Block design: PSFB resonant inductor

- E_{STORE} in L_S charges total C_{OSS} of one leg
- Achieve ZVS down to Load_{MIN} = 15% of full load →

$$L_{S} \geq 2 \cdot COSS(Qa, avg) \cdot \frac{(V_{IN}(fb, nom))^{2}}{\left[\text{LOAD(min)} \cdot \left(I_{PP} - \frac{\Delta I_{LOUT}}{N_{PS}(fb)}\right)\right]^{2}} - L_{LK} = 1.13 \cdot 10^{-5}H$$

- Where: L_{LK} = 3.5 uH (0.1% of magnetizing inductance) \rightarrow L_{S} = 10 μ H
- L_S RMS current and T1 primary current are the same (have only AC component)
- Select PQ20/20 platform with:
 - $-\Delta B_{PK} = 118 \text{ mT}, 10 \text{ turns Litz wire } (160x0.1 \text{ mm})$
 - N97 EPCOS core, gap 0.77 mm, μ_E = 57
 - Results in copper losses = 0.63 W and core losses = 0.57 W