# Focus on Non-standard (>25.5W Delivered) PoE

Updated for 2Q12 Customer Presentations



## **PSE PORTFOLIO**



## **PSE Market Trends & Strategy Summary**

- Current WIP aimed at introducing a competitive portfolio of fully compliant 802.3at controllers
- Future concepts aimed at addressing one or more of the following trends:
  - Higher Flexibility (Open Source System Software, Different Memory Architecture)
  - Higher Power (uPoE, PoE++, HDBaseT, "5 Play," etc.)
  - Higher Integration (Internal FETs...but NOT isolation, PMIC)
  - Lower Cost (Higher Digital Content)
- Investigating market interest in "Open Source" system software



**Ethernet Switches** 



Midspans & Splitters



**UPoE Concept** 



**HDBaseT Concept** 



### TPS23861 as 4-Pair PSE





## PD PORTFOLIO



## PD Market Trends & Strategy Summary

- Current WIP aimed at introducing compliant 802.3at PD solutions and addressing growing trend for "green" end equipment
  - TPS2378 is our first 802.3 at compliant, "PD only," solution
  - TPS2379 aimed at higher power (>25.5W) "PD only" applications
  - TPS23751/2 aimed at customers most concerned with high efficiency
- Future concepts aimed at addressing one or more of the following trends:
  - Lower Cost
  - Higher Power Standards (uPoE)
  - The right degree of integration (NexFETs, DC/DC Controller (?), Isolation)
- Security camera TAM is growing fastest (they are where the IP phone market was 5 years ago)
- Use of strong UNH-IOL relationship to deliver Interoperability Reports at RTM
- Building "mini-IOL" in Manchester in order to improve software/firmware time to market and FA resolution abilities





### **PD Product Portfolio**



# PD Product Portfolio Powered Device Only

| Feature                           | 2375               | 2376            | 2377               | 2376-Н           | 2378                | 2379                |
|-----------------------------------|--------------------|-----------------|--------------------|------------------|---------------------|---------------------|
| PD Type                           | 1                  | 1               | 1                  | 1                | 2                   | 2                   |
| PoE inrush limit                  | Program            | Program         | Program            | Program          | 140 mA              | 140 mA              |
| PoE current limit (min)           | 405 mA.            | 405 mA          | 405 mA             | 650 mA           | 850 mA              | 850 mA              |
| PoE turn on threshold             | 39.3 V             | 2.49 V          | 35.1 V             | 2.49 V           | 38.1 V              | 38.1 V              |
| PoE turn off threshold            | 30.5 V             | 1.93 V          | 30.5 V             | 1.93 V           | 32.0 V              | 32.0 V              |
| PoE disable                       | No                 | No              | No                 | No               | Yes                 | Yes                 |
| PoE & Adapter priority            | No                 | No              | No                 | No               | Yes                 | No                  |
| Foldback                          | Latch<br>-1 Inrush | Latch           | Latch<br>-1 Inrush | Inrush           | Delay w /<br>Inrush | Delay w /<br>Inrush |
| Auxiliary gate driver             | No                 | No              | No                 | No               | No                  | Yes                 |
| Power Good /<br>Converter Disable | PG                 | PG              | PG                 | PG               | CD                  | CD                  |
| Package                           | SO-8<br>TSSOP-8    | SO-8<br>TSSOP-8 | SO-8<br>TSSOP-8    | So-8<br>PowerPad | So-8<br>PowerPad    | So-8<br>PowerPad    |



### **TPS2378**

### **IEEE 802.3at PoE Interface (PD only)**

### **Features**

**Benefits** 

- IEEE 802.3at type-2 h/w classification
- Integrated 0.5 Ω 100 V low-side switch
- Adapter ORing support
- 15 kV system-level ESD capability
- 1A (nom) current limit
- 8-pin PowerPad<sup>TM</sup> SOIC package

- Standard compliant solution for PDs over 13 W
- Efficient and robust solution
- Simple, low cost ac adapter priority
- Eases meeting IEC61000-4-2 ESD requirements
- Permits custom designs that require higher power
- · Small, thermally efficient, high voltage spacing

