

BLNK						
	Blanking delay	In addition to t ₁		52		
		BLNK = RTN	35		75	ns
		$R_{BLNK} = 49.9 \text{ k}\Omega$	41	52	63	
cs						
V _{CSMAX}	Maximum threshold voltage	V _{CTL} = V _B , V _{CS} ↑ until GATE duty cycle drops	0.50	0.55	0.60	V
t ₁	Turn off delay	V _{CS} = 0.65 V	25	41	60	ns
V _{SLOPE}	Internal slope compensation voltage	Peak voltage at maximum duty cycle, referred to CS	90	118	142	mV
I _{SL_EX}	Peak slope compensation current	V _{CTL} = V _B , I _{CS} at maximum duty cycle (ac component)	30	42	54	μА
	Bias current (sourcing)	Gate high, dc component of CS current	2	3	4.2	μА

⁽¹⁾ The hysteresis tolerance tracks the rising threshold for a given device

<Question1>

388mV 388mV 74.8ns 54.8ns

What does t1 indicate(mean)? Does it mean deglitch time in case of Vcs=0.65V? Or, for example on the left side figure, after BLNK term 52ns with over VCS, Does the gate operation stop after T1(Turn off delay)?

BLNK						
		In addition to t ₁				
	Blanking delay	BLNK = RTN	35	52	75	ns
		$R_{BLNK} = 49.9 \text{ k}\Omega$	41	52	63	
CS						
V _{CSMAX}	Maximum threshold voltage	V _{CTL} = V _B , V _{CS} ↑ until GATE duty cycle drops	0.50	0.55	0.60	V
t ₁	Turn off delay	V _{CS} = 0.65 V	25	41	60	ns
V _{SLOPE}	Internal slope compensation voltage	Peak voltage at maximum duty cycle, referred to CS	90	118	142	mV
I _{SL_EX}	Peak slope compensation current	V _{CTL} = V _B , I _{CS} at maximum duty cycle (ac component)	30	42	54	μА
	Bias current (sourcing)	Gate high, dc component of CS current	2	3	4.2	μА

11 Apr 2018 12:47:21

<Question2>

Our customer would like to know Blanking time which is RBLINK=92kohm. And then, how much will the tolerance of Blanking time in case of RBLINK=92kohm?

If you have some formula for the tolerance, could you let us know?

⁽¹⁾ The hysteresis tolerance tracks the rising threshold for a given device