SwitcherPro Design Report
 Schematic

Design Name: 5 to 1V0_MAX Part: TPS54550
VinMin: 4.5V VinMax: 5.5V Vout: 1V Iout: 3.02A

SwitcherPro Design Report
 Analysis - Main

Design Name: 5 to 1V0_MAX Part: TPS54550
VinMin: 4.5V VinMax: 5.5V Vout: $1 \mathrm{~V} \quad$ Iout: 3.02 A

Parameter Units-Symbol	User Input Minimum	User Input Nominal	User Input Maximum	Default Input Minimum	Default Input Nominal	Default Input Maximum	Calculated Minimum	Calculated Nominal	Calculated Maximum
Input Voltage Volts - V	4.50	-	5.50	-	-	-	-	-	-
Input Ripple $m \vee p-p-m \vee p-p$	-	-	100	-	-	-	-	-	203.9
UVLO(Start) Volts - V	-	-	-	-	-	-	-	-	-
UVLO(Stop) Volts - V	-	-	-	-	-	-	-	-	-
Switching Frequency $\mathrm{KHz}-\mathrm{KHz}$	-	700	-	-	-	-	560	700	840
Slow Start ms - ms	-	-	-	-	4.00	-	-	-	-
Estimated PCB Area $m m^{2}-m^{2}$	-	-	-	-	-	-	-	350	-
Max Component Height mm - mm	-	-	-	-	-	25	-	-	5

SwitcherPro Design Report Analysis - Output1

Design Name: 5 to 1V0_MAX Part: TPS54550
VinMin: 4.5V VinMax: 5.5V Vout: 1V Iout: 3.02A

Parameter Units-Symbol	User Input Minimum	User Input Nominal	User Input Maximum	Default Input Minimum	Default Input Nominal	Default Input Maximum	Calculated Minimum	Calculated Nominal	Calculated Maximum
Output Voltage Volts - V	-	1.000	-	-	-	-	0.984	-	1.019
Output Ripple mVp-p - mVp-p	-	-	50	-	-	20	-	-	1.0
Output Current Amps - A	-	-	3.016	0.100	-	-	-	-	-
Inductor Peak to Peak Current Amps - A	-	-	-	-	-	-	0.323	-	0.338
Current Limit Threshold Amps - A	-	-	-	-	4.200	-	-	-	-
Gain Margin $d B-d B$	-	-	-	-10	-	-	-	-20	-
Phase Margin Deg. - Deg.	-	-	-	60	-	-	-	62	-
Upper FET RDSon mOhms - $\mathrm{m} \Omega$	-	-	-	-	-	-	63	-	68
Lower FET RDSon mOhms - $\mathrm{m} \Omega$	-	-	-	-	-	-	2	-	2
Duty Cycle \% - \%	-	-	-	-	-	-	20.1	-	24.8
On Time Min (switch) ns - ns	-	-	-	-	-	-	238.8	-	442.7
Cross Over Frequency $\mathrm{KHz}-\mathrm{KHz}$	-	-	-	-	-	-	-	27	-

SwitcherPro Design Report

Stress Results

Design Name: 5 to 1V0_MAX Part: TPS54550
VinMin: 4.5V VinMax: 5.5V Vout: $1 \mathrm{~V} \quad$ Iout: 3.02 A
$\left.\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline \text { Device Rated Voltage } \begin{array}{c}\text { Calculated } \\ \text { Voltage }\end{array} & \begin{array}{c}\text { Rated Current } \\ \text { (RMS) }\end{array} & \begin{array}{c}\text { Calculated } \\ \text { Current (RMS) }\end{array} & \text { Error Message Power }\end{array} \begin{array}{c}\text { Calculated } \\ \text { Max Temp }\end{array}\right)$

SwitcherPro Design Report
 Efficiency

Design Name: 5 to 1VO_MAX Part: TPS54550
VinMin: 4.5V VinMax: 5.5V Vout: 1V Iout: 3.02A

- Efficiency For Vin Max
— Efficiency For Vin Min

SwitcherPro Design Report Loop Response

Design Name: 5 to 1V0_MAX Part: TPS54550
VinMin: 4.5V VinMax: 5.5V Vout: 1V Iout: 3.02A

This graph was generated using the following conditions: Nominal Switching Freq, Minimum Vin, Maximum Load, and Maximum Capacitor ESR. To customize conditions use the 'What If Analysis' form

- Power Stage Gain
- Power Stage Phase
- Compensation Gain
- Compensation Phase
- Error Amp Gain
- Total Gain
- Total Phase

