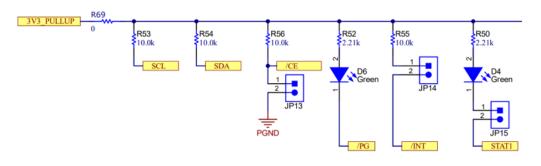
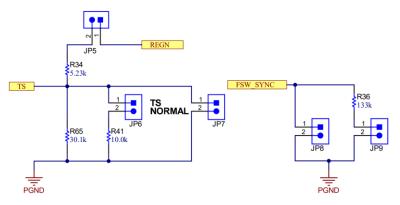

BQ25758 Schematic Checklist

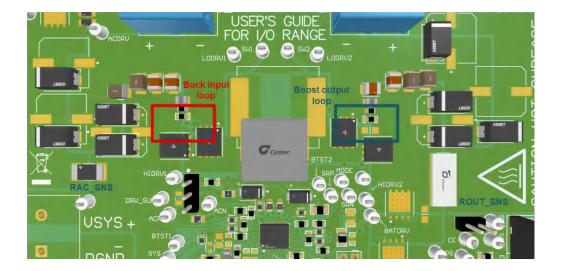



INPUT POWER							INPUT POWER- DESIGN CHECKLIST	
PIN NAME		REQUIREMENTS	Component	MIN	TYP	MAX	DESCRIPTION	COMMENTS AND RELEVANT EQUATIONS
ACP-ACN, IIN_HIZ	30,29,10	Optional	R2(RAC)	0mΩ		5mΩ	Differential input current sensing and current limit set Input current sensing resistor. This is used for both input current limit regulation and for inductor current sensing of the average current mode control architecutre of the charger.	Ing R2(RAC) is not required if input current limit functionality is not needed. Short ACP and ACN to VAC if R2(RAC) is not being used. Refer to section 8.2.2.7 Sense Resistor (RAC_SNS and RBAT_SNS) and Current Programming for choosing the correct resistor value if input current limit functionality is needed.
		Optional	R5,R6		10Ω		Input current sense switching noise and common mode	Can be removed if R2(RAC) is not going to be used.
		Optional	C10,C11 C34		100nF 470nF		and noise filtering Differential mode noise filtering	Can be removed if R2(RAC) is not going to be used. Can be removed if R2(RAC) is not going to be used.
		Optional	R66	0kΩ	2.5kΩ	50kΩ	Resistor to PGND	Refer to section 7.3.4.3.1.1 IIN Pin of the datasheet for choosing the correct resistor values.
		Required	C44, C7, C70	80uF	160uF		bulk input capacitance	The caps should be a mixture of ceramic and electrolytic. The caps C44, C7 and C70 need to spread and balanced across the sense resistors. The caps don't need to be exact. The ratio between the caps on both sides of the sense resistor can be as great as 1 to 10.
REGN	24						Internal LDO output	
		Required	C22	4.7μF	4.7μF		Internal LDO output stabilizing capacitor Converter (Forward Buck Mode) High-Side N-Channel MOSFET	Placed close to the IC REGN pin.
HIDRV1	27	Required	Q1				Converter (forward buck mode) active High-Side N-Channel MOSFET	This is also the reverse boost mode synchronous High-Side MOSFET.
HIDKVI	27	Recommended	RHIDRV1	0Ω			Q1 High-Side MOSFET gate drive strength limiting resistor	For non-ideal layouts with EMI contraints, add an experimentally derived resistance to slow down the Q1 turn-on and turn-off. Do not add any pull down resistor from the gate to the source of Q1.
							Converter (Forward Buck Mode) Low-Side N-Channel MOSFET	gate driver
		Required	Q2				Converter (forward buck mode) active Low-Side N-Channel MOSFET	This is also the reverse boost mode synchronous Low-Side MOSFET.
LODRV1	25	Recommended	RLORV1	0Ω			Q2 Low-Side MOSFET gate drive strength limiting resistor	For non-ideal layouts with EMI contraints, add an experimentally derived resistance to slow down the Q2 turn-on and turn-off. Do not add any pull down resistor from the gate to the source of Q2.
								gate to the source of Q2.