### **Applications**

- IEEE 802.3at compliant
- VoIP telephones
- Access points
- Security cameras
- Pico-base stations







## **TPS2378 Competitive Analysis**

| Feature                        | Texas Instruments<br>TPS2378 | Linear Tech<br>LTC4265    | Maxim<br>MAX5969A/B        |
|--------------------------------|------------------------------|---------------------------|----------------------------|
| UVLO Turn on                   | 40.0 V(max)                  | 37.2 V(max)               | 35.4 V(max)<br>38.6 V(max) |
| Supply Current                 | 0.50 mA                      | 1.35 mA                   | 0.55 mA                    |
| H/W Class                      | 2- Event                     | 2- Event                  | 2- Event                   |
| PD Inrush Current Limit        | 140 mA                       | 100 mA                    | 135 mA                     |
| PD Current Limit               | 850 mA (min)                 | No                        | 720 mA (min)               |
| PD Switch (max)                | 0.75 Ω (270 mW)              | 1.0 Ω (360 mW)            | 1.0 Ω (360 mW)             |
| Voltage Range                  | 100 V                        | 100 V                     | 100 V                      |
| Priority                       | Adapter                      | Adapter                   | Adapter                    |
| Disable                        | $\checkmark$                 | √                         | No                         |
| Type-2 PSE / Adaptor Indicator | √                            | Type-2 PSE Indicator only | √                          |
| Footprint mm <sup>2</sup>      | 5 mm x 6 mm                  | 4 mm x 3 mm               | 3 mm x 3 mm                |
| Safety Spacing                 | 0. 87 mm                     | 0.25 mm                   | 0.25 mm                    |
| Package                        | SO-8 PowerPad                | DFN-12                    | TDFN-10                    |
| 1K Price                       | 1.00                         | \$2.21                    | \$1.21/\$1.68              |



### **TPS2379**

### **IEEE 802.3at PoE Interface (PD only)**

### **Benefits**

### **Features**

- IEEE 802.3at type-2 h/w classification
- Integrated 0.5 Ω 100 V low-side switch
- Auxiliary Gate Driver for High Power Expansion
- 15 kV system-level ESD capability
- 1A (nom) current limit
- 8-pin PowerPad<sup>TM</sup> SOIC package

- Standard compliant solution for PDs over 13 W
- Efficient and robust solution
- Simple, low cost ac adapter priority
- Eases meeting IEC61000-4-2 ESD requirements
- Permits custom designs that require higher power
- Small, thermally efficient, high voltage spacing

### **Applications**

- IEEE 802.3at compliant
- VoIP telephones
- Access points
- Security cameras
- Pico-base stations





# **TPS2379 Competitive Analysis**

 TPS2379 is the first single Powered Device which is designed to handle higher than 25.5W power in POE application and currently no other semiconductor vendor has similar product.



# MAX5941B with External FET to achieve 30W Was Published

- Can not achieve real .at type POE function because MAX5941 is an .af type compliant PD
- No current limit protect PD from over-current fault
- Once the external FET is turn on, there is no reliable mechanism to switch it off under output short circuit condition
- More components are required





## PD DESIGN SELECTOR TREE



## PD Design - Decision Tree





# 2-Pair Solution for ≤25W: TPS2378 PD + DC-DC Converter



TEXAS INSTRUMENTS

# 2-Pair Solution for ≤25W : TPS23754 Integrated PD and DC-DC Converter Controller







# 2 Pair Solution for 25-51W: TPS2379 PD with Current Booster + DC-DC Converter





# 2-Pair Solution < 33W: TPS23754 Integrated PD + DC-DC Converter Controller







# 4-Pair Solution for 25-51W: 2 TPS2378 PDs + DC-DC Converter







### 4-Pair Solution for 25-51W: 2 TPS2378 PDs





#### Forced 4-pair Implementation

- Supports devices which do not have LLDP capabilities.
- Physical layer signature required on both pair sets .
- One pair set is detected, classified (class 4) then turned ON.

Note: Only **one-**finger class is used by the UPOE PSE (there isn't 2-finger class with UPOE).

