

WEBENCH[®] Design Report

VinMin = 8.0V VinMax = 16.0V Vout = 24.0V Iout = 6.0A Device = LM3481QMM/NOPB Topology = Boost Created = 2024-08-21 20:30:52.066 BOM Cost = NA BOM Count = 21 Total Pd = 5.27W

Design : 86 LM3481QMM/NOPB LM3481QMM/NOPB 8V-16V to 24.00V @ 6A

Design Alerts

Component Selection Information

The LM3481-Q1 is qualified for Automotive applications. All passives and other components selected in this design may not be qualified for Automotive applications. The user is required to verify that all components in the design meet the qualification and safety requirements for their specific application.

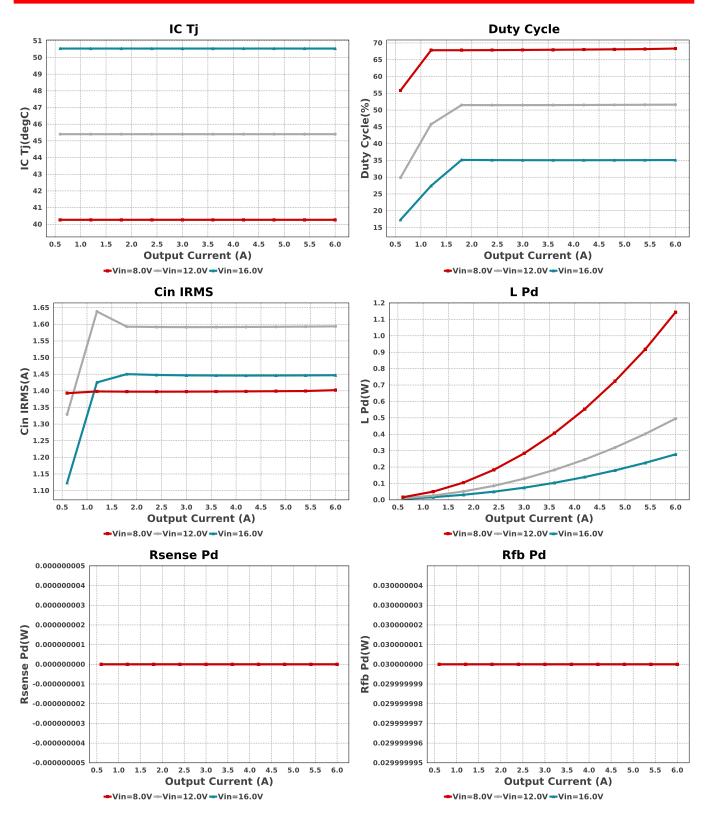
Electrical BOM

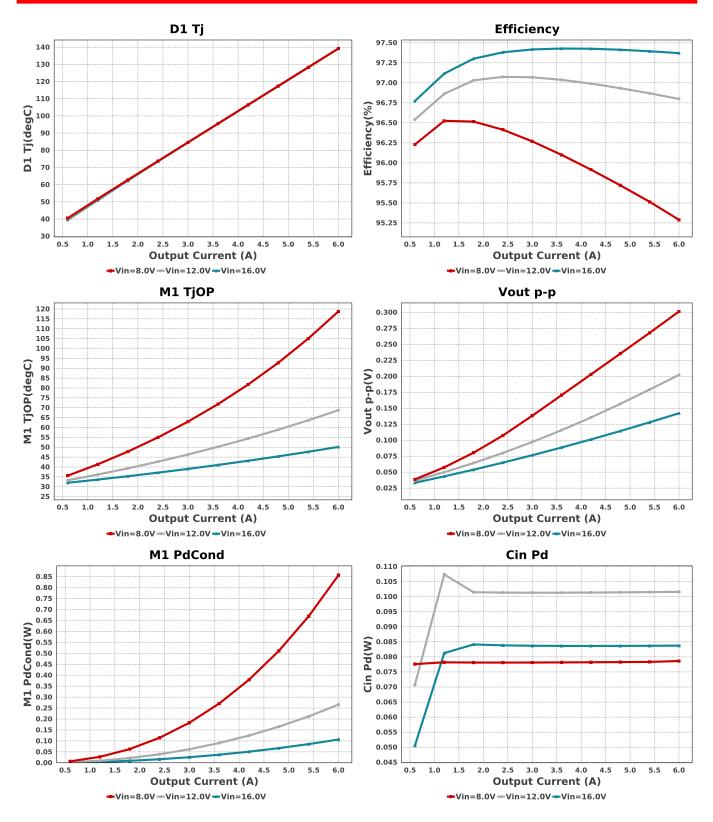
Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
Сbур	AVX	08053C104KAT2A Series= X7R	Cap= 100.0 nF ESR= 280.0 mOhm VDC= 25.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
Ccomp	Taiyo Yuden	TMK212BJ474KD-T Series= X5R	Cap= 470.0 nF ESR= 1.0 mOhm VDC= 20.0 V IRMS= 0.0 A	1	\$0.02	0805 7 mm ²
Ccomp2	Kemet	C0805C223K5RACTU Series= X7R	Cap= 22.0 nF ESR= 125.0 mOhm VDC= 50.0 V IRMS= 645.0 mA	1	\$0.01	0805 7 mm²
Cfilt	Yageo	CC0805JRNPO9BN100 Series= C0G/NP0	Cap= 10.0 pF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
Cin	Chemi-Con	EMZA250ADA471MJA0G Series= MZA	Cap= 470.0 uF ESR= 80.0 mOhm VDC= 25.0 V IRMS= 850.0 mA	2	\$0.45	CAPSMT_62_JA0 151 mm ²
Cout	Panasonic	35SVPF120M Series= SVPF	Cap= 120.0 uF ESR= 18.0 mOhm VDC= 35.0 V IRMS= 4.4 A	2	\$1.33	CAPSMT_62_F12 151 mm ²

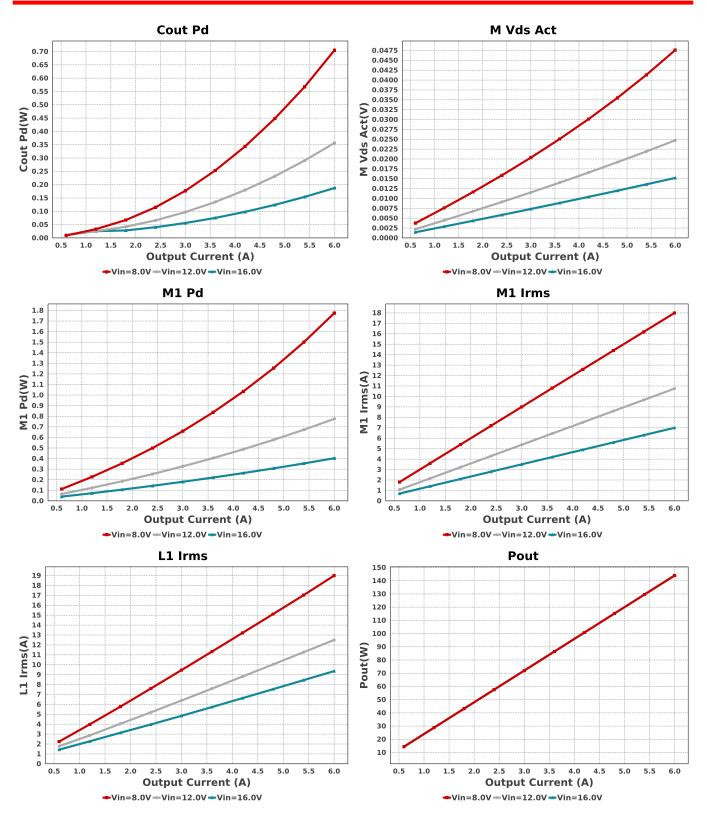
Copyright © 2024, Texas Instruments Incorporated