							Buck-boost switching nodes and High-Side MOSFET bootstra	network
		Required	L1	2.2μΗ	10µН	15μΗ	Buck-boost switching nodes and High-Side MOSFET bootstra Converter inductor	
		Required	D2,D3	2.2μΗ	-	15μΗ	Converter inductor BTST1/BTST2 Diode-OR	network SW1 and SW2 should be connected to minimize the inductive path from the IC pin to
		- 4		2.2μΗ		15μΗ	Converter inductor BTST1/BTST2 Diode-OR Connected between DRV-SUP and PGND	onetwork SW1 and SW2 should be connected to minimize the inductive path from the IC pin to the Inductor
SW1-SW2, BTST1, BTST2, DRV-SUP	28-18, 26,20, 23	Required	D2,D3	2.2µН	-	15µН	Converter inductor BTST1/BTST2 Diode-OR	network SW1 and SW2 should be connected to minimize the inductive path from the IC pin to the Inductor BTST diodes should use a Schottky diode to minimize reverse recovery loss Capacitor needs to be placed close to the IC.
		Required Required	D2,D3 C26	2.2µН	- 4.7μF	15μΗ	Converter inductor BTST1/BTST2 Diode-OR Connected between DRV-SUP and PGND Converter bootstrap capacitor for Q1 High-Side N Channel	network SW1 and SW2 should be connected to minimize the inductive path from the IC pin to the Inductor BTST diodes should use a Schottky diode to minimize reverse recovery loss
		Required Required Required	D2,D3 C26 C12	2.2µН	- 4.7μF 100nF	15μΗ	Converter inductor BTST1/BTST2 Diode-OR Connected between DRV-SUP and PGND Converter bootstrap capacitor for Q1 High-Side N Channel MOSFET gate driver	network SWI and SW2 should be connected to minimize the inductive path from the IC pin to the Inductor BTST diodes should use a Schottky diode to minimize reverse recovery loss Capacitor needs to be placed close to the IC. For non-ideal layouts with EMI contraints, add an experimentally derived resistance to slow down the Q1 turn-on. Capacitor needs to be placed close to the IC.
		Required Required Required Recommended	D2,D3 C26 C12	2.2µН	- 4.7μF 100nF	15μΗ	Converter inductor BTST1/BTST2 Diode-OR Connected between DRV-SUP and PGND Converter bootstrap capacitor for Q1 High-Side N Channel MOSFET gate driver Bootstrap capacitor discharge current limiting resistor Converter bootstrap capacitor for Q4 High-Side N Channel	Network SW1 and SW2 should be connected to minimize the inductive path from the IC pin to the Inductor BTST diodes should use a Schottky diode to minimize reverse recovery loss Capacitor needs to be placed close to the IC. For non-ideal layouts with EMI contraints, add an experimentally derived resistance to slow down the Q1 turn-on.
		Required Required Required Recommended Recommended	D2,D3 C26 C12 R13	2.2μΗ	4.7μF 100nF 0Ω 100nF	15μΗ	Converter inductor BTST1/BTST2 Diode-OR Connected between DRV-SUP and PGND Converter bootstrap capacitor for Q1 High-Side N Channel MOSFET gate driver Bootstrap capacitor discharge current limiting resistor Converter bootstrap capacitor for Q4 High-Side N Channel MOSFET gate driver	network SW1 and SW2 should be connected to minimize the inductive path from the IC pin to the Inductor BTST diodes should use a Schottky diode to minimize reverse recovery loss Capacitor needs to be placed close to the IC. For non-ideal layouts with EMI contraints, add an experimentally derived resistance to slow down the Q1 turn-on. Capacitor needs to be placed close to the IC. For non-ideal layouts with EMI contraints, add an experimentally derived resistance to slow down the Q4 turn-on.