- As long as only one 2-pair set is powered, the consumption must be minimal, just enough to keep the PSE port ON
- Then, detect/class on second pair set (this must be possible while the first 2-pair is already powered). If class 4 => apply power.
- Enable DC-DC converter(s) and Link Controller



# 4-Pair Solution for 25-51W: 2 TPS23754 Integrated PD and DC-DC Converter Controller





# 4-Pair Solution for 25-51W: TPS2379 PD with Current Booster + DC-DC Converter





# 4-Pair Solution for 25-51W: TPS2379 PD with Current Booster + DC-DC Converter

TPS2379
PD DC-DC
Converter
DC Out

GATE

CAT 5 (Up to 100m)

#### **LLDP-Supported 4 Pair Implementation**

- To support devices having LLDP capabilities
- Detect/Class on first 2-pairs. If valid (class 0-4) => turn ON this 2-pair, up to 15.4W
- LLDP negotiation for up to 30W per 2-pair, 4-pairs total => turn ON second 2-pair set





# 4-Pair Solution for >51W: 2 TPS2379 PDs with Current Booster + DC-DC Converter



# 2-Cable Solution for 51-100W: 2 TPS2378 PDs + 1 DC-DC Converter for each Cable



- •2-Cable Solution
- •1 PD for each pair + 1 DC-DC Converter per cable
- •Total current within a cable is shared actively.
- •Pair currents within each cable are shared passively.



# 2-Cable Solution for 51-100W: Separate TPS23754 PD + DC-DC Controller for each Pair





## 2-Cable Solution for 51-100W: TPS2379 PD with Current Booster + DC-DC Converter for each cable



- •2-Cable Solution
- •Single DC-DC converter per cable
  - TPS2379 PD supports external current booster
  - Active current-sharing between cables
  - •Passive (*i.e.*, imprecise) current sharing between pairs



## >25.5 Delivered Systems



# PoE Power Capability is Limited by the Source Voltage and Cable Resistance





## **PoE System Power Performance**





## **PoE System Power Performance (con't)**

50 V PSE Power; 12.5 Ω Loop Resistance per Pair Set

| 2-Pair<br>Delivered<br>Power, W | 4-Pair<br>Delivered<br>Power, W | Current<br>per Pair,<br>A | Delivered<br>Voltage,V | 4-Pair Cable-<br>Heating Loss,<br>W/m | System<br>Efficiency,<br>% |
|---------------------------------|---------------------------------|---------------------------|------------------------|---------------------------------------|----------------------------|
| 13                              | 26                              | 0.28                      | 46.5                   | 0.02                                  | 93                         |
| 25.5                            | 51                              | 0.60                      | 42.5                   | 0.09                                  | 85                         |
| 30                              | 60                              | 0.74                      | 40.8                   | 0.14                                  | 82                         |
| 35                              | 70                              | 0.90                      | 38.7                   | 0.20                                  | 77                         |
| 40                              | 80                              | 1.11                      | 36.2                   | 0.31                                  | 72                         |
| 45                              | 90                              | 1.37                      | 32.9                   | 0.47                                  | 66                         |
| 50                              | 100                             | 2.00                      | 25                     | 1.0                                   | 50                         |



## **PoE System Power Performance (con't)**

### 12.5 $\Omega$ Loop Resistance per Pair Set

| PSE<br>Voltage | 4-Pair<br>Delivered<br>Power, W | Current<br>per Pair,<br>A | Delivered<br>Voltage,V | 4-Pair Cable-<br>Heating Loss,<br>W/m | System<br>Efficiency,<br>% |
|----------------|---------------------------------|---------------------------|------------------------|---------------------------------------|----------------------------|
|                | 60                              | 0.74                      | 40.8                   | 0.14                                  | 82                         |
| 50             | 70                              | 0.90                      | 38.7                   | 0.20                                  | 77                         |
|                | 80                              | 1.11                      | 36.2                   | 0.31                                  | 72                         |
|                | 60                              | 0.65                      | 45.8                   | 0.11                                  | 85                         |
| <b>5</b> 4     | 70                              | 0.79                      | 44.1                   | 0.16                                  | 82                         |
| 54             | 80                              | 0.95                      | 42.1                   | 0.23                                  | 78                         |
|                | 90                              | 1.13                      | 39.9                   | 0.32                                  | 74                         |



