LED Drive (LM3409HV)

Figure 1 - LED Drive

Following data is used for the calculations:

1.	Switching Frequency (f _{SW})		= 1MHz.
2.	Input Voltage (V _{IN})		= 48V
3.	Maximum Input Voltage (V _{IN-MAX})		= 64.8V
4.	Output Voltage (Vo)		= 33.5V
5.	LED Rated Current (ILED)		= 250mA
6.	Inductor PP Current Ripple (Δi _{L-PP})		= 75 mA (30% of I _{LED})
7.	LED PP Current Ripple (Δi_{LED-PP}) I_{LED})	[Smaller the better]	= 12.5mA (5% of
8.	Input Voltage Ripple ($\Delta V_{\text{IN-PP}}$)		= 240mV
9.	Voltage at which LED Drive is turned on $(V_{\text{TURN-ON}})$		= 30.5V
10. Hysteresis (V _{HYS})			= 1.1V
11. Efficiency (η)			

- 12. Maximum Voltage to IADJ Pin (VADJ)
- 13. r_D (Internal resistive component)

= 1.24V

 $= 0.2\Omega$

Nominal Switching Frequency (fsw)

Assuming $C_{OFF} = 470p$;

$$R_{OFF} = \frac{-\left(1 - \frac{V_O}{\eta * V_{IN}}\right)}{(C_{OFF} + 20pF) * f_{SW} * \ln\left(1 - \frac{1.24V}{V_O}\right)} = 12.15k\Omega$$

Here the 20pF is a stray capacitance and it's generally present at this value in this circuit.

The closest 1% tolerance resistor for the calculated R_{OFF} is $12.1k\Omega$

Off time (toff);

$$t_{OFF} = -(C_{OFF} + 20pF) * R_{OFF} * \ln\left(1 - \frac{1.24V}{V_O}\right) = 224.5nS$$

$$f_{SW} = \frac{1 - \left(\frac{V_O}{\eta * V_{IN}}\right)}{t_{OFF}} = 1MHz$$

Hence the selected components from this step are;

$$R_{OFF} = 12.1kC$$

$$C_{OFF} = 470pF$$

Inductor Ripple Current (∆iL-PP)

Solve for L1;

$$L1 = \frac{V_O * t_{OFF}}{\Delta i_{I_{\text{L-RP}}}} = 100 \mu H$$

Closest standard inductor value is as same as the calculated Δi_{L-PP} value.

$$\Delta i_{L-PP} = \frac{V_O * t_{OFF}}{L1} = 75.2 mA$$

Hence the selected component from this step is;

$$L1 = 100 \mu H$$

Average LED Current (ILED)

Determine maximum current through the inductor (I_{L-MAX});

$$I_{L_{-MAX}} = I_{LED} + \frac{\Delta i_{L_{-PP}}}{2} = 287.6 mA$$

Hence;

$$R_{SNS} = \frac{V_{ADJ}}{5 * I_{L-MAX}} = 0.8623\Omega$$

The closest 1% tolerance resistor is 0.866Ω

$$I_{LED} = \frac{V_{ADJ}}{5 * R_{SNS}} = 0.2488A$$

Hence the selected component from this step is;

$$R_{SNS} = 0.866\Omega$$

Output Capacitance (Co)

Calculation on Z_c (Internal impedance component);

$$Z_C = \frac{r_D * \Delta i_{LED-PP}}{\Delta i_{L-PP} - \Delta i_{LED-PP}} = 0.3986\Omega$$

Minimum output capacitance (Co-MIN);

$$C_{O-MIN} = \frac{1}{2\Pi * f_{SW} * Z_C} = 399.26nF$$

Hence Co;

$$C_O = C_{O_{-MIN}} * 1.75 = 0.68 \mu F$$

Hence the selected standard capacitor is;

$$C_0 = 0.68 \mu F$$

Input Capacitance (CIN)

On time (ton);

$$t_{ON} = \frac{1}{f_{SW}} - t_{OFF} = 775.46nS$$

Minimum input capacitance (C_{IN-MIN});

$$C_{IN-MIN} = \frac{I_{LED} * t_{ON}}{\Delta V_{IN-PP}} = 803.79nF$$

Hence C_{In};

$$C_{IN} = C_{IN-MIN} * 2 = 1.6076 \mu F$$

Hence the selected standard capacitor is;

$$C_{\text{IN}} = 1.5 \mu F$$