BTST2, DRV-SUP	26,20, 23	Required Required Required Recommended Recommended	D2,D3 C26 C12 R13	2.2µН	4.7μF 100nF 0Ω 100nF	15μΗ	Converter inductor BTST1/BTST2 Diode-OR Connected between DRV-SUP and PGND Converter bootstrap capacitor for Q1 High-Side N Channel MOSFET gate driver Bootstrap capacitor discharge current limiting resistor Converter bootstrap capacitor for Q4 High-Side N Channel MOSFET gate driver Bootstrap capacitor discharge current limiting resistor F	network SW1 and SW2 should be connected to minimize the inductive path from the IC pin to the Inductor BTST diodes should use a Schottky diode to minimize reverse recovery loss Capacitor needs to be placed close to the IC. For non-ideal layouts with EMI contraints, add an experimentally derived resistance to slow down the Q1 turn-on. Capacitor needs to be placed close to the IC. For non-ideal layouts with EMI contraints, add an experimentally derived resistance to slow down the Q4 turn-on.
		Required Required Required Required Recommended Required Recommended	D2,D3 C26 C12 R13 C18 R23	2.2μΗ	4.7μF 100nF 0Ω 100nF	15µН	Converter inductor BTST1/BTST2 Diode-OR Connected between DRV-SUP and PGND Converter bootstrap capacitor for Q1 High-Side N Channel MOSFET gate driver Bootstrap capacitor discharge current limiting resistor Converter bootstrap capacitor for Q4 High-Side N Channel MOSFET gate driver Bootstrap capacitor discharge current limiting resistor F Converter (Forward Boost Mode) High-Side N-Channel MOSFET Converter (Forward Boost Mode) active High-Side N-Channel MOSFET Q3 High-Side MOSFET gate drive strength limiting resistor	network SWI and SW2 should be connected to minimize the inductive path from the IC pin to the Inductor BTST diodes should use a Schottky diode to minimize reverse recovery loss Capacitor needs to be placed close to the IC. For non-ideal layouts with EMI contraints, add an experimentally derived resistance to slow down the Q1 turn-on. Capacitor needs to be placed close to the IC. For non-ideal layouts with EMI contraints, add an experimentally derived resistance to slow down the Q4 turn-on. Bate driver This is also the reverse buck mode synchronous High-Side MOSFET. For non-ideal layouts with EMI contraints, add an experimentally derived resistance to slow down the Q4 turn-on and turn-off. Do not add any pull down resistor from the gate to the source of Q3.
BTST2, DRV-SUP	26,20, 23	Required Required Required Recommended Required Recommended Recommended	D2,D3 C26 C12 R13 C18 R23		4.7μF 100nF 0Ω 100nF	15μΗ	Converter inductor BTST1/BTST2 Diode-OR Connected between DRV-SUP and PGND Converter bootstrap capacitor for Q1 High-Side N Channel MOSFET gate driver Bootstrap capacitor discharge current limiting resistor Converter bootstrap capacitor for Q4 High-Side N Channel MOSFET gate driver Bootstrap capacitor discharge current limiting resistor F Converter (Forward Boost Mode) High-Side N-Channel MOSFET Converter (Forward Boost Mode) active High-Side N-Channel MOSFET Q3 High-Side MOSFEt gate drive strength limiting resistor Converter (Forward Boost Mode) Low-Side N-Channel MOSFET	network SWI and SW2 should be connected to minimize the inductive path from the IC pin to the Inductor BTST diodes should use a Schottky diode to minimize reverse recovery loss Capacitor needs to be placed close to the IC. For non-ideal layouts with EMI contraints, add an experimentally derived resistance to slow down the Q1 turn-on. Capacitor needs to be placed close to the IC. For non-ideal layouts with EMI contraints, add an experimentally derived resistance to slow down the Q4 turn-on. Bate driver This is also the reverse buck mode synchronous High-Side MOSFET. For non-ideal layouts with EMI contraints, add an experimentally derived resistance to slow down the Q4 turn-on and turn-off. Do not add any pull down resistor from the gate to the source of Q3.
