
$\begin{aligned} & \text{VinMin} = 4.5 \text{V} \\ & \text{VinMax} = 5.5 \text{V} \\ & \text{Vout} = 2.5 \text{V} \\ & \text{Iout} = 4.0 \text{A} \end{aligned}$

Device = TPS564247DRLR Topology = Buck Created = 2022-09-12 23:53:43.538 BOM Cost = \$1.20 BOM Count = 13 Total Pd = 0.77W

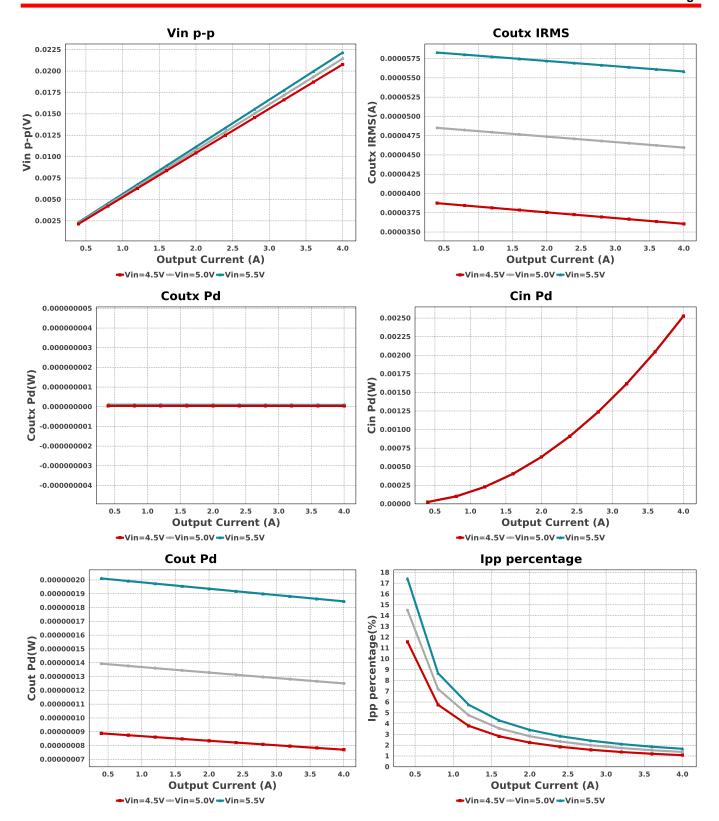
WEBENCH® Design Report

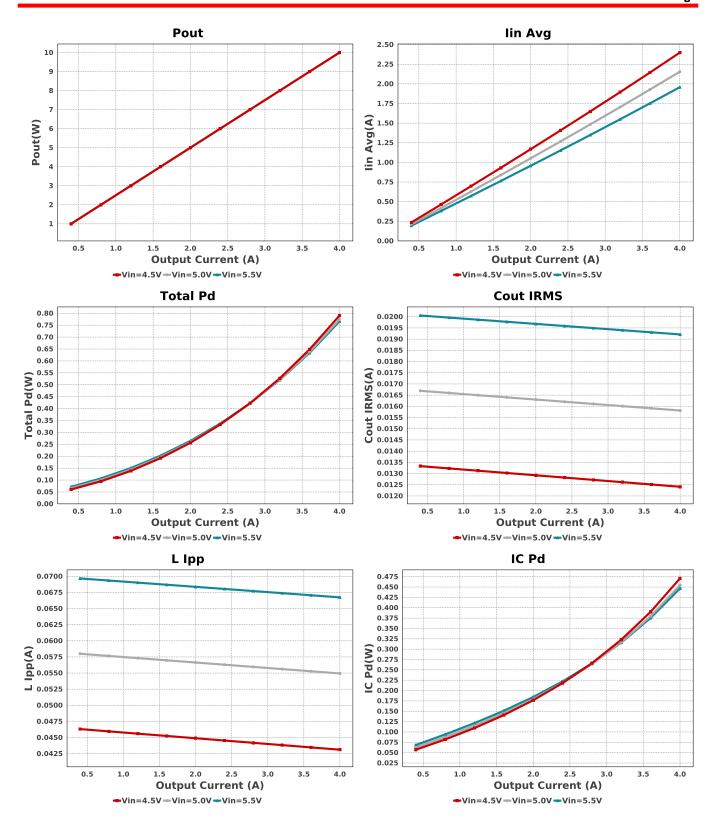
Design: 6 TPS564247DRLR TPS564247DRLR 4.5V-5.5V to 2.50V @ 4A

