Selection. Service. Support.

www.onsemi.com

ON Semiconductor®

The Dark Side of Flyback Converters

Presented by Christophe Basso

Senior Scientist IEEE Senior Member

1 • Chris Basso – APEC 2011

Course Agenda

- □ The Flyback Converter
- □ The Parasitic Elements
- □ How These Parasitics Affect your Design?
- Current-Mode is the Most Popular Scheme
- □ Fixed or Variable Frequency?
- □ More Power than Needed
- □ The Frequency Response
- Compensating With the TL431

What is the Subject?

- □ There has been numerous seminars on Flyback converters
- □ Seminars are usually highly theoretical link to the market?
- □ Industrial requirements usually not covered
- □ This 3-hour seminar will shed lights on less covered topics:
- Why the converter delivers more power than expected? Solutions?
- ✤ Books talk about compensation with op amps, I have a TL431!
- The origin of the Right-Half Plane Zero, how do I deal with it?
- Quasi-resonant converters presence increases, how do they work?
- ➤ In a 3-hour course, we are just scratching the surface...!

The Flyback, a Popular Structure

- □ The flyback converter is widely used in consumer products
- ✓ Ease of design, low-cost, well-known structure
- Poor EMI signature, bulky transformer, practical up to 150 W

An Isolated Buck-Boost

□ The flyback converter is derived from the buck-boost cell

The addition of a transformer brings:

- Up or down scale V_{in}
- Isolation
- Polarity change
- More than 1 output

The Turn-on Event

□ The current increases in the inductor in relationship to V_{in} and L_p □ The output capacitor supplies the load on its own

Simplified, no leakage

Applying Volt-Second Balance, CCM

 \Box The power switch turns off: *D* conducts, V_{out} "flies" back

Applying Volt-Second Balance, DCM

 \Box In DCM, when L_p is fully depleted D opens: V_{out} reflection is lost

Flyback, Typical Waveforms

Below is a simple flyback converter, without parasitics

□ It will run open loop for simplicity, $V_{out} \approx 8$ V

No parasitics

Flyback, Typical Waveforms, CCM

CCM flyback – no parasitics

ON

Flyback, Typical Waveforms, DCM

DCM flyback – no parasitics

ON

ON Semiconductor⁵

Energy Transfer in CCM and DCM

 \Box The primary inductance, L_p , stores and releases energy

$$\begin{split} E_{L_{p},valley} &= \frac{1}{2} L_{p} I_{valley}^{2} & \text{Initially stored energy} \\ E_{L_{p},peak} &= \frac{1}{2} L_{p} I_{peak}^{2} & \text{Stored energy at } t_{on} \\ E_{L_{p},trans} &= \frac{1}{2} L_{p} I_{peak}^{2} - \frac{1}{2} L_{p} I_{valley}^{2} = \frac{1}{2} L_{p} \left(I_{peak}^{2} - I_{valley}^{2} \right) & \text{Transmitted energy at } T_{sw} \end{split}$$

□ Power (W) is energy (J) averaged over time (s):

Eta, the efficiency

$$P_{out} = \frac{1}{2} \left(I_{peak}^{2} - I_{valley}^{2} \right) L_{p} F_{sv} \eta \quad \text{CCM}$$

$$P_{out} = \frac{1}{2} I_{peak}^{2} L_{p} F_{sw} \eta \quad \text{DCM, } I_{valley} = 0$$

12 • Chris Basso – APEC 2011

Course Agenda

□ The Flyback Converter

□ The Parasitic Elements

□ How These Parasitics Affect your Design?

- Current-Mode is the Most Popular Scheme
- □ Fixed or Variable Frequency?
- □ More Power than Needed
- □ The Frequency Response
- Compensating With the TL431

Considering Parasitic Elements

□ The transformer and the MOSFET include parasitics

With parasitics

Considering Parasitic Elements, CCM

CCM mode - with parasitics

ON

15 • Chris Basso – APEC 2011

ON Semiconductor⁵

Considering Parasitic Elements, DCM

DCM mode - with parasitics

ON

ON Semiconductor⁵

Who Are the Stray Elements?

□ The study of the drain node reveals a *LC* network

The MOSFET C_{OSS} is a Non-Linear Device

□ The capacitor value changes with its bias voltage

□ Since bias affects the capacitor value:

As the Voltage Decreases, Coss Value Changes

□ The brutal discharge generates switching losses

☐ The lost energy is smaller than with the non-linear variation!

Using the Raw C_{oss} is an ... Overkill

□ Re-compute the capacitor from the MOSFET data-sheet

□ The classical equation gives:

$$W = \frac{1}{2}C_{OSS}V_{DS}^{2} = 0.5 \times 400 \,p \times 100^{2} = 2\,\mu\text{J} \text{ or } 200 \text{ mW} @ 100 \text{ kHz}$$

□ The updated equation gives:

Overkill

 $W = \frac{2}{3} V_{DS}^{3/2} C_{D0} \sqrt{V_0} = \frac{2}{3} \times 100^{3/2} \times 400 \, p \times \sqrt{10} = 843 \, \text{nJ}$

or 84 mW @ 100 kHz = 58% reduction

The Leakage Inductance

□ The coupling in a transformer is not perfect

□ Some induction lines couple in the air: leakage flux

An Equivalent Transformer Model

□ For a two-winding transformer, the model is simple:

