

Small chargers pack a powerful punch: combining buck-boost and USB Type C[™] Power Delivery for maximum power density

Agenda

- USB Type-C™ PD market introduction
- Design consideration of a full integrated buck-boost charger for USB-PD
 - High integration level to maximize power density and facilitate system design
 - Efficiency optimization
 - Seamless transition among boost, buck-boost and buck operating modes
 - NVDC power path management
 - Minimize battery quiescent current, ship mode and shutdown mode
 - Dual-input power mux driver to support two input sources
 - USB On-the-Go (OTG) mode and back up mode
- Overview of TI buck-boost charger product portfolio and reference design

USB Type-C PD market and applications

- · New generation of personal electronics and industrial applications are employing USB Type-C PD charging
- Up to 100W of power can be delivered implementing USB Type-C PD charging

Why USB Type-C PD charging?

- Before USB Type C:
 - Need multiple different adapters to charge different applications

- After USB Type C:
 - Single adapter could be used to charge different applications
 - Universal charging trend is growing very fast in the past couple years

USB power delivery (PD) over USB Type-C

Precedence	Mode of operation	Nominal voltage	Maximum current
Highest	USB PD	Up to 20 V	Up to 5 A
	USB Type-C current @ 3A	5 V	3 A
	USB Type-C current @ 1.5A	5 V	1.5 A
	USB BC1.2	5 V	Up to 1.5 A
	USB 3.1	5V	900 mA
Lowest	USB 2.0	5V	500 mA

What is USB Power Delivery (PD)?

- USB Power Delivery is a charging technology, which uses USB Type-C cables and connectors to deliver higher levels of power to your devices.
- USB PD adapter normally outputs 5 V and is compatible with USB 5 V adapter. It increases output voltage from 5 V to 9 V / 15 V / 20 V after handshake with charger to provide high voltage charging.

Overview of USB-PD system with buck-boost charger 1 cell

USB Type-C port

5V - 20V VBUS

CC1

CC2

DDSBU1

SBU2

System

4 MOSFETs switching mode buck-boost charger IC

2 cells

2~4 cells

4 cells

- Step up/down buck-boost, the Vin and Vout combination could be very flexible
- Wide input voltage 5 V ~ 20 V, to charge multi-cell battery 1S~4S
- Support up to 100 W power delivery, 5V/3A, 9V/3A, 15V/3A, 20V/3A, 20V/5A

Fully integrated buck-boost charger: BQ25790/2

BQ25790 – WCSP BQ25792 - QFN

5V charges 2S battery in boost mode

- Follow similar operation as a boost converter. Q2 always off and Q1 always on.
- In single converter switching cycle, only two MOSFETs Q3 and Q4 are switching.

15V charges 2S battery in buck mode

- Follow similar operation as a buck converter. Q3 always off and Q4 always on.
- In single converter switching cycle, only two MOSFETs Q1 and Q2 are switching.

8V charges 2S battery in buck-boost mode (traditional)

- All four MOSFETs are switching within a single switching cycle, higher switching loss than the buck or boost mode operation.
- Larger inductor current ripples than buck or boost operation, higher losses.

8V charges 2S battery in buck-boost mode (TI solution)

- The pure buck and boost mode are interleaving to achieve buck-boost operation.
- Equivalently, there are only two switching MOSFETs in one switching cycle.

Efficiency comparison

Traditional buck-boost operation

Different Vin to 8V battery with 2A ICHG

With high efficient buck-boost mode, there is no efficiency valley when Vin is changed

Seamless transition among different operating modes

- Keep VBAT=8V, sweep VBUS from 5V to 20V, charge is enabled with 1A current
- The operating modes transient from boost, to buck-boost, then to buck mode
- The charging current is always kept at 1A regardless of VBUS voltage

No Dead Zone

Buck-boost

Integrated BATFET for NVDC power path management

- System current prioritized over charge current and can be supplemented by battery
- Power up even with deeply discharged battery
- BATFET allows charge current to be accurately measured and terminated for longer battery life
 - Case 1: System tied directly to battery
 - Charge never terminates system pulls battery below recharge threshold. Sycan discharge the battery below recharge threshold causing battery to be repetitively recharged
 - Case 2: BATFET provides power path
 - Charge terminates while system is powered -> fewer recharge cycles

Minimize battery quiescent current, ship and shutdown mode

- Ship mode, 12uA I_{DDO}
- Shutdown mode, 600nA I_{DDO}

- The integrated BATFET provides only one-directional blocking
- SDRV to drive the external ship N-FET, cut off the leakage current from battery to system
- Ship FET is optional, provides design flexibility