BTST2, DRV-SUP	19	Required Required Required Recommended Required Recommended Recommended	D2,D3 C26 C12 R13 C18 R23		4.7μF 100nF 0Ω 100nF	15µН	Converter inductor BTST1/BTST2 Diode-OR Connected between DRV-SUP and PGND Converter bootstrap capacitor for Q1 High-Side N Channel MOSFET gate driver Bootstrap capacitor discharge current limiting resistor Converter bootstrap capacitor for Q4 High-Side N Channel MOSFET gate driver Bootstrap capacitor discharge current limiting resistor F Converter (Forward Boost Mode) High-Side N-Channel MOSFET Converter (Forward Boost Mode) active High-Side N-Channel MOSFET Q3 High-Side MOSFET gate drive strength limiting resistor	network SWI and SW2 should be connected to minimize the inductive path from the IC pin to the Inductor BTST diodes should use a Schottky diode to minimize reverse recovery loss Capacitor needs to be placed close to the IC. For non-ideal layouts with EMI contraints, add an experimentally derived resistance to slow down the Q1 turn-on. Capacitor needs to be placed close to the IC. For non-ideal layouts with EMI contraints, add an experimentally derived resistance to slow down the Q4 turn-on. Bate driver This is also the reverse buck mode synchronous High-Side MOSFET. For non-ideal layouts with EMI contraints, add an experimentally derived resistance to slow down the Q4 turn-on and turn-off. Do not add any pull down resistor from the gate to the source of Q3.
BTST2, DRV-SUP	26,20, 23	Required Required Required Required Recommended Recommended Recommended Recommended	D2,D3 C26 C12 R13 C18 R23 Q3 RHIDRV2		4.7μF 100nF 0Ω 100nF	15µН	Converter inductor BTST1/BTST2 Diode-OR Connected between DRV-SUP and PGND Converter bootstrap capacitor for Q1 High-Side N Channel MOSFET gate driver Bootstrap capacitor discharge current limiting resistor Converter bootstrap capacitor for Q4 High-Side N Channel MOSFET gate driver Bootstrap capacitor discharge current limiting resistor F Converter (Forward Boost Mode) High-Side N-Channel MOSFET CONVERTER (Forward Boost Mode) active High-Side N-Channel MOSFET Q3 High-Side MOSFET gate drive strength limiting resistor Converter (Forward Boost Mode) Low-Side N-Channel MOSFET CONVERTER (Forward Boost Mode) Low-Side N-Channel MOSFET Q4 Low-Side MOSFET gate drive strength limiting resistor	Network SW1 and SW2 should be connected to minimize the inductive path from the IC pin to the Inductor BTST diodes should use a Schottky diode to minimize reverse recovery loss Capacitor needs to be placed close to the IC. For non-ideal layouts with EMI contraints, add an experimentally derived resistance to slow down the Q1 turn-on. Capacitor needs to be placed close to the IC. For non-ideal layouts with EMI contraints, add an experimentally derived resistance to slow down the Q4 turn-on. gate driver This is also the reverse buck mode synchronous High-Side MOSFET. For non-ideal layouts with EMI contraints, add an experimentally derived resistance to slow down the Q3 turn-on and turn-off. Do not add any pull down resistor from the gate to the source of Q3. gate driver This is also the reverse buck mode synchronous Low-Side MOSFET. For non-ideal layouts with EMI contraints, add an experimentally derived resistance to slow down the Q4 turn-on and turn-off. Do not add any pull down resistor from the gate to the source of Q4.
