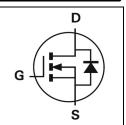

DG100N03D100V N-Channel Power MOSFET


DG-FET Power MOSFET

 V_{DSS} , 100V

 $R_{DS(0N)}$, $9.6m\Omega$ (max.) @ $V_{GS}{=}10V$ $R_{DS(0N)}$, $12.5m\Omega$ (max.) @ $V_{GS}{=}4.5V$

 I_D , 71A

Description

The DG100N03D uses advanced DG-FET $^{\text{TM}}$ technology and designs to provide excellent $R_{\text{DS(0N)}}$ with low gate charge. This device is suitable for use in PWM, load switching and general purpose applications.

Features

- · Low On-Resistance
- Low Input Capacitance
- · Low Miller Charge
- Low Input/Output Leakage

Applications

- Lithium-Ion Secondary Batteries
- Load Switch
- DC-DC converters and Off-line UPS

Ordering Information

Ordering Code	RoHS Status	Package	Package Code	Packing	Quantity
DG100N03D	Halogen-Free	T0-252	D	Tape & Reel	3,000

Absolute Maximum Ratings (T_A=25°C unless otherwise noted)

Parameter		Symbol	Value	Unit
Drain-Source Voltage		V _{DS}	100	٧
Gate-Source Voltage		V_{GS}	±25	٧
Drain Current-Continuous	T _C =25°C		71	А
T_c =100°C		ID	45	А
Drain Current-Pulsed Note 1	I _{DM}	170	Α	
Avalanche Current		I _{AS}	18	А
Avalanche Energy, L=0.1mH		E _{AS}	16.2	mJ
T _c =25°C		D	104	W
Maximum Power Dissipation $T_c = 100^{\circ}C$		P _D	41	W
Storage Temperature Range		T _{STG}	-55 to +150	°C
Operating Junction Temperature Range		T _J	-55 to +150	°C

Thermal Resistance Ratings

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Maximum Junction-to-Ambient Note 2	$R_{\theta_{JA}}$	Steady State	-	-	50	°C/W
Maximum Junction-to-Case	$R_{\Theta JC}$	Steady State	-	-	1.2	°C/W

1

Electrical Characteristics ($T_{_J}$ =25°C unless otherwise noted)

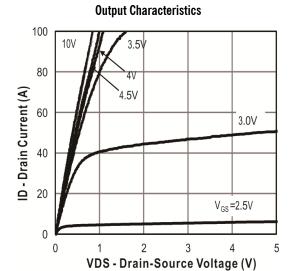
OFF CHARACTERISTICS							
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Drain-Source Breakdown Voltage	BV_{DSS}	$V_{GS} = 0V, I_{DS} = 250 \mu A$	100	-	-	V	
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} =80V, V_{GS} =0V	-	-	1	μA	
Gate-Body Leakage	I _{GSS}	$V_{GS} = \pm 25V, V_{DS} = 0V$	-	-	±100	nA	

ON CHARACTERISTICS						
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS} = V_{GS}, I_{DS} = 250 \mu A$	1.0	-	2.5	V
Drain-Source On-State Resistance	R _{DS(ON)}	$V_{GS}=10V$, $I_{DS}=18A$	-	7.8	9.6	mΩ
Drain-Source On-State Resistance	R _{DS(ON)}	$V_{GS} = 4.5V, I_{DS} = 10A$	-	9.5	12.5	mΩ

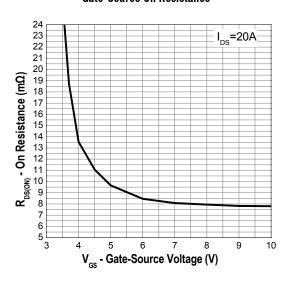
DYNAMIC CHARACTERISTICS							
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Input Capacitance	C _{iss}		-	2048	-		
Output Capacitance	C _{oss}	$V_{DS}=50V$, $V_{GS}=0V$, $f=1MHz$	-	684	-	pF	
Reverse Transfer Capacitance	C _{rss}		-	7	-		
Gate Resistance	R_{g}	$V_{GS} = 0V, V_{DS} = 0V, f = 1MHz$	-	0.5	0.9	Ω	

