

MSLQ46N03T1-N

30V N-channel MOSFET

DFN3030-8L Package

Maximum Rating & Characteristic

Maximum Ratings (Ta=25°C unless otherwise specified)

Symbol	Parameter	Value	Units
V _{DS}	Drain-Source voltage	30	V
V_{GS}	Gate-Source Voltage	±20	V
I_D^1	Continuous Drain Current @T _A = 25°C	46	Α
' D	Continuous Drain Current @T _A = 100°C	28	Α
l _{DM} ²	Pulsed Drain Current	90	Α
E _{AS} ³	Single Pulse Avalanche Energy	45	mJ
I _{AS}	Avalanche Current	30	Α
P _D ⁴	Power Dissipation@T _A = 25°C	30	W
Tı	Operating Junction Temperature Range	−55 ~ +150	°C
T _{STG}	Storage Temperature Range	− 55 ~ +150	°C
$R_{\theta JA}{}^{1}$	Thermal Resistance from Junction-to-Ambient	72	°C/W
$R_{\theta JC}^{1}$	Thermal Resistance from Junction-to-Case	4.16	°C/W

Electrical Characteristics (Ta=25°C unless otherwise specified)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{(BR)DSS}	Drain to Source Breakdown Voltage	$V_{GS} = 0V$, $I_D = 250\mu A$	30			V
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_{D} = 250 \mu A$	1	1.7	2.5	V
I _{GSS}	Gate to Source Leakage Current	$V_{DS} = 0V, V_{GS} = \pm 20V$			±100	nA
I _{DSS}	Drain to Source Leakage Current	$V_{DS} = 30V$, $V_{GS} = 0V$			1	uA
		$V_{DS} = 30V, V_{GS} = 0V, T_{J} = 55^{\circ}C$			5	
R _{DS(ON)}	StaĀc Drain-Source On-Resistance	$V_{GS} = 10V, I_D = 15A$		6.8	8.5	mΩ
		$V_{GS} = 4.5V, I_D = 10A$		9	13	
g fs	Forward Transconductance	$V_{DS} = 5V, I_{D} = 15A$		10		S
Q_g	Total Gate Charge	V _{GS} = 4.5V,V _{DS} = 20V, I _D = 12A		13.8		nC
\mathbf{Q}_{gs}	Gate-Source Charge			3.6		
\mathbf{Q}_{gd}	Gate-Drain Charge			7		
$R_{\rm g}$	Gate Resistance	$V_{DS} = 0V, V_{GS} = 0V, f = 1MHz$		2.2		Ω
Dynamic C	haracteristics**					
C _{iss}	Input Capacitance	V _{DS} = 15V, V _{GS} = 0V, f = 1MHz		1105		pF
C _{oss}	Output Capacitance			178		
C _{rss}	Reverse Transfer Capacitance			111		
Switching	Characteristics**					
t _{d(on)}	Turn-On Delay Time	$V_{GS} = 10V, V_{DD} = 12V,$ $R_G = 3.3\Omega, I_D = 5A$		5.2		ns
t _r	Rise Time			12		
t _{d(off)}	Turn-Off Delay Time			27		
t _f	Fall-Time			10		
Source-Dra	ain Diode					
V_{SD}^2	Forward On Voltage	$I_S = 1A$, $V_{GS} = 0V$			1	V
l _S ^{1,5}	Continuous Source Current	V _G =V _D = 0V , Force Current			46	Α

Note

- 1.The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2.The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%
- 3.The EAS data shows Max. rating . The test condition is V_{DD} =25V, V_{GS} =10V, L=0.1mH, I_{AS} =30A
- 4.The power dissipation is limited by 150°C junction temperature
- 5. The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.