BTST2, DRV-SUP	19	Required Required Required Required Recommended Recommended Recommended Required Recommended Recommended Recommended	D2,D3 C26 C12 R13 C18 R23 Q3 RHIDRV2 Q4 RLORV2	οΩ		15μΗ	Converter inductor BTST1/BTST2 Diode-OR Connected between DRV-SUP and PGND Converter bootstrap capacitor for Q1 High-Side N Channel MOSFET gate driver Bootstrap capacitor discharge current limiting resistor Converter bootstrap capacitor for Q4 High-Side N Channel MOSFET gate driver Bootstrap capacitor discharge current limiting resistor F Converter (Forward Boost Mode) High-Side N-Channel MOSFE Converter (Forward Boost mode) active High-Side N-Channel MOSFET Q3 High-Side MOSFEt gate drive strength limiting resistor Converter (Forward Boost Mode) Low-Side N-Channel MOSFET Converter (Forward Boost Mode) Low-Side N-Channel MOSFET	network SW1 and SW2 should be connected to minimize the inductive path from the IC pin to the Inductor BTST diodes should use a Schottky diode to minimize reverse recovery loss Capacitor needs to be placed close to the IC. For non-ideal layouts with EMI contraints, add an experimentally derived resistance to slow down the Q1 turn-on. Capacitor needs to be placed close to the IC. For non-ideal layouts with EMI contraints, add an experimentally derived resistance to slow down the Q4 turn-on. Sate driver This is also the reverse buck mode synchronous High-Side MOSFET. For non-ideal layouts with EMI contraints, add an experimentally derived resistance to slow down the Q3 turn-on and turn-off. Do not add any pull down resistor from the gate to the source of Q3. Sate driver This is also the reverse buck mode synchronous Low-Side MOSFET. For non-ideal layouts with EMI contraints, add an experimentally derived resistance to slow down the Q3 turn-on and turn-off. Do not add any pull down resistor from the gate to the source of Q4. Sate driver
BTST2, DRV-SUP	19	Required Required Required Recommended Required Recommended Recommended Required Recommended Recommended	D2,D3 C26 C12 R13 C18 R23 Q3 RHIDRV2 Q4 RLORV2	οΩ		15μΗ	Converter inductor BTST1/BTST2 Diode-OR Connected between DRV-SUP and PGND Converter bootstrap capacitor for Q1 High-Side N Channel MOSFET gate driver Bootstrap capacitor discharge current limiting resistor Converter bootstrap capacitor for Q4 High-Side N Channel MOSFET gate driver Bootstrap capacitor discharge current limiting resistor F Converter (Forward Boost Mode) High-Side N-Channel MOSFET CONVERTER (Forward Boost Mode) active High-Side N-Channel MOSFET Q3 High-Side MOSFET gate drive strength limiting resistor Converter (Forward Boost Mode) Low-Side N-Channel MOSFET CONVERTER (Forward Boost Mode) Low-Side N-Channel MOSFET Q4 Low-Side MOSFET gate drive strength limiting resistor	network SWI and SW2 should be connected to minimize the inductive path from the IC pin to the Inductor BTST diodes should use a Schottky diode to minimize reverse recovery loss Capacitor needs to be placed close to the IC. For non-ideal layouts with EMI contraints, add an experimentally derived resistance to slow down the Q1 turn-on. Capacitor needs to be placed close to the IC. For non-ideal layouts with EMI contraints, add an experimentally derived resistance to slow down the Q4 turn-on. Bate driver This is also the reverse buck mode synchronous High-Side MOSFET. For non-ideal layouts with EMI contraints, add an experimentally derived resistance to slow down the Q4 turn-on and turn-off. Do not add any pull down resistor from the gate to the source of Q3. Bate driver This is also the reverse buck mode synchronous Low-Side MOSFET. For non-ideal layouts with EMI contraints, add an experimentally derived resistance to slow down the Q4 turn-on and turn-off. Do not add any pull down resistor from the gate to the source of Q4. Bate driver Refer to section 8.2.1.2.1 ACUV/ACOV Input Voltage Operating Window Programming