- ✓ Two leakage inductors
- ✓ One magnetizing inductor

□ This is commonly known as the "PI" model

The Transformer Scales the Primary Current

□ In a perfect transformer, we have:

□ The turns ratio is usually normalized to the primary

$$N_{p}: N_{s} \xrightarrow{\text{Divide by } N_{p}} \frac{N_{p}}{N_{p}}: \frac{N_{s}}{N_{p}} \longrightarrow 1: N$$

$$N_{p} = 100$$

$$N_{s} = 25 \xrightarrow{1:0.25} 1: 0.25 \xrightarrow{1} 250 \text{m}$$

23 • Chris Basso – APEC 2011

The Leakage Term also Stores Energy

 \Box At turn-on, the primary current flows in both l_{leak} and L_p

 \Box During the on-time, both L_p and l_{leak} store energy

Where does the Current Flow?

 \Box At turn-off, the energy stored in L_p is dumped in the output cap.

□ The leakage inductor current fills up the drain lump capacitor

Watch out for the Maximum Excursion!

 \Box As the diode conducts, V_{out} reflects over L_p

□ The voltage on the drain increases dangerously!

We Need to Clamp that Voltage

- \Box MOSFETs have a voltage limit they can fly up to: BV_{DSS}
- A clamping circuit has been installed to respect a margin

Resetting the Leakage Inductance

 \Box Because of the clamp action, a voltage appears across l_{leak}

□ This voltage forces a reset of the leakage inductance

Do we Need a Quick Reset?

 \Box When current flows in l_{leak} , it is diverted from the secondary

□ The leakage current delays the occurrence of the sec. current

*l*_{*leak*} Delays the Secondary Current

The leakage inductor reduces the peak secondary current

□ The "stolen" energy is dissipated in heat in the clamping network

Less energy is transmitted to the secondary side – efficiency

Suffers 30 • Chris Basso – APEC 2011

ΠN

A Reduced Secondary-Side Current

31 • Chris Basso – APEC 2011

Typical Example Simulation Results

ON

The Clamp Circuit Overshoots

□ The clamp diode forward transit time delays the clamping action

□ This spike can be lethal to the power MOSFET – include margin!

The Primary Inductor also Rings in DCM

Course Agenda

□ The Flyback Converter

□ The Parasitic Elements

□ How These Parasitics Affect your Design?

Current-Mode is the Most Popular Scheme

□ Fixed or Variable Frequency?

□ More Power than Needed

□ The Frequency Response

Compensating With the TL431

How these Parasitics Affect your Design?

The leakage inductor induces a large spike at turn-off
 This voltage excursion must be kept under control

The lump capacitor on the drain brings switching losses
 Is there a way to switch on again when discharged?

Protecting the Power MOSFET

A vertical MOSFET features a buried parasitic NPN transistor
 The collector-base junction of this transistor forms the body-diode
 This « diode » can accept to avalanche in certain conditions
 Do NOT use this diode as a Transient Voltage Suppressor!

✓ Adopt a safety coefficient k_D when chosing the maximum $V_{DS}(t)$ ✓ 15% derating is usually selected

Inclusion of a Safety Margin

 \Box The voltage on the drain swings up to V_{clamp}

□ Capture this waveform in worst-case conditions

Do not Reflect too Much Voltage

□ The reflected voltage affects the power dissipation in the clamp

□ If V_{clamp} is too close to V_r , dissipation occurs → $k_c = 1.3$ to 2

Compute the Transformer Turns Ratio

□ The turns ratio affects the reflected voltage...

$$V_{clamp}k_{c} \geq \frac{\left(V_{out} + V_{f}\right)}{N} \quad \text{min} \quad N \geq \frac{k_{c}\left(V_{out} + V_{f}\right)}{V_{clamp}}$$

□ But also the Peak Inverse Voltage of the secondary diode

□ Always check the margins are not violated in any operating modes

Select the Clamp Passive Elements

□ The clamp resistor depends on the maximum peak current

□ Watch for the peak current overshoot in fault!

42 • Chris Basso – APEC 2011

The Leakage Inductor Rings

□ This ringing can be of high frequency and is radiated-EMI rich

It can also forward-bias the MOSFET body diode
 Damp it!

43 • Chris Basso – APEC 2011

Fighting Parasitic Ringing – part I

□ The installed resistor reduces the ringing on the drain

$$Q = \frac{\omega_0 l_{leak}}{R_{damp}} = 1 \qquad \qquad Z_{l_{leak}} @ f_0 = R_{damp}$$

Fighting Parasitic Ringing – part II

□ If the series resistor is not enough, install a damper

- 1. Measure the ringing: f_0
- 2. Evaluate leakage impedance at f_0

$$Z_{l_{leak}} = 2\pi l_{leak} f_0$$

3. Make
$$R_{damp} = Z_{l_{leak}}$$

4. Try $C_{damp} = \frac{1}{2\pi f_0 R}$
5. Tweak for power dissipation

Ray Ridley – Snubber design procedure

Effects Brought by the Clamping Action

What Diode to Select for the Clamp?