Design Alerts

Design Information

The TPS564247 can support the large duty operation, please contact https://e2e.ti.com/support/power-management/f/196 forum for application help.


Electrical BOM


Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
Cff	MuRata	GRM1555C1E330JA01D Series= C0G/NP0	Cap= 33.0 pF ESR= 1.0 mOhm VDC= 25.0 V IRMS= 0.0 A	1	\$0.01	0402 3 mm ²
Cin	MuRata	GRM31CR61A476KE15L Series= X5R	Cap= 47.0 uF ESR= 3.709 mOhm VDC= 10.0 V IRMS= 4.2862 A	1	\$0.21	1206_190 11 mm ²
Cinx	MuRata	GRM188R71H104KA93D Series= X7R	Cap= 100.0 nF ESR= 20.0 mOhm VDC= 50.0 V IRMS= 3.8 A	1	\$0.02	0603 5 mm ²
Cout	MuRata	GRM21BD70J226ME44L Series= X7T	Cap= 22.0 uF ESR= 1.0 mOhm VDC= 6.3 V IRMS= 6.0 A	2	\$0.10	0805 7 mm ²
Coutx	MuRata	GRM188R71E104KA01D Series= X7R	Cap= 100.0 nF ESR= 30.0 mOhm VDC= 25.0 V IRMS= 1.51 A	1	\$0.01	0603 5 mm ²
L1	Bourns	SRN8040-1R5Y	L= 1.5 μH 11.0 mOhm	1	\$0.33	SRN8040 100 mm²
Renb	Yageo	AC0402FR-0736K5L Series=?	Res= 36.5 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
Rent	Vishay-Dale	CRCW0402100KFKED Series= CRCWe3	Res= 100.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
Rfbb	Yageo	RC0603FR-0730KL Series= ?	Res= 30.0 kOhm Power= 100.0 mW Tolerance= 1.0%	1	\$0.01	■1 0603 5 mm²

