

Texas Instruments Inc.

TEST REPORT

SCOPE OF WORK EMC Testing – LM5155EVM-BST, Model(s): BMC028A

REPORT NUMBER 104310663DAL-001

ISSUE DATE 31-July-2020

PAGES 44

DOCUMENT CONTROL NUMBER

Non-Specific EMC Report Shell Rev. December 2017 © 2017 INTERTEK

EMC TEST REPORT

(FULL COMPLIANCE)

Report Number: 104310663DAL-001 Project Number: G104310663

Report Issue Date: 31-July-2020

Model(s) Tested: BMC028A

Standards: EN 61326-1 Issued: 2013 Electrical Equipment for Measurement, Control and Laboratory Use – EMC Requirements – Part 1: General Requirements

Tested by: Intertek Testing Services NA, Inc. 1809 10th Street Suite 400 Plano, TX 75074 USA Client: Texas Instruments Inc. 15210 S. 50th Street Suite 120 Phoenix, AZ 85044 USA

Report prepared by Reshar Rouse

Reshar Rouse Compliance Investigator

Report reviewed by

William B Cullin

William Cullen Engineering Supervisor

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. Table of Contents

1	Introduction and Conclusion	.4
2	Test Summary	.4
3	Client Information	.5
4	Description of Equipment Under Test and Variant Models	.5
5	System Setup and Method	.6
6	Radiated Emissions	.8
7	AC Mains Conducted Emissions	18
8	Harmonics	24
9	Flicker	30
10	Radiated, radio-frequency, electromagnetic field immunity test	34
11	Power Frequency Magnetic Field Immunity Test	38
12	TCF TEST PLAN	41
13	Revision History	44

1 Introduction and Conclusion

The tests indicated in section 2.0 were performed on the product constructed as described in section 4.0. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested complies with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

2 Test Summary

Section	Test full name	Result
3	Client Information	
4	Description of Equipment Under Test and Variant Models	
5	System Setup and Method	
6	Radiated Emissions (CISPR 11:2009, A1:2009)	Pass
7	AC Mains Conducted Emissions (CISPR 11:2009, A1:2009)	Pass
8	Harmonics (IEC 61000-3-2:2005, A1: 2008, A2:2009)	Pass
9	Flicker (IEC 61000-3-3:2008)	Pass
10	Radiated, Radio-Frequency, Electromagnetic Immunity (IEC 61000-4-3:2006, A1: 2007, A2:2010)	Pass
11	Power Frequency Magnetic Field Immunity Test (IEC 61000-4-8:2009)	Pass
12	Revision History	

3 Client Information

This EUT was tested at the request of:

Client:	Texas Instruments Inc. 15210 S. 50 th Street Suite 120 Phoenix, AZ 85044 USA
Contact:	Youhao Xi
Telephone:	(480) 629-2487
Email:	<u>Youhao.Xi@ti</u> .com

4 Description of Equipment Under Test and Variant Models

Manufacturer:	Texas Instruments Inc.
	15210 S. 50 th Street Suite 120
	Phoenix, AZ 85044
	USA

Equipment Under Test			
Description	Manufacturer	Model Number	Serial Number
LM5155EVM-BST	Texas Instruments Inc.	BMC028A	Not Available

Receive Date:	07/15/2020
Received Condition:	Good
Туре:	Production

Description of Equipment Under Test (provided by client)

The Texas Instruments Inc. LM5155EVM-BST is The LM5155 Boost Evaluation Module.

Equipment Under Test Power Configuration				
Rated Voltage	Rated Current	Rated Frequency	Number of Phases	
6V to 18V	4A	440kHz	Single Phase	

Operating modes of the EUT:

No.	Descriptions of EUT Exercising
1	The EVM energized and putting out nominal output voltage (24VDC).

Software used by the EUT:

No.	Descriptions of EUT Exercising
1	None

5 System Setup and Method

Cab	les				
ID	Description	Length (m)	Shielding	Ferrites	Termination
А	DC Power Cables	<3	None	None	DC Power Supply

Support Equipment				
Description	Manufacturer	Model Number	Serial Number	
DC Power Supply	BK Precision	1745A	N/A	
Load Resistor			N/A	
Digital Multimeter				

5.1 Method:

Configuration as required by EN 61326-1.

5.2 Block Diagram:

5.3 EUT Performance Criteria and Monitoring:

Performance as required by EN 61326-1.

No.	Description
1	Performance criterion A: The apparatus shall continue to operate as intended during the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as intended. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and from what the user may reasonably expect from the apparatus if used as intended.
2	Performance criterion B: The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as intended. During the test, degradation of performance is allowed, however. No change of actual operating state or stored data is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and from what the user may reasonably expect from the apparatus if used as intended.
3	Performance criterion C: Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls, or by any operation specified in the instructions for use.
Gene	ral notes:

Product Specific Performance:

No.	Description
1	The EUT shall continue to hold an output voltage of 24VDC across the load.