HIDRV2	19	Required Required Required Recommended Recommended Recommended Recommended Recommended Recommended Recommended Recommended Optional Optional	D2,D3 C26 C12 R13 C18 R23 Q3 RHIDRV2 Q4 RLORV2	οΩ		15µН	Converter inductor BTST1/BTST2 Diode-OR Connected between DRV-SUP and PGND Converter bootstrap capacitor for Q1 High-Side N Channel MOSFET gate driver Bootstrap capacitor discharge current limiting resistor Converter bootstrap capacitor for Q4 High-Side N Channel MOSFET gate driver Bootstrap capacitor discharge current limiting resistor F Converter (Forward Boost Mode) High-Side N-Channel MOSFET Q3 High-Side MOSFET gate drive strength limiting resistor Converter (Forward Boost Mode) Low-Side N-Channel MOSFET Q4 Low-Side MOSFET gate drive strength limiting resistor Q4 Low-Side MOSFET gate drive strength limiting resistor Converter (Forward Boost Mode) Low-Side N-Channel MOSFET	network SWI and SW2 should be connected to minimize the inductive path from the IC pin to the Inductor BTST diodes should use a Schottky diode to minimize reverse recovery loss Capacitor needs to be placed close to the IC. For non-ideal layouts with EMI contraints, add an experimentally derived resistance to slow down the Q1 turn-on. Capacitor needs to be placed close to the IC. For non-ideal layouts with EMI contraints, add an experimentally derived resistance to slow down the Q1 turn-on. gate driver This is also the reverse buck mode synchronous High-Side MOSFET. For non-ideal layouts with EMI contraints, add an experimentally derived resistance to slow down the Q3 turn-on and turn-off. Do not add any pull down resistor from the gate to the source of Q3. gate driver This is also the reverse buck mode synchronous Low-Side MOSFET. For non-ideal layouts with EMI contraints, add an experimentally derived resistance to slow down the Q4 turn-on and turn-off. Do not add any pull down resistor from the gate to the source of Q3. gate driver Refer to section 8.2.1.2.1 ACUV/ACOV Input Voltage Operating Window Programming of the datasheet for choosing the correct resistor values. Tie ACOV to GND and ACUV to
HIDRV2	19	Required Required Required Recommended Required Recommended Recommended Required Recommended Recommended	D2,D3 C26 C12 R13 C18 R23 Q3 RHIDRV2 Q4 RLORV2	οΩ		15µН	Converter inductor BTST1/BTST2 Diode-OR Connected between DRV-SUP and PGND Converter bootstrap capacitor for Q1 High-Side N Channel MOSFET gate driver Bootstrap capacitor discharge current limiting resistor Converter bootstrap capacitor for Q4 High-Side N Channel MOSFET gate driver Bootstrap capacitor discharge current limiting resistor F Converter (Forward Boost Mode) High-Side N-Channel MOSFE Converter (Forward Boost Mode) High-Side N-Channel MOSFET Q3 High-Side MOSFET gate drive strength limiting resistor Converter (Forward Boost Mode) Low-Side N-Channel MOSFET Q4 Low-Side MOSFET gate drive strength limiting resistor Converter (Forward Boost Mode) Low-Side N-Channel MOSFET Q4 Low-Side MOSFET gate drive strength limiting resistor Converter (Forward Boost Mode) Low-Side N-Channel MOSFET Resistor divider from VAC to PGND to program the undervoltage	network SWI and SW2 should be connected to minimize the inductive path from the IC pin to the Inductor BTST diodes should use a Schottky diode to minimize reverse recovery loss Capacitor needs to be placed close to the IC. For non-ideal layouts with EMI contraints, add an experimentally derived resistance to slow down the Q1 turn-on. Capacitor needs to be placed close to the IC. For non-ideal layouts with EMI contraints, add an experimentally derived resistance to slow down the Q4 turn-on. Bate driver This is also the reverse buck mode synchronous High-Side MOSFET. For non-ideal layouts with EMI contraints, add an experimentally derived resistance to slow down the Q4 turn-on and turn-off. Do not add any pull down resistor from the gate to the source of Q3. Bate driver This is also the reverse buck mode synchronous Low-Side MOSFET. For non-ideal layouts with EMI contraints, add an experimentally derived resistance to slow down the Q4 turn-on and turn-off. Do not add any pull down resistor from the gate to the source of Q4. Bate driver Refer to section 8.2.1.2.1 ACUV/ACOV Input Voltage Operating Window Programming

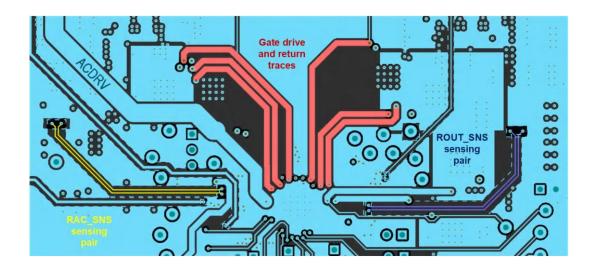
OUTPUT POWER- DESIGN CHECKLIST										
PIN NAME		REQUIREMENTS	Component	MIN	TYP	MAX	DESCRIPTION	COMMENTS AND RELEVANT EQUATIONS		
							Differential charge current sensing			
		Required	R24	ı	5mΩ	-	Input current sensing resistor. This is used for both input current limit regulation and for inductor current sensing of the average current mode control architecutre of the charger.	The battery sense resistor between SRP and SRN is fixed at 5m $\!\Omega$. Using a different value is not recommend.		