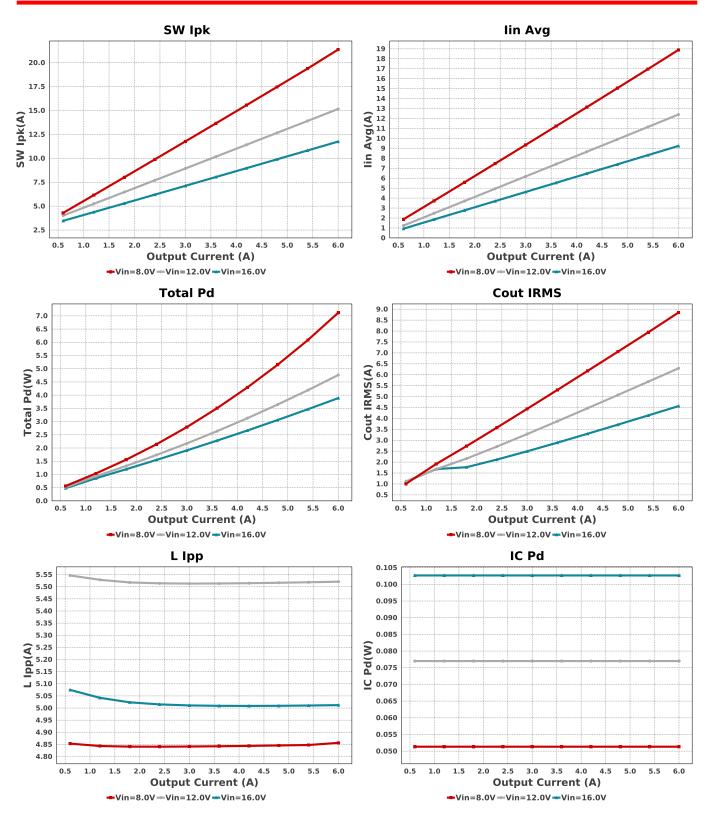
1

WEBENCH[®] Design

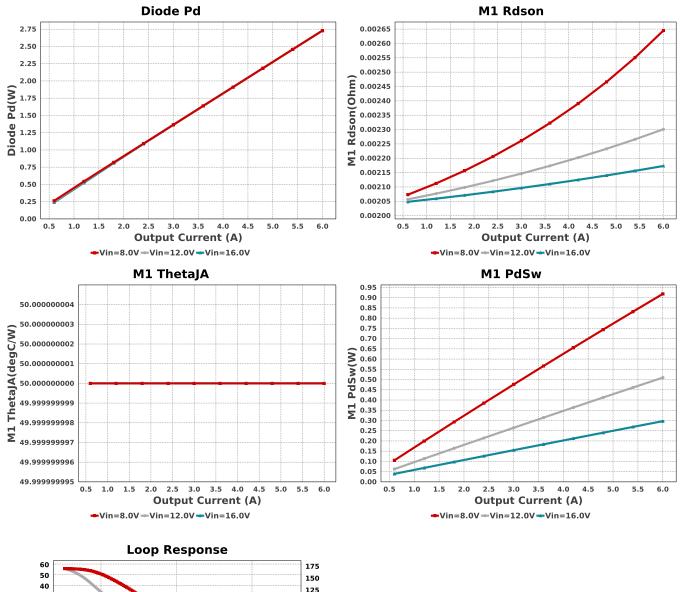

Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
Cvcc	Panasonic	ECPU1C474MA5 Series= ECPU(A)	Cap= 470.0 nF VDC= 16.0 V IRMS= 0.0 A	1	\$0.27	1206 11 mm ²
D1	STMicroelectronics	STPS20M100SG-TR	VF@lo= 455.0 mV VRRM= 100.0 V	1	\$1.94	DDPAK 210 mm ²
_1	Wurth Elektronik	7443641000	L= 10.0 μH 2.64 mOhm	1	\$7.28	
W1	Texas Instruments	CSD17303Q5	VdsMax= 30.0 V IdsMax= 100.0 Amps	1	\$0.56	WE-HCF_2818 656 mm ² TRANS_NexFET_Q5 55 mm ²
Rcomp	Vishay-Dale	CRCW0402866RFKED Series= CRCWe3	Res= 866.0 Ohm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	■ 0402 3 mm ²
Rfadj	Vishay-Dale	CRCW0402191KFKED Series= CRCWe3	Res= 191.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	■ 0402 3 mm ²
Rfb1	Vishay-Dale	CRCW04021K00FKED Series= CRCWe3	Res= 1000.0 Ohm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	■ 0402 3 mm ²
Rfb2	Vishay-Dale	CRCW040218K2FKED Series= CRCWe3	Res= 18.2 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	■ 0402 3 mm ²
Rfilt	Vishay-Dale	CRCW0402100RFKED Series= CRCWe3	Res= 100.0 Ohm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	■ 0402 3 mm ²
Rivp1	Yageo	RC0201FR-0710KL Series= ?	Res= 10.0 kOhm Power= 50.0 mW Tolerance= 1.0%	1	\$0.01	• 0201 2 mm ²
Rivp2	Vishay-Dale	CRCW020144K2FNED Series= ?	Res= 44.2 kOhm Power= 50.0 mW Tolerance= 1.0%	1	\$0.01	• 0201 2 mm ²
Rsense	CUSTOM	CUSTOM Series= ?	Res= 2.46928 mOhm Power= 0.0 W Tolerance= 0.0%	1	NA	CUSTOM 0 mm ²
J1	Texas Instruments	LM3481QMM/NOPB	Switcher	1	\$0.83	

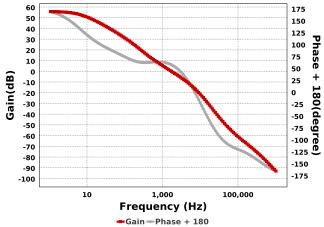

MUB10A 24 mm²


Copyright © 2024, Texas Instruments Incorporated


2

WEBENCH[®] Design Report LM3481QMM/NOPB : LM3481QMM/NOPB 8V-16V to 24.00V @ 6A August 21, 2024 20:34:09 GMT-05:00





Copyright © 2024, Texas Instruments Incorporated

Operating Values

	5			
#	Name	Value	Category	Description
1.	Cin IRMS	1.392 A	Capacitor	Input capacitor RMS ripple current
2.	Cin Pd	77.546 mW	Capacitor	Input capacitor power dissipation
3.	Cout IRMS	8.754 A	Capacitor	Output capacitor RMS ripple current
4.	Cout Pd	689.68 mW	Capacitor	Output capacitor power dissipation
5.	D1 Tj	139.2 degC	Diode	D1 junction temperature
6.	Diode Pd	2.73 W	Diode	Diode power dissipation
7.	IC Pd	51.008 mW	IC	IC power dissipation
8.	IC Tj	40.202 degC	IC	IC junction temperature
9.	IC Tolerance	19.0 mV	IC	IC Feedback Tolerance
10.	ICThetaJA	200.0 degC/W	IC	IC junction-to-ambient thermal resistance
11.	lin Avg	18.659 A	IC	Average input current