□ A fast diode is a must: MUR160 is good fit

Can a simple 1N4007 be used in a *RCD* clamping network?
 The answer is yes for <u>low power</u> applications (below 20 W)
 The long recovery time naturally damps the leakage inductor

Be Sure the Clamp Level does not Runaway

Watch-out for clamp voltage variations, at start-up or in short-circuit
 The main problem comes from the propagation delay!

Check the Clamp Voltage Variations

ON

A Zener or TVS to Hard Clamp the Voltage

□ TVS do not suffer from voltage runaways in fault conditions

The TVS improves the efficiency in standby but degrades EMI
 It costs around 5 cents...

Course Agenda

- □ The Flyback Converter
- □ The Parasitic Elements
- □ How These Parasitics Affect your Design?

Current-Mode is the Most Popular Scheme

- □ Fixed or Variable Frequency?
- □ More Power than Needed
- □ The Frequency Response
- Compensating With the TL431

What Control Scheme?

Two control scheme coexist, current-mode and voltage-mode

Voltage-Mode Control

Voltage mode uses a ramp to generate the duty-ratio
 The error voltage directly adjusts the duty-ratio

Voltage-Mode Control

PROs

Does not need the inductor current information
 Can go to very small duty-ratio
 CCM operation without sub-harmonic instabilities
 No need for slope compensation, current limit unaffected

CONs

□ No inherent input line feedforward (weak audio susceptibility)

Cannot use small bulk capacitor, bad ripple rejection 2nd-order system in CCM: mode transition can be a problem

Limited integrated circuit offer

Peak-Current-Mode Control

Peak-Current-Mode Control

PROs

Inherent pulse-by-pulse current limitation

□ Natural input line rejection

- $\hfill\square$ Mode transition DCM to CCM is easy
- > Converter remains a 1st-order system at low frequency
- Given Widest offer on the market: a really popular technique!

CONs

Leading Edge Blanking limits the minimum duty-ratio
 Requires slope compensation against sub-harmonic oscillations

Additionnal ramp affects the available maximum peak current

Current sense can sometimes be a problem (floating Sense)-APEC 2011

A Dirty Inductor Current Signal

□ The inductor current is sensed with a resistor, a transformer...

□ This information is affected by parasitics: false tripping

The LEB Cleanses the Signal

□ A circuit blinds the controller at turn-on for a small time (\approx 250 ns)

□ It conveys the signal afterwards: Leading Edge Blanking

It Limits the Minimum Duty-Ratio

During the LEB duration, the controller is completely blind!

If the Primary Inductor is too Low...

60 • Chris Basso – APEC 2011

The Primary Current Runs out of Control

□ The current current climbs cycle by cycle until smoke appears!

Sub-Harmonic Oscillations

- \Box Ac analysis shows a first-order system at $f_c << F_{sw}/2$
- > No *LC* peaking anymore as in CCM voltage mode
- > But a subharmonic peaking at $F_{sw}/2$ now appears

62 • Chris Basso – APEC 2011

Instability Depends on Duty-Ratio

□ The condition for instability is: CCM operation + duty-ratio > 50%

Instability Depends on Duty-Ratio

□ With a duty-ratio below 50%, perturbation naturally dies out ...

The Cure is in the Ramp

A Model to Simulate a Flyback Converter

□ A SPICE model can predict subharmonic instabilities

Simulation Results of the CCM Flyback

As ramp is injected, the double-pole Q is damped
Injecting more ramp turns the converter into voltage-mode

67 • Chris Basso – APEC 2011

Modern Circuits Include Slope Compensation

□ A simple resistor in series with current sense resistor does the job

Course Agenda

- □ The Flyback Converter
- □ The Parasitic Elements
- □ How These Parasitics Affect your Design?
- Current-Mode is the Most Popular Scheme
- □ Fixed or Variable Frequency?
- □ More Power than Needed
- □ The Frequency Response
- Compensating With the TL431

Modulation Strategies

□ The most popular modulation strategy is trailing-edge

Leading-edge modulation often appears in post-

Fixed Frequency Operation

The vast majority of converters use fixed-frequency operation
 Switching losses depend on frequency: high frequency, high losses!

- > Capacitive losses are a brake to efficiency improvement
- > CCM operation induces high losses on the secondary diode
- Potential shoot-trough hampers synchronous rectification
 The Right Half-Plane Zero severely limits the available

The Right-Half-Plane Zero

 \Box In a CCM flyback, I_{out} is delivered during the off-time:

□ If *D* <u>brutally</u> increases, *D'* reduces and I_{out} drops! □ What matters is the inductor current slew-rate $\longrightarrow \frac{d\langle V_L \rangle(t)}{dt}$

Processing the Output Power Demand

 \Box If $I_L(t)$ can rapidly change, I_{out} increases when D goes up

73 • Chris Basso – APEC 2011

Failing to Increase the Current in Time

 \Box If $I_L(t)$ is limited because of a big L_p , I_{out} drops when D increases

ΠN

The RHPZ is a Positive Root

□ Small-signal equations can help us to formalize it

□ Voltage mode or current mode, the RHPZ remains the same

Simulating the RHPZ

To limit the effects of the RHPZ, limit the duty ratio slew-rate
 Choose a crossover frequency equal to 20-30% of RHPZ position

A simple RHPZ can be easily simulated:

A Zero Producing a Phase Lag

□ With a RHPZ we have a boost in gain but a lag in phase!

ΠN

Is There a RHPZ in DCM?

