

TPS22933 SLVSB34A -OCTOBER 2011-REVISED JUNE 2015

TPS22933 Triple-Input Power Multiplexer With Auto-Select and Low Drop-Out Voltage Regulator

Features

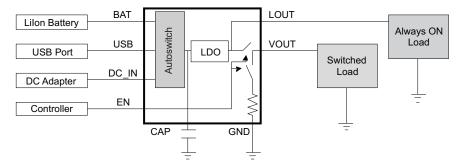
- Three Integrated Load Switches Automatically Choose Highest Input
- Integrated 3.6-V Fixed LDO
- Switched and Always on LDO Outputs
- μQFN package 1.5 mm × 1.5 mm
- Input Voltage Range: 2.5 V to 12 V
- Low ON-Resistance (r_{ON})
 - r_{ON} = 2.4 Ω at V_{IN} = 5.0 V
 - r_{ON} = 2.6 Ω at V_{IN} = 4.2 V
- 50-mA Maximum Continuous Current
- Low Threshold Control Input (EN)
- Switchover Time of 18 µs (typical)

Applications

- **Smart Phones**
- **GPS Devices**
- **Digital Cameras**
- Portable Industrial Equipment
- Portable Medical Equipment
- Portable Media Players
- Portable Instrumentation

3 Description

The TPS22933 device is a small, low r_{ON} , triple-input power multiplexer with auto-input selection and a lowdropout linear regulator. The device contains three Pchannel MOSFETs that can operate over an input voltage range of 2.5 V to 12 V. The TPS22933 automatically selects the highest level (from BAT, USB, and DC IN) and enables that input to source the LDO. LOUT is an always-on output from the LDO. The Enable function (EN pin) allows VOUT to be switched on or off, enables a quick discharge resistor, and is capable of interfacing directly with low-voltage control signals.


The TPS22933 is available in a small, space-saving 8-pin µQFN package and is characterized for operation over the free-air temperature range of -40°C to 85°C.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TPS22933	UQFN (8)	1.50 mm × 1.50 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Typical Application Diagram

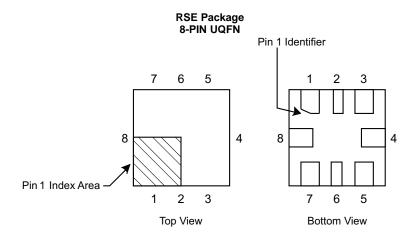
Table of Contents

1	Features 1		8.3 Feature Description	11
2	Applications 1		8.4 Device Functional Modes	12
3	Description 1	9	Application and Implementation	13
4	Revision History2		9.1 Application Information	13
5	Pin Configuration and Functions3		9.2 Typical Application	13
6	Specifications	10	Power Supply Recommendations	15
·	6.1 Absolute Maximum Ratings	11	Layout	15
	6.2 ESD Ratings 4		11.1 Layout Guidelines	15
	6.3 Recommended Operating Conditions 4		11.2 Layout Example	16
	6.4 Thermal Information	12	Device and Documentation Support	17
	6.5 Electrical Characteristics5		12.1 Community Resources	17
	6.6 Typical Characteristics		12.2 Trademarks	17
7	Parametric Measurement Information 10		12.3 Electrostatic Discharge Caution	17
8	Detailed Description		12.4 Glossary	17
•	8.1 Overview	13	Mechanical, Packaging, and Orderable	
	8.2 Functional Block Diagram 11		Information	17

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (October 2011) to Revision A


Page

Product Folder Links: TPS22933

s

5 Pin Configuration and Functions

Pin Functions

	PIN	1/0	DESCRIPTION
NO.	NAME	1/0	DESCRIPTION
1	BAT	ı	Source Voltage 1 (Battery)
2	USB	I	Source Voltage 2 (V+ USB)
3	DC_IN	1	Source Voltage 3 (DC Adapter)
4	GND	_	Ground
5	EN	I	VOUT Enable (Cannot be left floating)
6	CAP	0	Capacitor for LDO
7	VOUT	0	Switched LDO Output
8	LOUT	0	Always on LDO Output

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
VIN	Input voltage	BAT, USB, DC_IN	-0.3	14	V
VOUTPUT	Output voltage	VOUT, LOUT	-0.3	6	V
VEN	Input voltage	EN	-0.3	6	V
IMAX	Maximum continuous switch current			75	mA
IPLS	Maximum pulsed switch current, pulse <300 μs, 2% duty cycle			100	mA
T _A	Operating free-air temperature		-40	85	°C
T _{lead}	Maximum lead temperature (300	°C	
T _{stg}	Storage temperature	-65	150	°C	

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2000	
$V_{(ESD)}$	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±1000	V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions. Pins listed as ±2000 V may actually have higher performance.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions. Pins listed as ±1000 V may actually have higher performance.