Description of how performance was observed during testing:

No.	Description
1	Visually by putting a DMM across the load to monitor the output voltage.

General notes:

6 Radiated Emissions

6.1 Method

Tests are performed in accordance with CISPR 11.

TEST SITE: 3m SAC

<u>Site Designation</u>: The Panashield 3 meter Semi Anechoic Chamber has a bore sight antenna and a 2 meter turntable with a 4400lbs capability.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 3m	10kHz-30 MHz	4.2 dB	N/A dB
Radiated Emissions, 3m	30-1000 MHz	3.5 dB	6.3 dB
Radiated Emissions, 1m	1-18 GHz	3.9 dB	5.5 dB
Radiated Emissions, 3m	1-18 GHz	3.5 dB	5.5 dB
Radiated Emissions, 1m	18-26 GHz	3.9 dB	5.5 dB

As shown in the table above our radiated emissions U_{lab} is less than the corresponding U_{CISPR} reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

 $\begin{array}{ll} FS = RA + AF + CF - AG \\ Where & FS = Field Strength in dB\mu V/m \\ RA = Receiver Amplitude (including preamplifier) in dB\mu V \\ CF = Cable Attenuation Factor in dB \\ AF = Antenna Factor in dB \\ AG = Amplifier Gain in dB \end{array}$

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = 52.0 dBµV AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB FS = 32 dBµV/m

To convert from $dB\mu V$ to μV or mV the following was used:

UF = $10^{(NF/20)}$ where UF = Net Reading in μV NF = Net Reading in dB μV

Example:

FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0 $UF = 10^{(32 \ dB\mu V / 20)} = 39.8 \ \mu V/m$

6.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
		Sunol		A1016		
1324	Antenna Bilog	Sciences Corp.	JB6	12	1/6/2020	1/6/2021
1179	Preamplifier	Com-Power	PAM-103	441028	12/19/2019	12/18/2020
			F520-	171746		
4134	RF Cable N to N 18GHz	MegaPhase	N1N1-118	01003	10/29/2019	10/28/2020
	78 Low Loss RF Cable	Maury	UC-N-	172811		
4284	N Туре	Microwave	MM-78	3	4/14/2020	4/14/2021
			F520-	171746		
4138	RF Cable N to N 18GHz	MegaPhase	N1N1-276	02001	10/29/2019	10/28/2020
	EMI Receiver- Freq	Rhode &				
3005	Range 20Hz to 40GHz	Schwarz	ESU 40	100136	3/24/2020	3/24/2021
		Extech		A.0864		
4333	Ambient Data Logger	Instruments	SD700	09	4/24/2020	4/24/2021

Software Utilized:

Name	Manufacturer	Asset #	Version					
Total Integrated	ETS-Lindgren	1330	6.0					
Laboratory Environment								
Profile	Profile							
Name	Manufacturer	Asset #	Version/Rev					
Master Radiated	ETS-Lindgren	1330-004	11/11					
Emissions								

6.3 Results:

The sample tested was found to Comply.

6.4 Setup Photographs:

Figure 6-1 A Radiated Emissions Test Setup Front Heat Sink up, PCB Flat on Table

Figure 6-2 A Radiated Emissions Test Setup Front

Report Number: 104310663DAL-001

Report Number: 104310663DAL-001

Figure 6-3 B Radiated Emissions Test Setup Back Heat Sink up, PCB Flat on Table

Figure 6-4 B Radiated Emissions Test Setup Back

6.5 Plots/Data:

Figure 6-6 Vertical Polarity

Intertek

Report Number: 104310663DAL-001

Freq. MHz	Antenna Height cm	Azimuth degrees	Receiver Reading dBuV/m	Antenna Factor dB	PreAmp Factor dB	Cable Factor dB	Final QP Reading dBuV/m	Limit QP dBuV/m	Margin QP dB
77.05	199	21	30.5	14.1	35.5	1.2	10.3	50	-39.7
80.75	163	252	30.7	13.9	35.5	1.3	10.4	50	-39.6
115.45	176	188	35.7	19.4	35.5	1.5	21.2	50	-28.8
168.31	166	205	54.3	18.2	35.4	1.9	38.9	50	-11.1
189.25	114	289	55.6	17.7	35.4	2	39.9	50	-10.1
201.31	100	299	58.3	19	35.4	2.1	44	50	-6
210.35	144	295	62	17.2	35.4	2.1	45.9	50	-4.1
213.75	140	304	63.3	17.2	35.4	2.2	47.2	50	-2.8
220.21	127	325	63	17.5	35.3	2.2	47.4	50	-2.6
227.05	100	322	58.4	17.7	35.4	2.2	43	50	-7
230.51	156	325	55.9	17.9	35.3	2.2	40.7	57	-16.3
270.41	126	154	51.1	19.8	35.3	2.4	38.1	57	-18.9
409.91	289	289	47.4	22.6	34.9	3	38.1	57	-18.9
480.25	216	9	30.1	24.1	34.7	3.3	22.7	57	-34.3
535.71	251	8	29.7	24.8	34.5	3.4	23.5	57	-33.5
662.65	397	9	29.9	26.5	33.5	3.8	26.6	57	-30.4
777.81	300	40	29.3	28	31.9	4.1	29.5	57	-27.5
892.15	386	154	32.3	29.4	31.3	4.4	34.7	57	-22.3
948.05	194	256	29.9	29.8	32.5	4.5	31.7	57	-25.3