Copyright © 2024, Texas Instruments Incorporated

7

12. Lipp 4.823 A Inductor Peak-to-peak inductor pipe current 13. LiPd 1.11 W Inductor Inductor pipe current 14. Li Ims 18.72 A Inductor Inductor pipe current 15. M Vás Act 47.48 mV Mosfet M I MOSFET Ims 16. M I Tab 1.757 W Mosfet M I MOSFET Ims 17. M Pai 1.757 W Mosfet M I MOSFET Ims 18. M TobCond 854.49 mV Mosfet M I MOSFET Ims 18. M TobCond 854.49 mV Mosfet M I MOSFET Ims 19. M Table 0.00 deg/CW Mosfet M I MOSFET Inducton temperature 21. M TiPoP 17.48 deg/C Mosfet M I MOSFET Inducton temperature 22. Con Pd 77.546 mW Power Input capacitor power dissipation 23. Con Pd 51.006 mW Power Input capacitor power dissipation 24. Cou Pd 17.57 W Power Inductor power dissipation 25. Dicke Pd 1.77 W Power Inductor power dissipation 26. IPd 1.75 W Power Inductor power dissipation 27. LPd 1.71 W <	#	Name	Value	Category	Description
14. L1 Imms 18.72 A Inductor Inductor inple current 15. M V4s Act 47.485 mV Mosfet M V4s 16. M I Imms 17.77 W Mosfet MI MOSFET Imms Mi MOSFET Imms 18. M PGCond 854.46 mW Mosfet MI MOSFET Imms Mi MOSFET India power dissipation 18. M Rdson 2.639 mOhm Mosfet MI MOSFET India power dissipation 20. M TheLAJA 5.0 degCW Mosfet MI MOSFET India power dissipation 21. M TheLAJA 6.0 degCW Mosfet MI MOSFET India power dissipation 22. MI TOP 17.76 de mW Power Duck power dissipation 23. Cin Pd 27.74 mW Power Duck power dissipation 24. Coarl Pd 27.3 W Power Duck power dissipation 25. Duck Pd 27.3 W Power Duck power dissipation 26. Draf 7.746 mW Power Duck power dissipation 27. Draf 7.757 W Power Mi MOSFET conductor losses 28. M Pd 1.177 W Power Mi MOSFET conductor losses 29. M Pd 3.0 mW Power Total power Dissipation				Inductor	
15. M Vids Act 47.465 mV Mosfet M Vids 16. M I Imm 17.394 A Mosfet M I MOSFET Imms 17. M PdCond 85.46 mW Mosfet MI MOSFET Imms 19. M PdSw 902.8 mW Mosfet MI MOSFET imms 19. M PdSw 902.8 mW Mosfet MI MOSFET immit losses 21. M Thotay 50.0 degCW Mosfet MI MOSFET imcion-to-mabient thermal resistance 22. M TiOP 17.86 degC Mosfet MI MOSFET imcion-to-mabient thermal resistance 23. Cin Pd 77.546 mW Power Inucto approximation 24. Coul Pd 689.68 mW Power Inucto approximation 25. Dicke Pd 2.73 W Power Inductor power dissipation 26. C Pd 51.008 mW Power Inductor power dissipation 27. L Pd 1.11 W Power Inductor power dissipation 28. MI PdCond 864.46 mW Power MI MOSFET total power dissipation 29. MI PdCond 864.46 mW Power MI MOSFET total power dissipation 20. MI PdCond 864.46 mW Power MI MOSFET total power dissipation 21.					
16. Mi Imms 17.994 A Mosfet MI MOSFET Imms 17. MI P4 Cond 854.46 mW Mosfet MI MOSFET Conduction losses 18. MI P4Cond 854.46 mW Mosfet MI MOSFET Function losses 20. MI Rdson 2.639 mOhm Mosfet Diministry Structure losses 21. MI TheIAIA 50.0 degCW Mosfet Diministry Structure losses 22. MI TOP 117.66 degC Mosfet MI MOSFET iuncton-to-ambient termaral resistance 22. MI TOP 117.86 degC Mosfet MI MOSFET iuncton-to-ambient termaral resistance 23. Cin P4 7.346 mW Power Outer power dissipation 24. Court P4 51.008 mW Power Outer power dissipation 25. Dide P4 2.73 W Power Inducts power dissipation 26. IC P4 11.07 W Power Inducts power dissipation 27. LPd 11.07 W Power Inducts power dissipation 28. MI P4Cond 854.46 mW Power Inducts power dissipation 29. MI P4W 30.0 mW Power Total Power Dissipation 31. Rth Pd 30.0 mW Power Total Power Dissipation					
17. Mi Pid 1.757 W Mosfet Mi MOSFET total power dissipation 19. Mi PidSw 902.8 mW Mosfet Mi MOSFET switching losses 19. Mi PidSw 20.3 mOkm Mosfet Mi MOSFET switching losses 21. Mi ThotsJA 50.0 degCW Mosfet MOSFET switching losses 22. Mi TDOP 17.86 degC Mosfet Mi MOSFET junction-to-mabient thermal resistance 23. Cin Pd 77.546 mW Power Inuction-to-ambient thermal resistance 24. Cout Pd 68.8 mW Power Inuction-to-ambient thermal resistance 25. Diode Pd 2.73 W Power Inductor power dissipation 26. C Pd 51.008 mW Power Inductor power dissipation 27. L Pd 1.11 W Power Inductor power dissipation 28. MI PdCund 854.46 mW Power IndUSFET conductor losses 29. MI PdCund 854.46 mW Power IndUSFET switching losses 21. Pd 1.17 W Power IndUSFET switching losses 23. Total Pd 30.0 mW Power Resispation 33. Total Pd 5.27 W Power Total Power Dissipation <					
18. MI PdCond 864.46 mW Mosfet MI MOSFET conduction tosses 20. MI Rdson 2.639 mOhm Mosfet Drain-Source On-resistance 21. MI ThetaJA 50.0 degC/W Mosfet MOSFET junction t-amperature 22. MI TOP 117.86 degC Mosfet MI MOSFET junction t-amperature 23. Cin Pd 77.546 mW Power Output capacitor power dissipation 24. Coul Pd 688.68 mW Power Diddo power dissipation 25. Diddo Pd 2.73 W Power Diddo power dissipation 26. IC Pd 1.11 W Power Indocet dissipation 27. L Pd 1.11 W Power MI MOSFET conduction losses 28. IC Pd 3.00 mW Power MI MOSFET conduction losses 30. MI PdCond 86.44 68 mW Power MI MOSFET switching losses 31. Rtb Pd 30.0 mW Power Total Power Dissipation 32. Rense Pd 80.00 mW Power Total Power Dissipation 33. Total Pd 3.00 mW Resistor Rtb Power Dissipation 34. Rtb Pd 3.00 mW Resistor Rtb Power Dissipation 35. <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
19. MI PdSw 902.8 mW Mosfet M1 MOSFET switching losses 21. M1 ThetsJA 50.0 degC/W Mosfet MOSFET switching losses 22. M1 ThetsJA 50.0 degC/W Mosfet MOSFET junction thema resistance 23. Cin Pd 77.546 mW Power Input capacitor power dissipation 23. Cin Pd 68.06 mW Power Output capacitor power dissipation 24. Cut Pd 68.06 mW Power Inductor power dissipation 25. Diode Pd 2.73 W Power Inductor power dissipation 26. IC Pd 1.10 W Power Inductor power dissipation 27. L Pd 1.11 W Power M1 MOSFET conduction losses 28. M1 PdCond 854.46 mW Power M1 MOSFET witching losses 31. R1b Pd 30.0 mW Power Total Power Dissipation 33. Total Pd 5.272 W Power Total Power Dissipation 34. R1b Pd 30.0 mW Resistor LED Current Rans Power Dissipation 35. Resnes Pd 800.05 mW Resistor LED Current Rans Power Dissipation 36. BOM Cout 1.611 k mm² Notal Power Total Power Posipation <td></td> <td></td> <td></td> <td></td> <td></td>					
20. MI Rdson 2.639 mOhm Mosfet Drain-Source On-resistance 21. MI ThettaJA 6.00 degC/W Mosfet MOSFET junction t-ampierature 22. MI TOP 117.86 degC Mosfet MI MOSFET junction t-ampierature 23. Cin Pd 7.546 nW Power Output capacitor power dissipation 24. Cour Pd 689.66 mW Power Output capacitor power dissipation 25. Diode Pd 2.73 W Power Diode power dissipation 26. IC Pd 1.11 W Power Indocer dissipation 27. L Pd 1.11 W Power Indocer dissipation 28. MI PdCond 85.4.46 mW Power MI MOSFET switching losses 30. MI PdSw 902.8 mW Power MI MOSFET switching losses 31. Rth Pd 30.0 mW Resistor Rth Power Dissipation 32. Resnes Pd 800.05 mW Resistor Rth Power Dissipation 33. Total Power Total Devicer Dissipation Total Devicer Dissipation 34. Rth Pd 30.0 mW Resistor Rth Power Dissipation 35. Resnes Pd 800.05 mW Resistor Rth Power Dissipation 36. <td></td> <td></td> <td></td> <td></td> <td></td>					
1. M1 ThetaJA 50.0 degC/W Mosfet M0SFET junction tron-bankient thermal resistance 23. Cin Pd 77.546 mW Power Input capacitor power dissipation 23. Cin Pd 6.86 mW Power Output capacitor power dissipation 25. Diode Pd 2.73 W Power Diode power dissipation 26. IC Pd 51.008 mW Power Inductor power dissipation 27. L Pd 1.11 W Power Inductor power dissipation 28. M1 Pd 7.754 mW Power M1 MOSFET conduction losses 29. M1 PdSM 90.28 mW Power M1 MOSFET conduction losses 31. R1b Pd 30.0 mW Power Total Power Dissipation 32. Resense Pd 800.05 mW Resistor LED Current Rans Power Dissipation 33. Total Pd 5.272 W Power Total Power Dissipation 34. R1b Pd 30.0 mW Resistor LED Current Rans Power Dissipation 35. Resense Pd 80.00 Sm W Resistor LED Current Rans Power Dissipation 35. Resense Pd 87.00 mW Resistor LED Current Rans Power Dissipation 36. BOM cout 1.611 kmm² Notal Design					
22. MT TOP 117.86 agc Mosfet M1 MOSFET junction temperature 23. Cin Pd 77.546 mW Power Ioutou capacitor power dissipation 24. Coul Pd 689.68 mW Power Didde power dissipation 25. Didde Pd 2.73 W Power Didde power dissipation 26. IC Pd 1.10 W Power Ioutou capacitor power dissipation 27. L Pd 1.11 W Power M1 MOSFET conduction losses 28. M1 PdCond 854.46 mW Power M1 MOSFET conduction losses 30. M1 PdSw 90.28 mW Power M1 MOSFET conduction losses 31. Rb Pd 30.0 mW Power M1 MOSFET conduction losses 33. Total Pd 5.272 W Power Total Design BOM count 34. Rb Pd 30.0 mW Resistor Rb Power Dissipation 35. Resense Pd 800.05 mW Resistor Rb Power Dissipation 36. BOM Count 21 System Total Power Dissipation 37. Cross Freq 92.8.38 Hz System Duty cycle 38. Duty Cycle 67.859 % System Total Foci Print Area of BOM components 41. <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
