K_{gfe} Background

Brent McDonald

K_{ofe} Derivation

Constituent equations:

$$P_{fe} = K_{fe} \cdot A_e \cdot l_c \cdot B_{PK}^{\beta} \qquad n_1 = \frac{\lambda_1}{2 \cdot A_e \cdot B_{PK}}$$

$$P_{cu} = \frac{I_{tot}^2 \cdot MLT \cdot n_1^2 \cdot \rho}{K_u \cdot W_a}$$

$$P_{total} = P_{fe} + P_{cu}$$

$$I_{tot} = \sum_{j=1}^k \frac{i_j \cdot n_j}{n_1}$$

Solving $\frac{\partial P_{total}}{\partial B_{PV}} = 0$ for B_{PK} yields:

$$B_{\rm PK} = 2^{-\frac{1}{\beta+2}} \cdot \left(\frac{{\rm I_{tot}}^2 \cdot {\lambda_1}^2 \cdot {\rm MLT} \cdot \rho}{\beta \cdot {\rm K_{fe}} \cdot W_a \cdot A_e^3 \cdot l_c \cdot K_u} \right)^{\frac{1}{\beta+2}}$$

Substituting B_{PK} (et. al.) into P_{total} and rearranging yields K_{qfe} .

Substituting
$$B_{PK}$$
 (et. al.) into P_{total} and rearranging yields K_{gfe} .

$$K_{gfe} = \left(\left(\frac{\beta}{2}\right)^{\frac{2}{\beta+2}} + \left(\frac{\beta}{2}\right)^{-\frac{\beta}{\beta+2}}\right)^{-\frac{\beta+2}{\beta}} \cdot \frac{\frac{2 \cdot (\beta-1)}{\beta}}{W_a \cdot A_e} = \frac{I_{tot}^2 \cdot \lambda_1^2 \cdot \rho \cdot \left(\frac{K_{fe}}{P_{total}}\right)^{2/\beta}}{4 \cdot P_{total} \cdot K_u}$$

$$\xi = -\frac{MLT \cdot \rho \cdot \left(\sum_{j=1}^{k} i_j \cdot n_j\right)^2}{W_a \cdot K_u}$$

$$\alpha_i = \frac{i_i \cdot n_i}{\sum_{j=1}^{k} i_j \cdot n_j}$$

I_{tot} is derived by using the Lagrangian multiplier ξ .

$$P_{cu} = \frac{MLT \cdot \rho \cdot \sum_{j=1}^{k} \frac{i_{j}^{2} \cdot n_{j}^{2}}{\alpha_{j}}}{W_{\alpha} \cdot K_{\alpha}}$$

Λ is the optimization equation.

$$\Lambda = \frac{\text{MLT} \cdot \rho \cdot \sum_{j=1}^{k} \frac{i_j^2 \cdot n_j^2}{\alpha_j}}{W_a \cdot K_u} + \xi \cdot \left(1 - \sum_{j=1}^{k} \alpha_j\right)$$

Solving $\frac{\partial \Lambda}{\partial \varepsilon} = 0$ and $\frac{\partial \Lambda}{\partial \alpha_i} = 0$ yeilds:

$$\xi = -\frac{\text{MLT} \cdot \rho \cdot \left(\sum_{j=1}^{k} i_j \cdot n_j\right)^2}{W_a \cdot K_u}$$

$$\alpha_i = \frac{i_i \cdot n_i}{\sum_{j=1}^{k} i_j \cdot n_j}$$

Scale K_{gfe} to be proportional to volume

$$\bullet \ K_{gfe} = \left(\left(\frac{\beta}{2} \right)^{\frac{2}{\beta+2}} + \left(\frac{\beta}{2} \right)^{-\frac{\beta}{\beta+2}} \right)^{\frac{-\beta+2}{\beta}} \cdot \frac{\frac{2 \cdot (\beta-1)}{\beta}}{\frac{W_a \cdot A_e}{\beta}} = \frac{I_{tot}^2 \cdot \lambda_1^2 \cdot \rho \cdot \left(\frac{K_{fe}}{P_{total}} \right)^{2/\beta}}{4 \cdot P_{total} \cdot K_u}$$

- The units for K_{qfe} as defined above are $m^{5-\frac{6}{\beta}}$
- Core Volume $\sim K_{gfe}^{\frac{5}{5-\frac{6}{\beta}}}$