Name		Manufa			Part Number					Properties			Qty	Price	Foo	Footprint			
Rfbt Rpg		Vishay-Dale				CRCW060395K3FKEA Series= CRCWe3 CRCW0402100KFKED Series= CRCWe3					Res= 95.3 kOhm Power= 100.0 mW Tolerance= 1.0% Res= 100.0 kOhm Power= 63.0 mW Tolerance= 1.0%			1	\$0.01	060	3 5 mi	m²	
		Vishay-Dale								1				\$0.01	040	0402 3 mm ²			
U1		Texas	Instrun	nents		TPS56	34247E	RLR			Switch			1	\$0.37	■ DRI	L0006	A 7 mm	2
IC Tj											Duty Cycle								
77.5							<u>i</u>			59 58				-					_
75.0										57									
72.5									/	56									
70.0										65 % 54									
67.5										Cycle (%) 23 25 25 25 25 25 25 25 25 25 25 25 25 25									
65.0										S 52									
67.5 65.0 62.5																			
60.0										Duty 49									
57.5										48									
55.0			-							47									
52.5										46 45									
	0.5	1.0	1.5	2.0		2.5	3.0	3.5	4.0		0.5	1	.0	1.5 2.0			3.0	3.5	4.0
		V	n=4.5V	utput -Vin=5	5.0V - V								- Vin=	Output 4.5V—Vin=	=5.0V \		/		
														161					
0.85				Cin IR	MS								-	IC I	рк		-		
0.80				Cin IR	MS					4.0	1 :			10 1	рк				
0.80				Cin IR	MS					4.0 3.7 3.5	5			IC I	рк				
0.80 0.75 0.70 0.65				Cin IR	MS					3.5 3.5 3.2	5 0 5			IC I	рк				_
0.80 0.75 0.70 0.65				Cin IR	MS					3.5 3.5 3.0 2.7	5				pk				
0.80 0.75 0.70 0.65 0.60 0.55				Cin IR	ims					3.5 3.5 3.0 2.7	5				pk				
0.80 0.75 0.70 0.65 0.60 0.55 0.50				Cin IR	MS					3.5 3.5 3.0 2.7	5				рк				
0.80				cin IR	MS					3.5 3.5 3.6 (V) 2.5 Q) 2.5 Q) 2.5 Q) 2.5 Q)	5				рк				
0.80				cin IR	MS					3.5 3.2 3.0 2.7 Yd 2.0 2.2 1.7	5				pk				
0.80				cin IR	MS					3.5 3.5 3.6 (V) 2.5 Q) 2.5 Q) 2.5 Q) 2.5 Q)	5				pk .				
0.80				cin IR	MS					3.5 3.5 3.6 3.7 4 2.5 4 2.5 2.7 1.5 1.6 0.7	5 0 0 5 5 0 0 5 5 0 0 5 5 0 0 5 5 5 0 0 5 5 5 0 0 5 5 5 0 0 5 5 5 0 0 5 5 5 0 0 5 5 5 0 0 5 5 5 0 0 5 5 5 0 0 5 5 5 0 0 5 5 5 0 0 5 5 5 0 0 5 5 5 0 0 5 5 5 0 0 5 5 5 0 0 5 5 5 0 0 5 5 5 0 0 0 0 5 5 5 0 0 0 0 5 5 5 0 0 0 0 0 5 5 5 0				pk				
0.80				cin IR	MS					3.5 3.5 3.2 3.0 4 2.5 2.7 2.5 2.7 1.5 1.2	5				pk				
0.80	0.5	1.0	1.5	2.0 utput	Curre			3.5	4.0	3.7 3.8 3.2 3.0 2.7 Y 2.5 Y 2.2 Q 1.7 1.5 1.0 0.7	5	5	1.0	1.5 2 Output	.0 2: Curre	ent (A)		3.5	4.0
0.80	0.5		1.5	2.0	Curre 6.0V—\	ent (A))	3.5	4.0	3.7 3.8 3.2 3.0 2.7 Y 2.5 Y 2.2 Q 1.7 1.5 1.0 0.7	5 0 5 0 5 0 0 5 5 0 0 5 5 0 0 5 5 0 0 5 5 0 0 5 5 0 0 5 5 5 0 0 5 5 5 0 0 5 5 5 0 0 5 5 5 0 0 5 5 5 0 0 5 5 5 0 0 5 5 5 0 0 5 5 5 0 0 5 5 5 0 0 5 5 5 0 0 5 5 5 0 0 5 5 5 0 0 5 5 5 0 0 5 5 5 5 0 0 5 5 5 5 0 0 5 5 5 5 0 0 5 5 5 5 0 0 5 5 5 5 0 0 5 5 5 5 0 0 5 5 5 5 0 0 5 5 5 5 0 0 5 5 5 5 0 0 5 5 5 5 0 0 5 5 5 5 0 0 5	5		1.5 2 Output		ent (A))	3.5	4.00
0.80	0.5		1.5	2.0 utput	Curre 6.0V—\	ent (A))	3.5	4.0	3.7 3.6 3.6 3.6 4 3.6 5 3.6 5 3.6 5 3.6 5 3.6 5 3.6 5 3.6 5 3.6 5 3.6 5 3.6 5 3.6 5 3.6 5 5 5 5 5 5 6 5 5 5 6 5 5 6 5 5 5 6 5 5 6 5 5 6 5 5 6 7 6 7	5 0 5 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 0 5 5 0 0 0 0 5 5 0 0 0 0 5 5 0 0 0 0 0 0 5 5 0	5		1.5 2 Output		ent (A))	3.5	4.0
