How can I use the SS/EN pin to control the Hiccup time? The soft start is controlled by the voltage ramp on the SS/EN pin. In the simplest case only the soft start capacitor C_{SS} is required. Figure 42 in the data sheet shows the currents in and out of the SS/EN pin in the four intervals; Soft-Start, Normal Operation, Cycle-by-Cycle (CbC) and OFF time. An external MOSFET, Q_{EN} can be used to clamp the SS/EN pin below the Output Enable (OE) threshold and this will prevent the controller from operating. If the controller is being used in Slave Mode then R_{SL} (825k Ω) is added in parallel with C_{SS} . The OFF time is set by the current in the capacitor C_{SS} and its capacitance. The current is the sum of I_{HCC} into the SS/EN pin and the currents in resistors R_{SL} and R_{H} . The MOSFET is off and its current is negligible. The current in R_{SL} and the SS/EN pin are negative so they will discharge the capacitor but current in R_{H} is positive and will tend to charge it. The value of RH can be chosen to give three different behaviours. ## Hiccup mode with extended OFF time before Restart If the current in R_H is less than I_{HCC} when SS/EN is at the OE threshold, then C_{SS} will be discharged to the threshold and the controller will then re-start. Lower values of R_H will increase the OFF time. For example and neglecting tolerances: VREF is 5V so a 3Meg resistor will pass 1.5uA when the SS/EN pin is at 500mV. ## Latched OFF mode with no Restart As the value of R_H is reduced, eventually a point will be reached where the resistor prevents C_{SS} being discharged to the OE threshold. The OFF time will be extended indefinitely with no restart unless an external switch is turned on (Q_{EN}) . For example and neglecting tolerances: VREF is 5V so a 1 Meg resistor will pass 2.5uA when the SS/EN pin is at 2.5V. Switching will have stopped because the SS/EN pin is below the 3.6V V_{HCC} threshold but there will not be a restart because the SS/EN pin has not fallen to the OutEn threshold. ## Continuous operation at I_{LIM}. No Hiccup mode. If R_H is reduced even more then it will prevent the I_{DS} current from pulling the SS/EN pin below the V_{HCC} threshold. The controller will continue to operate in Cycle-by-Cycle mode. The resistor value is $R_H < (V_{REF} - V_{HCC})/I_{DS}$ - Typically a value of around 62kOhms would work. If you want the controller to shut down in this condition then you will need to turn Q_{EN} .