Dual-input power Mux for sources selection

Dual-input application with 4 NFETs

Dual-input application with 2 NFETs

Single input application

- At POR, charger detects the NFETs to determine which configuration it would be
- The first connected input source V_{IN} is selected, and if two connected at the same time, defaults to input 1
- The host manages via I2C to swap between the two inputs
- When both inputs are present, if the selected input becomes invalid, the mux swaps the other source automatically

BQ25790 charging efficiency summary

Figure 1. 2s Battery Charge Efficiency vs. Charge Current

VBAT = 12V, Fsw = 1.5MHz with L1 = 1µH, PFM disabled

Figure 2. 3s Battery Charge Efficiency vs. Charge Current

Charger IC temperature at heavy load conditions

15 V_{BUS} charges 8 V_{BAT} with different current

The integrated solution can handle up to 45W charging power

BQ25790/92 features overview

Integrated USB Source Detections

D+/D- and ICO to set input maximum current limit upon adapter plug in

Flexible JEITA

Programmable temperature ranges, battery voltage and charge current

1s-4s Li-ion Autonomous charging

Configurable battery voltage to charge from 3.6V – 24V input for full temperature range spec (-40 to 125C)

16-bit ADC

High performance 16-bit Sigma Delta ADC integrated to monitor VBUS, IBUS, VBAT, IBAT, VSYS, TS, etc.

Power Path Management

Dedicated charge control while powering up system. Termination control extends battery life time

Ship mode and Shutdown Mode

0.6uA Shut down mode current enables longer shelf battery life for better user experience

USB On-the-Go

Boost up the battery voltage to the input port and provides regulated 2.8V – 22V output

Dual-Input Mux

Dual input power mux control to support priority based selection

Buck-boost charge controller family for applications >45W

Features

- Buck boost charger for up to 5 cell battery
 - Seamless transition among buck, buck-boost and boost modes
 - Unique buck-boost operation to achieve high Eff
- Wide input range from 3.5V to 26V
 - Input current setting up to 6.4A with 50mA step size
 - Max Power Tracking with input voltage and current regulation to optimize adapter output power
- USB OTG with adjustable output from 3V to 20.8V
 - 8mV VOTG step size compatible with USB-PD 3.0
 - IOTG regulation up to 6.4A with 50mA step size
- V_{MIN} Active Protection (VAP) to Prevent System Crash
- Programmable 800kHz/1.2MHz switching frequency
- Pass Through Mode for Efficiency/Thermal Improvement

Applications

- Ultrabook and 2-in-1 Tablet
- Handheld Terminal, Power Banks
- Industrial and Medical Equipment

Benefits

- OTG current regulation with uninterrupted OTG power source
- Instant-on with no battery or depleted battery
- Integrated ADC for voltage/current/power monitoring
- Battery supplements system when adapter is fully-loaded
- SMBus / I2C port for system optimization and status reporting
- Package: 32-pin QFN 4x4x0.75mm (RSN)

TI reference designs for PD charging solutions

- <u>TIDA 01515</u>: Dual port sink-source USB Type-C PD reference design with 1-4S buck-boost controller and a multi-cell gauge for battery monitoring currently in redesign to include BQ25713
- New version in development: BQ25731 + TPS25750D:
 Dual port sink-source USB Type-C PD 100 W reference design with 1-5S buck-boost controller and a multi-cell gauge for battery monitoring
- In development: BQ25792 + TPS25750D: Dual port sink-source USB Type-C PD 45 W reference design with 1-4S buck-boost controller

Resources

Switch-mode buck-boost battery chargers supporting USB Type-C PD	Flash and switched-cap chargers supporting USB Type-C PD	USB Type-C and PD Controller IC	USB Type-C™ and PD Short-to-VBUS protection IC
BQ25790, WCSP package	BQ25871	<u>TPS65988</u>	TPD6S300A
BQ25792, QFN package	BQ25970	<u>TPS25750</u>	

Training content:

- Technical article "Universal and fast charging a future trend for battery-powered applications"
- Technical article <u>"Maximize power density with buck-boost and USB Type C™ Power Delivery"</u>
- Video "What could you achieve with universal and fast charging?"
- White paper "USB Type-C and USB power delivery power path design considerations"
- USB Type-CTM & USB Power Delivery overview page https://www.ti.com/interface/usb/type-c-and-power-delivery/overview.html