6.3 Recommended Operating Conditions

			MIN	NOM	MAX	UNIT
V _{IN}	Innut voltage	BAT, USB, DC_IN	2.5		12	V
V_{EN}	Input voltage	EN	0		5.5	٧
V _{IH}	EN pin High-level input voltage, (EN > V _{IH} Min, VOUT = LDO Output)	BAT = 2.5 V to 5.5 V, USB, DC_IN = 2.5 V to 12 V	1.15		5.5	V
V _{IL}	EN pin Low-level input voltage, (EN< V _{IL} Max, VOUT = pulldown)	BAT = 2.5 V to 5.5 V, USB, DC_IN = 2.5 V to 12 V	0		0.6	V
I _{OUT-LOUT}	LOUT Current	V_{BAT} = 4.2 V OR V_{USB} = 5 V OR V_{DC_IN} = 5 V, EN = 3.4 V, $I_{OUT-VOUT}$ = 0 mA			50	mA
I _{OUT-VOUT}	VOUT Current	V_{BAT} = 4.2 V OR V_{USB} = 5 V OR V_{DC_IN} = 5 V, EN = 3.4 V, $I_{OUT\text{-}LOUT}$ = 0 mA			50	mA
I _{OUT-TOTAL}	LOUT + VOUT current	V_{BAT} = 4.2 V OR V_{USB} = 5 V OR V_{DC_IN} = 5 V, EN = 3.4 V			50	mA
LDO Capacitor (on CAP pin)			20 ⁽¹⁾			nF
CAP	LOUT Capacitor			1		μF
	VOUT Capacitor			1		μF

⁽¹⁾ Refer to Application and Implementation.

6.4 Thermal Information

		TPS22933	
	THERMAL METRIC ⁽¹⁾	RSE (UQFN)	UNIT
		6 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	115.6	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	59.9	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	27.4	°C/W
ΨЈТ	Junction-to-top characterization parameter	2.1	°C/W
ΨЈВ	Junction-to-board characterization parameter	27.3	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	_	°C/W

 For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

BAT = 2.5 V to 12.0 V, USB = 2.5 V to 12.0 V, DC_IN = 2.5 V to 12.0 V, $T_A = -40^{\circ}$ C to +85°C (unless otherwise noted)