21. Cin Pa 77.546 mV Power Input capacitor power dissipation 24. Cout Pd 689.68 mW Power Outque capacitor power dissipation 25. Diode Pd 2.73 W Power Diode power dissipation 26. IC Pd 51.008 mW Power Inductor power dissipation 27. L Pd 1.11 W Power Inductor power dissipation 28. MI PdCond 854.46 mW Power M1 MOSFET conduction losses 30. MI PdSw 90.28 mW Power M1 MOSFET switching losses 31. Rb Pd 30.0 mW Power Rb Power Dissipation 32. Rsense Pd 800.05 mW Power Total Power Dissipation 33. Total Pd 5.272 W Power Total Power Dissipation 34. RD Pd 30.0 mW Resistor LED Current Rsns Power Dissipation 35. BOM Count 21 System Total Design BOM count 36. BOM Count 21 System Duty cycle 16/formation System Stady state efficiency Information 37. Frequency 11.1005 HJZ System Switching frequency 16/formation Information S			-		•
24. Cout Pd 689.68 mW Power Output capacitor power dissipation 25. Diode Pd 2.73 W Power Diode power dissipation 26. IC Pd 51.008 mW Power IC power dissipation 27. L Pd 1.11 W Power Inductor power dissipation 28. M1 PdSon 854.46 mW Power M1 MOSFET conduction losses 30. M1 PdSw 90.28 mW Power M1 MOSFET conduction losses 31. Rb Pd 30.0 mW Power Rb Pd 30.0 mW 32. Resnes Pd 800.05 mW Power Total Power Dissipation 33. Total Pd 5.272 W Power Total Design BOM count 34. Rb Pd 30.0 mW Resistor Rtb Power Dissipation 35. Resnes Pd 800.05 mW Resistor Rtb Power Dissipation 36. BOM Count 21 System Total Design BOM count 10 Information Information Duty cycle FostPint 1.611 k mm ⁻¹ 37. Cross Freq 92.468 % System Steady state efficiency 38. Duty Cycle 67.859 % System Total Foct Print Area of BOM components 4		,	Ũ		, ,
25. Diode Pd 2.73 W Power Diode power dissipation 26. IC Pd 51.008 mW Power Inductor power dissipation 27. L Pd 1.11 W Power Inductor power dissipation 28. MI PdCond 854.46 mW Power M1 MOSFET conduction losses 29. MI PdCond 854.46 mW Power M1 MOSFET conduction losses 30. MI PdSW 90.2 mW Power M1 MOSFET conduction losses 31. Rb Pd 30.0 mW Power M1 MOSFET switching losses 32. Resnes Pd 800.05 mW Power LED Current Rsns Power Dissipation 33. Total Pd 5.272 W Power Total Power Dissipation 34. Rtb Pd 30.0 mW Resistor LED Current Rsns Power Dissipation 35. Resnes Pd 800.05 mW Resistor LED Current Rsns Power Dissipation 36. BOM Count 21 Information Duty Cycle 37. Cross Freq 928.838 Hz System Duty Cycle 38. Duty Cycle 67.859 % System Total Foot Print Area of BOM components 39. Efficiency 11.905 kHz System Switching frequency 1					
28. IC Pd 51.008 mW Power IC power dissipation 27. LPd 1.11 W Power IM Indicator power dissipation 28. M1 PdCnd 85.44 mW Power M1 MOSFET conduction losses 30. M1 PdSw 902.8 mW Power M1 MOSFET conduction losses 31. Rtb Pd 30.0 mW Power M1 MOSFET conduction losses 32. Resnap Pd 800.05 mW Power LED Current Rsns Power Dissipation 33. Total Pd 5.272 W Power Total Power Dissipation 34. Rtb Pd 30.0 mW Resistor Rtb Power Dissipation 35. Resnap Pd 800.05 mW Resistor Rtb Power Dissipation 36. BOM Count 21 System Total Power Dissipation 37. Cross Freq 928.838 Hz System System Duty cycle 16 67.459 % System Total Foot Print Area of BOM components 11 Information Total Foot Print Area of BOM components 11 11.905 kHz System Indormation 41. Frequency 111.905 kHz System Iout operating point 43. Iout 6.0 A System Iout opera					
27.L Pd1.11 WPowerInductor power dissipation28.M1 PdCond854.46 mWPowerM1 MOSFET tarduction losses30.M1 PdSw902.8 mWPowerM1 MOSFET anduction losses31.Rtb Pd30.0 mWPowerRtb Power Dissipation32.Rsense Pd800.05 mWPowerTotal Power Dissipation33.Total Pd5.272 WPowerTotal Power Dissipation34.Rtb Pd30.0 mWResistorLED Current Rsns Power Dissipation35.Rsense Pd800.05 mWResistorLED Current Rsns Power Dissipation36.BOM Count21Total Design BOM count37.Cross Freq928.838 HzSystemBode plot crossover frequency11/0rmationInformationInformation38.Duty Cycle67.859 %System39.Efficiency96.468 %System40.FootPrint1.611 k mm²System41.Frequency111.905 kHzSystem42.Gain Marg-15.206 dBSystem43.lout6.0 ASystem44.Low Freq Gain49.641 dBSystem45.ModeCCMSystem46.Phase Marg59.575 deg47.Pout144.0 WSystem48.SW lpk21.08 A49.SystemTotal BOM Cost40.Foot ResidenceInformation41.Low Freq GainSystem42. <t< td=""><td></td><td></td><td></td><td></td><td>· · ·</td></t<>					· · ·
28. M1 PdCond 854.46 mW Power M1 MOSFET conduction losses 30. M1 PdSw 902.8 mW Power M1 MOSFET conduction losses 31. Rth Pd 30.0 mW Power M1 MOSFET switching losses 32. Resnse Pd 30.0 mW Power Rth Pd 33. Total Pd 5.272 W Power LED Current Rsns Power Dissipation 33. Total Pd 5.272 W Power Total Power Dissipation 34. Rth Pd 30.0 mW Resistor Rth Power Dissipation 35. Resnse Pd 800.05 mW Resistor Rth Dever Dissipation 36. BOM Count 21 System Total Power Dissipation 37. Cross Freq 928.838 Hz System Duty cycle 1nformation Information Information Steady state efficiency 40. Frequency 111.905 KHz System Indormation 41. Indormation Information Information Information 42. Gain Marg -15.206 dB System Gaie at 1Hz 11.005 KHz System Information Information 44. Low Freq Gain 49.641 dB System Conduction Mode				_	
29. M1 PdCond 854.46 mW Power M1 MOSFET conduction losses 31. Rtb Pd 30.0 mW Power Rtb Power Dissipation 32. Rsense Pd 800.05 mW Power Rtb Power Dissipation 33. Total Pd 5.272 W Power Total Power Dissipation 34. Rtb Pd 30.0 mW Resistor Rtb Power Dissipation 35. Rsense Pd 800.05 mW Resistor Rtb Power Dissipation 36. BOM Count 21 System Total Power Dissipation 37. Cross Freq 928.833 Hz System Bode plot crossover frequency 11 Information Information Information 38. Duty Cycle 67.859 % System Steady state efficiency 40. FootPrint 1.611 k mm² System Total Foot Print Area of BOM components 41. Frequency 111.905 kHz System Switching frequency 42. Gain Marg -15.206 dB System Information 43. Iout 6.0 A System Bode Plot Gain Margin 44. Low Freq Gain 49.641 dB System Sode Plot Phase Margin 45. Mode Coch <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
11.Rtb Pd30.0 mWPowerRtb Power Dissipation32.Rsense Pd800.05 mWPowerLED Current Rsns Power Dissipation33.Total Pd3.02 mWResistorRtb Power Dissipation34.Rtb Pd30.0 mWResistorRtb Power Dissipation35.Rsense Pd800.05 mWResistorRtb Power Dissipation36.BOM Count21SystemTotal Power Dissipation37.Cross Freq928.838 HzSystemBode plot crossover frequency38.Duty Cycle67.859 %SystemDuty cycle39.Efficiency96.468 %SystemInformation30.Frequency11.611 k mm²SystemSteady state efficiency31.InformationSystemSwitching frequencySwitching frequency41.Frequency111.905 kHzSystemBode Plot Gain Margin42.Gain Marg-15.206 dBSystemBode Plot Gain Margin43.Iout6.0 ASystemInformation44.Low Freq Gain49.641 dBSystemConduction Mode45.ModeCCMSystemBode Plot Phase Margin46.Phase Marg59.575 degSystemTotal BOM Cost47.Pout144.0 WSystemTotal BOM Cost48.SW Ipk21.08 ASystemTotal BOM Cost49.Total BOMNASystemTotal BOM Cost49.Total BOMNASystemCoat				_	
32.Rsense Pd800.05 mWPower PowerLED Current Rsns Power Dissipation33.Total Pd5.272 WPowerTotal Power Dissipation34.Rtb Pd30.0 mWResistorLED Current Rsns Power Dissipation35.Rsense Pd800.05 mWResistorLED Current Rsns Power Dissipation36.BOM Count21SystemTotal Design BOM count37.Cross Freq928.838 HzSystemBode plot crossover frequency38.Duty Cycle67.859 %SystemDuty cycle39.Efficiency96.468 %SystemTotal Foot Print Area of BOM components40.FootPrint1.611 k mm²SystemTotal Foot Print Area of BOM components41.Frequency11.905 kHzSystemSwitching frequency42.Gain Marg-15.206 dBSystemBode Plot Gain Margin43.lout6.0 ASystemInformation44.Low Freq Gain49.641 dBSystemGain at 1Hz45.ModeCCMSystemTotal Jower Jower46.Phase Marg59.575 degSystemTotal Ower Information47.Pout144.0 WSystemTotal Jower Information48.SW lpk21.08 ASystemTotal Jower Information49.Total BOMNASystemTotal BOM Cost49.VinSystemTotal Jower Information40.VinSystemTotal Jower Information41.Low F	30.	M1 PdSw	902.8 mW	Power	M1 MOSFET switching losses
33.Total Pd5.272 WPowerTotal Power Dissipation34.Rtb Pd30.0 mWResistorRtb Power Dissipation36.BOM Count21NystemLED Current Rsn Power Dissipation37.Cross Freq928.838 HzSystemBode Plot crossover frequency38.Duty Cycle67.859 %SystemDuty cycle39.Efficiency96.468 %SystemDuty cycle39.Efficiency96.468 %SystemTotal Foot Print Area of BOM components40.Foot Print1.611 k mm*SystemTotal Foot Print Area of BOM components41.Frequency111.905 kHzSystemSwitching frequency42.Gain Marg-15.206 dBSystemInformation43.lout6.0 ASystemIou to perating point44.Low Freq Gain99.575 degSystemConduction Mode45.ModeCCMSystemTotal BOM Cost46.Phase Marg59.575 degSystemTotal Output power47.Pout144.0 WSystemTotal BOM Cost48.SW lpk21.08 ASystemTotal BOM Cost49.Total BOMNASystemTotal BOM Cost49.Total BOMASystemTotal BOM Cost50.Vin8.0 VSystemTotal BOM Cost51.Vout Tolerance3.452 %SystemCord Cost Information52.Vout Tolerance3.452 %SystemVout	31.	Rfb Pd	30.0 mW	Power	Rfb Power Dissipation
