
Programming the TPS65400

Hardware Setup:
The TPS65400 can be programmed as a standalone part in a socket or after assembly on the system PCB.

In either case, to program the TPS65400, the following connections must be made:

Pin # Pin name Connection

18 VDDG 10uF ceramic cap

19 VDDA 4.7uF ceramic cap

20 VDDD 3.3uF ceramic cap

21 VIN Apply supply voltage between 4.5V and 18V

23 CE Tied to logic high or floating

38 I2CADDR Resistor to ground to set I2C address, or if floating, this will
default to address 7-bit I2C 0b1101111

39 RST_N Tied to logic high (> 1.2V). This is often tied to VDDD.

42 SDA I2C SDA line. Needs pull-up resistor according to I2C spec.

43 SCL I2C SCL line. Needs pull-up resistor according to I2C spec.

All other pins can be unconnected or connected as described in the datasheet for a normal application

scenario. Please note that when conducting programming after assembly onto the PCB, care should be

taken to ensure that when applying power to VIN that if power flows into the PVIN’s there is not and

unexpected startup of the output rails. In some cases it may be desirable to connect VIN and PVIN with a

diode or PFET circuit to prevent power flowing from VIN to PVIN. And example of a PFET circuit is shown

on the TPS65400 EVM (consisting of components Q1, D1, and R31). In this case PROG_POWER goes to a

programming connector which supplies +5V, and VIN_SOURCE is powered from the PVIN. The circuit

below prevents PROG_POWER from flowing into PVIN but has less drop than a Schottky diode based

solution under normal operating circumstances when PROG_POWER is not present.

Configuration:

The basic programming sequence is summarized as:

1. Apply power to VIN. Wait 20ms for part to startup and configure itself.
2. Enable writes by writing to “address 0x10 value 0x00”
3. Write to all the registers in address 0xD0 through 0xF1 (a total of 49 registers)
4. Burn to EEPROM by writing to “address 0x11 value 0x00”
5. Perform a reset (pull RST_N low for 100us and then high) or power-cycle (pull VIN below UVLO

of 3.8V for 100us and then re-apply)
6. Read-back all registers to confirm.

TPS65400 Programming Files

The TPS65400 GUI can save the TPS65400 EEPROM configuration in a .xml format. This allows users to

configure a TPS65400 EVM to the desired settings and store them into EEPROM using the GUI, and then

test the configuration. The configuration can then be saved in the .xml format and used to configure

other parts using the GUI.

In order to streamline the programming of the TPS65400 in a production environment, these .xml

formats can be converted into a .hex format.

The format of the .hex file follows the Intel .hex format (http://en.wikipedia.org/wiki/Intel_HEX) and in

this case is a series of lines, each with 2 bytes of data. The first byte is the register address, and the

second is the data to be written. Since the registers in the TPS65400 are “paged”, the .hex file embeds

the necessary commands to change the PMBus page when needed.

This is an example of one line in the .hex file:

:02001200D30019

Byte count = 02
Address=0012 (this is not really relevant to the TPS65400, but is used to be consistent with the .hex
format)
Record type = 00
Data = D300 (TPS65400 register address D3, write data 00)
Checksum = 19

The EOF line for the .hex file is:
:00000001FF

It is assumed that the programmer reading in this file knows the 7 bit hex address of the TPS65400 and

can properly construct the I2C commands for each line of data.

http://en.wikipedia.org/wiki/Intel_HEX

TPS65400 Configuration Example

Start-Up Sequence

This is the desired start-up sequence:

Vin

tss3

tss1

tss4

tss2

treset_delay

t

VDDD

CE

ENSW1

Vout3

Vout1

Vout4

Vout2

1.2V

Here is the proposed power-down sequence:

To achieve the desired start-up and power down sequence, the following hardware and PMBus

configuration must be done.

Hardware Configuration

CE left floating (internal pull-up current will rise CE voltage to enable level when Vin comes up).

ENSW1 tied to Vin through resistor divider.

