Hello Jim,

Please see my comments below.

1) I am using 220uA for Ivsl(run), is this correct? Yes

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS				
PROTECTION										
V _{OVP}	Over-voltage threshold	At VS input, T _J = 25°C	4.52	4.6	4.68	V				
V_{OCP}	Over-current threshold	At CS input	1.4	1.5	1.6					
I _{VSL(run)}	VS line-sense run current	Current out of VS pin - increasing	190	220	260	μA				
I _{VSL(stop)}	VS line-sense stop current	Current out of VS pin – decreasing	70	80	95					
K _{VSL}	VS line-sense ratio	I _{VSL(run)} / I _{VSL(stop)}	2.5	2.8	3.05	A/A				
T _{J(stop)}	Thermal shut-down temperature	Internal junction temperature		165		°C				

2) I am using 4.05 for Vvsr, is this correct? Yes

VS INPUT									
V _{VSR}	Regulating level	Measured at no-load condition, T _J = 25°C	4.01	4.05	4.09	V			
V _{VSNC}	Negative clamp level	I _{VS} = -300 μA, volts below ground	190	250	325	mV			
I _{VSB}	Input bias current	V _{VS} = 4 V	-0.25	0	0.25	μA			

- 3) I am dividing auxilliary turns by secondary turns for Nas, is this correct? Yes (Vout+Vf)*Na/Ns = Vaux
- 4) I am designing a 24V output, is Vocv 24?

 Vocv is defined as the converter regulated output voltage so you are correct.

Regards,

Mike