34.Rtb Pd30. mWResistorRtb Power Dissipation35.Rsense Pd800.05 mWResistorLED Current Rsns Power Dissipation36.BOM Count21SystemLED Current Rsns Power Dissipation37.Cross Freq928.838 HzSystemBode plot crossover frequency38.Duty Cycle67.859 %SystemDuty cycle39.Efficiency96.468 %SystemDuty cycle40.FootPrint1.611 k mm²SystemTotal Foot Print Area of BOM components41.Frequency111.905 kHzSystemSystem42.Gain Marg-15.206 dBSystemBode Plot Gain Margin43.lout6.0 ASystemInformation44.Low Freq Gain49.641 dBSystemInformation45.ModeCCMSystemConduction Mode46.Phase Marg59.575 degSystemTotal output power47.Pout144.0 WSystemTotal output power48.SW lpk21.08 ASystemTotal BOM Cost49.Total BOMNASystemTotal BOM Cost49.Vout24.0 VSystemTotal Output Voltage50.Vin8.0 VSystemTotal BOM Cost51.Vout Tolerance3.452 %SystemVout Tolerance based on selected voltage divider resistors53.Vout Tolerance3.452 %SystemVout Tolerance based on IC Tolerance (no load) and voltage divider resistors i	32.	Rsense Pd	800.05 mW	Power	LED Current Rsns Power Dissipation
35. Rsense Pd BOM Count 800.05 mW Resistor System Information LED Current Rsn Power Dissipation 36. BOM Count 21 System Information Total Design BOM count 37. Cross Freq 928.838 Hz System Information Bode plot crossover frequency 38. Duty Cycle 67.859 % System Information Bode plot crossover frequency 39. Efficiency 96.468 % System Information System 40. FootPrint 1.611 k mm² System Information Total Foot Print Area of BOM components 41. Frequency 111.905 KHz System Information Switching frequency 42. Gain Marg -15.206 dB System Information Switching frequency 43. Iout 6.0 A System Information Bode Plot Gain Margin 44. Low Freq Gain 49.641 dB System Information Gain at 1Hz 45. Mode CCM System Information Gain at 1Hz 46. Phase Marg 59.575 deg System Information Bode Plot Phase Margin 47. Pout 144.0 W System Information Total output power 48. SW lpk 21.08 A System Information Total BOM Cost 50. <td>33.</td> <td>Total Pd</td> <td>5.272 W</td> <td>Power</td> <td></td>	33.	Total Pd	5.272 W	Power	
36.BOM Count21System InformationTotal Design BOM count37.Cross Freq928.838 HzSystem InformationBode plot crossover frequency38.Duty Cycle67.859 %System InformationDuty cycle39.Efficiency96.468 %System InformationDuty cycle40.FootPrint1.611 k mm²System InformationSteady state efficiency41.Frequency111.905 kHzSystem InformationSteady state of BOM components42.Gain Marg-15.206 dBSystem InformationBode Plot Gain Margin43.lout6.0 ASystem InformationBode Plot Gain Margin44.Low Freq Gain49.641 dBSystem InformationIout operating point45.ModeCCMSystem InformationGain at 1Hz46.Phase Marg59.575 degSystem InformationGod Plot Phase Margin47.Pout144.0 WSystem InformationTotal Output power48.SW lpk21.08 ASystem InformationTotal BOM Cost49.Total BOMNASystem InformationTotal BOM Cost50.Vin8.0 VSystem InformationOperating point51.Vout Tolerance3.452 %System InformationOperating Doint Information52.Vout Tolerance3.452 %System InformationOperating Doint Information53.Vout Tolerance3.452 %System Information <td>34.</td> <td>Rfb Pd</td> <td>30.0 mW</td> <td>Resistor</td> <td>Rfb Power Dissipation</td>	34.	Rfb Pd	30.0 mW	Resistor	Rfb Power Dissipation
1nformationInformationBode plot crossover frequency37.Cross Freq928.838 HzSystemBode plot crossover frequency38.Duty Cycle67.859 %SystemDuty cycle39.Efficiency96.468 %SystemSteady state efficiency40.FootPrint1.611 k mm²SystemTotal Foot Print Area of BOM components41.Frequency111.905 kHzSystemBode Plot Gain Margin42.Gain Marg-15.206 dBSystemBode Plot Gain Margin43.lout6.0 ASystemBode Plot Gain Margin44.Low Freq Gain49.641 dBSystemGain at 1Hz45.ModeCCMSystemGain at 1Hz46.Phase Marg59.575 degSystemBode Plot Phase Margin47.Pout144.0 WSystemTotal Output power48.SW lpk21.08 ASystemTotal Output power49.Total BOMNASystemTotal BOM Cost50.Vin8.0 VSystemTotal BOM Cost51.Vout24.0 VSystemTotal BOM Cost53.Vout Actual24.192 VSystemVout Actual Calulated based on selected voltage divider resistors53.Vout Tolerance3.452 %SystemVout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable Peak to-peak output fipple voltage	35.	Rsense Pd	800.05 mW	Resistor	LED Current Rsns Power Dissipation
37.Cross Freq928.838 HzSystem InformationBode plot crossover frequency38.Duty Cycle67.859 %System InformationDuty cycle39.Efficiency96.468 %System InformationSteady state efficiency40.FootPrint1.611 k mm²System InformationSteady state efficiency41.Frequency111.905 kHzSystem InformationSystem Information42.Gain Marg-15.206 dBSystem InformationBode Plot Gain Margin43.Iout6.0 ASystem InformationBode Plot Gain Margin44.Low Freq Gain49.641 dBSystem InformationGain at 1Hz45.ModeCCMSystem InformationConduction Mode46.Phase Marg59.575 degSystem InformationBode Plot Phase Margin47.Pout14.0 WSystem InformationTotal output power48.SW lpk21.08 ASystem InformationTotal BOM49.Total BOMNASystem InformationTotal BOM Cost50.Vin24.0 VSystem InformationTotal BOM Cost51.Vout Actual24.192 VSystem SystemTotal culculated based on selected voltage divider resistors53.Vout Tolerance3.452 %System InformationVout Tolerance loased on IC Tolerance (no load) and voltage divider resistors if applicable54.Vout p-p297.908 mVSystemPeak supplicable	36.	BOM Count	21	System	Total Design BOM count
38.Duty Cycle67.859 %System InformationDuty cycle39.Efficiency96.468 %System InformationDuty cycle40.FootPrint1.611 k mm²System InformationTotal Foot Print Area of BOM components41.Frequency111.905 kHzSystem InformationSwitching frequency42.Gain Marg-15.206 dBSystem InformationBode Plot Gain Margin Information43.Iout6.0 ASystem InformationBode Plot Gain Margin Information44.Low Freq Gain49.641 dBSystem System InformationGain at 1Hz Information45.ModeCCMSystem InformationGaia at 1Hz46.Phase Marg59.575 degSystem InformationBode Plot Phase Margin47.Pout144.0 WSystem InformationTotal output power48.SW lpk21.08 ASystem InformationTotal Output vower49.Total BOMNASystem InformationTotal BOM Cost50.Vin8.0 VSystem InformationTotal BOM Cost51.Vout24.0 VSystem InformationOperating Opint Information52.Vout Actual24.192 VSystem InformationOperating Opint53.Vout Tolerance3.452 %System InformationVout Colerance koaed on selected voltage divider resistors Information54.Vout p-p297.908 mVSystemPeak souptu tipple voltage <td></td> <td></td> <td></td> <td>Information</td> <td></td>				Information	
38.Duty Cycle67.859 %System InformationDuty cycle39.Efficiency96.468 %System InformationSteady state efficiency40.FootPrint1.611 k mm²System InformationTotal Foot Print Area of BOM components41.Frequency111.905 kHzSystem InformationSwitching frequency42.Gain Marg-15.206 dBSystem InformationBode Plot Gain Margin43.Iout6.0 ASystem InformationIout operating point44.Low Freq Gain49.641 dBSystem InformationGain at 1Hz45.ModeCCMSystem InformationGoin at 1Hz46.Phase Marg59.575 degSystem InformationBode Plot Phase Margin47.Pout144.0 WSystem InformationTotal output power48.SW lpk21.08 ASystem InformationPeak switch current Information49.Total BOMNASystem InformationTotal BOM Cost Information50.Vin8.0 VSystem SystemVin operating point51.Vout Actual24.192 VSystem SystemOperational Output Voitage Information52.Vout Actual24.192 VSystem SystemVout Actual calculated based on selected voitage divider resistors Information53.Vout p-p297.908 mVSystem SystemVout Actual calculated based on IC Tolerance (no load) and voitage divider resistors if applicable54.Vout p-p2	37.	Cross Freq	928.838 Hz		Bode plot crossover frequency
39.Efficiency96.468 %System InformationSteady state efficiency40.FootPrint1.611 k mm²System InformationTotal Foot Print Area of BOM components41.Frequency111.905 kHzSystem InformationSwitching frequency42.Gain Marg-15.206 dBSystem InformationBode Plot Gain Margin43.lout6.0 ASystem InformationIout operating point44.Low Freq Gain49.641 dBSystem InformationGain at 1Hz45.ModeCCMSystem InformationGain at 1Hz46.Phase Marg59.575 degSystem InformationBode Plot Phase Margin47.Pout144.0 WSystem InformationTotal BOM48.SW lpk21.08 ASystem InformationTotal BOM Cost49.Total BOMNASystem InformationTotal BOM Cost50.Vin8.0 VSystem InformationTotal BOM Cost51.Vout24.0 VSystem InformationOperating point Information52.Vout Actual24.192 VSystem System InformationOperating Doint Information53.Vout Tolerance3.452 %System System InformationVout Actual calculated based on selected voltage divider resistors Information54.Vout p-p297.908 mVSystem SystemVout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable					