		Required	R22,R25		10Ω		Input current sense switching noise and common mode and noise			
CDD CDAI	4440	Required	C21,C23		100nF		filtering			
SRP,SRN	14,13	Required	C35		470nF		Differential mode noise filtering			
		Required	C57,C39, C38	80uF	160uF		bulk output capacitance	The caps should be a mixture of ceramic and electrolytic. The caps C57, C39 and C38 need to spread and balanced across the sense resistors. The caps don't need to be exact. The ratio between the caps on both sides of the sense resistor can be as great as 1 to 10.		
		Charge Current Limit setting								
IOUT	9	Optional	R67	0kΩ	5kΩ	100kΩ		Refer to section 7.3.4.2 Charge Current Programming (ICHG pin and ICHG_REG) of the datasheet for choosing the correct resistor values. This pin can be tied to GND if not used.		
							Output voltage			
VO_SNS	12	Required			-		Kelvin connect directly to the output voltage regulation point			

COMMUNICATION AND MISC INPUT/OUTPUT SIGNAL- DESIGN CHECKLIST								
PIN NAME		REQUIREMENTS	Component	MIN	TYP	MAX	DESCRIPTION	COMMENTS AND RELEVANT EQUATIONS
FIIVIVAIVIL		REQUIREIVIEN 13	Component	IVIIIN	ITP	IVIAA	I2C Open-drain communication input and output	
SCL,SDA	1,2	Optional	R53,R54		10kΩ		Pullup resistors for the open-drain I2C clock and data	The BQ25756 can operate in standalone by setting the charge current and voltage through external resistor on ICHG and FB, FBG pin. The 10kohm resistor is required if host control configuration is desired
							Open Drain Charge Status Output	
STAT1	4	0.11.	R50		2.21ΚΩ		STAT1 pull up resistor to 3.3V	This pin can be left floating if not used
		Optional	D4		-		STAT1 LED Indicator	This pin can be left hoating it not used
/PG or STAT3							Open Drain Active Low Power Good Indicator	
/PG UI STATS	6	0-4:	R52		2.21ΚΩ		/PG pull up resistor to 3.3V	This pin can be left floating if not used
		Optional	D6		-		/PG LED Indicator	This pin can be left floating if not used
/CE or STAT4	7						Charge Enable pin	
/CE OF STAT4	,	Required	R56		10kΩ		/CE pull up resistor to 3.3V	/CE must be pulled High or Low, do not leave floating.
							Battery temperature qualification voltage input	
TC		Optional	R34		*Ω			To air formation and he disable decide CAL TO an intendit to this case the anniator
TS	8	Optional	R65		*Ω		Resistor divider from REGN to TS to PGND	TS pin function can be disabled with EN_TS register bit. In this case, the resistor
		Optional	R41		103AT-2 10 kΩ			network does not need to be populated
/INT	3						Open Drain Interrupt Output	
,	,	Optional	R55		10kΩ		/INT pull up resistor to 3.3V	This pin can be left floating if not used
	36	Ориона						
							Switching Frequency and Synchronization Input	
FSW_SYNC		Required	R36	40kΩ	-	200kΩ	Used to set the nominal switching frequency	A clock can be provided on this pin in the range of 200 – 600kHz for switching frequency synchronization. R36 can also be calculated with the following formula $R_{FSW} = \frac{1}{10 \times \left(f_{SW} \times 5 \times 10^{-12} - 500 \times 10^{-9}\right)}$
							Mode programing	
MODE	17	Required	-		*Ω		Connect a resistor from this pin to GND for mode progaming	Refer to seciton 7.3.3.2 of the datasheet for MODE pin configuraiton
2012	22						GND	
PGND		Required	-		-		Tie this pin to PGND	
	5						NC PINS	
		Required	-		-		Leave this pin NC, do not tie to ground	
NC PINS	15	Required	-		-		Leave this pin NC, do not tie to ground	
	16	Required	-		-		Leave this pin NC, do not tie to ground	
	31	Required	-		-		Leave this pin NC, do not tie to ground	
2012	37						Power Ground Return	
PGND		Required	-		=		IC Ground Return	

BQ25758 Layout Guidelines


Proper layout of the components to minimize high frequency current path loops is important to prevent electrical and magnetic field radiation and high frequency resonant problems. Here is a PCB layout priority list for proper layout.