Table 6-1 Horizontal Test Data

Table 6-2 Vertical Test Data

Freq. MHz	Antenna Height cm	Azimuth degrees	Receiver Reading dBuV/m	Antenna Factor dB	PreAmp Factor dB	Cable Factor dB	Final QP Reading dBuV/m	Limit QP dBuV/m	Margin QP dB
57.54	160	106	54.3	13.9	35.5	1.1	33.7	50	-16.3
115.06	170	35	43.1	19.5	35.5	1.5	28.6	50	-21.4
119.81	150	112	39.9	19.7	35.5	1.6	25.7	50	-24.3
173	150	120	49.7	18.1	35.4	1.9	34.3	50	-15.7
180.25	157	118	52.8	17.3	35.4	2	36.6	50	-13.4
187.1	157	111	53.9	17.2	35.4	2	37.7	50	-12.3
201.32	157	106	58.9	18.8	35.4	2.1	44.3	50	-5.7
211.63	158	326	54.5	17.2	35.4	2.1	38.4	50	-11.6
218.91	250	281	53.5	17.5	35.3	2.2	37.8	50	-12.2
222.35	237	335	53	17.5	35.3	2.2	37.4	50	-12.6
226.65	232	329	48.7	17.7	35.4	2.2	33.3	50	-16.7
290.22	157	127	48.9	20	35.2	2.5	36.2	57	-20.8
462.26	174	139	32.2	23.5	34.8	3.2	24.1	57	-32.9
662.23	250	331	30	26.4	33.5	3.8	26.7	57	-30.3
891.75	151	178	32	28.6	31.3	4.4	33.6	57	-23.4

Intertek									
Report Number: 10431	0663DAL-001		Issued: 31-July-2020						
Test Personnel:	Reshar Rouse RJR	Test Date:	July 30, 2020						
Supervising/Reviewing									
Engineer:									
(Where Applicable)		Limit Applied:	Group 1, Class A						
Product Standard:	EN 61326-1	Ambient Temperature:	26.7ºC						
Input Voltage:	230V 50Hz	Relative Humidity:	40.7%						
Pretest Verification w/		Atmospheric Pressure:	933.0mbars						
Artifact:	N/A	_							

7 AC Mains Conducted Emissions

7.1 Method

Tests are performed in accordance with CISPR 11..

TEST SITE: Vertical Ground Reference Plane, 3m SAC

<u>Site Designation</u>: The Vertical Ground Reference Plane is Intertek built Vertical and Horizontal Planes greater than 2m X 2m.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
AC Line Conducted			
Emissions	9 kHz - 150 kHz	3.43 dB	3.8dB
AC Line Conducted			
Emissions	150 kHz - 30 MHz	2.85 dB	3.4dB
Telco Port Emissions	150 kHz - 30 MHz	1.92 dB	5.0dB
AC Line Conducted			
Emissions with a Current			
Probe	150 kHz - 30 MHz	1.8	2.9

As shown in the table above our conducted emissions U_{lab} is less than the corresponding U_{CISPR} reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Report Number: 104310663DAL-001

Sample Calculations

The following is how net line-conducted readings were determined:

NF = RF + LF + CF + AF Where NF = Net Reading in dBμV RF = Reading from receiver in dBμV LF = LISN or ISN Correction Factor in dB CF = Cable Correction Factor in dB AF = Attenuator Loss Factor in dB

To convert from dBµV to µV or mV the following was used:

UF = $10^{(NF/20)}$ where UF = Net Reading in μV NF = Net Reading in dB μV

Example:

NF = RF + LF + CF + AF = $28.5 + 0.2 + 0.4 + 20.0 = 49.1 \text{ dB}\mu\text{V}$ UF = $10^{(49.1 \text{ dB}\mu\text{V} / 20)} = 285.1 \mu\text{V/m}$ Report Number: 104310663DAL-001

Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
		Extech		A.08640		
4333	Ambient Data Logger	Instruments	SD700	9	4/24/2020	4/24/2021
	EMI Receiver Old Den-	Rohde &				
3729	073 20 Hz 26 GHz	Schwarz	ESU 26	100265	11/29/2020	11/29/2021
	LISN-LISN 9 kHz to 30					
	MHz 250 & 50 μH					
4240	Inductors	Com Power	LI-220A	192056	2/14/2020	2/14/2021
		Hewlett-		3107A0		
3611	Transient Limiter	Packard	11947A	1975	6/25/2020	6/25/2021
			Power			
			Lock			
4427	Tape measure	Stanley	8m/26'	-	CNR	CNR
		Com-Power				
980	Generator/Site Source	Corp	CGC-255	311172	CNR	CNR
	256 Low Loss RF Cable	Maury	UC-N-	174148		
4283	N Туре	Microwave	MM-256	0	4/10/2020	4/10/2021

