VinMin = 85.0V VinMax = 265.0V Vout = 5.0V Iout = 5.0A Device = UCC28634DR Topology = Flyback Created = 2022-04-05 11:43:49.662 BOM Cost = NA BOM Count = 23 Total Pd = 5.79W

WEBENCH[®] Design Report

Design : 2 UCC28634DR UCC28634DR 85V-265V to 5.00V @ 5A

1. Rold is a starting point, but may need to be experimented with in order to get minimum current needed to hold Vout at no load. For more information please click the design assistance button.

2. Device operates in peak power region. So user needs to ensure the safe operation of 'D2' diode by using Heat sink if required.

3. Click on the transformer symbol and select 'Design Transformer' to design using specific transformer cores and bobbin

Design Alerts

Component Selection Information

Click on the transformer symbol in the schematic and select "Explore Transformer Core/Bobbin Selection" to design using specific transformer cores and bobbin.

Electrical BOM

Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
Cdd	TDK	C2012X5R1V156M125AC Series= X5R	Cap= 15.0 uF ESR= 1.669 mOhm VDC= 35.0 V IRMS= 5.0498 A	1	\$0.21	0805 7 mm ²
Cin	CUSTOM	CUSTOM Series= ?	Cap= 11.5618 uF ESR= 1.96652 Ohm VDC= 397.249 V IRMS= 205.854 mA	1	NA	CUSTOM 0 mm ²
Cin2	Panasonic	EEUED2G470S Series= ED	Cap= 47.0 uF ESR= 609.53 mOhm VDC= 400.0 V IRMS= 840.0 mA	1	\$0.73	\bigcirc

CAPPR7.5-18X20 400 mm²

WEBENCH[®] Design

Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
Cout	ТDК	B41896C7188M000 Series= 2355	Cap= 1.8 mF ESR= 23.0 mOhm VDC= 35.0 V IRMS= 3.16 A	3	\$0.89	
						B41896_1600x3150 324 mm ²
D1	Microsemi	UFS180JE3/TR13	VF@lo= 1.2 V VRRM= 800.0 V	1	\$0.73	DO-214BA 42 mm ²
D2	STMicroelectronics	STPS20M100SG-TR	VF@lo= 455.0 mV VRRM= 100.0 V	1	\$1.33	DDPAK 210 mm ²
D3	SMC Diode Solutions	SK220ATR	VF@lo= 900.0 mV VRRM= 200.0 V	1	\$0.04	SMA 37 mm ²
D6	Diodes Inc.	1N5711WS-7-F	VF@lo= 800.0 mV VRRM= 70.0 V	1	\$0.09	D SOD-323 9 mm ²
Dac	Vishay-Semiconductor	DF08SA	VF@lo= 1.1 V VRRM= 800.0 V	1	\$0.24	
Dz1	Diodes Inc.	SMBJ150A-13-F	Zener	1	\$0.09	SMB 44 mm ²
L1	Coilcraft	MSS1210-473MEB	L= 47.0 μH 48.0 mOhm	1	\$0.81	
M1	Infineon Technologies	IPP60R385CPXKSA1	VdsMax= 600.0 V IdsMax= 9.0 Amps	1	\$1.39	MSS1210 204 mm ⁻
R1	Yageo	RC1206FR-0727KL Series= ?	Res= 27.0 kOhm Power= 250.0 mW Tolerance= 1.0%	1	\$0.01	1206 11 mm ²
R2	Vishay-Dale	CMF5031K600FHEB Series= CMF50	Res= 31.6 kOhm Power= 250.0 mW Tolerance= 1.0%	1	\$0.20	CMF50 46 mm ²
Rbld	Vishay-Dale	CRCW04021K37FKED Series= CRCWe3	Res= 1.37 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	■ 0402 3 mm²
Rcs	Stackpole Electronics Inc	CSRN2010FKR500 Series= ?	Res= 500.0 mOhm Power= 1.0 W Tolerance= 1.0%	1	\$0.11	2010 32 mm ²
Rhv1	Vishay-Semiconductor	CRCW2010200KFKEF Series= ?	Res= 200.0 kOhm Power= 750.0 mW Tolerance= 1.0%	1	\$0.03	2010 32 mm ²
Rp	Yageo	RC0603FR-073K9L Series= ?	Res= 3.9 kOhm Power= 100.0 mW Tolerance= 1.0%	1	\$0.01	■ 0603 5 mm ²
Rprog	Vishay-Dale	CRCW040247K5FKED Series= CRCWe3	Res= 47.5 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	■ 0402 3 mm²