0.80	0.5		1.5	2.0 utput	Curre 6.0V—\	ent (A))	3.5	4.0	3.7 3.6 3.6 3.6 4 3.6 4 2.6 4 2.6 1.7 1.6 0.7 0.5	5 0 5 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 0 5 5 0 0 0 0 5 5 0 0 0 0 5 5 0 0 0 0 5 5 0 0 0 0 5 5 0 0 0 0 5 5 0 0 0 0 5 5 0 0 0 0 5 5 0 0 0 0 5 5 0 0 0 0 5 5 0 0 0 0 5 5 0 0 0 0 5 5 0	5		1.5 2 Output		ent (A))	3.5	4.0
0.80	0.5		1.5	2.0 utput	Curre 6.0V—\	ent (A))	3.5	4.0	3.7 3.6 3.6 3.6 (Y) Y Q 2.6 Y Q 2.6 1.7 1.6 0.7 0.5	5 0 5 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 0 5 5 0 0 0 0 5 5 0 0 0 0 5 5 0 0 0 0 5 5 0 0 0 0 5 5 0 0 0 0 0 5 5 0 0 0 0 0 0 5 5 0	5		1.5 2 Output		ent (A))	3.5	4.0
0.80	0.5		1.5	2.0 utput	Curre 6.0V—\	ent (A))	3.5	4.0	3.7 3.8 3.6 3.6 (Y .) Y .2 2.6 2.6 0.7 1.6 0.7 0.5 95 95	50 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 00	5		1.5 2 Output		ent (A))	3.5	4.0
0.80	0.5		1.5	2.0 utput	Curre 6.0V—\	ent (A))	3.5	4.0	3.7 3.8 3.6 3.6 (Y .2 3.7 4.2 2.6 0.7 1.6 0.7 0.7 0.2	50 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 00	5		1.5 2 Output		ent (A))	3.5	4.0
0.80 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35 0.20 0.15 0.10 0.05	0.5		1.5	2.0 utput	Curre 6.0V—\	ent (A))	3.5	4.0	3.7 3.8 3.6 3.6 (Y .2 3.7 4.2 2.6 0.7 1.6 0.7 0.7 0.2	50 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 00	5		1.5 2 Output		ent (A))	3.5	4.0
0.80	0.5		1.5	2.0 utput	Curre 6.0V—\	ent (A))	3.5	4.0	3.7 3.8 3.6 3.6 (Y .2 3.7 4.2 2.6 0.7 1.6 0.7 0.7 0.2	50 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 00	5		1.5 2 Output		ent (A))	3.5	4.00
0.80 0.75 0.70 0.65 0.50 0.45 0.45 0.40 0.35 0.20 0.15 0.10 0.05	0.5		1.5	2.0 utput	Curre 6.0V—\	ent (A))	3.5	4.0	3.7 3.8 3.6 3.6 (Y .2 3.7 4.2 2.6 0.7 1.6 0.7 0.7 0.2	50 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 00	5		1.5 2 Output		ent (A))	3.5	4.0
0.80 0.75 0.70 0.65 0.70 0.65 0.50 0.45 0.40 0.35 0.20 0.15 0.10 0.05	0.5		1.5	2.0 utput	Curre 6.0V—\	ent (A))	3.5	4.0	Efficiency(%) 2.7 3.8 3.7 3.0 3.7 3.0 3.7 3.0 3.7 3.0 3.7 3.0 3.0	50 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 55 00 00	5		1.5 2 Output		ent (A))	3.5	4.0
0.80 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.30 0.25 0.20 0.15 0.10 0.05	0.5		1.5	2.0 utput	Curre 6.0V—\	ent (A))	3.5	4.0	Efficiency(%) 2.7 3.8 3.7 3.0 3.7 3.0 3.7 3.0 3.7 3.0 3.7 3.0 3.0	50 55 60 55 60 65 60 65 60 65 60 65 60 65 60 65 60 65 60 65 60 65 60 60 65 60 60 60 60 60 60 60 60 60 60	5		1.5 2 Output		ent (A))	3.5	4.0
0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.40 0.35 0.30 0.25 0.10 0.05 0.275 0.200 0.175 0.150 0.125 0.100 0.075	0.5		1.5	2.0 utput	Curre 6.0V—\	ent (A))	3.5	4.0	Efficiency (%) Efficiency (%) Efficiency (%) 1.0	50 50 55 60 55 60 55 60 55 60 55 60 65 60 65 60 65 60 65 60 65 60 65 60 60 60 60 60 60 60 60 60 60	5		1.5 2 Output		ent (A))	3.5	4.0
0.80 0.75 0.70 0.65 0.60 0.55 0.40 0.35 0.20 0.15 0.10 0.05	0.5		1.5	2.0 utput =Vin=5 L Po	Curre 5.0V—\	ent (A))	3.5	4.0	Betti State (%) (%) 1.5 (%) 1.	50 50 55 60 55 60 55 60 55 60 55 60 65 60 65 60 65 60 65 60 65 60 65 60 60 60 60 60 60 60 60 60 60	5		1.5 2 Output 4.5V=Vin= Effici	.0 2 : Curre =5.0v—\	ent (A))	3.5	4.0