Software Utilized:

Conducted Emissions

Name	Manufacturer	Asset #	Version					
Total Integrated	ETS-Lindgren	1330	6.0					
Laboratory Environment	Laboratory Environment							
Profile								
Name	Manufacturer	Asset #	Version/Rev					
Master Conducted	ETS-Lindgren	1330-001	Ver11 Rev12					
Emissions								

7.2 Results:

The sample tested was found to Comply.

7.3 Setup Photographs:

Figure 7-1 Conducted Emissions Test Setup

7.1 Plots/Data:

Figure 7-2 Conducted Emissions Line 1

Figure 7-3 Conducted Emissions Line 2

Intertek

Report Number: 104310663DAL-001

Freq. MHz	QP Reading dBuV	Avg Reading dBuV	Cable Factor dB	Limiter Factor dB	Lisn Factor dB	Final QP Reading dBuV	Limit QP dBuV	Margin QP dB	Final Avg dBuV	Limit Avg dBuV	Margin Avg dB
0.17	30.294	2.028	0.208	9.950	0.695	41.147	79	-37.853	12.881	66	-53.119
0.26	18.281	-2.208	0.217	9.950	0.546	28.994	79	-50.006	8.505	66	-57.495
0.30	14.640	-4.050	0.221	9.950	0.513	25.324	79	-53.676	6.634	66	-59.366
0.99	-4.031	-10.042	0.248	9.960	0.360	6.536	73	-66.464	0.525	60	-59.475
15.00	-9.893	-15.462	0.310	10.010	0.440	0.867	73	-72.133	-4.702	60	-64.702
25.00	-9.822	-15.347	0.406	10.040	0.540	1.164	73	-71.836	-4.361	60	-64.361

Table 7-1 Conducted Emissions Line 1

Table 7-2 Conducted Emissions Line 2

Freq. MHz	QP Reading dBuV	Avg Reading dBuV	Cable Factor dB	Limiter Factor dB	Lisn Factor dB	Final QP Reading dBuV	Limit QP dBuV	Margin QP dB	Final Avg dBuV	Limit Avg dBuV	Margin Avg dB
0 15	32 599	6 77	0.21	9 950	0 74	43 498	79	-35 5	17 67	66	-48 33
0.15	52.555	0.77	0.21	5.550	0.74	43.450	75	-55.5	17.07	00	-40.55
0.20	26.223	0.02	0.21	9.950	0.65	37.032	79	-41.97	10.82	66	-55.18
0.23	21.727	-1.64	0.21	9.950	0.59	32.485	79	-46.52	9.11	66	-56.89
0.32	12.097	-6.07	0.22	9.953	0.50	22.767	79	-56.23	4.6	66	-61.4
0.36	8.126	-7.38	0.22	9.956	0.48	18.783	79	-60.22	3.28	66	-62.72
1.00	-4.736	-10.05	0.25	9.960	0.35	5.822	73	-67.18	0.51	60	-59.49
15.01	-9.736	-15.50	0.31	10.010	0.46	1.044	73	-71.96	-4.72	60	-64.72
25.00	-9.765	-15.23	0.41	10.040	0.63	1.311	73	-71.69	-4.15	60	-64.15

Test Personnel:	David Pflugrad DP	Test Date:	July 17, 2020
Supervising/Reviewing			
Engineer:	,		
(Where Applicable)	Rick Hill	Limit Applied:	Group 1, Class A
Product Standard:	EN 61326-1	Ambient Temperature:	25.9ºC
Input Voltage:	230V 50Hz	Relative Humidity:	42.4%
Pretest Verification w/		Atmospheric Pressure:	991.3mbars
Ambient Signals or			
BB Source:	Yes		

Deviations, Additions, or Exclusions: None

8 Harmonics

8.1 Method

Tests are performed in accordance with EN 61000-3-3.

TEST SITE: Immunity Room

Measurement Uncertainty

Measurement	Parameter	Expanded Uncertainty (k=2)	Permitted Error
Harmonics	Current	1.0%	±5.0%

As shown in the table above our Expanded Measurement Uncertainty for harmonic current U_{lab} is less than the corresponding measurement error allowed by IEC61000-3-2 and IEC61000-4-7, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required. There are currently no U_{CISPR} reference values in CISPR 16 for Harmonics.