l	PARAMETER	TEST CONDITIONS ⁽¹⁾ (2) (3)	T _A	MIN	TYP ⁽⁴⁾	MAX	UNIT
1	Operating current	$I_{OUT} = 0$ mA, $V_{BAT} = 4.2$ V, $V_{USB} = 3$ V, $V_{DC_IN} = 3$ V, EN = 3.4 V	Full		9.2	15	μA
I _{IN-BAT}	Quiescent current	$I_{OUT} = 0$, $V_{BAT} = 4.2$ V, $V_{USB} = 5$ V, $V_{DC_IN} = 3$ V, EN = 3.4 V	0.7		2	μΛ	
I	Operating current	$\begin{split} I_{OUT} &= 0 \text{ mA, } V_{BAT} = 4.2 \text{ V, } V_{USB} = 5 \text{ V,} \\ V_{DC_IN} &= 3 \text{ V, } EN = 3.4 \text{ V} \end{split}$	Full		9.2	15	μA
I _{IN-USB}	Quiescent current	$I_{OUT} = 0$, $V_{BAT} = 4.2V$, $V_{USB} = 5V$, $V_{DC_IN} = 5.5V$, $EN = 3.4 V$	ruii		0.7	2	μΑ
l	Operating current	$I_{OUT} = 0$ mA, $V_{BAT} = 4.2$ V, $V_{USB} = 3$ V, $V_{DC_IN} = 5$ V, EN = 3.4 V	Full		9.2	15	μA
IN-DC_IN	Quiescent current	$I_{OUT} = 0$, $V_{BAT} = 4.2V$, $V_{USB} = 5.5V$, $V_{DC_IN} = 5V$, $EN = 3.4 V$	ruii		0.7	2	μΑ
I _{IN-USB}	Hi-Voltage operating current	$I_{OUT} = 0$ mA, $V_{BAT} = 4.2$ V, $V_{USB} = 12$ V, $V_{DC_IN} = 5$ V, EN = 3.4 V	Full		10.8	20	μΑ
I _{IN-DC_IN}	Hi-Voltage operating current	$I_{OUT} = 0$ mA, $V_{BAT} = 4.2$ V, $V_{USB} = 5$ V, $V_{DC_IN} = 12$ V, EN = 3.4 V	Full		10.8	20	μΑ
		V 50V L 40 mA	25°C		2.4	3.3	0
		$V_{IN} = 5.0 \text{ V}, I_{OUT} = 10 \text{ mA}$	Full			3.5	Ω
D	ON resistance (USB to CAP, BAT to CAP, DC_IN to CAP)	V 40 V 1 40 TA	25°C		2.6	3.5	Ω
R _{ON}		V _{IN} = 4.2 V, I _{OUT} = 10 mA	Full			4	
		V 05VI 10 A	25°C		3.8	5	Ω
		V _{IN} = 2.5 V, I _{OUT} = 10 mA	Full			6	
	ON resistance (LDO	V 40V 1	25°C		1.3	2.5	0
R _{ONVOUT}	output to VOUT)	$V_{IN} = 4.2 \text{ V}, I_{OUT-VOUT} = 10 \text{ mA}$	Full			3	Ω
R _{PD}	Output pulldown resistance	$V_{IN} = 4.2 \text{ V}, V_{EN} = 0 \text{ V}, \text{ I(into VOUT)} = 10 \text{ mA}$	25°C		63.8	120	Ω
I _{EN}	EN input leakage	V _{EN} = 1.6 V to 5.5 V or GND	Full			1	μΑ
V _{DO-VOUT}	Dropout voltage VOUT	I _{OUT} = 10 mA	Full		0.11		V
V _{DO-LOUT}	Dropout voltage LOUT	I _{OUT} = 10 mA ⁽⁵⁾ (6)	Full		0.1		V
V_{LOUT}	Always on LDO output	V_{IN} < 3.4 V, I_{OUT} = 10 mA, V_{EN} = 1.8 V	Full		V _{IN} – V _{DO-LOUT}		V
200.	voltage (LOUT pin)	$V_{IN} > 4 \text{ V}, I_{OUT} = 10 \text{ mA}, V_{EN} = 1.8 \text{ V}$	Full	3.42	3.6	3.78	
V _{VOUT}	Switched LDO output	V _{IN} < 3.4 V, I _{OUT} = 10 m A, V _{EN} = 1.8 V	Full		V _{IN} – V _{DO-VOUT}		V
	voltage (VOUT pin)	$V_{IN} > 4 \text{ V}, I_{OUT} = 10 \text{ mA}, V_{EN} = 1.8 \text{ V}$	Full	3.39	3.57	3.75	
V _{CO}	Changeover voltage	V_{BAT} = 4.2 V, V_{USB} = 4.0 V rising to 4.4 V	Full		0.15		V
t _{CO}	Changeover time	VBAT=4.2 V, V _{USB} = 4.0 V rising to 4.4 V, CAP = 0.01 μF, I _{OUT} = 10 mA	25°C Full		18	50	μs
t _{OFF}	VOUT OFF-time	EN high to low, $C(VOUT) = 1 \mu F$, $VOUT$ load = 360 Ω	Full		32		μs
t _{ON}	VOUT ON-time	EN low to high, C(VOUT) = open, VOUT load = 360 Ω	Full		65		μs

V_{IN} is defined as the highest voltage present on the BAT, USB and DC_IN pins.