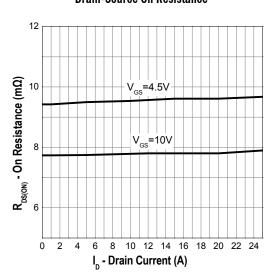
SWITCHING CHARACTERISTICS						
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Turn-On Delay Time	$T_{d(on)}$		-	7.6	-	
Rise Time	t _r	V FOV V 10V D 20	-	2.7	-	
Turn-Off Delay Time	$T_{d(off)}$	V_{DS} =50V, V_{GS} =10V, R_{GEN} =3 Ω	-	23.5	-	ns
Fall Time	t _f		-	3.5	-	
Total Gate Charge at 4.5V	$Q_{\rm g}$		-	13	-	
Gate to Source Gate Charge	Q_{gs}	$V_{DS} = 50V$, $I_{DS} = 13A$, $V_{GS} = 4.5V$	-	6	-	nC
Gate to Drain "Miller" Charge	$Q_{\rm gd}$		-	3	-	

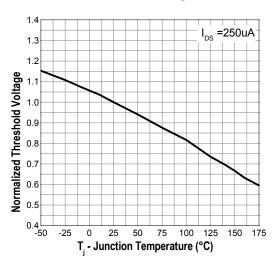
DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS							
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Drain-Source Diode Forward Voltage	V_{SD}	$V_{GS} = 0V, I_{S} = 1A$	-	-	1.2	V	
Body Diode Reverse Recovery Time	t _{rr}	1 124 41/44 E004/ T 2500	-	-	23	ns	
Body Diode Reverse Recovery Charge	Q_{rr}	I_F =13A, dl/dt=500A/ μ s, T_J =25°C	-	-	105	nC	

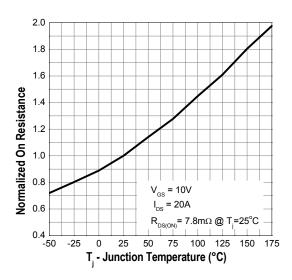

Notes:

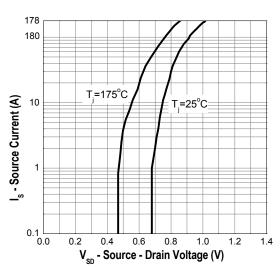
- Pulse Test: Pulse Width $\leq 300 \mu s$, Duty Cycle $\leq 2\%$. $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design. $R_{\theta JA}$ shown below for single device operation on FR-4 in still



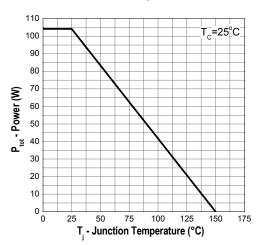

Typical Operating Characteristics

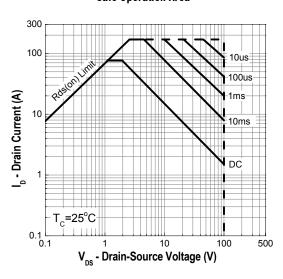

Gate-Source On Resistance


Drain-Source On Resistance

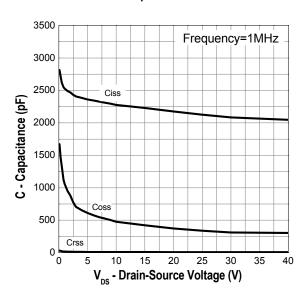

Gate Threshold Voltage

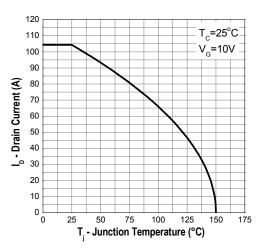
Drain-Source On Resistance

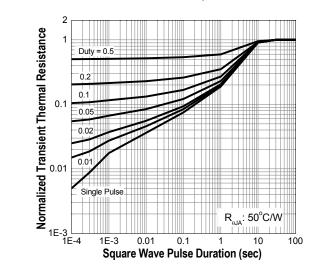

Source-Drain Diode Forward

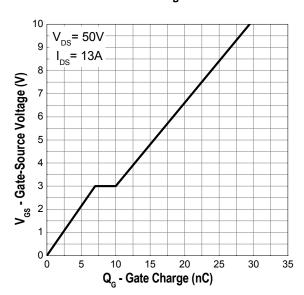


Typical Operating Characteristics (Cont.)