8.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
4222	Ambient Data Logger	Extech	50700	A.0864	4/24/2020	4/24/2021
4333	Amplent Data Logger	Instruments	30700	09		
				1247A		
1400	Power Analyzer	Ametek	OMNI 3-37i	02352	CND	CND
1496			PACS-3/CTS	1247A	CNR	CINR
				02352		

Software Utilized:

Name	Manufacturer	Version
CTSMXL2	California Instruments Corp.	2.13.1

8.3 Results:

The sample tested was found to Comply.

8.4 Setup Photographs:

Figure 8-1 AC Line Harmonic Current Emissions Test Setup

8.5 Plots/Data:

Harmonics – Class-A per Ed. 5.0 (2018)(Run time)

EUT: LM5155EVM-BSTTested by: R RouseTest category: Class-A per Ed. 5.0 (2018) (European limits)Test Margin: 100Test date: 7/16/2020Start time: 11:26:38 PMEnd time: 11:36:51 PMTest duration (min): 10Data file name: CTSMXL_H-000193.cts_dataComment: 230V 50HzCustomer: Texas Instruments Inc.

Test Result: Pass Source qualification: Normal

Current & voltage waveforms

Harmonics and Class A limit line

European Limits

Current Test Result Summary (Run time)

EUT: LI Test ca Test da Test du Comme Custor	M5155EVM-BST tegory: Class-A te: 7/16/2020 ration (min): 10 ent: 230V 50Hz ner: Texas Instr	per Ed. 5.0 Sta Da ruments Ind	0 (2018) (Eu nt time: 11: ta file name c.	ropean limits) 26:38 PM :: CTSMXL_H-00	Tested by: Test Margir End time: 1 0193.cts_da	R Rouse n: 100 1:36:51 PM ata	
Test Re THC	esult: Pass C(A): 0.373	Source qu I-THD(%): (alification: 69.8 PC	Normal DHC(A): 0.012	POHC Li	mit(A): 0.251	I
Highes	t parameter valu V_RMS (Volts): I_Peak (Amps): I_Fund (Amps) Power (Watts):	ues during 230.391 1.602 0.535 114.7	test:	Frequency(Hz): I_RMS (Amps): Crest Factor: Power Factor:	50.00 0.657 2.460 0.769		
Harm#	Harms(avg) 1	00%Limit	%of Limit	Harms(max)	150%Limit	%of Limit	Status
2	0.017	1.080	1.6	0.027	1.620	1.7	Pass
3	0.298	2.300	13.0	0.302	3.450	8.7	Pass
4	0.009	0.430	2.1	0.011	0.645	1.6	Pass
5	0.204	1.140	17.9	0.208	1.710	12.2	Pass
6	0.003	0.300	N/A	0.004	0.450	N/A	Pass
7	0.073	0.770	9.5	0.075	1.155	6.5	Pass
8	0.003	0.230	N/A	0.004	0.345	N/A	Pass
9	0.031	0.400	7.7	0.032	0.600	5.3	Pass
10	0.002	0.184	N/A	0.003	0.276	N/A	Pass
11	0.028	0.330	8.6	0.029	0.495	5.9	Pass
12	0.001	0.153	N/A	0.002	0.230	N/A	Pass
13	0.019	0.210	9.1	0.020	0.315	6.4	Pass
14 15 16 17	0.002 0.011 0.001 0.012	0.131 0.150 0.115 0.132	N/A 7.5 N/A	0.002 0.012 0.002 0.013	0.197 0.225 0.173 0.198	N/A 5.4 N/A	Pass Pass Pass Pass
18 19 20	0.001 0.001 0.008 0.001	0.132 0.102 0.118 0.092	0.0 N/A 6.9 N/A	0.013 0.001 0.009 0.001	0.153 0.178 0.138	0.4 N/A 4.9 N/A	Pass Pass Pass Pass
21	0.006	0.107	5.6	0.007	0.161	4.1	Pass
22	0.001	0.084	N/A	0.001	0.125	N/A	Pass
23	0.006	0.098	6.5	0.007	0.147	4.5	Pass
24	0.001	0.077	N/A	0.001	0.115	N/A	Pass
25	0.004	0.090	N/A	0.004	0.135	N/A	Pass
26	0.001	0.071	N/A	0.001	0.107	N/A	Pass
27	0.004	0.083	N/A	0.005	0.125	N/A	Pass
28	0.001	0.066	N/A	0.001	0.099	N/A	Pass
29	0.003	0.078	N/A	0.004	0.116	N/A	Pass
30	0.001	0.061	N/A	0.001	0.092	N/A	Pass
31	0.003	0.073	N/A	0.003	0.109	N/A	Pass
32	0.001	0.058	N/A	0.001	0.086	N/A	Pass
33	0.003	0.068	N/A	0.003	0.102	N/A	Pass
34	0.001	0.054	N/A	0.001	0.081	N/A	Pass
35	0.002	0.064	N/A	0.003	0.096	N/A	Pass
36	0.001	0.051	N/A	0.001	0.077	N/A	Pass
37	0.002	0.061	N/A	0.002	0.091	N/A	Pass
38	0.001	0.048	N/A	0.001	0.073	N/A	Pass
39	0.002	0.058	N/A	0.002	0.087	N/A	Pass
40	0.000	0.046	N/A	0.001	0.069	N/A	Pass