□ A RHPZ also exists in DCM boost, buck-boost converters...

 \Box When D_1 increases, $[D_1, D_2]$ stays constant but D_3 shrinks

Is There a RHPZ in DCM?

 \Box The triangle is simply shifted to the right by \hat{d}_1

□ The refueling time of the capacitor is delayed and a drop occurs

Is There a RHPZ in DCM?

 \Box If *D* increases, the diode current is delayed by \hat{d}_1

ON

A Large-Signal Model is Available

□ Averaged models can predict the DCM RHPZ

The Model Predicts it!

Averaged models can predict the DCM RHPZ

Going to Variable Frequency

More converters are using variable-frequency operation
 This is known as Quasi-Square Wave Resonant mode: QR
 Valley switching ensures extremely low capacitive losses
 DCM operation saves losses on the secondary diode

- Easier synchronous rectification
- > The Right Half-Plane Zero is pushed to high frequencies

What is the Principle of Operation?

The drain-source signal is made of peaks and valleys
 A valley presence means:

> The drain is at a minimum level, capacitors are naturally discharged

> The converter is operating in the discontinuous conduction

A QR Circuit Does not Need a Clock

□ The system is a self-oscillating current-mode converter

A Winding is Used to Detect Core Reset

When the flux returns to zero, the aux. voltage drops
 Discontinuous Mode is always maintained

The Frequency Linearly Changes

The Excursion Can be Quite Large

□ In heavy load low-line conditions, F_{sw} decreases □ In light-load and high-line operations, F_{sw} can go very high

□ EMI and switching losses are at stake as F_{sw} goes up □ Standby power obviously suffers from this condition

In a Bounded System Discrete Jumps

As the load gets lighter, the frequency goes to the sky
 Modern controllers fold the frequency back with a VCO
 Problem, the only places to re-start are valleys: discrete jumps

New Controllers Lock in the Valleys

To prevent the noise, the NCP1380 locks the valley
 The current is allowed to move within a certain limit
 When it exceeds this limit, the controller selects a new valley
 As the load gets lighter, a VCO takes over and reduce F_{sw}

NCP1379/1380

Course Agenda

- □ The Flyback Converter
- □ The Parasitic Elements
- □ How These Parasitics Affect your Design?
- Current-Mode is the Most Popular Scheme
- □ Fixed or Variable Frequency?
- □ More Power than Needed
- □ The Frequency Response
- Compensating With the TL431

What is The Problem?

□ A converter is designed to operate on wide mains – 85 to 265 V rms

□ It can deliver a maximum power before protection trips

> The maximum power delivered at high line is larger than that at low line

Increase load until protection trip.

85 V rms to 265 V rms

What Does the Standard Say?

□ There is a test called Limited Power Source, LPS

□ The maximum power the converter can deliver must be clamped

If clamped, the manufacturer can ι	use inferior fire	proofing
------------------------------------	-------------------	----------

materials Output Voltage $V_{out}(V)$		Output Current I (A)	Apparent Power $S(VA)$
V_{rms}	V_{dc}	out (II)	
≤ 20	≤20	≤8	$\leq 5 \cdot V_{out}$
$20 < V_{out} \le 30$	$20 \! < \! V_{out} \! \le \! 30$	≤8	≤100
-	$20 \! < \! V_{out} \leq \! 60$	$\leq 150/V_{out}$	≤100

19-V adapter,
$$I_{out, max} = 5 \text{ A}$$

Why the Power Runs Away in a Flyback?

The inductor current slope increases at high line.

The controller takes time to react to an overcurrent situation.

The inductor current keeps growing until the MOSFET turns off.

□ The overshoot is larger at higher slop⁴eiS^{hris}(²→³if f^C ²V¹_{in})

The Effect in a DCM Converter

A flyback converter operated in DCM obeys the formula:

The Power Increases at High Line

 $\Box L_p = 250 \,\mu\text{H}, V_{sense} = 1 \,\text{V}, t_{prop} = 350 \,\text{ns}, V_{in,LL} = 120, \text{V}_{in,HL} = 370 \,\text{V}, R_{sense} = 0.33 \,\Omega, F_{sw} = 65 \,\text{kHz}$

□ In this example, the converter stays DCM over the whole input range.

96 • Chris Basso – APEC 2011

How to Compensate the Runaway?

How do we compensate this excess of power?
 we reduce the maximum peak current at high line

□ How to calculate the compensated high-line current? ★ Equate low-line power with high-line power and solve for I_{peak} $P_{out, max, HL} = \frac{1}{2} L_p I_{peak, max, HL}^2 F_{sw} \eta_{HL}$ → Solve for I_{peak}

Reducing the Peak Current

□ The final inductor peak current must equal:

$$I_{peak, \max, HL} = \sqrt{\frac{2P_{out, \max, LL}}{L_p F_{sw} \eta_{HL}}}$$

□ You must subtract the prop. delay to obtain the controller setpoint

$$\frac{V_{sense}}{R_{sense}} = I_{peak, \max, HL} - \frac{V_{in, HL}}{L_p} t_{prop}$$

□ The amplitude of the sensed voltage must reduce by:

$$\Delta V = V_{sense} - \left(I_{peak, max, HL} - \frac{V_{in, HL}}{L_p}t_{prop}\right)R_{sense}$$

98 • Chris Basso – APEC 2011

For What Final Result?

