# Some details of the design:

- Switching frequency: 20KHz.
- Duty cycle: being an inverter, the control of the UCC27282 is by PWMS. So, the duty cycle is variable. But I can give you the amplitude modulation ratio which is ma = 0.9. and the frequency modulation ratio is mf = 50.



• Regarding the Rgate value, I just followed the example in the UCC27282 datasheet.

Figure 8-1. Typical Application

## 8.2.1 Design Requirements

Table below lists the system parameters. UCC27282 needs to operate satisfactorily in conjunction with them.

Table 8-1. Design Requirements

| Parameter                                              | Value       |  |
|--------------------------------------------------------|-------------|--|
| MOSFET                                                 | CSD19535KTT |  |
| Maximum Bus/Input Voltage, V <sub>in</sub>             | 75V         |  |
| Operating Bias Votage, V <sub>DD</sub>                 | 7V          |  |
| Switching Frequency, Fsw                               | 300kHz      |  |
| Total Gate Charge of FET at given VDD, Q <sub>G</sub>  | 52nC        |  |
| MOSFET Internal Gate Resistance, R <sub>GFET_Int</sub> | 1.4         |  |
| Maximum Duty Cycle, D <sub>Max</sub>                   | 0.5         |  |
| Gate Driver                                            | UCC27282    |  |

In the case of the inverter, I am using the CSD19536KCS.

Use Equation 9 to calculate the driver high-side pull-up current.

$$I_{OHH} = \frac{V_{DD} - V_{DH}}{R_{HOH} + R_{GATE} + R_{GFET(int)}}$$

#### where

- · I<sub>OHH</sub> is the high-side, peak pull-up current
- V<sub>DH</sub> is the bootstrap diode forward voltage drop
- R<sub>HOH</sub> is the gate driver internal high-side pull-up resistor. Value either directly provided in datasheet or can be calculated from test conditions (R<sub>HOH</sub> = V<sub>HOH</sub>/I<sub>HO</sub>)
- R<sub>GATE</sub> is the external gate resistance connected between driver output and power MOSFET gate
- R<sub>GFET(int)</sub> is the MOSFET internal gate resistance provided by MOSFET datasheet

Use Equation 10 to calculate the driver high-side sink current.

$$I_{OLH} = \frac{V_{DD} - V_{DH}}{R_{HOL} + R_{GATE} + R_{GFET(int)}}$$

### where

· R<sub>HOL</sub> is the gate driver internal high-side pull-down resistance

Use Equation 11 to calculate the driver low-side source current.

$$I_{OHL} = \frac{V_{DD}}{R_{LOH} + R_{GATE} + R_{GFET(int)}}$$

#### where

R<sub>LOH</sub> is the gate driver internal low-side pull-up resistance
Use Equation 12 to calculate the driver low-side sink current.

$$I_{OLL} = \frac{V_{DD}}{R_{LOL} + R_{GATE} + R_{GFET(int)}} \label{eq:loll}$$

where

Vdd= 7V; Vdh=0.85V; Rhoh= 0.13/100mA=1.3ohm lohh= 6.15V/(1.3+3.3+1.4)= 1.025A.

Rhol= 0.1/100mA=10hm Iolh= 6.15V/(1+1.2+1)= 1.92A.

Vdd= 7V; Vdh=1V;

• The LO, HO-HS and HS images will be sent to you in these days.

Finally, I attach a pdf file with the PCB design.