Voltage Source Verification Data (Run time)

Intertek								
Report Num	ber: 104310663DAL-001	L		Issued: 31-July-2020				
EUT: LM5155EVM-BSTTested by: R RouseTest category: Class-A per Ed. 5.0 (2018) (European limits)Test Margin: 100Test date: 7/16/2020Start time: 11:26:38 PMEnd time: 11:36:51 PMTest duration (min): 10Data file name: CTSMXL_H-000193.cts_dataComment: 230V 50HzCustomer: Texas Instruments Inc.								
Test Result Measured s Measureme	Test Result: Pass Source qualification: Normal Measured source distortion is within the requirements of the standards Measurements are compliant with IEC/EN61000-3-2 Ed. 5 & IEC/EN61000-4-7 Ed. 2.1							
Highest par Volt I_Pe I_Fu Pow	ameter values during to age (Vrms): 230.391 eak (Amps): 1.602 ind (Amps): 0.535 ver (Watts): 114.7	est: Freq I_RM Cres Powe	uency(Hz): 50.00 S (Amps): 0.657 t Factor: 2.460 er Factor: 0.769) 7)				
Harm#	Harmonics V-rms	Limit V-rms	% of Limit	Status				
Harm# 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	Harmonics V-rms 0.097 0.049 0.014 0.053 0.029 0.063 0.010 0.018 0.011 0.031 0.011 0.027 0.008 0.025 0.008 0.025 0.008 0.021 0.012 0.022 0.013 0.013 0.013 0.009 0.015 0.009 0.015 0.009	Limit V-rms 0.461 2.073 0.461 0.921 0.461 0.461 0.461 0.461 0.230 0.2	% of Limit 21.07 2.34 2.94 5.72 6.30 9.13 2.15 3.80 2.41 13.61 4.78 11.59 3.62 10.89 3.37 9.04 5.12 9.70 5.75 8.00 3.73 5.85 4.00 6.35 3.82 6.41 2.42	OK OK				
28 29 30 31 32 33 34 35 36 37 38 39 40	0.008 0.014 0.011 0.011 0.007 0.009 0.008 0.011 0.008 0.012 0.008 0.013 0.013 0.011	0.230 0.230 0.230 0.230 0.230 0.230 0.230 0.230 0.230 0.230 0.230 0.230	3.42 6.02 4.78 4.67 3.21 3.88 3.29 4.92 3.43 5.25 3.28 5.74 4.80	ОК ОК ОК ОК ОК ОК ОК ОК ОК ОК				

Intertek					
Report Number: 10431	0663DAL-001		Issued: 31-July-2020		
Tel Denned		T. 1 D. 1			
Test Personnel:	Reshar Rouse RJR	lest Date:	July 17, 2020		
Supervising/Reviewing					
Engineer:					
(Where Applicable)		Limit Applied:	Class A		
Product Standard:	EN 61000-3-3	Ambient Temperature:	26.7ºC		
Input Voltage:	230V 50Hz	Relative Humidity:	40.7%		
Pretest Verification w/		Atmospheric Pressure:	933.0mbars		
Artifact:	N/A				

Deviations, Additions, or Exclusions: None

9 Flicker

9.1 Method

Tests are performed in accordance with EN 61000-3-3.

TEST SITE: Immunity Room

Measurement Uncertainty

Measurement	Parameter	Expanded Uncertainty (k=2)	Permitted Error
Flicker	Pst	0.4 %	±8.0%
Flicker	dc	0.4%	±8.0%

As shown in the table above our Expanded Measurement Uncertainty for Pst and dc U_{lab} is less than the corresponding measurement error allowed by IEC 61000-3-3, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required. There are currently no U_{CISPR} reference values in CISPR 16 for Flicker.

9.2 Test Equipment Used:

Software Utilized:

Name	Manufacturer	Version
CTSMXL2	California Instruments Corp.	2.13.1

9.3 Results:

The sample tested was found to Comply.

9.4 Setup Photographs:

Figure 9-1 AC Line Voltage Flicker and Fluctuations Test Setup

European Limits

9.5 Plots/Data:

Flicker Test Summary per EN 61000-3-3 Ed. 3.0 (2013) (Run time)

EUT: LM5155EVM-BSTTested by: R RouseTest category: All parameters (European limits)Test Margin: 100Test date: 7/17/2020Start time: 12:11:58 AMEnd time: 2:13:31 AMTest duration (min): 120Data file name: CTSMXL_F-000195.cts_dataComment: 230V 50HzCustomer: Texas Instruments Inc.