□ Thanks to the OPP, the power stays under control

The CCM Case is a Different Picture

□ In DCM, the valley current is zero, the stored energy is:

$$E = \frac{1}{2} L_p I_{peak, \max}^2$$

> The peak current runaway, alone, affects the transmitted power

□ In CCM, the valley current changes the formula:

$$E = \frac{1}{2} L_p \left(I_{peak, \max}^2 - I_{valley}^2 \right)$$

$$I(L_p)$$

$$I_{peak, \max}$$

$$I_{valley}$$

The Converter Changes its Operating Mode

In fault mode, the converter operates in deep CCM at low line
 As the input voltage increases, the valley current decreases

Computing the Transmitted Power in CCM

\Box First, we write the t_{on} and t_{off} equations in CCM

102 • Chris Basso – APEC 2011

Solving for the Valley Current

□ By combining the 3 equations, we have:

$$t_{on} = \frac{L_p \left(I_{peak} - I_{valley} \right)}{V_{in}} \qquad t_{off} = T_{sw} - t_{on} = T_{sw} - \frac{L_p \left(I_{peak} - I_{valley} \right)}{V_{in}}$$

D Replace
$$t_{off}$$
 in
(2):
 $I_{valley} = I_{peak} - \frac{(V_f + V_{out})(I_{valley}L_p - I_{peak}L_p + T_{sw}V_{in})}{L_pNV_{in}}$

$$\Box \text{ Solve for } I_{valley}:$$

$$I_{valley} = \boxed{I_{peak}} - \frac{T_{sw}V_{in}\left(V_f + V_{out}\right)}{L_p\left(V_f + V_{out} + NV_{in}\right)} \xrightarrow{\Delta I_L = I_{peak} - I_{valley}} \Delta I_L = \frac{T_{sw}V_{in}\left(V_f + V_{out}\right)}{L_p\left(V_f + V_{out} + NV_{in}\right)}$$

$$Inductor ripple current$$

$$Inductor ripple current$$

Identifying the Operating Mode

 \Box Having the ripple on hand, we can confirm the mode: $_{\Lambda I}$

Evaluating the Power in CCM

 $\Box L_p = 600 \,\mu\text{H}, \, V_{sense} = 1 \,\text{V}, \, t_{prop} = 350 \,\text{ns}, \, V_{in,LL} = 120, \, V_{in,HL} = 370 \,\text{V}, \, R_{sense} = 0.33 \,\Omega, \, F_{sw} = 65 \,\text{kHz}$

Reducing the Peak Current at High Line

□ If we lower the peak at high line, the ripple remains the same $\int_{I_{i}} f(x) dx$

□ We can re-write the flyback power formula to include the ripple

$$P_{\max,HL} = \frac{1}{2} L_p \left(I_{peak,\max,HL}^2 - \left(I_{peak,\max,HL} - \Delta I_{L,HL} \right)^2 \right) F_{sw} \eta_{HL}$$

106 • Chris Basso – APEC 2011

We Want to Limit the High-Line Power

 \Box We can force the high-line power to match that of low line $1 + (1 + 2)^2 + (1 + 4)^2$

$$P_{\max,LL} = \frac{1}{2} L_p \left(I_{peak,\max,HL}^2 - \left(I_{peak,\max,HL} - \Delta I_{L,HL} \right)^2 \right) F_{sw} \eta_{HL}$$

□ From there, we can extract the compensated peak current value

$$I_{peak,max,HL} = \frac{F_{sw}L_p\eta_{HL}\Delta I_{L,HL}^2 + 2P_{max,LL}}{2F_{sw}L_p\eta_{HL}\Delta I_{L,HL}}$$

 \Box As this is the new setpoint, prop. delay contribution must be removed

$$\Delta V = V_{sense} - \left(I_{peak, max, HL} - \frac{V_{in, HL}}{L_p}t_{prop}\right)R_{sense}$$

□ After compensation, the peak current setpoint at high line becomes V = AV = V

$$I_{peak,max,HL} = \frac{V_{sense} - \Delta V}{R_{sense}} + \frac{V_{in,HL}}{L_p} t_{prop}$$

What is the Final Result?

□ The high line power now respects the LPS limit

What Practical Solutions?

□ There are several possibilities to reduce the peak ¶ Offset the current sense signal in the CS pin:

2. Reduce the peak limit as V_{in} increases

- easy to do
- affects the no-load stand-by power
- affects light-load efficiency
- implemented at IC level
- does not affect the noload stand-by power
- does not affect lightload efficiency

Build an Offset on the CS Pin

□ This offset must be proportional to the input voltage

Both options degrade light-load operation because of the CS offset

OPP Implementation in the NCP1250

□ The NCP1250 implement a non-dissipative OPP

Checking the Results

□ Let us check on a real 19–V adapter built with the NCP1250 $L_p = 600 \,\mu\text{H}, V_{sense} = 1 \,\text{V}, t_{prop} = 350 \,\text{ns}, V_{in,LL} = 120, V_{in,HL} = 370 \,\text{V}$

 $R_{sense} = 0.33 \ \Omega, F_{sw} = 65 \text{ kHz}, V_{clamp} = 90 \text{ V}, l_l = 2.2 \ \mu\text{H}, N = 0.25$