39.Efficiency96.468 %System InformationSteady state efficiency40.FootPrint1.611 k mm²System InformationTotal Foot Print Area of BOM components41.Frequency111.905 kHzSystem InformationSwitching frequency42.Gain Marg-15.206 dBSystem InformationBode Plot Gain Margin43.Iout6.0 ASystem InformationIout operating point44.Low Freq Gain49.641 dBSystem InformationGain at 1Hz45.ModeCCMSystem InformationGode Plot Phase Margin46.Phase Marg59.575 degSystem InformationBode Plot Phase Margin47.Pout144.0 WSystem InformationTotal autopever48.SW lpk21.08 ASystem InformationTotal BOM Cost49.Total BOMNASystem SystemTotal BOM Cost50.Vin8.0 VSystem InformationTotal BOM Cost51.Vout Actual24.0 VSystem SystemOperating point Information52.Vout Actual24.192 VSystem SystemOperational Output Voltage53.Vout Tolerance3.452 %System SystemVout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable54.Vout p-p297.908 mVSystem SystemVout Tolerance based on IC Tolerance	38.	Duty Cycle	67.859 %		Duty cycle
40.FootPrint1.611 k mm²System InformationTotal Foot Print Area of BOM components Information41.Frequency111.905 kHzSystem InformationSwitching frequency42.Gain Marg-15.206 dBSystem InformationBode Plot Gain Margin43.lout6.0 ASystem InformationBode Plot Gain Margin44.Low Freq Gain49.641 dBSystem InformationGain at 1Hz Information45.ModeCCMSystem InformationConduction Mode46.Phase Marg59.575 degSystem InformationBode Plot Phase Margin47.Pout144.0 WSystem InformationTotal output power48.SW lpk21.08 ASystem InformationPeak switch current49.Total BOMNA InformationTotal BOM Cost InformationTotal BOM Cost50.Vin24.0 VSystem SystemOperational Output Voltage51.Vout Actual24.192 VSystem InformationOperational Output Voltage52.Vout Tolerance3.452 %System Vout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicableVout roletage	20	E #:-:	00 400 0/	-	
40.FootPrint1.611 k mm²System InformationTotal Foot Print Area of BOM components41.Frequency111.905 kHzSystem InformationSwitching frequency42.Gain Marg-15.206 dBSystem InformationBode Plot Gain Margin43.Iout6.0 ASystem InformationIout operating point44.Low Freq Gain49.641 dBSystem InformationGain at 1Hz45.ModeCCMSystem InformationConduction Mode46.Phase Marg59.575 degSystem InformationBode Plot Phase Margin47.Pout144.0 WSystem InformationTotal output power48.SW lpk21.08 ASystem InformationTotal BOM Cost Information49.Total BOMNASystem InformationTotal BOM Cost Information50.Vin8.0 VSystem InformationTotal BOM Cost Information51.Vout24.0 VSystem InformationOperational Output Voltage52.Vout Actual24.192 VSystem InformationVout Actual calculated based on selected voltage divider resistors Information53.Vout Tolerance3.452 %System Vout NotageVout Actual calculated based on IC Tolerance (no load) and voltage divider resistors if applicable54.Vout p-p297.908 mVSystemPeak-to-peak output ripple voltage	39.	Enciency	90.408 %	•	Sleady state eniciency
41.Frequency111.905 kHzSystem InformationSwitching frequency42.Gain Marg-15.206 dBSystem InformationBode Plot Gain Margin43.Iout6.0 ASystem InformationIout operating point44.Low Freq Gain49.641 dBSystem InformationGain at 1Hz45.ModeCCMSystem InformationConduction Mode46.Phase Marg59.575 degSystem InformationBode Plot Phase Margin47.Pout144.0 WSystem InformationTotal output power48.SW lpk21.08 ASystem InformationPeak switch current49.Total BOMNASystem InformationTotal BOM Cost50.Vin8.0 VSystem InformationTotal BOM Cost51.Vout24.0 VSystem InformationOperating point52.Vout Actual24.192 VSystem InformationOperational Output Voltage53.Vout Tolerance3.452 %System InformationVout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable54.Vout p-p297.908 mVSystemPeak-cupeak output ripple voltage	40	FootPrint	$\mathbf{A} = \mathbf{C} \mathbf{A} \mathbf{A} + \mathbf{r} \mathbf{a} \mathbf{r} \mathbf{a}^2$	-	Total Foot Print Area of BOM components
41.Frequency111.905 kHzSystem Information InformationSwitching frequency42.Gain Marg-15.206 dBSystem InformationBode Plot Gain Margin43.lout6.0 ASystem InformationIout operating point Information44.Low Freq Gain49.641 dBSystem InformationGain at 1Hz45.ModeCCMSystem InformationGode Plot Phase Margin46.Phase Marg59.575 degSystem InformationBode Plot Phase Margin47.Pout144.0 WSystem InformationTotal output power Information48.SW lpk21.08 ASystem InformationTotal BOM Cost49.Total BOMNASystem InformationTotal BOM Cost50.Vin8.0 VSystem InformationTotal BOM Cost51.Vout24.0 VSystem InformationOperating point52.Vout Actual24.192 VSystem InformationVout Tolerance (no load) and voltage divider resistors Information53.Vout Tolerance3.452 %System SystemVout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable54.Vout p-p297.908 mVSystemPeak-to-peak output ripple voltage	40.		1.611 K mm		Total Tool Think Alea of BOM components
42.Gain Marg-15.206 dBSystem System InformationBode Plot Gain Margin43.lout6.0 ASystem Informationlout operating point44.Low Freq Gain49.641 dBSystem InformationGain at 1Hz45.ModeCCMSystem InformationConduction Mode46.Phase Marg59.575 degSystem InformationConduction Mode47.Pout144.0 WSystem InformationTotal output power48.SW lpk21.08 ASystem InformationPeak switch current Information49.Total BOMNASystem InformationTotal BOM Cost50.Vin8.0 VSystem InformationTotal BOM Cost51.Vout24.0 VSystem InformationOperating point Information52.Vout Actual24.192 VSystem InformationOperational Output Voltage Information53.Vout Tolerance3.452 %System SystemVout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable54.Vout p-p297.908 mVSystem SystemPeak-to-peak output ripple voltage	41	Frequency	111 905 kHz	_	Switching frequency
42.Gain Marg-15.206 dBSystem Information InformationBode Plot Gain Margin43.lout6.0 ASystem Informationlout operating point44.Low Freq Gain49.641 dBSystem InformationGain at 1Hz45.ModeCCMSystem InformationConduction Mode46.Phase Marg59.575 degSystem InformationBode Plot Phase Margin47.Pout144.0 WSystem InformationTotal output power48.SW lpk21.08 ASystem InformationTotal BOM Cost49.Total BOMNASystem InformationTotal BOM Cost50.Vin8.0 VSystem InformationTotal BOM Cost51.Vout24.0 VSystem InformationOperating point52.Vout Actual24.192 VSystem InformationOperational Output Voltage Information53.Vout Tolerance3.452 %System SystemVout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable54.Vout p-p297.908 mVSystem SystemPeak-to-peak output riple voltage	41.	ricqueriey	111.000 1112		Cuntoning nequency
43.Iout6.0 ASystem InformationIout operating point44.Low Freq Gain49.641 dBSystem InformationGain at 1Hz45.ModeCCMSystem InformationConduction Mode46.Phase Marg59.575 degSystem InformationBode Plot Phase Margin47.Pout144.0 WSystem InformationTotal output power48.SW lpk21.08 ASystem InformationTotal output power49.Total BOMNASystem InformationTotal BOM Cost50.Vin8.0 VSystem InformationTotal BOM Cost51.Vout24.0 VSystem InformationOperating point52.Vout Actual24.192 VSystem SystemVout Actual calculated based on selected voltage divider resistors53.Vout Tolerance3.452 %System SystemVout Tolerance (no load) and voltage divider resistors if applicable54.Vout p-p297.908 mVSystemPeak-to-peak output ripple voltage	42.	Gain Marg	-15.206 dB	_	Bode Plot Gain Margin
43.lout6.0 ASystem Informationlout operating point44.Low Freq Gain49.641 dBSystem InformationGain at 1Hz45.ModeCCMSystem InformationConduction Mode46.Phase Marg59.575 degSystem InformationBode Plot Phase Margin47.Pout144.0 WSystem InformationTotal output power48.SW lpk21.08 ASystem InformationPeak switch current Information49.Total BOMNASystem InformationTotal BOM Cost Information50.Vin8.0 VSystem InformationVin operating point51.Vout24.0 VSystem InformationOperational Output Voltage Information52.Vout Actual24.192 VSystem InformationVout Actual calculated based on selected voltage divider resistors53.Vout Tolerance3.452 %System SystemVout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable54.Vout p-p297.908 mVSystemPeak-to-peak output ripple voltage		5 5 5			
44.Low Freq Gain49.641 dBSystem InformationGain at 1Hz45.ModeCCMSystem InformationConduction Mode Information46.Phase Marg59.575 degSystem InformationBode Plot Phase Margin Information47.Pout144.0 WSystem InformationTotal output power48.SW lpk21.08 ASystem InformationPeak switch current Information49.Total BOMNASystem InformationTotal BOM Cost50.Vin8.0 VSystem InformationVin operating point Information51.Vout24.0 VSystem SystemOperational Output Voltage Information52.Vout Actual24.192 VSystem SystemVout Actual calculated based on selected voltage divider resistors Information53.Vout Tolerance3.452 %System SystemVout Tolerance (no load) and voltage divider resistors if applicable54.Vout p-p297.908 mVSystemPeak-to-peak output ripple voltage	43.	lout	6.0 A	-	lout operating point