Test Result: Pass

Status: Test Completed

Psti and limit line

1.00 0.75 ā.50 0.25 0:42: 1:42:18 N 0 0 C 1:22:18 1:32:18 1:52:18 2:12:18 1:02:19 1:12:19 1:22:19 1:52:19 :02:18 :32 . 1 9 . . 9

Plt and limit line

Parameter values recorded during the test: Vrms at the end of test (Volt): 230 13

vrins at the end of test (volt):	230.13			
T-max (mS):	0.0	Test limit (mS):	500.0	Pass
Highest dc (%):	0.00	Test limit (%):	3.30	Pass
Highest dmax (%):	-0.07	Test limit (%):	4.00	Pass
Highest Pst (10 min. period):	0.064	Test limit:	1.000	Pass
Highest Plt (2 hr. period):	0.064	Test limit:	0.650	Pass

		Intertek		
Report Number: 10431	0663DAL-001			Issued: 31-July-2020
Test Personnel:	Reshar Rouse RJR		Test Date:	July 17, 2020
Supervising/Reviewing				
Engineer:				
(Where Applicable)			Limit Applied:	European
Product Standard:	EN 61000-3-3			
			Ambient	
Input Voltage:	230V 50Hz		Temperature:	26.4ºC
			Relative Humidity:	40.8%
Pretest Verification w/			Atmospheric	
Artifact:	Yes		Pressure:	933.0mbars

Deviations, Additions, or Exclusions: None

10 Radiated, radio-frequency, electromagnetic field immunity test

10.1 Method

Tests are performed in accordance with EN 61000-4-3. **TEST SITE:** Compact Chamber.

<u>Site Designation</u>: The Compact Chamber is a Braden Shielding Systems 3meter Semi Anechoic Chamber for performing a 16 point calibrated field immunity test.

10.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
569	Signal Generator	Rohde & Schwarz	SMR20	101111	1/8/2020	1/8/2021
4743	RF Power meter	Boonton	4541	14364	10/14/2019	10/14/2020
		Maury	UC-N-			
4199	RF Cable	Microwave	MM-78	1728116	4/14/2020	4/14/2021
		Maury	UC-N-			
4200	RF Cable	Microwave	MM-276	1741482	10/14/2019	10/13/2020
	Directional					
3613	Coupler 2	Werlatone	C5982	10385	8/26/2019	8/25/2020
	Bi-Directional		C8000-			
1075	Coupler	Werlatone	102	2426	8/25/2019	8/25/2020
		Amplifier				
207	Antenna	Research	AT5080	306847	10/9/2019	10/9/2020
	Double Ridge					
271	Guide	A H Systems	SAS-571	787	CBU	CBU
			ARI-			
			6000-			
4286	Power Amplifier	Com Power	100W	1005	CNR	CNR
		Amplifier	200W10			
3555	RF Amplifier	Research	00M7A	16049	CNR	CNR
	Ambient Data	Extech		A.08640		
4333	Logger	Instruments	SD700	9	4/24/2020	4/24/2021

Software Utilized:

Name	Manufacturer	Asset #	Version			
Total Integrated	ETS-Lindgren	1330	6.0			
Laboratory Environment						
Profile						
Name	Manufacturer	Asset #	Version/Rev			
Master Radiated	ETS-Lindgren	1330-005	11/7			
Immunity						

10.1 Results:

The sample tested was found to Comply.

10.2 Setup Photographs:

Figure 10-1 Radiated Immunity 80MHz to 1GHz Test Setup

Figure 10-2 Radiated Immunity 1.4GHz to 2.7GHz Test Setup

10.3 Data:

Field	Frequency		Antenna Polarity, Azimuths and Result Classification						
Level	Range		Vertical				Horiz	ontal	
(V/m)	MHz	0	90	180	270	0	90	180	270
3	80-1000	А	А	А	А	Α	Α	А	А
3	1400-2000	А	А	А	А	А	Α	А	А
1	2000-2700	Α	А	А	А	А	А	А	А

Test Personnel:	Reshar Rouse RJR	Test Date:	July 17, 2020
Supervising/Reviewing		Modulation::	1 kHz
Engineer:		Required	
(Where Applicable)		Performance:	A
Product Standard:	EN 61326-1	Test Levels:	See Table Above
		Ambient	
Input Voltage:	12VDC	Temperature:	32.1ºC
		Relative Humidity:	34.6%
Field Level Monitored:	Yes	Atmospheric Pressure:	992.4mbars

Notes:

(A) The EUT met the requirements without any degradation of performance.

Deviations, Additions, or Exclusions: None

11 Power Frequency Magnetic Field Immunity Test

11.1 Method

Tests are performed in accordance with EN 61000-4-8.

TEST SITE: Vertical Ground Reference Plane

<u>Site Designation</u>: The Vertical Ground Reference Plane is Intertek built Vertical and Horizontal Planes greater than 2m X 2m.

11.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
		Extech		A.0864		
4333	Ambient Data Logger	Instruments	SD700	09	4/24/2020	4/24/2021
	Magnetic Immunity					
4525	Test System	Com Power	APT-5060	506002	CNR	CNR

Software Utilized:

Name	Manufacturer	Version
None		

11.3 Results:

The sample tested was found to Comply.