Components	Function	Impact	Guidelines
Buck high side FET, Buck low side FET, input capacitors	Buck input loop	High frequency noise, ripple, efficiency	This path forms a high frequency switching loop due to the pulsating current at the input of the buck. Place components on the same side of the board. Minimize loop area to reduce parasitic inductance. Maximize trace width to reduce parasitic resistance. Place input ceramic capacitors close to the switching FETs.
Boost low side FET, boost high side FET, output capacitors	Boost output loop	High frequency noise, ripple, efficiency	This path forms a high frequency switching loop due to the pulsating current at the output of the boost. Place components on the same side of the board. Minimize loop area to reduce parasitic inductance. Maximize trace width to reduce parasitic resistance. Place output ceramic capacitors close to the switching FETs.
Sense resistors, Switching FETS, inductor	Current path	Efficiency	The current path from input to output through the power stage and sense resistors have low impedance. Pay attention to via resistance if they are not on the same side. The number of vias can be estimated as 1 to 2-A per via for a 10-mil via with 1oz. copper thickness.
Switching FETs, inductor	Power stage	Thermal, efficiency	The switching FETs and inductor are the components with highest power loss. Allow enough copper area for heat dissipation. Multiple thermal vias can be used to connect more copper layers together and dissipate more heat.
DRV_SUP, BTST1, BTST2, capacitors	Switching FET gate drive	High frequency noise, parasitic ringing, gate drive integrity	The DRV_SUP capacitors are used to supply the power to drive the low side FETs. The BTST capacitors are used to drive the high side FETs. It is recommended to place the capacitors as close as possible to the IC


LODRV1, LODRV2	Low side gate drive	High frequency noise, parasitic ringing, gate drive integrity	LODRV1 and LODRV2 supplies the gate drive current to turn on the low side FETs. The return of LODRV1 and LODRV2 is PGND. As current take the path of least impedance, a ground plane close to the low side gate drive traces is recommended. Minimize gate drive length and aim for at least 20 mil gate drive trace width.
HIDRV1, HIDRV2, SW1 (pin trace), SW2 (pin trace)	High side gate drive	High frequency noise, parasitic ringing, gate drive integrity	HIDRV1 and HIDRV2 supplies the gate drive current to turn on the high side FETs. The return of HIDRV1 and HIDRV2 are SW1 and SW2, respectively. Route HIDRV1/SW1 and HIDRV2/SW2 pair next to each other to reduce gate drive parasitic inductance. Minimize gate drive length and aim for at least 20 mil gate drive trace width.
Current limit resistors, FSW_SYNC resistor	IC programmable settings	Regulation accuracy, Switching integrity	Pin voltage determines the setting for input current limit, output current limit and switching frequency. Ground noise on these could lead to inaccuracy. Minimize ground return from these resistors to the IC ground pin.
Input (ACP, CAN) and output (SRP, SRN) current sense	Current regulation	Regulation accuracy	Use Kelvin-sensing technique for input and output current sense resistors. Connect the current sense traces to the center of the pads, and run current sense traces as differential pairs, away from switching nodes.
Input (ACUV), and output (FB, VO_SNS) voltage sensing	Voltage sense and Regulation	Regulation accuracy	ACUV divider sets internal input voltage regulation in forward mode (V _{ACUV_DPM}). FB divider sets battery voltage regulation in forward mode (V _{FB_ACC}). Route the top of the divider point to the target regulation location Avoid routing close to high power switching nodes.
Bypass capacitors	Noise filter	Noise immunity	Place lowest value cap+B7:D12acitors closest to the IC

Layout Example:

Based on the above layout guidelines, the buck-boost PCB layout example top view is shown below including all the key power components.

For both input and output current sensing resistors, differential sensing and routing method are suggested and highlighted in the Image below. Use wide trace for gate drive traces, minimum 20 mil trace width. Connect all analog grounds to a dedicated low-impedance copper plane, which is tied to the power ground underneath the IC exposed pad.

