COMPLETE BUCK POWER STAGE \hat{d} Small signal duty cycle input from error modulator \hat{r} Small signal resistance of load (Ohms) C_o Output capacitor (F) D' 1-D; applied to commutating switch or diode D Duty cycle of active switch ESR_o ESR of output capacitor (Ohms) Frequency of zero formed by output capacitor(s) and ESR_o. (Hz) F_o Effective resonant frequency of power stage (Hz) F_{rhp} Frequency of right-half-plane zero (Hz) F_s Switching frequency (Hz) G_{vd} Control to output small signal transfer function. From output of modulator to output voltage (V) $G_{vd}(0)$ G_{vd} at zero frequency I_o Load current for constant current load (A) J Current parameter of small signal model (A) L Power inductor value (H) L_e Effective power stage inductance (H) Q Effective Q of power stage R_a Resistance of active switch (Ohms) - R_c Resistance of commutating switch or commutating diode (Ohms) - R₁ Inductor resistance (Ohms) - R_x Effective power stage parasitic resistance (Ohms) - V_{in} Input voltage (V) - V_o Output voltage (V) ## NOTES: - 1. The small signal load resistance, \hat{r} is equal to V_o/I_o only when the load is a pure resistance. For a constant current load, \hat{r} is equal to the small signal output resistance of the load current source/sink. - 2. This model includes all relevant resistive parasitics. - 3. G(s) = V2/V1 $$G(s) = \left(\frac{\hat{r}}{\hat{r} + R_{l}}\right) \cdot \frac{\left(ESR \cdot C_{o} \cdot s + 1\right)}{s^{2} \cdot \left[L \cdot C_{o} \cdot \left(\frac{\hat{r} + ESR}{\hat{r} + R_{l}}\right)\right] + s \cdot \left[\left(\frac{\hat{r} \cdot ESR}{\hat{r} + R_{l}} + \frac{R_{l} \cdot \left(ESR + \hat{r}\right)}{\hat{r} + R_{l}}\right) \cdot C_{o} + \frac{L}{\left(\hat{r} + R_{l}\right)}\right] + 1}$$ $$\omega_o = \frac{1}{\sqrt{L \cdot C_o \cdot \left(\frac{\hat{r} + ESR}{\hat{r} + R_l}\right)}}$$ $$Q = \frac{1}{\left[\left(\frac{\hat{r} \cdot ESR}{\hat{r} + R_l} + \frac{R_l \cdot (ESR + \hat{r})}{\hat{r} + R_l} \right) \cdot C_o + \frac{L}{(\hat{r} + R_l)} \right] \cdot \omega_o}$$ For ESR $<<\hat{r}$ $$G(s) = \left(\frac{\hat{r}}{\hat{r} + R_l}\right) \cdot \frac{\left(ESR \cdot C_o \cdot s + 1\right)}{s^2 \cdot \left[L \cdot C_o \cdot \left(\frac{\hat{r}}{\hat{r} + R_l}\right)\right] + s \cdot \left[\left(\frac{\hat{r}}{\hat{r} + R_l}\right) \cdot \left(ESR + R_l\right) \cdot C_o + \frac{L}{\left(\hat{r} + R_l\right)}\right] + 1}$$ $$\omega_o = \frac{1}{\sqrt{L \cdot C_o \cdot \left(\frac{\hat{r}}{\hat{r} + R_l}\right)}}$$ $$Q = \frac{1}{\left[\left(\frac{\hat{r}}{\hat{r} + R_l} \right) \cdot \left(ESR + R_l \right) \cdot C_o + \frac{L}{\left(\hat{r} + R_l \right)} \right] \cdot \omega_o}$$ For $$R_l << \hat{r}$$ $$G(s) = \frac{\left(ESR \cdot C_o \cdot s + 1\right)}{s^2 \cdot \left[L \cdot C_o\right] + s \cdot \left[\left(ESR + R_l\right) \cdot C_o + \frac{L}{\hat{r}}\right] + 1}$$ $$\omega_o = \frac{1}{\sqrt{L \cdot C_o}}$$ $$Q = \frac{1}{\left[\left(ESR + R_l \right) \cdot C_o + \frac{L}{\hat{r}} \right] \cdot \omega_o}$$