2

Copyright © 2022, Texas Instruments Incorporated

3

WEBENCH® Design Report UCC28634DR : UCC28634DR 85V-265V to 5.00V @ 5A April 5, 2022 11:50:57 GMT-05:00

Copyright © 2022, Texas Instruments Incorporated

Operating Values

#	Name	Value	Category	Description
1.	BOM Count	23		Total Design BOM count
2.	Total BOM	NA		Total BOM Cost
3.	Cin IRMS	217.289 mA	Capacitor	Input capacitor RMS ripple current
4.	Cin Pd	93.0 mW	Capacitor	Input capacitor power dissipation
5.	Cin2 IRMS	475.363 mA	Capacitor	Input Capacitor Cin2 RMS Ripple Current
6.	Cin2 Pd	138.0 mW	Capacitor	Average Power Dissipation in the Input Capacitor Cin2
7.	Cout IRMS	8.649 A	Capacitor	Output capacitor RMS ripple current
8.	Cout Pd	573.53 mW	Capacitor	Output capacitor power dissipation
9.	Avg Bridge Diode Pd	475.71 mW	Diode	Average Power Dissipation in the Bridge Diode over the AC Line Period
10.	Diode2 Pd	2.272 W	Diode	Diode2 power dissipation
11.	IC Pd	72.0 mW	IC	IC power dissipation

Copyright © 2022, Texas Instruments Incorporated

#	Name	Value	Category	Description
12.	IC Tj	39.252 degC	IC	IC junction temperature
13.	ICThetaJA	128.5 degC/W	IC	IC junction-to-ambient thermal resistance
14.	M1 Pd	576.32 mW	Mosfet	M1 MOSFET total power dissipation
15.	M1 TjOP	49.175 degC	Mosfet	M1 MOSFET junction temperature
16.	Avg Bridge Diode Pd	475.71 mW	Power	Average Power Dissipation in the Bridge Diode over the AC Line Period
17.	Cin Pd	93.0 mW	Power	Input capacitor power dissipation
18.	Cin2 Pd	138.0 mW	Power	Average Power Dissipation in the Input Capacitor Cin2
19.	Cout Pd	573.53 mW	Power	Output capacitor power dissipation
20.	Diode2 Pd	2.272 W	Power	Diode2 power dissipation
21.	IC Pd	72.0 mW	Power	IC power dissipation
22.	M1 Pd	576.32 mW	Power	M1 MOSFET total power dissipation
23.	Rcs Pd	168.38 mW	Power	Current Limit Sense Resistor Power Dissipation
24.	Snubber Pd	610.442 mW	Power	Snubber Power Dissipation
25.	T1 Copper Loss	717.08 mW	Power	Transformer Copper Loss Power Dissipation
26.	T1 Core Loss	67.9 mW	Power	Transformer Core Loss Power Dissipation
27.	T1 Pd	784.98 mW	Power	Estimated Losses in Transformer
28.	Total Pd	5.792 W	Power	Total Power Dissipation
29.	Rcs Pd	168.38 mW	Resistor	Current Limit Sense Resistor Power Dissipation
30.	Duty Cycle	62.56 %	System	Duty cycle
			Information	
31.	Efficiency	81.191 %	System	Steady state efficiency
			Information	
32.	FootPrint	3.064 k mm ²	System	Total Foot Print Area of BOM components
			Information	
33.	Frequency	60.0 kHz	System	Switching frequency
			Information	
34.	lin rms	362.26 mA	System	RMS Input Current
			Information	
35.	locc	10.124 A	System	Constant Current Limit
			Information	
36.	lout	5.0 A	System	lout operating point
07	Mix David all Ca	70 404 \/	Information	Minimum and the second state of the state of the state
37.	Min Rectified Vin	72.124 V	System	Minimum voltage seen at rectified input
~~	Mada	DOM	Information	One destine Made
38.	wode	DCIVI	System	Conduction Mode
20	Dool: Dootified Vin	100 007 \/	Sustem	Deals valtage even at restified input
39.	Peak Rectified Vin	120.207 V	System	Peak voltage seen at rectified input
40	Dout		Svotom	Total output power
40.	Foul	25.0 W	Information	
11	Vin PMS	85 O V	Svetom	Vin operating point
41.		00.0 V	Information	vin operating point
12	Vout	501/	Svetom	Operational Output Voltage
42.	vout	5.0 V	Information	Operational Output Voltage
13	Vout Tolerance	160.0 m%	Svetom	Vout Tolerance based on IC Tolerance (no load) and voltage divider
45.	Vout Tolerance	100.0 11178	Information	resistors if applicable
11	Vout n-n	173 796 m\/	System	Peak-to-peak output rinnle voltage
	vourpp	175.750 111	Information	r car to pear output hpple voltage
45	T1 Copper Loss	717.08 mW	Transformer	Transformer Copper Loss Power Dissipation
46	T1 Core Loss	67.9 mW	Transformer	Transformer Core Loss Power Dissipation
47	T1 Iprim RMS	580.315 mA	Transformer	Transformer Primary RMS Current
48	T1 Iprim pk	1.271 A	Transformer	Transformer Primary Peak Current
49	T1 Is1 RMS	8 693 A	Transformer	Transformer Secondary1 RMS Current
50.	T1 ls1 pk	22.669 A	Transformer	Transformer Secondary1 Peak Current
51	T1 Pd	784.98 mW	Transformer	Estimated Losses in Transformer

