Summary TPS65987 Issue - Start September-26 2022

I'm using the TPS65987D in an UFP application and I'm trying to solve the following task:
The application is using 5 V supply only depending on the current (1.5A or 3.0 A) the source can supply the application should act in two different ways.

What I did:

- I defined 2 PDOs as shown in the picture "Define PDOs.jpg"
- I configured GPIO \#14 / GPIO \#15 as shown in the picture "Config GPIO14_15.jpg"

GPIO \#14 should get high if the source can provide 1.5 A only
GPIO \#15 should get high if the source can provide 3.0 A

GPIO \#15 (PWM2)

Field		Value
Multiplexing for GPIO 15 pin	Pin Multiplexed to GPIO	
Initial Value	Ox0	
Open Drain Output Enable	\square	
Internal Pull Down Enable	\square	
Internal Pull Up Enable	\square	\square
Mapped Event	Port 0 Sink PDO 1 Negotiated	
GPIO Polarity	Direct-mapped Event	\square

Results:

1. If I connect to a source with $5 \mathrm{~V} / 1.5 \mathrm{~A}$ max GPIO \#14 becomes high $=>$ O.K. In Debug-Mode please see following pictures
"Received Source Capabilities_Source PDO 1_5V-1A5.jpg"

FTDI, 0×38 (I2C2)

Received Source Capabilities (0×30)	
Number of Source PDOs	
1	
Source PDO 1	
Field Maximum Current 1.5 A Voltage 5 V Peak Current 130% Unchunked Extended Msg Supported True USB Capable True USB Suspend Supported True Dual Role Data True Externally Powered False Dual Role Power True Supply Type Fixed Source	

"Active Contract PDO 5V_1A5-Source.jpg"

Active Contract PDO (0x34)					
	Field				
Maximum Current	1.5 A	Value			
Voltage	5 V				
Peak Current	130%				
Supply Type	Fixed Source				

2. If I connect to a source with $5 \mathrm{~V} / 3.0 \mathrm{~A}$ max also GPIO \#14 gets high BUT NOT GPIO \#15 In Debug-Mode please see following pictures

"Active Contract PDO 5V_3A0-Source.jpg"

Active Contract PDO (0x34)		
Field		
Maximum Current	3 A	Value
Voltage	5 V	
Peak Current	100%	
Supply Type	Fixed Source	

Initial Questions:

- Why is GPIO \#15 not getting high in case I connect to a $5 \mathrm{~V} / 3.0 \mathrm{~A}$ Source?
- If the above approach doesn't work at all, is there any other possibility to differentiate between $5 \mathrm{~V} / 1.5 \mathrm{~A}$ and $5 \mathrm{~V} / 3.0 \mathrm{~A}$ source capabilities?

Further step:

Using a PD-Analyzer
The transmitted sink capabilities have been adjusted as follows:
Transmit Sink Capabilities (0×33)

Sink PDO Count

Field				Value
Number of Sink PDOs	2			

Sink PDO 1

Field	Value	
Operating Current	0.9 A	$\stackrel{\square}{*}$
Voltage	5 V	
Peak Current	100\%	\checkmark
Fast Role Swap required USB Type-C Current	Fast Swap not Supported	\checkmark
Higher Capability	\checkmark	
Supply Type	Fixed Sink	
Maximum Operating Current	1.5 A	\div
Minimum Operating Current	0.9 A	-
Ask For Max	\checkmark	

Sink PDO 2

Field	Value	
Operating Current	2 A	\div
Voltage	5 V	\div
Peak Current	100\%	\checkmark
Supply Type	Fixed Sink	\checkmark
Maximum Operating Current	3 A	\div
Minimum Operating Current	2 A	,
Ask For Max	\checkmark	

I'm using a simple USB-Power-supply with $5 \mathrm{~V} / 3000 \mathrm{~mA}$ and $9 \mathrm{~V} / 2000 \mathrm{~mA}$
See the transmitted source capabilities below

As the PD analyzer shows, the TPS65987D is only requesting $5 \mathrm{~V} / 1500 \mathrm{~mA}$ (PDO0) and not $5 \mathrm{~V} / 3000 \mathrm{~mA}$ (PDO1)