□ Without any OPP compensation, we have:

 $I_{out, \max, LL} = 4.1 \text{ A}$ $I_{out, \max, HL} = 5.7 \text{ A}$

□ Once OPP has been implemented:

 $P_{out,LL} \approx 72 \text{ W so } I_{out,LL} = 3.8 \text{ A}$ $P_{out,HL} \approx 78 \text{ W so } I_{out,HL} = 4.1 \text{ A}$

Course Agenda

- □ The Flyback Converter
- □ The Parasitic Elements
- □ How These Parasitics Affect your Design?
- Current-Mode is the Most Popular Scheme
- □ Fixed or Variable Frequency?
- □ More Power than Needed
- □ The Frequency Response
- Compensating With the TL431

Small-Signal Analysis

Loop instability is a common issue in production
Due to time pressure, designers often use trial and error

no indication on design margins

> offenders are ignored, robustness is at stake

Understand and counteract their variations when building G(s)

There are Two Options

□ Analytical analysis of the power stage:

 \checkmark best to see where the offenders are hidden (ESR, opto pole etc.)

✓ equations are complex but litterature abounds

- transfer function are for DCM or CCM
- difficult to predict transient response

□ SPICE models:

- ✓ easy-to-implement averaged models
- \checkmark can work in ac or transient mode
- \checkmark easily transition between CCM and DCM
- Ido not explicitly disclose the position of poles and zeros

A measurement on the bench is mandatory, whatever you choose!

Analytical Analysis

You must first characterize the "plant" transfer function
> what are your power stage ac characteristics?

$$H(s) = \frac{V_{out}(s)}{v_{c}(s)}$$

Current-mode control

$$H(s) = \frac{V_{out}(s)}{d(s)}$$

Voltage-mode control

How do we Stabilize a Converter?

□ We need a high gain at dc for a low static error

- □ We want a sufficiently high crossover frequency for response speed
- > Shape the compensator G(s) to build phase and gain margins!

How much phase margin to chose?

□ a *Q* factor of 0.5 (critical response) implies a φ_m of 76° □ a 45° φ_m corresponds to a *Q* of 1.2: oscillatory response!

□ phase margin depends on the needed response: fast, no overshoot... □ good practice is to shoot for 60° and make sure φ_m always > 45°

What Compensator Types do we Need?

□ There are basically 3 compensator types:

> type 1, 1 pole at the origin, no phase boost

- > type 2, 1 pole at the origin, 1 zero, 1 pole. Phase boost up to 90°
- > type 3, 1 pole at the origin, 1 zero pair, 1 pole pair. Boost up to 180°

□ First, check the operating mode, CCM or DCM?

$$L_{p,crit} = \frac{R_{load}}{2F_{sw}N^2} \left(\frac{V_{in}}{V_{in} + \frac{V_{out}}{N}}\right)^2 \quad L_p > L_{p,crit} ? \text{Yes, CCM else DCM}$$

□ Assume CCM, compute the duty- $D = \frac{V_{out}}{V_{out} + NV_{in}}$

Compute
$$M$$
 and $\dot{M} = \frac{V_{out}}{NV_{in}} \tau_L = \frac{2L_p N^2}{R_{load} T_{sw}}$

□ Evaluate the dc gain and poles/zeros positions:

$$G_{0} = \frac{R_{load}}{R_{sense}G_{FB}N} \frac{1}{\frac{(1-D)^{2}}{\tau_{L}} + 2M + 1}$$

 \Box Compute the poles/zeros positions:

$$f_{z_1} = \frac{1}{2\pi R_{ESR} C_{out}} \qquad f_{z_2} = \frac{(1-D)^2 R_{load}}{2\pi D L_p N^2} \qquad f_{p_1} = \frac{\frac{(1-D)}{\tau_L} + 1 + D}{2\pi R_{load} C_{out}}$$

 \Box Check the quality coefficient at $F_{sw}/2$

□ Apply to formula to plot the ac response:

□ Extract the magnitude and the argument definitions

□ Plot them with Mathcad[®] for instance.

□ Extract the information at the selected crossover frequency

Low line, high power

ON Semiconductor[®]

□ The compensation strategy is the following:

- compensate the gain loss at f_c so the $\mathfrak{O}(3kHz) = +16.3 dB$
- evaluate the boost in phase at f_c to get phase 70° margin:

Boost = PM - argH(
$$f_c$$
) - 90 = 3.15°

Boost = 0 select type 1 – origin pole

- → Boost < 90° select type 2 origin pole, 1 pole, 1 zero
- \Box *k*-factor can be used to place the pole and the zero

$$k = \tan\left(\frac{boost}{2} + 45\right) \approx 1 \longrightarrow \text{ poles and zeros are coincident}$$
$$f_{pk1} = kf_c = 1 \times 3k = 3 \text{ kHz} \qquad f_{zk1} = \frac{f_c}{k} = \frac{3k}{1} = 3 \text{ kHz}$$

□ Plot the compensator transfer function

 \Box Plot the loop gain transfer function G(s)H(s) and check the margi

 \Box Sweep ESR, C_{out} , R_{load} and verify the results

Low line, high power

□ In case the converter transitions to DCM, update the equation

> Yes, analytical analysis is long and tedious.

> But, it teaches where the threats are and how to deal with!