-Vin=4.5V - Vin=5.0V - Vin=5.5V

-Vin=4.5V - Vin=5.0V - Vin=5.5V

Operating Values

	#	Name	Value	Category	Description
_	1.	Cin IRMS	825.146 mA	Capacitor	Input capacitor RMS ripple current
	2.	Cin Pd	2.525 mW	Capacitor	Input capacitor power dissipation
	3.	Cout IRMS	19.21 mA	Capacitor	Output capacitor RMS ripple current
	4.	Cout Pd	184.51 nW	Capacitor	Output capacitor power dissipation
	5.	Coutx IRMS	55.828 μA	Capacitor	Output capacitor_x RMS ripple current
	6.	Coutx Pd	93.502 pW	Capacitor	Output capacitor_x power loss
	7.	IC lpk	4.033 A	IC	Peak switch current in IC
	8.	IC Pd	446.54 mW	IC	IC power dissipation
	9.	IC Tj	75.899 degC	IC	IC junction temperature
	10.	IC Tolerance	11.0 mV	IC	IC Feedback Tolerance
	11.	ICThetaJA Effective	58.0 degC/W	IC	IC junction-to-ambient thermal resistance with TI EVM

#	Name	Value	Category	Description
12.	lin Avg	1.957 A	IC	Average input current
13.	Ipp percentage	1.668 %	Inductor	Inductor ripple current percentage (with respect to average inductor
				current)
	L lpp	66.739 mA	Inductor	Peak-to-peak inductor ripple current
-	L Pd	316.81 mW	Inductor	Inductor power dissipation
16.	Cin Pd	2.525 mW	Power	Input capacitor power dissipation
	Cout Pd	184.51 nW	Power	Output capacitor power dissipation
18.		93.502 pW	Power	Output capacitor_x power loss
19.		446.54 mW	Power	IC power dissipation
20.	L Pd	316.81 mW	Power	Inductor power dissipation
21.	Total Pd	765.872 mW	Power	Total Power Dissipation
22.	BOM Count	13	System	Total Design BOM count
			Information	
23.	Duty Cycle	47.577 %	System	Duty cycle
			Information	
24.	Efficiency	92.886 %	System	Steady state efficiency
			Information	
25.	FootPrint	162.0 mm ²	System	Total Foot Print Area of BOM components
			Information	
26.	Frequency	1.272 MHz	System	Switching frequency
			Information	
27.	lout	4.0 A	System	lout operating point
			Information	
28.	Mode	CCM	System	Conduction Mode
			Information	
29.	Pout	10.0 W	System	Total output power
			Information	
30.	Total BOM	\$1.2	System	Total BOM Cost
			Information	
31.	Vin	5.5 V	System	Vin operating point
			Information	
32.	Vin p-p	22.16 mV	System	Peak-to-peak input voltage
			Information	
33.	Vout	2.5 V	System	Operational Output Voltage
			Information	
34.	Vout Actual	2.506 V	System	Vout Actual calculated based on selected voltage divider resistors
	· · · - ·		Information	
35.	Vout Tolerance	3.398 %	System	Vout Tolerance based on IC Tolerance (no load) and voltage divider
			Information	resistors if applicable