45.ModeCCMSystem System InformationConduction Mode46.Phase Marg59.575 degSystem InformationBode Plot Phase Margin Total output power47.Pout144.0 WSystem InformationTotal output power48.SW lpk21.08 ASystem InformationPeak switch current Information49.Total BOMNASystem InformationTotal BOM Cost Information50.Vin8.0 VSystem InformationVin operating point Information51.Vout24.0 VSystem SystemOperational Output Voltage Information52.Vout Actual24.192 VSystem SystemVout Actual calculated based on selected voltage divider resistors Information53.Vout Tolerance3.452 %System SystemVout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable54.Vout p-p297.908 mVSystemPeak-to-peak output ripple voltage				Information	
45.ModeCCMSystem InformationConduction Mode46.Phase Marg59.575 degSystem InformationBode Plot Phase Margin47.Pout144.0 WSystem InformationTotal output power48.SW lpk21.08 ASystem InformationPeak switch current Information49.Total BOMNASystem InformationTotal BOM Cost Information50.Vin8.0 VSystem InformationVin operating point51.Vout24.0 VSystem InformationOperational Output Voltage Information52.Vout Actual24.192 VSystem InformationVout Actual calculated based on selected voltage divider resistors Information53.Vout Tolerance3.452 %System SystemVout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable54.Vout p-p297.908 mVSystemPeak-to-peak output ripple voltage	44.	Low Freq Gain	49.641 dB	System	Gain at 1Hz
46.Phase Marg59.575 degSystem InformationBode Plot Phase Margin47.Pout144.0 WSystem InformationTotal output power Information48.SW lpk21.08 ASystem InformationPeak switch current Information49.Total BOMNASystem InformationTotal BOM Cost Information50.Vin8.0 VSystem InformationVin operating point Information51.Vout24.0 VSystem InformationOperational Output Voltage Information52.Vout Actual24.192 VSystem InformationVout Actual calculated based on selected voltage divider resistors Information53.Vout Tolerance3.452 %System SystemVout Tolerance (no load) and voltage divider resistors if applicable54.Vout p-p297.908 mVSystemPeak-to-peak output ripple voltage				Information	
46.Phase Marg59.575 degSystem InformationBode Plot Phase Margin47.Pout144.0 WSystem InformationTotal output power48.SW lpk21.08 ASystem InformationPeak switch current49.Total BOMNASystem InformationTotal BOM Cost50.Vin8.0 VSystem InformationVin operating point51.Vout24.0 VSystem InformationOperational Output Voltage Information52.Vout Actual24.192 VSystem SystemVout Actual calculated based on selected voltage divider resistors Information53.Vout Tolerance3.452 %System SystemVout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable54.Vout p-p297.908 mVSystemPeak-to-peak output ripple voltage	45.	Mode	CCM	System	Conduction Mode
47. Pout144.0 WSystem InformationTotal output power48. SW lpk21.08 ASystem InformationPeak switch current Information49. Total BOMNASystem InformationTotal BOM Cost50. Vin8.0 VSystem InformationVin operating point Information51. Vout24.0 VSystem InformationOperational Output Voltage Information52. Vout Actual24.192 VSystem SystemVout Actual calculated based on selected voltage divider resistors Information53. Vout Tolerance3.452 %System SystemVout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable54. Vout p-p297.908 mVSystemPeak-to-peak output ripple voltage				Information	
47.Pout144.0 WSystem InformationTotal output power48.SW lpk21.08 ASystem InformationPeak switch current Information49.Total BOMNASystem InformationTotal BOM Cost50.Vin8.0 VSystem InformationVin operating point51.Vout24.0 VSystem InformationOperational Output Voltage Information52.Vout Actual24.192 VSystem SystemVout Actual calculated based on selected voltage divider resistors Information53.Vout Tolerance3.452 %System SystemVout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable54.Vout p-p297.908 mVSystemPeak-to-peak output ripple voltage	46.	Phase Marg	59.575 deg		Bode Plot Phase Margin
48.SW lpk21.08 AInformation System InformationPeak switch current49.Total BOMNASystem InformationTotal BOM Cost50.Vin8.0 VSystem InformationVin operating point51.Vout24.0 VSystem InformationOperational Output Voltage52.Vout Actual24.192 VSystem InformationVout Actual calculated based on selected voltage divider resistors53.Vout Tolerance3.452 %System InformationVout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable54.Vout p-p297.908 mVSystemPeak-to-peak output ripple voltage					—
48.SW lpk21.08 ASystem InformationPeak switch current49.Total BOMNASystem InformationTotal BOM Cost50.Vin8.0 VSystem InformationVin operating point51.Vout24.0 VSystem InformationOperational Output Voltage52.Vout Actual24.192 VSystem InformationVout Actual calculated based on selected voltage divider resistors Information53.Vout Tolerance3.452 %System SystemVout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable54.Vout p-p297.908 mVSystemPeak-to-peak output ripple voltage	47.	Pout	144.0 W		l otal output power
49. Total BOMNASystem System InformationTotal BOM Cost Information50. Vin8.0 VSystem InformationVin operating point Information51. Vout24.0 VSystem InformationOperational Output Voltage Information52. Vout Actual24.192 VSystem InformationVout Actual calculated based on selected voltage divider resistors Information53. Vout Tolerance3.452 %System InformationVout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable54. Vout p-p297.908 mVSystemPeak-to-peak output ripple voltage	40	0)4/1-1-	04.00.4		
49.Total BOMNASystem InformationTotal BOM Cost50.Vin8.0 VSystem InformationVin operating point51.Vout24.0 VSystem InformationOperational Output Voltage52.Vout Actual24.192 VSystem InformationVout Actual calculated based on selected voltage divider resistors Information53.Vout Tolerance3.452 %System SystemVout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable54.Vout p-p297.908 mVSystemPeak-to-peak output ripple voltage	48.	SVV IPK	21.08 A		Peak switch current
50.Vin8.0 VSystem InformationVin operating point Information51.Vout24.0 VSystem InformationOperational Output Voltage Information52.Vout Actual24.192 VSystem InformationVout Actual calculated based on selected voltage divider resistors Information53.Vout Tolerance3.452 %System InformationVout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable54.Vout p-p297.908 mVSystemPeak-to-peak output ripple voltage	40	Total POM	ΝΙΔ		Total POM Cost
50.Vin8.0 VSystem InformationVin operating point51.Vout24.0 VSystem InformationOperational Output Voltage52.Vout Actual24.192 VSystem InformationVout Actual calculated based on selected voltage divider resistors53.Vout Tolerance3.452 %System InformationVout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable54.Vout p-p297.908 mVSystemPeak-to-peak output ripple voltage	49.		INA		TOTAL BOIN COST
51. Vout 24.0 V System Information Operational Output Voltage Information 52. Vout Actual 24.192 V System Information Vout Actual calculated based on selected voltage divider resistors Information 53. Vout Tolerance 3.452 % System Information Vout Tolerance based on IC Tolerance (no load) and voltage divider Information 54. Vout p-p 297.908 mV System Peak-to-peak output ripple voltage	50	Vin	801/		Vin operating point
51. Vout24.0 VSystem InformationOperational Output Voltage52. Vout Actual24.192 VSystem InformationVout Actual calculated based on selected voltage divider resistors53. Vout Tolerance3.452 %System InformationVout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable54. Vout p-p297.908 mVSystemPeak-to-peak output ripple voltage	50.	V II I	0.0 v		
52. Vout Actual24.192 VSystem InformationVout Actual calculated based on selected voltage divider resistors53. Vout Tolerance3.452 %System InformationVout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable54. Vout p-p297.908 mVSystemPeak-to-peak output ripple voltage	51	Vout	24.0 V		Operational Output Voltage
52. Vout Actual 24.192 V System Information Vout Actual calculated based on selected voltage divider resistors 53. Vout Tolerance 3.452 % System Information Vout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable 54. Vout p-p 297.908 mV System Peak-to-peak output ripple voltage	51.		v		epotational output foliago
53. Vout Tolerance 3.452 % System Vout Tolerance based on IC Tolerance (no load) and voltage divider 54. Vout p-p 297.908 mV System Peak-to-peak output ripple voltage	52.	Vout Actual	24.192 V		Vout Actual calculated based on selected voltage divider resistors
53. Vout Tolerance 3.452 % System Information Vout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable 54. Vout p-p 297.908 mV System Peak-to-peak output ripple voltage					
Information resistors if applicable 54. Vout p-p 297.908 mV System Peak-to-peak output ripple voltage	53.	Vout Tolerance	3.452 %		Vout Tolerance based on IC Tolerance (no load) and voltage divider
Information	54.	Vout p-p	297.908 mV	System	Peak-to-peak output ripple voltage
				Information	