SwitcherPro Design Report Bill of Materials

Design Name: 5 to 1V0_MAX Part: TPS54550

VinMin: 4.5V VinMax: 5.5V Vout: 1V Iout: 3.02A

Name	Quantity	Part Number	Description	Manufacturer	Package	Area(mm^{2})	Height(mm)
C10	1	EEFCD1C8R2R	$\begin{gathered} \text { Capacitor, NA, 8.2uF, 16V, } \\ 20 \% \end{gathered}$	Panasonic	EEFCDO	32	1
C2	1	C3225X5R0J107M	Capacitor, Ceramic, 100uF, 6.3V, 20\%	TDK	C3225 1210	10	2
C3	1	Standard	Capacitor, Ceramic, 0.1uF, 20V, 1\%	Standard	0603	2	1
C4	1	Standard	$\begin{gathered} \text { Capacitor, Ceramic, } 1 \mathrm{uF}, 20 \mathrm{~V}, \\ 1 \% \end{gathered}$	Standard	0603	2	1
C6	1	Standard	Capacitor, Ceramic, 8200pF, 4V, 20\%	Standard	0603	2	1
C7	1	Standard	Capacitor, Ceramic, 330pF, 4V, 20\%	Standard	0603	2	1
C8	1	Standard	Capacitor, Ceramic, 2700pF, 4V, 20\%	Standard	0603	2	1
C9	1	GRM21BR61E475MA12L	Capacitor, Ceramic, 4.7uF, 25V, 20\%	Murata Manufacturing	0805	2.5	1.25
L1	1	CLF7045T-4R7N	Inductor, $4.7 \mathrm{uH}, 4.1 \mathrm{~A}, 20 \mathrm{~m} \Omega$	TDK	CLF10040	49.68	4.5
Q1	1	CSD16321Q5	Transistor, NFET, 25V, 100A, $3 \mathrm{~m} \Omega$	exas Instruments, Inc.	QFN 5x6	31	1
R1	1	Standard	Resistor, SurfaceMount, 10K $\Omega, 100 \mathrm{~mW}$, 1%	Standard	0603	2	1
R10	1	Standard	Resistor, SurfaceMount, 24 Ω, 100 mW , 1\%	Standard	0603	2	1
R15	1	Standard	Resistor, SurfaceMount, $0.0 \Omega, 100 \mathrm{~mW}, 1 \%$	Standard	0603	2	1
R18	1	Standard	Resistor, SurfaceMount, $10 \mathrm{~K} \Omega, 100 \mathrm{~mW}, 1 \%$	Standard	0603	2	1
R2	1	Standard	Resistor, SurfaceMount, $80.6 \mathrm{~K} \Omega, 100 \mathrm{~mW}$, 1%	Standard	0603	2	1
R3	1	Standard	Resistor, SurfaceMount, $3.57 \mathrm{~K} \Omega, 100 \mathrm{~mW}$, 1%	Standard	0603	2	1
R4	1	Standard	Resistor, SurfaceMount, 69.8 K , 100 mW , 1%	Standard	0603	2	1
R5	1	Standard	Resistor, SurfaceMount, 442 Ω, 100mW, 1\%	Standard	0603	2	1
R7	1	Standard	Resistor, SurfaceMount, $0.0 \Omega, 100 \mathrm{~mW}, 1 \%$	Standard	0603	2	1
U1	1	TPS54550	IC, Converter, 16 pins	Texas Instruments, Inc.	HTSSOP-Power PAD	34	2

Design Name: 5 to 1V0_MAX Part: TPS54550
VinMin: 4.5V VinMax: 5.5V Vout: 1V Iout: 3.02A

Layout Image Not Available For this Part

SwitcherPro Design Report
 Layout Notes

Design Name: 5 to 1V0_MAX Part: TPS54550
VinMin: 4.5V VinMax: 5.5V Vout: 1V Iout: 3.02A

The VIN pins should be connected together on the printed circuit board (PCB) and bypassed with a low ESR ceramic bypass capacitor. Care should be taken to minimize the loop area formed by the bypass capacitor connections, the VIN pins, and source of the low-side MOSFET. The minimum recommended bypass capacitance is $10-\mu \mathrm{F}$ ceramic with a X5R or X7R dielectric and the optimum placement is closest to the VIN pins and the source of the low-side MOSFET. The AGND and PGND pins should be tied to the PCB ground plane at the pins of the IC. The source of the low-side MOSFET should be connected directly to the PCB ground plane. The PH pins should be tied together and routed to the drain of the low-side MOSFET. Since the PH connection is the switching node, the MOSFET should be located very close to the PH pins, and the area of the PCB conductor minimized to prevent excessive capacitive coupling. The recommended conductor width from pins 14 and 15 is 0.050 inch to 0.075 inch of 1 -ounce to 2 -ounce copper. The length of the copper land pattern should be no more than 0.2 inch. For operation at full rated load, the analog ground plane must provide adequate heat dissipating area. A 3 -inch by 3 -inch plane of copper is recommended, though not mandatory, depending on ambient temperature and airflow. Most applications have larger areas of internal ground plane available, and the PowerPAD should be connected to the largest area available. Additional areas on the bottom or top layers also help dissipate heat, and any area available should be used when 5 A or greater operation is desired. Connection from the exposed area of the PowerPAD to the analog ground plane layer should be made using 0.013 -inch diameter vias to avoid solder wicking through the vias. Four vias should be in the PowerPAD area with four additional vias outside the pad area and underneath the package. Additional vias beyond those recommended to enhance thermal performance should be included in areas not under the device package.