Design Inputs

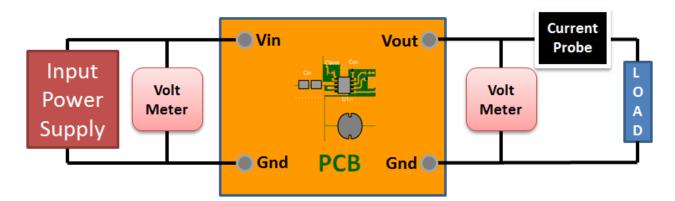
Name	Value	Description	
lout	4.0	Maximum Output Current	
VinMax	5.5	Maximum input voltage	
VinMin	4.5	Minimum input voltage	
Vout	2.5	Output Voltage	
base_pn	TPS564247	Base Product Number	
source	DC	Input Source Type	
Та	50.0	Ambient temperature	

WEBENCH® Assembly

Component Testing

Some published data on components in datasheets such as Capacitor ESR and Inductor DC resistance is based on conservative values that will guarantee that the components always exceed the specification. For design purposes it is usually better to work with typical values. Since this data is not always available it is a good practice to measure the Capacitance and ESR values of Cin and Cout, and the inductance and DC resistance of L1 before assembly of the board. Any large discrepancies in values should be electrically simulated in WEBENCH to check for instabilities and thermally simulated in WebTHERM to make sure critical temperatures are not exceeded.

Soldering Component to Board


If board assembly is done in house it is best to tack down one terminal of a component on the board then solder the other terminal. For surface mount parts with large tabs, such as the DPAK, the tab on the back of the package should be pre-tinned with solder, then tacked into place by one of the pins. To solder the tab town to the board place the iron down on the board while resting against the tab, heating both surfaces simultaneously. Apply light pressure to the top of the plastic case until the solder flows around the part and the part is flush with the PCB. If the solder is not flowing around the board you may need a higher wattage iron (generally 25W to 30W is enough).

Initial Startup of Circuit

It is best to initially power up the board by setting the input supply voltage to the lowest operating input voltage 4.5V and set the input supply's current limit to zero. With the input supply off connect up the input supply to Vin and GND. Connect a digital volt meter and a load if needed to set the minimum lout of the design from Vout and GND. Turn on the input supply and slowly turn up the current limit on the input supply. If the voltage starts to rise on the input supply continue increasing the input supply current limit while watching the output voltage. If the current increases on the input supply, but the voltage remains near zero, then there may be a short or a component misplaced on the board. Power down the board and visually inspect for solder bridges and recheck the diode and capacitor polarities. Once the power supply circuit is operational then more extensive testing may include full load testing, transient load and line tests to compare with simulation results.

Load Testing

The setup is the same as the initial startup, except that an additional digital voltmeter is connected between Vin and GND, a load is connected between Vout and GND and a current meter is connected in series between Vout and the load. The load must be able to handle at least rated output power + 50% (7.5 watts for this design). Ideally the load is supplied in the form of a variable load test unit. It can also be done in the form of suitably large power resistors. When using an oscilloscope to measure waveforms on the prototype board, the ground leads of the oscilloscope probes should be as short as possible and the area of the loop formed by the ground lead should be kept to a minimum. This will help reduce ground lead inductance and eliminate EMI noise that is not actually present in the circuit.

Design Assistance

- 1. Master key: DA638D033AAE1D5C[v1]
- 2. TPS564247 Product Folder: http://www.ti.com/product/TPS564247: contains the data sheet and other resources.

Important Notice and Disclaimer

TI provides technical and reliability data (including datasheets), design resources (including reference designs), application or other design advice, web tools, safety information, and other resources AS IS and with all faults, and disclaims all warranties. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Providing these resources does not expand or otherwise alter TI's applicable Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with TI products.