Design Inputs

Name	Value	Description
lout	5.0	Maximum Output Current
VinMax	265.0	Maximum input voltage
VinMin	85.0	Minimum input voltage
Vout	5.0	Output Voltage
acFrequency	60.0	AC Frequency
base_pn	UCC28634	Base Product Number
source	AC	Input Source Type
Та	30.0	Ambient temperature

WEBENCH[®] Assembly

Component Testing

Some published data on components in datasheets such as Capacitor ESR and Inductor DC resistance is based on conservative values that will guarantee that the components always exceed the specification. For design purposes it is usually better to work with typical values. Since this data is not always available it is a good practice to measure the Capacitance and ESR values of Cin and Cout, and the inductance and DC resistance of L1 before assembly of the board. Any large discrepancies in values should be electrically simulated in WEBENCH to check for instabilities and thermally simulated in WebTHERM to make sure critical temperatures are not exceeded.

Soldering Component to Board

If board assembly is done in house it is best to tack down one terminal of a component on the board then solder the other terminal. For surface mount parts with large tabs, such as the DPAK, the tab on the back of the package should be pre-tinned with solder, then tacked into place by one of the pins. To solder the tab town to the board place the iron down on the board while resting against the tab, heating both surfaces simultaneously. Apply light pressure to the top of the plastic case until the solder flows around the part and the part is flush with the PCB. If the solder is not flowing around the board you may need a higher wattage iron (generally 25W to 30W is enough).

Initial Startup of Circuit

It is best to initially power up the board by setting the input supply voltage to the lowest operating input voltage 85.0V and set the input supply's current limit to zero. With the input supply off connect up the input supply to Vin and GND. Connect a digital volt meter and a load if needed to set the minimum lout of the design from Vout and GND. Turn on the input supply and slowly turn up the current limit on the input supply. If the voltage starts to rise on the input supply continue increasing the input supply current limit while watching the output voltage. If the current increases on the input supply, but the voltage remains near zero, then there may be a short or a component misplaced on the board. Power down the board and visually inspect for solder bridges and recheck the diode and capacitor polarities. Once the power supply circuit is operational then more extensive testing may include full load testing, transient load and line tests to compare with simulation results.

Load Testing

The setup is the same as the initial startup, except that an additional digital voltmeter is connected between Vin and GND, a load is connected between Vout and GND and a current meter is connected in series between Vout and the load. The load must be able to handle at least rated output power + 50% (7.5 watts for this design). Ideally the load is supplied in the form of a variable load test unit. It can also be done in the form of suitably large power resistors. When using an oscilloscope to measure waveforms on the prototype board, the ground leads of the oscilloscope probes should be as short as possible and the area of the loop formed by the ground lead should be kept to a minimum. This will help reduce ground lead inductance and eliminate EMI noise that is not actually present in the circuit.