Variable-Frequency Current-Mode

Observing the waveforms helps us to derive an average mode

Variable-Frequency Current-Mode

Linearization is needed to get a small-signal model
Implement this small-signal model in a flyback configuration

http://cbasso.pagesperso-orange.fr/Spice.htm

Variable-Frequency Current-Mode

Derive the transfer function and isolate poles and zeros

Use a SPICE Model to Stabilize the Converter

Unveil the Transfer Function in a Second

Course Agenda

- □ The Flyback Converter
- □ The Parasitic Elements
- □ How These Parasitics Affect your Design?
- Current-Mode is the Most Popular Scheme
- □ Fixed or Variable Frequency?
- □ More Power than Needed
- □ The Frequency Response
- **Compensating With the TL431**

How is regulation performed?

□ Text books only describe op amps in compensators...

□ The market reality is different: the TL431 rules!

The TL431 Programmable Zener

The TL431 is the most popular choice in nowadays designs
It associates an open-collector op amp and a reference voltage
The internal circuitry is self-supplied from the cathode current
When the R node exceeds 2.5 V, it sinks current from its cathode

□ The TL431 is a shunt regulator

A Rabbit and a (French) Snail...

□ The TL431 lends itself very well to optocoupler control

Understanding the Fast Lane Drawback

□ This LED resistor is a design limiting factor in low output voltages:

$$R_{LED,\max} \leq \frac{V_{out} - V_f - V_{TL431,\min}}{V_{dd} - V_{CE,sat} + I_{bias} \text{CTR}_{\min} R_{pullup}} R_{pullup} \text{CTR}_{\min}$$

 \Box When the capacitor C_1 is a short-circuit, R_{LED} fixes the fast lane gain

The Static Gain Limit

Let us assume the following design:

 \Box In designs where R_{LED} fixes the gain, G_0 cannot be below 17 dB

■ You cannot "amplify" by less than 17 dB

Forbidden Compensation Areas

□ You must identify the areas where compensation is possible

Injecting Bias Current

Make sure enough current always biases the TL431
If not, open-loop gain suffers – a 10-dB difference can be observed!

Small-Signal Analysis

The TL431 is an open-collector op amp with a reference voltage
Neglecting the LED dynamic resistance, we have:

Creating a High-Frequency Pole

□ In the previous equation we have:

✓ a static gain
$$G_0 = \text{CTR} \frac{R_{pullup}}{R_{LED}}$$

✓ a 0-dB origin pole frequency $\omega_{p_0} = \frac{1}{C_1 R_{upper}}$
✓ a zero $\omega_{z_1} = \frac{1}{R_{upper} C_1}$

□ We are missing a pole for the type 2!

Understanding the Optocoupler Pole

□ The optocoupler also features a parasitic capacitor

 \succ it comes in parallel with C_2 and must be accounted for

Extracting the Pole

□ The optocoupler must be characterized to know where its pole is

□ Adjust V_{bias} to have V_{FB} at 2-3 V to be in linear region, then ac-sweep □ The pole in this example is found at 4 kHz

$$C_{opto} = \frac{1}{2\pi R_{pullup} f_{pole}} = \frac{1}{6.28 \times 20k \times 4k} \approx 2 \text{ nF} \quad \text{Index} \text{Another design} \text{ constraint!}$$

The TL431 in a Type 1 Compensator

□ To make a type 1 (origin pole only) neutralize the zero and the pole

$$\frac{V_{FB}(s)}{V_{out}(s)} = -\frac{R_{pullup}CTR}{R_{LED}} \left[\frac{1 + sR_{upper}C_1}{sR_{upper}C_1\left(1 + sR_{pullup}C_2\right)} \right]$$

$$sR_{upper}C_1 = sR_{pullup}C_2 \qquad \square \implies C_1 = \frac{R_{pullup}}{R_{upper}}C_2 \qquad \square \implies \omega_{P_o} = \frac{1}{\frac{R_{upper}R_{LED}}{R_{pullup}}C_1}$$

$$\omega_{P_o} = \frac{CTR}{C_2R_{LED}} \qquad \square \implies C_2 = \frac{CTR}{2\pi f_{po}R_{LED}}$$

□ Once neutralized, you are left with an integrator

$$G(s) = \frac{1}{\frac{s}{\omega_{po}}} \longrightarrow |G(f_c)| = \frac{f_{p_o}}{f_c} \longrightarrow f_{p_o} = G_{f_c} f_c \quad \text{means } C_2 = \frac{\text{CTR}}{2\pi G_{f_c} f_c R_{LED}}$$

A Type 1 Design Example

□ We want a 5-dB gain at 5 kHz to stabilize the 5-V converter

Simulation of the Type 1

□ SPICE can simulate the design – automate elements calculations...

Type 1 Simulation Results

 \Box The pullup resistor is 1 k Ω and the target now reaches 5 dB

The TL431 in a Type 2 Compensator

• Our first equation was already a type-2 definition, we are all set!

□ Just make sure the optocoupler contribution is involved...