Design Inputs

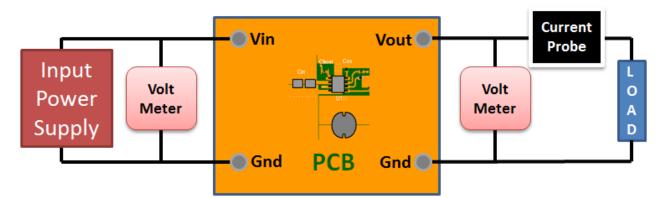
Name	Value	Description	
lout	6.0	Maximum Output Current	
VinMax	16.0	Maximum input voltage	
VinMin	8.0	Minimum input voltage	
Vout	24.0	Output Voltage	
base_pn	LM3481-Q1	Base Product Number	
source	DC	Input Source Type	
Та	30.0	Ambient temperature	

WEBENCH[®] Assembly

Component Testing

Some published data on components in datasheets such as Capacitor ESR and Inductor DC resistance is based on conservative values that will guarantee that the components always exceed the specification. For design purposes it is usually better to work with typical values. Since this data is not always available it is a good practice to measure the Capacitance and ESR values of Cin and Cout, and the inductance and DC resistance of L1 before assembly of the board. Any large discrepancies in values should be electrically simulated in WEBENCH to check for instabilities and thermally simulated in WebTHERM to make sure critical temperatures are not exceeded.

Soldering Component to Board


If board assembly is done in house it is best to tack down one terminal of a component on the board then solder the other terminal. For surface mount parts with large tabs, such as the DPAK, the tab on the back of the package should be pre-tinned with solder, then tacked into place by one of the pins. To solder the tab town to the board place the iron down on the board while resting against the tab, heating both surfaces simultaneously. Apply light pressure to the top of the plastic case until the solder flows around the part and the part is flush with the PCB. If the solder is not flowing around the board you may need a higher wattage iron (generally 25W to 30W is enough).

Initial Startup of Circuit

It is best to initially power up the board by setting the input supply voltage to the lowest operating input voltage 8.0V and set the input supply's current limit to zero. With the input supply off connect up the input supply to Vin and GND. Connect a digital volt meter and a load if needed to set the minimum lout of the design from Vout and GND. Turn on the input supply and slowly turn up the current limit on the input supply. If the voltage starts to rise on the input supply continue increasing the input supply current limit while watching the output voltage. If the current increases on the input supply, but the voltage remains near zero, then there may be a short or a component misplaced on the board. Power down the board and visually inspect for solder bridges and recheck the diode and capacitor polarities. Once the power supply circuit is operational then more extensive testing may include full load testing, transient load and line tests to compare with simulation results.

Load Testing

The setup is the same as the initial startup, except that an additional digital voltmeter is connected between Vin and GND, a load is connected between Vout and GND and a current meter is connected in series between Vout and the load. The load must be able to handle at least rated output power + 50% (7.5 watts for this design). Ideally the load is supplied in the form of a variable load test unit. It can also be done in the form of suitably large power resistors. When using an oscilloscope to measure waveforms on the prototype board, the ground leads of the oscilloscope probes should be as short as possible and the area of the loop formed by the ground lead should be kept to a minimum. This will help reduce ground lead inductance and eliminate EMI noise that is not actually present in the circuit.

Design Assistance

1. Feature Highlights: Automotive Qualified, Wide supply voltage range Operation of 2.97V to 48V, 1A High Frequency Low side N-FET versatile High Performance Controller

2. Master key : 6DBEC7B690BB700F[v1]

3. LM3481-Q1 Product Folder : http://www.ti.com/product/LM3481%2DQ1 : contains the data sheet and other resources.

Important Notice and Disclaimer

TI provides technical and reliability data (including datasheets), design resources (including reference designs), application or other design advice, web tools, safety information, and other resources AS IS and with all faults, and disclaims all warranties. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Providing these resources does not expand or otherwise alter TI's applicable Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with TI products.