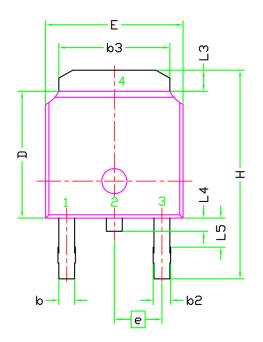


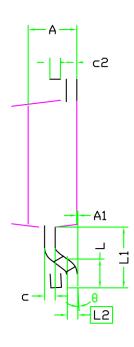

Safe Operation Area

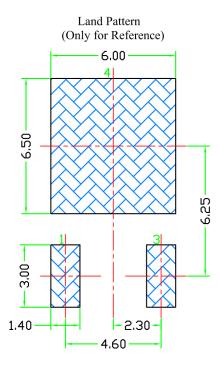

Capacitance

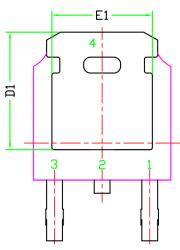

Drain Current

Transient Thermal Impedance

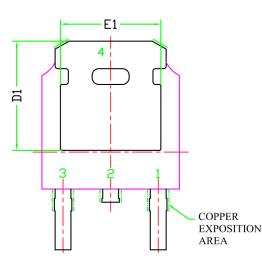

Gate Charge






DG100N03D100V N-Channel Power MOSFET

Outline Dimension



MATRIX L/F

SYMBUL	DIMENS:		REQMTS
2 I MRUL	MIN	NDM	MAX
E	6.40	6.60	6.731
L	1.40	1.52	1.77
L1 L2	2	.743 RI	EF
	0.	.508 BS	C
L3	0.89		1.27
L4	0.64		1.01
L5			
D	6.00	6.10	6.223
Ι	9.40	10.00	10.40
م	0.64	0.76	0.88
20	0.77	0.84	1.14
b3	5.21	5.34	5.46
ω	2.	286 BS	C
Α	2.20	2.30	2.38
A1	0		0.127
U	0.46	0.50	0.60
ر م	0.46	0.50	0.58
D1	5,21		
E1	4.40		
θ	0*		10°

Note:

- 1. All Dimension Are In mm.
- 2. Package Body Sizes Exclude Mold Flash, Protrusion Or Gate Burrs. Mold Flash, Protrusion Or Gate Burrs Shall Not Exceed 0.10 mm Per Side.
- 3. Package Body Sizes Determined At The Outermost Extremes Of The Plastic Body Exclusive Of Mold Flash, Gate Burrs And Interlead Flash, But Including Any Mismatch Between The Top And Bottom Of The Plastic Body.
- 4. The Package Top May Be Smaller Than The Package Bottom.
- Dimension "b" Does Not Include Dambar Protrusion. Allowable Dambar Protrusion Shall Be 0.10 mm Total In Excess Of "b" Dimension At Maximum Material Condition. The Dambar Cannot Be Located On The Lower Radius Of The Foot.

Important Notice

© Silicongear Corporation

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Silicongear cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an Silicongear product. No circuit patent licenses, copyrights, mask work rights, or other intellectual property rights are implied.

Silicongear Corporation, its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Silicongear"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Silicongear makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Silicongear disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Silicongear's knowledge of typical requirements that are often placed on Silicongear products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Silicongear's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Silicongear products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Silicongear product could result in personal injury or death. Customers using or selling Silicongear products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Silicongear and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Silicongear or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Silicongear personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Silicongear. Product names and markings noted herein may be trademarks of their respective owners.

Silicongear and the Silicongear logo are trademarks of Silicongear Corporation. All other brand and product names appearing in this document are registered trademarks or trademarks of their respective holders.