

# Single Low Ron Load Switch With Soft Start

#### **Features**

- V<sub>BIAS</sub> Operating Voltage: 2.7V to 5.5V.
- Support VIN Range: 0.95V to V<sub>BAIS</sub>.
- Fast Turn On time 25μs, C<sub>ss</sub>=0.1nF, CL=1μF @100mA 110μs, C<sub>ss</sub>=0.5nF, CL=1μF @100mA
- Low RDSon =20mΩ @ V<sub>BAIS</sub>=5V, VIN=1V
- Logic level ON pin capable of supporting 0.95V CMOS Logic
- Discharged Resistor when OFF
- ADFN1.0x1.6-8L package (2 fused pins for IN and 2 fused pins for OUT)

### **Applications**

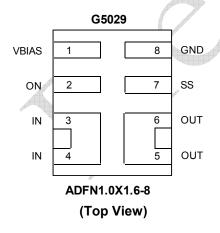
- Fast Turn ON/OFF power rail switching with big Capacitor loading.
- Frequent wake & sleep power cycle.
- Mobile device and portable devices.

### **General Description**

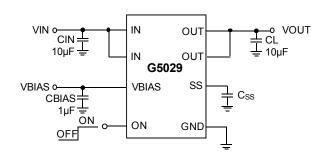
The G5029 is a  $20m\Omega$  2.5A Single-channel load switch with configurable slew rate control. The device can enable fast power rail turn on with big cap loading. Internal circuit limits max inrush current to prevent device damage.

In the G5029, a 150 $\Omega$  on-chip load resistor is added for quick output discharge resistor when the switch is turned off. The rise time of the device is internally controlled in order to avoid in-rush current and can be adjusted using a ceramic capacitor on the SS pin.

The G5029 is available in ADFN1.0x1.6-8 package.


### **Ordering Information**

| ORDER     | MARKING | TEMP.         | PACKAGE       |  |
|-----------|---------|---------------|---------------|--|
| NUMBER    |         | RANGE         | (Green)       |  |
| G5029AR1U | 59x     | -40°C to 85°C | ADFN1.0X1.6-8 |  |


Note: AR: ADFN1.0X1.6-8 1: Bonding Code U: Tape & Reel

Green: Lead Free / Halogen Free

### Pin configuration



### **Application circuit**

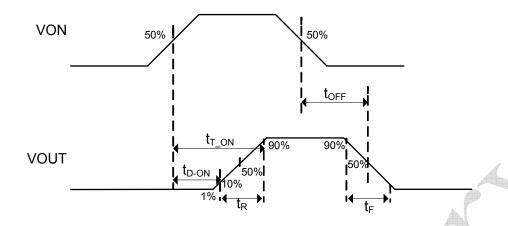




| Absolute Maximum Ratings                                           |                                                                   |
|--------------------------------------------------------------------|-------------------------------------------------------------------|
| VBIAS, EN, IN, OUT to GND0.3V to +6V                               | Thermal Resistance of junction to case ( $\theta$ <sub>JC</sub> ) |
| SS to IN0.3V to +6V                                                | ADFN-1.0X1.6-8 TBD°C/W                                            |
| Continuous Switch Current (IMAX)                                   | Package Power Dissipation (WDIS) TBD W                            |
| Junction Temperature                                               | Storage Temperature (Ts)65°C to 150°C                             |
| Thermal Resistance Junction to Ambient, ( $\theta$ <sub>JA</sub> ) | Reflow Temperature (soldering, 10sec) 260°C                       |
| ADFN-1.0X1.6-8                                                     | ESD (HBM) 2KV                                                     |
| Continuous Power Dissipation (T <sub>A</sub> =25°C)                | ESD (CDM) 1KV                                                     |
| ADFN-1 0X1 6-8 TBD W                                               | LOD (CDIVI)                                                       |

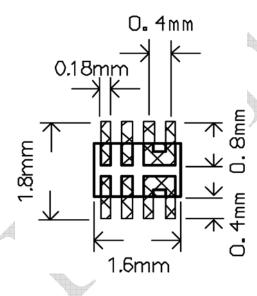
Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

### **Electrical Characteristics**


#### T<sub>A</sub> =25°C (unless otherwise stated)

The device is not guaranteed to function outside its operating conditions. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified.