Secondary

WEBENCH[®] Transformer Report

#	Name	Value
1.	Core Part Number	150-0240
2.	Core Manufacturer	Wurth Elektronik
3.	Coil Former Part Number	070-5674
4.	Coil Former Manufacturer	Wurth Elektronik

Transformer Electrical Diagram

Primary

Turns	55.0	Turns	3.0
AWG	28.0	AWG	25.0
Layers	3.0	Layers	1.0
Strands	1.0	Strands	3.0
Insulation Type	Heavy Insulated Magnet Wire	Insulation Type	Triple Insulated

Auxiliary

Turns	8.0
AWG	28.0
Layers	1.0
Strands	2.0
Insulation Type	Heavy Insulated Magnet Wire

Transformer Construction Diagram

Winding Instruction

Winding	AWG	Turns	Winding Orientation
Primary First 2/3.0	28.0	37	Clockwise
Triple Insulated Secondary	25.0	3.0	Counter Clockwise
Auxiliary	28.0	8.0	Counter Clockwise
Primary Second 1/3.0	28.0	18	Clockwise

Transformer Parameters

#	Name	Value
1.	Lpri	6.3E-4H
2.	Inductance Factor(AI)	209.0nH
3.	Npri	55.0
4.	Nsec	3.0
5.	Naux	8.0
6.	Core Type	PQ2016
7.	Core Material	TP4A

Copyright © 2022, Texas Instruments Incorporated

10

#	Name	Value
8.	Bmax	0.24T
9.	Switching Frequency	60.00kHz
10.	DMax	0.58
11.	lpk(Primary)	1.28A
12.	Irms(Primary)	0.56A
13.	lpk(Secondary)	23.5A
14.	Irms(Secondary)	8.8A

Design Assistance

1. Application Hints High Power Operation The UCC28630 allows a peak power delivery up to 200% the nominal rating with only a modest increase in peak current. The combination of up to 2x frequency increase and 1.25x peak current increase in CCM allows up to 2x peak power delivery capability for a given transformer size. Rbld Rbld is used to to set a minimum load for the circuit, so that in standby the output voltage does not float up. The value chosen by WEBENCH should be a good starting point but may need to be adjusted to achieve minimum power dissipation at standby as well. Active X-Cap Discharge The X-capacitor discharge function discharges the X-capacitor to the SELV 60V level in 1 sec. When adjusting the components for the design, ensure that the bulk capacitance value is not too large for the power level desired, which ensures that the bulk capacitor discharge rate is fast enough to discharge the X-capacitor to meet the 1-second discharge target. The VSENSE terminal In order to protect the VSENSE terminal from excessive negative current, an additional series limiting resistor and clamping diode can be added on the VSENSE terminal. The DRV pull up diode can be combined with the clamping diode in a single package commoncathode diode to reduce the component count of the circuit (see Figure 24 in the datasheet for illustration). Magnetic Sense Resistor Network When adjusting components for the design, check that the equivalent Thevenin resistance (Rth) of the R1/R2 falls within the required range of 10kOhm and 20kOhm. If the Rth is outside of this range, it triggers the VSENSE terminal open or short terminal check at start-up. Peak Current Mode Control and the CS Terminal Depending on the PCB layout, an additional RC filter may be required on the CS terminal, as show in Figure 30 of the datasheet. The capacitor, Ccs, should be positioned as close as possible to terminals 3 and 4 and tracked directly to the terminals. Rcs2 should also be located close to terminal 3 to minimize noise, and should not exceed 20kOhms since larger values could be detected as a possible open circuit on the CS terminal during the start-up terminal checks. The time constant for this RC filter should no be excessive so that the filter does not reduce the measured peak current. Typical time values would fall between 100ns and 200ns. Primary-Side Overload Timer An internal overload timer tracks the power stage thermal stress and protects the power stage against output overload. The overload timer trip level and time constant are both selectable from a defined list of combinations (See Table 1 in datasheet for combinations), and is set using a pulldown resistance, Rprog, on the DRV terminal. The values of the Rprog resistor that corresponds to specific trip levels and time constants can also be seen in Table 1 in the datasheet. Please see the datasheet for further design guidance and recommendations. http://www.ti.com/lit/ds/ symlink/ucc28630.pdf

2. Master key : 8B09291A5C60A592[v1]

3. UCC28634 Product Folder : http://www.ti.com/product/UCC28634 : contains the data sheet and other resources.

Important Notice and Disclaimer

TI provides technical and reliability data (including datasheets), design resources (including reference designs), application or other design advice, web tools, safety information, and other resources AS IS and with all faults, and disclaims all warranties. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Providing these resources does not expand or otherwise alter TI's applicable Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with TI products.