ENSW1

Vout4

Vout1

Vout3

Vout2
tOFF_delay2

1.1V

tOFF_delay4

tOFF_delay1

tOFF_delay3

t

PMBus configuration
The following registers need to be programmed in the EEPROM of the IC using I2C:

PAGE

Support

REGISTER

(command code in hex)

NAME VALUE

binary (hex)

0x00 D5h SEQUENCE_ORDER 0000 1001 (0x09)

0x01 D5h SEQUENCE_ORDER 0000 0011 (0x03)

0x02 D5h SEQUENCE_ORDER 0000 1100 (0x0C)

0x03 D5h SEQUENCE_ORDER 0000 0110 (0x06)

-- DCh RESET_DELAY see Setting RESET_DELAY

0x00 DDh TON_TOFF_DELAY 0000 0XXX

(see Setting TOFF_DELAY)

0x01 DDh TON_TOFF_DELAY 0000 0XXX

(see Setting TOFF_DELAY)

0x02 DDh TON_TOFF_DELAY 0000 0XXX

(see Setting TOFF_DELAY)

0x03 DDh TON_TOFF_DELAY 0000 0XXX

(see Setting TOFF_DELAY)

The command procedure detailed below will configures the TPS65400 to the table above:

1. Write Byte 0x00 to WRITE_PROTECT (10h)
2. Write Byte 0b00000XXX to RESET_DELAY (DCh) *
3. Write Byte 0b00000010 to PIN_CONFIG_00 (D2h)

// This sets to ENSW1 to single-pin enable mode

4. Write Byte 0x00 to PAGE (00h)
5. Write Byte 0x09 to SEQUENCE_ORDER (D5h)
6. Write Byte 0b00000XXX to TON_TOFF_DELAY (DDh) *

7. Write Byte 0x01 to PAGE (00h)
8. Write Byte 0x03 to SEQUENCE_ORDER (D5h)
9. Write Byte 0b00000XXX to TON_TOFF_DELAY (DDh) *

10. Write Byte 0x02 to PAGE (00h)
11. Write Byte 0x0C to SEQUENCE_ORDER (D5h)
12. Write Byte 0b00000XXX to TON_TOFF_DELAY (DDh) *

13. Write Byte 0x03 to PAGE (00h)
14. Write Byte 0x06 to SEQUENCE_ORDER (D5h)
15. Write Byte 0b00000XXX to TON_TOFF_DELAY (DDh) *

16. Send Byte to STORE_DEFAULT_ALL (11h)

* see sections Setting RESET_DELAY and Setting TOFF_DELAY for details

After STORE_DEFAULT_ALL is issued, the settings are stored in non-volatile memory (EEPROM). The

TPS65400 will remember the settings for all future startups (even after the device loses power) until

STORE_DEFAULT_ALL is issued again with new settings.

Register details

The following three sections were drawn from the datasheet and give more detail on the registers that

were configured.

Setting RESET_DELAY

The following paragraph of the datasheet shows the available options for the reset delay.

8.10. (DCh) RESET_DELAY

The RESET_DELAY command sets the delay time before any switcher can begin its soft-start after CE is

asserted. Thus, if the turn-on sequence or an individual switcher is enabled before this delay is over, there

will be no action until the delay is completed. After this delay period is passed, enabling the turn-on

sequence or an individual switcher would have an immediate effect.

Table ##. RESET_DELAY Data Byte Contents

Bit [7:3] Bits [2:0] Delay Time

XXXXX 000 320 µs (see note below)

XXXXX 001 50ms

XXXXX 010 100 ms (default)

XXXXX 011 250 ms

XXXXX 100 500 ms

XXXXX 101 1000 ms

XXXXX 110 1500 ms

XXXXX 111 2000 ms

Note: All the delay times will be subject to the delay between the rising edge of CE and the stabilizing of the

VDDD supply. The RESET_DELAY time in the table is in addition to this power-up delay and has an

accuracy of +/- 62.5µs.

There is no PAGE support for this command.

Setting TOFF_DELAY bits

The TON_TOFF_DELAY command sets the delay times after receiving an ON or OFF command for the

selected output to begin turning ON or OFF.

TON_DELAY of this command are lexically equivalent to TON_DELAY as specified in the PMBus

specification Part II. If TON_DELAY is set to 0ms, the device would begin turning ON immediately.

TOFF_DELAY of this command are lexically equivalent to TOFF_DELAY as specified in the PMBus

specification Part II. If TOFF_DELAY is set to 0ms, the device would begin turning OFF immediately.

Table ##. TON_TOFF_DELAY Data Byte Contents

Bits [7:6] Bits [5:3] Bits [2:0]

XX TON_DELAY TOFF_DELAY

This table shows the options for register DDh for setting the TOFF_DELAY, bits [2:0] of register TON_TOFF_DELAY.

Table ##. TON_DELAY, TOFF_DELAY Data Byte Values

Value Delay Time

000 0 ms (default)

001 1 ms

010 5 ms

011 25 ms

100 100 ms

101 500 ms

110 1000 ms

111 2000 ms