| DESCRIPTION                     | SYMBOL             | CONDITIONS                                                                                                | MIN     | TYP | MAX        | UNITS |
|---------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------|---------|-----|------------|-------|
| Power supply Voltage            | $V_{BIAS}$         |                                                                                                           | 2.7     | -   | 5.5        | V     |
| Dower cumby Current(DIN1)       | I <sub>VBIAS</sub> | When OFF                                                                                                  |         |     | 1          | μΑ    |
| Power supply Current(PIN1)      |                    | When ON, No Load                                                                                          | <i></i> |     | 50         | μΑ    |
| Static IN to OUT ON Resistance. | RDS <sub>on</sub>  | $V_{BIAS}$ =5V, $V_{IN}$ =1.05V, RL=0.5 $\Omega$                                                          |         | 20  |            | mΩ    |
| Operating Current               | I <sub>VIN</sub>   | V <sub>IN</sub> =1V to V <sub>BAIS</sub>                                                                  |         |     | 2.5        | Α     |
| Input Voltage Range             | $V_{IN}$           |                                                                                                           | 0.95    |     | $V_{BAIS}$ | V     |
| ON Delay Time                   |                    | 50% ON to 10% V <sub>OUT</sub> ,<br>V <sub>BIAS</sub> =5V, V <sub>IN</sub> =1.05V, C <sub>SS</sub> =0.1nF |         | 10  |            | μs    |
| Internal Logic Delay            | t <sub>D_</sub> ON | 50% ON to 10% V <sub>OUT</sub> ,<br>V <sub>BIAS</sub> =5V, V <sub>IN</sub> =1.05V, C <sub>SS</sub> =0.5nF |         | 32  |            | μs    |
|                                 | tr ou              | 50% ON to 90% $V_{OUT}$ , $V_{BIAS}$ =5V, $V_{IN}$ =1.0V, CL=1 $\mu$ F, Load=100mA, $C_{SS}$ =0.1nF       |         | 25  |            | μs    |
| Total Turn On Time              |                    | 50% ON to 90% $V_{OUT}$ , $V_{BIAS}$ =5V, $V_{IN}$ =1.0V, CL=10 $\mu$ F, Load=2.5A, $C_{SS}$ =0.5nF       |         | 110 |            | μs    |
| High input Voltage on ON pin    | ON_V <sub>IH</sub> |                                                                                                           | 0.95    | -   |            | V     |
| Low input Voltage on ON pin     | ON_V <sub>IL</sub> |                                                                                                           | -       | -   | 0.3        | V     |
| Discharge Resistance            | RDIS               |                                                                                                           | 1       | 150 |            | Ω     |
| Thermal protection Shutoff      | THERM_OFF          | Automatic shutoff temperature                                                                             |         | 145 |            | °C    |

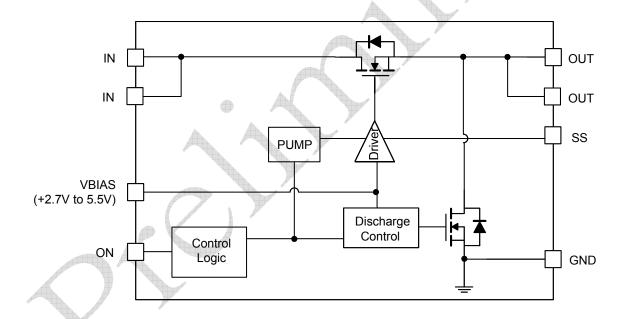



# **Switching Characteristics**



# **Minimum Footprint PCB Layout Section**

#### ADFN1.0X-1.6-8






# **Pin Description**

| PIN | PIN NAME | TYPE   | FUNCTION                                                                                                         |  |
|-----|----------|--------|------------------------------------------------------------------------------------------------------------------|--|
| 1,  | VBIAS    | PWR    | VBAIS power for load switch control(2.7V to 5.5V).                                                               |  |
| 2   | ON       | Input  | Turn MOSFET ON or OFF (4M $\Omega$ pull down resistor). CMOS input with ON_VIL<0.3V for OFF, ON_VIH>0.95V for ON |  |
| 3   | IN       | MOSFET | Input terminal, Drain of Power MOSFET (fused with pin 4)                                                         |  |
| 4   | IN       | MOSFET | Input terminal, Drain of Power MOSFET (fused with pin 3)                                                         |  |
| 5   | OUT      | MOSFET | Output terminal, Source of Power MOSFET (fused with pin 6)                                                       |  |
| 6   | OUT      | MOSFET | Output terminal, Source of Power MOSFET (fused with pin 5)                                                       |  |
| 7   | SS       | CAP    | Soft start cap, C <sub>SS</sub> can set VOUT ramp                                                                |  |
| 8   | GND      | GND    | Ground                                                                                                           |  |

# **Block Diagram**





# **Detailed Description ON/OFF Control**

The G5029 is enabled when the ON pin is on active high with 0.95V or above voltage. The device is disabled when the ON pin voltage is 0.3V or lower. The ON input is compatible with both TTL and CMOS logic.