11.4 Setup Photographs:

Figure 11-1 Power Frequency Magnetic Field Immunity Test Setup

11.5 Test Data:

	Test Level	Frequency	Result Classification			
Test Location/ Mode/ EUT AC Input	(A/m)	(Hz)	X – Axis	Y – Axis	Z – Axis	
The EVM energized and putting out						
nominal output voltage						
(24VDC)./50Hz	3	50	A	A	A	
The EVM energized and putting out						
nominal output voltage						
(24VDC)./60Hz	3	60	А	А	А	
Test Personnel: Reshar Rouse	e RJR Test Date:		July 21, 2	July 21, 2020		
Supervising/Reviewing						
Engineer:	Requ	ired				
(Where Applicable)	Perfc	Performance:		Α		
Product Standard: EN 61326-1	Test	Test Levels:		See Table Above		
	Ambi	ient				
Input Voltage: 12DC	Temp	Temperature:		22.6ºC		
	Relat	Relative Humidity:		45.6%		
	Atmo	ospheric				
	Press	sure:	989.1mb	ars		

Notes:

(A) The EUT met the requirements without any degradation of performance.

Deviations, Additions, or Exclusions: None

12 TCF TEST PLAN

G104310663 Written By: Reshar Rouse Date: 30 July 2020

12.1 CLIENT

Texas Instruments, c/o Youhao Xi 15210 S. 50th Street, Suite 120 Phoenix, AZ 85044 480-629-2487 (o); 480-335-8048 (m)

youhao.xi@ti.com

12.1 EQUIPMENT UNDER TEST

Type Boost DC-DC converter module

BMC028A

Input: 9-18V, Typical 12V; Output: 24V; Load current: 2A; Operating Frequency: 440kHz;

12.2 Configuration of EUT during testing

12.2.1 Composition of EUT

LM5155EVM-BST board, 440kHz

12.2.2 Assembly of EUT

Two ports: Input port and output. Input put sees 12V source, and output goes to 12 Ohm load (2A). 12.2.3 5.2.4 I/O ports

N/A 12.2.4 Auxiliary equipment

N/A.

Bout input and output port returns can be grounded to earth.

12.3 Operation conditions of EUT during testing

12.3.1 Operation modes

Vin=12V, Load = 120hm.

12.3.2 Environmental conditions

Vin range: 9V to 18V, typical 12V.

12.3.3 EUT software during test

N/A

Load=120hm or 2A.

MALFUNCTION CRITERIA

A: The EUT shall not have the following malfunctions during the test event: Communication and/or EUT display loss.

Sing of Failures:

- Output voltage not regulated at 24V +/-5%.
- Input current drawn from the 12V source supply is >5A

B: The EUT has overload protection, and the output voltage may drop to the input voltage level. (normal operation: 12Vin, 24Vout)

C:

Yes

12.3.4 Test description

The following standards, with their relevant amendments, shall be used for guidance:

EN 61326-1:2013 - Radio disturbance characteristics for laboratory test and measurement equipment

- EN 61000-4-2: Electrostatic Discharge Immunity not applicable*1
- EN 61000-4-3: Radiated Electromagnetic Field Immunity
- EN 61000-4-4: Electrical Fast Transient Immunity not applicable*2
- EN 61000-4-5: Surge Immunity- not applicable*2
- EN 61000-4-6: Conducted Disturbances RF Immunity- not applicable*2
- EN 61000-4-8: Magnetic Field Immunity
- EN 61000-4-11: Voltage dips and Interruptions- not applicable*2
- EN 61000-3-2: Harmonics
- EN 61000-3-3: Flicker

*Justifications for Basic Tests removed from this evaluation:

Note 1: The EUT is an electrostatically sensitive device and will be marked accordingly by the manufacturer which will require the user to use the proper ESD precautions as stated by the user's manual.

Note 2: The EUT does not connect directly to the public mains as it is a 5 VDC regulated to 2.2V - 3.6 VDC product. The DC power cable is treated as an I/O line which is less than 3m in length.

Test Standard	Test Level	Performance Criteria
EN 61326-1:2013	Group 1 Class B	Emissions below specified limit
EN 61000-4-3:	3V/M, 80 – 1000MHz	А
	3V/M, 1.4 – 2GHz	
	1V/M, 2 – 2.7GHz	
	w/1kHz, 80% AM	
EN 61000-4-8:	3A/m 50/60Hz	Α
EN 61000-3-2:	Class A Limits	Within Specified
		Limits
EN 61000-3-3:	4%	Within Specified
		Limits

Basic Standards that apply to this evaluation: Basic Electromagnetic Environment

13 Revision History

Revision Level	Date	Report Number	Prepared By	Reviewed By	Notes
0	31-July-2020	104310663DAL-001	RJR	WBC	Original Issue