PAIRS, not total poles. Used to calculate user RPM from rotor Hz only
#define USER_MOTOR_Rr (NULL) // Induction motors only, else NULL
#define USER_MOTOR_Rs (0.1217002) // Identified phase to neutral resistance in a Y equivalent circuit (Ohms, float)
#define USER_MOTOR_Ls_d (0.00001094549) // For PM, Identified average stator inductance (Henry, float)
[bookmark: _GoBack]#define USER_MOTOR_Ls_q (0.00001094549) // For PM, Identified average stator inductance (Henry, float)
#define USER_MOTOR_RATED_FLUX (0.4343111) // Identified TOTAL flux linkage between the rotor and the stator (V/Hz)
#define USER_MOTOR_MAGNETIZING_CURRENT (NULL) // Induction motors only, else NULL
#define USER_MOTOR_RES_EST_CURRENT (9.0) // During Motor ID, maximum current (Amperes, float) used for Rs estimation, 10-20% rated current
#define USER_MOTOR_IND_EST_CURRENT (-4.5) // During Motor ID, maximum current (negative Amperes, float) used for Ls estimation, use just enough to enable rotation
#define USER_MOTOR_MAX_CURRENT (28.0) // CRITICAL: Used during ID and run-time, sets a limit on the maximum current command output of the provided Speed PI Controller to the Iq controller
#define USER_MOTOR_FLUX_EST_FREQ_Hz (30.0) // During Motor ID, maximum commanded speed (Hz, float), ~10% rated

#else
#error No motor type specified
#endif

#ifndef USER_MOTOR
#error Motor is not defined in user.h
#endif

#ifndef USER_MOTOR_TYPE
#error The motor type is not defined in user.h
#endif

#ifndef USER_MOTOR_NUM_POLE_PAIRS
#error Number of motor pole pairs is not defined in user.h
#endif

#ifndef USER_MOTOR_Rr
#error The rotor resistance is not defined in user.h
#endif

#ifndef USER_MOTOR_Rs
#error The stator resistance is not defined in user.h
#endif

#ifndef USER_MOTOR_Ls_d
#error The direct stator inductance is not defined in user.h
#endif

#ifndef USER_MOTOR_Ls_q
#error The quadrature stator inductance is not defined in user.h
#endif

#ifndef USER_MOTOR_RATED_FLUX
#error The rated flux of motor is not defined in user.h
#endif

#ifndef USER_MOTOR_MAGNETIZING_CURRENT
#error The magnetizing current is not defined in user.h
#endif

#ifndef USER_MOTOR_RES_EST_CURRENT
#error The resistance estimation current is not defined in user.h
#endif

#ifndef USER_MOTOR_IND_EST_CURRENT
#error The inductance estimation current is not defined in user.h
#endif

#ifndef USER_MOTOR_MAX_CURRENT
#error The maximum current is not defined in user.h
#endif

#ifndef USER_MOTOR_FLUX_EST_FREQ_Hz
#error The flux estimation frequency is not defined in user.h
#endif

// **
// the functions

//! \brief Sets the user parameter values
//! \param[in] pUserParams The pointer to the user param structure
extern void USER_setParams(USER_Params *pUserParams);

//! \brief Checks for errors in the user parameter values
//! \param[in] pUserParams The pointer to the user param structure
extern void USER_checkForErrors(USER_Params *pUserParams);

//! \brief Gets the error code in the user parameters
//! \param[in] pUserParams The pointer to the user param structure
//! \return The error code
extern USER_ErrorCode_e USER_getErrorCode(USER_Params *pUserParams);

//! \brief Sets the error code in the user parameters
//! \param[in] pUserParams The pointer to the user param structure
//! \param[in] errorCode The error code
extern void USER_setErrorCode(USER_Params *pUserParams,const USER_ErrorCode_e errorCode);

//! \brief Recalculates Inductances with the correct Q Format
//! \param[in] handle The controller (CTRL) handle
extern void USER_softwareUpdate1p6(CTRL_Handle handle);

//! \brief Updates Id and Iq PI gains
//! \param[in] handle The controller (CTRL) handle
extern void USER_calcPIgains(CTRL_Handle handle);

//! \brief Computes the scale factor needed to convert from torque created by Ld, Lq, Id and Iq, from per unit to Nm
//! \return The scale factor to convert torque from (Ld - Lq) * Id * Iq from per unit to Nm, in IQ24 format
extern _iq USER_computeTorque_Ls_Id_Iq_pu_to_Nm_sf(void);

//! \brief Computes the scale factor needed to convert from torque created by flux and Iq, from per unit to Nm
//! \return The scale factor to convert torque from Flux * Iq from per unit to Nm, in IQ24 format
extern _iq USER_computeTorque_Flux_Iq_pu_to_Nm_sf(void);

//! \brief Computes the scale factor needed to convert from per unit to Wb
//! \return The scale factor to convert from flux per unit to flux in Wb, in IQ24 format
extern _iq USER_computeFlux_pu_to_Wb_sf(void);

//! \brief Computes the scale factor needed to convert from per unit to V/Hz
//! \return The scale factor to convert from flux per unit to flux in V/Hz, in IQ24 format
extern _iq USER_computeFlux_pu_to_VpHz_sf(void);

//! \brief Computes Flux in Wb or V/Hz depending on the scale factor sent as parameter
//! \param[in] handle The controller (CTRL) handle
//! \param[in] sf The scale factor to convert flux from per unit to Wb or V/Hz
//! \return The flux in Wb or V/Hz depending on the scale factor sent as parameter, in IQ24 format
extern _iq USER_computeFlux(CTRL_Handle handle, const _iq sf);

//! \brief Computes Torque in Nm
//! \param[in] handle The controller (CTRL) handle
//! \param[in] torque_Flux_sf The scale factor to convert torque from (Ld - Lq) * Id * Iq from per unit to Nm
//! \param[in] torque_Ls_sf The scale factor to convert torque from Flux * Iq from per unit to Nm
//! \return The torque in Nm, in IQ24 format
extern _iq USER_computeTorque_Nm(CTRL_Handle handle, const _iq torque_Flux_sf, const _iq torque_Ls_sf);

//! \brief Computes Torque in lbin
//! \param[in] handle The controller (CTRL) handle
//! \param[in] torque_Flux_sf The scale factor to convert torque from (Ld - Lq) * Id * Iq from per unit to lbin
//! \param[in] torque_Ls_sf The scale factor to convert torque from Flux * Iq from per unit to lbin
//! \return The torque in lbin, in IQ24 format
extern _iq USER_computeTorque_lbin(CTRL_Handle handle, const _iq torque_Flux_sf, const _iq torque_Ls_sf);

#ifdef __cplusplus
}
#endif // extern "C"

//@} // ingroup
#endif // end of _USER_H_ definition