Deriving Component Values for the Type 2

□ You need to provide a 15-dB gain at 5 kHz with a 50° boost

$$f_{p} = \left[\tan(boost) + \sqrt{\tan^{2}(boost) + 1} \right] f_{c} = 2.74 \times 5k = 13.7 \text{ kHz}$$
$$f_{z} = f_{c}^{2} / f_{p} = 25k / 13.7k \approx 1.8 \text{ kHz} \qquad G_{0} = \text{CTR} \frac{R_{pullup}}{R_{LED}} = 10^{15/20} = 5.62$$

 \Box With a 250-µA bridge current, the divider resistor is made of:

$$R_{lower} = 2.5/250u = 10 \text{ k}\Omega$$
 $R_1 = (12 - 2.5)/250u = 38 \text{ k}\Omega$

 \Box The pole and zero respectively depend on R_{pullup} and R_1 :

$$C_2 = 1/2\pi f_p R_{pullup} = 581 \text{ pF}$$
 $C_1 = 1/2\pi f_z R_1 = 2.3 \text{ nF}$

□ The LED resistor depends on the needed mid-band gain:

$$R_{LED} = \frac{R_{pullup} \text{CTR}}{G_0} = 1.06 \text{ k}\Omega \quad \stackrel{\text{ok}}{\longrightarrow} \quad R_{LED,\text{max}} \le 4.85 \text{ k}\Omega$$

Checking the Optocoupler Contribution

The optocoupler is still at a 4-kHz frequency:
 C_{pole} ≈ 2 nF Already above!
 Type 2 pole capacitor calculation requires a 581-pF cap.!
 The bandwidth cannot be reached, reduce f_c!
 For noise purposes, we want a minimum of 100 pF for C
 With a total capacitance of 2.1 nF, the highest pole can be:

$$f_{pole} = \frac{1}{2\pi R_{pullup}C} = \frac{1}{6.28 \times 20k \times 2.1n} = 3.8 \text{ kHz}$$

□ For a 50° phase boost and a 3.8-kHz pole, the crosso ver must be:

$$f_c = \frac{f_p}{\tan(boost) + \sqrt{\tan^2(boost) + 1}} \approx 1.4 \text{ kHz}$$

Placing the Zero in the Transfer Function

□ The zero is then simply obtained:

$$f_z = \frac{f_c^2}{f_p} = 516 \text{ Hz}$$

□ We can re-derive the component values and check they are ok

 $C_2 = 1/2\pi f_p R_{pullup} = 2.1 \text{ nF}$ $C_1 = 1/2\pi f_z R_1 = 8.1 \text{ nF}$

Given the 2-nF optocoupler capacitor, we just add 100 pF

 \Box In this example, $R_{LED,max}$ is 4.85 k Ω

$$G_0 > \text{CTR} \frac{R_{pullup}}{R_{LED}} > 0.3 \frac{20}{4.85} > 1.2 \text{ or} \approx 1.8 \text{ dB}$$

 \Box You <u>cannot</u> use this type 2 if an attenuation is required at $f_c!$

TL431 type 2 Design Example

 \Box The 1-dB gain difference is linked to R_d and the bias current

153 • Chris Basso – APEC 2011

ON Semiconductor*

The single-stage PFC is often used in LED applications
 It combines isolation, current-regulation and power factor correction
 Here, a constant on-time BCM controler, the *NCL30000*, is used

Once the converter elements are known, ac-sweep the circuit
 Select a crossover low enough to reject the ripple, e.g. 20 Hz

Given the low phase lag, a type 1 can be chosen

> Use the type 2 with fast lane removal where f_p and f_z are coincident

Design Example 2 – a DCM Flyback Converter

- □ We want to stabilize a 20-W DCM adapter
- \Box V_{in} = 85 to 265 V rms, V_{out} = 12 V/1.7 A
- $\Box \quad F_{sw} = 65 \text{ kHz}, R_{pullup} = 20 \text{ k}\Omega$
- □ Optocoupler is SFH-615A, pole is at 6 kHz
- Crossover target is 1 kHz
- □ Selected controller: NCP1216
 - 1. Obtain a power stage open-loop Bode plot, H(s)
 - 2. Look for gain and phase values at crossover
 - 3. Compensate gain and build phase at crossover, G(s)
 - 4. Run a loop gain analysis to check for margins, T(s)
 - 5. Test transient responses in various conditions

Design Example 2 – a DCM Flyback Converter

□ Capture a SPICE schematic with an averaged model

□ Look for the bias points values: $V_{out} = 12$ V, ok

Design Example 2: a DCM Flyback Converter

Observe the open-loop Bode plot and select f_c : 1 kHz

160 • Chris Basso – APEC 2011

ON Semiconductor^{*}

Design example 2: a DCM flyback converter

 \Box Apply *k* factor or other method, get f_z and f_p

 $rac{}{}$ $f_z = 3.5 \text{ kHz} f_p = 4.5 \text{ kHz}$

Design example 2: a DCM Flyback Converter

Design Example 2: a DCM Flyback Converter

□ Sweep ESR values and check margins again

ON Semiconductor*

No Time to Compute? Check EXCEL!

An automated spreadsheet does the calculations for you
 Download a version from www.onsemi.com

Conclusion

- □ The flyback converter hides several parasitic elements
- □ Understanding where they hide and how they move is key!
- Despite CM presence, QR designs gain in popularity
- □ CM fixed-frequency is a 3rd-order type whereas QR is 1st order
- □ TL431 lends itself well for compensation, watch the optocoupler!
- □ SPICE eases and speed-up the design
- □ Always check theoretical assumptions with bench measurement