# Practical Higher-Power PoE System with Components in the Pipeline

- Use TPS23861 Quad-Port PSE
  - Use 2 ports to support a 4-pair PoE channel.
  - Use standard detection technique for each pair set.
  - Use Class 5 classification with two events to establish high-power request at PD and compliance at PSE.
  - Use built-in 4-pair support options to support cable- and load-fault protection as well as disconnect.
- Use TPS2379 High-Power PD Interface
  - Use diode bridges to 'OR' pair sets.
  - Set classification current to Class 5 (resistor value).
  - Use external FET for higher current.



### TPS2379 as 4-Pair PD





## **TI High-Power Classification Scheme**



| PoE State      | PSE Signature | UoM |
|----------------|---------------|-----|
| Detection      | 2.8 – 10 V    | V   |
| Classification | 15.5 – 20.5   | V   |
| Mark           | 7 - 10        | V   |

| PD Response      | PD Signature | UoM |
|------------------|--------------|-----|
| Valid Detect     | 23.7 - 26.3  | kΩ  |
| Class 5*         | 52 - 58      | mA  |
| Mark Acknowledge | 0.25 - 4     | mA  |

\*Class 5 is not defined in IEEE 802.3at, but it is within the range of I<sub>class LIM</sub> permitted in the standard.



## **High-Power PoE Support Components**













### **CAT-5e Cable**

- Large installed base.
- IEEE 802.3at standard allows for 12.5Ω loop resistance per pair set.
- Measured <10C° temperature rise with 4 pairs conducting 0.6 A





### **RJ-45 Connector**

- Typically rated for 0.6A/contact at 65°C.
- Typically >500 connectdisconnect cycles at rated current.





## **Magnetics**

 High-power magnetics available for 1-1.5A per-pair applications (4-pair operation requires 2 each).







### www.ti.com/poe

#### Power-over-Ethernet (PoE) Solutions for both ends of the cable!

### Power Over Ethernet (PoE) Solutions for High-Powered Devices and Power Sourcing Equipment

TI offers a complete portfolio of PoE ICs for Power Sourcing Equipment (PSE) and Powered Devices (PDs). With solutions for a variety of PoE applications such as VoIP telephones, security cameras, thin/zero-client monitors, RFID readers and wireless access points; our controllers enable IEEE 802.3af, IEEE 802.3at and Universal Power over Ethernet (UPOE) compliant solutions. We also offer reference designs, topical application notes and open-source Link-Layer Discovery Protocol (LLDP) software (coming soon!) to make our PoE solutions easy to design-in. Check out our latest PoE family members – the TPS2378 and TPS2379 – aimed at equipment requiring >25.5W of delivered PoE power today!



#### TI PoE PD Portfolio



#### Key Features

- . PoE PD + DC/DC converter in one package
- · Isolated designs supported, including forward and flyback
- . 100-V SOI process for entire family of PD controllers
- . System-level ESD testing
- · Intelligent integration for most robust design
- . IEEE802.3af and 802.3at -compliant devices

#### **Key Applications**

- . Power Over Ethernet (PoE)
- . IP Phone: Wireless
- . Camera: Surveillance Analog
- · RFID Reader
- · Video Conferencing: IP-Based HD

#### Guides



Power Management Guide (slvt145.pdf, 8.92 MB) Download

#### **Application Notes**

- > PoE Powered Device for 24 VAC Building Power Applications (slua477.htm, 8 KB) 10 Sep 2008
- Designing with the TPS23753 Powered Device and Power Supply Controller (slva305.htm, 8 KB) 07 Jul 2008
- Advanced Adapter ORing Solutions using the TPS23753 (slva306.htm, 8 KB) 03 Jul 2008
- Designing an EMI Compliant PoE with Isolated Flyback (slua469.htm, 8 KB) 20 May 2008
- > Practical Guidelines EMI Compliant PoE (slua454.htm, 8 KB) 27 Mar 2008

#### E2E community forums

> PoE