#### **VBIAS Voltage Range**

For optimal  $R_{\text{DS(on)}}$  performance, make sure  $V_{\text{IN}} \leq V_{\text{BIAS}}.$  The device will still be functional if  $V_{\text{IN}} > V_{\text{BIAS}}$  but it will exhibit  $R_{\text{DS(on)}}$  greater than what is listed in the Electrical characteristics table.. Notice the increasing  $R_{\text{DS(on)}}$  as  $V_{\text{IN}}$  exceeds  $V_{\text{BIAS}}$  voltage. Be sure to never exceed the maximum voltage rating for  $V_{\text{IN}}$  and  $V_{\text{BIAS}}.$ 

### **Application Information**

The basic G5029 application circuit is shown in the first page. Component selection is explained blew.

#### **Input Capacitor**

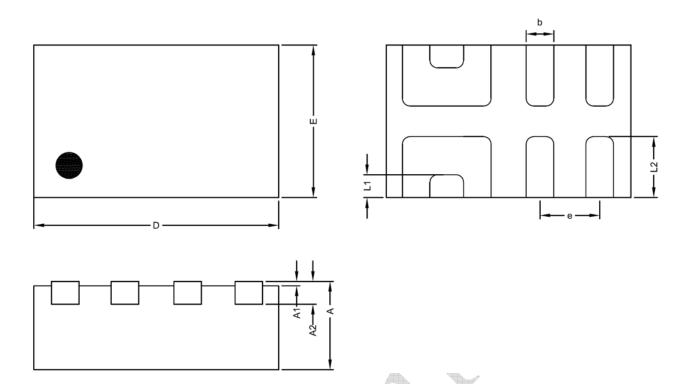
A capacitor of 10  $\mu F$  or higher value is recommended to be place close to the IN pins of G5029. This capacitor can reduce the voltage drop caused by the in-rush current during the turn-on transient of the load switch. A higher value capacitor can be used to further reduce the voltage drop during high-current application.

#### **Output Capacitor**

A capacitor of  $10\mu F$  or higher value is recommended to be place between the OUT pins and GND. The switching times are affected by the capacitance. A large capacitor makes the initial turn-on transient smoother. This capacitor must be large enough to supply a fast transient load in order to prevent the output from dropping.

#### **Thermal Considerations**

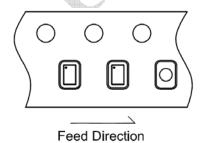
To ensure proper operation, the maximum junction temperature of the G5029 should not exceed 145°C. Several factors attribute to the junction temperate rise: load current MOSFET on-resistance, junction-to-ambient thermal resistance, and ambient temperature. The maximum load current can be determined by:


It is noted that the maximum continuous load current is 3A.

#### **Layout Guidelines**

Good PCB is important for improving the thermal performance of G5029. Place the input and output bypass capacitors close to the IN and OUT pins. The input and output PCB traces should be as wide as possible for the given PCB space. Use a ground plane to enhance the power dissipation capability of the device.




### **Package Information**



ADFN1.0X1.6-8 Package

| ar was 100 Miles |                 |      |      |                   |            |        |
|------------------|-----------------|------|------|-------------------|------------|--------|
| Complete I       | DIMENSION IN MM |      |      | DIMENSION IN INCH |            |        |
| Symbol           | MIN.            | NOM. | MAX. | MIN.              | NOM.       | MAX.   |
| Α                | 0.50            | 0.55 | 0.60 | 0.0197            | 0.0217     | 0.0236 |
| A1               | 0.00            |      | 0.06 | 0.0000            |            | 0.0024 |
| A2               | 0.15 REF        |      |      | 0.0059 REF        |            |        |
| D                | 1.55            | 1.60 | 1.65 | 0.0610            | 0.0630     | 0.0650 |
| E                | 0.95            | 1.00 | 1.05 | 0.0374            | 0.0394     | 0.0413 |
| b                | 0.13            | 0.18 | 0.23 | 0.0051            | 0.0071     | 0.0091 |
| е                | 0.40 BSC        |      |      |                   | 0.0157 BSC |        |
| L1               | 0.10            | 0.15 | 0.20 | 0.0039            | 0.0059     | 0.0079 |
| L2               | 0.35            | 0.40 | 0.45 | 0.0138            | 0.0157     | 0.0177 |

# **Taping Specification**



| PACKAGE       | Q'TY/BY REEL |  |  |
|---------------|--------------|--|--|
| ADFN1.0X1.6-8 | 3,000 ea     |  |  |

GMT inc. does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and GMT inc. reserves the right at any time without notice to change said circuitry and specifications.