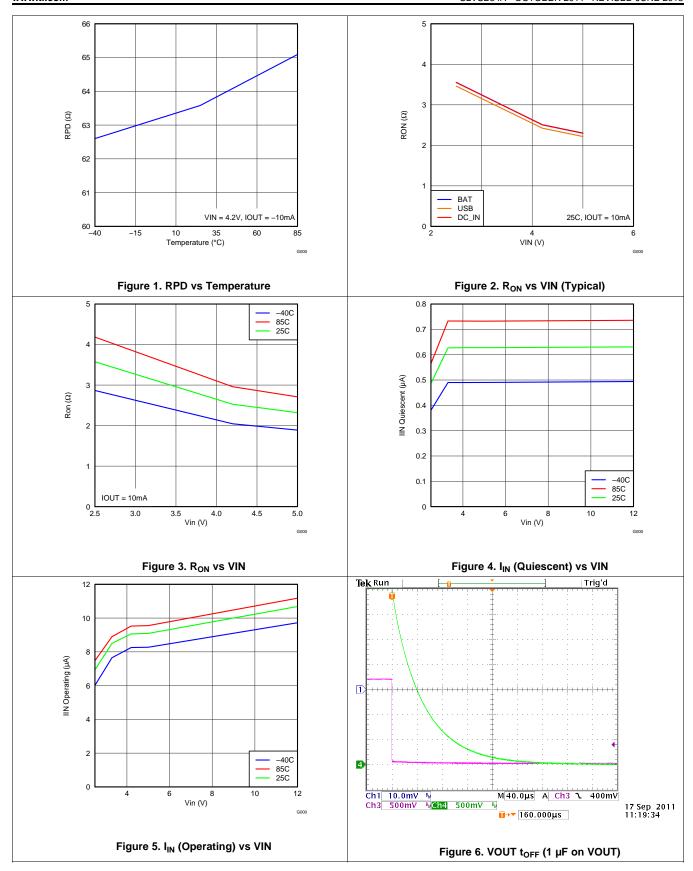
One of the voltages on BAT, USB and DC_IN must be > VIN (Min), others can be 0 V.

V_{BAT}, V_{USB} and V_{DC_IN} refer to the voltages on BAT, USB and DC_IN respectively. OUT, IOUT-VOUT and IOUT-LOUT refer to the currents for the combined output current for VOUT and LOUT, the current on VOUT and the current on LOUT respectively.

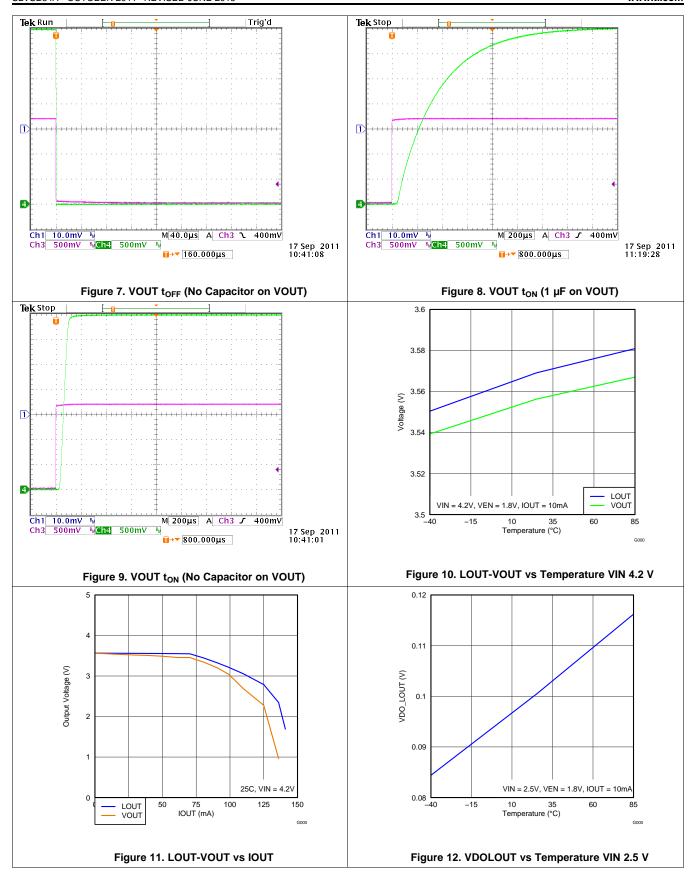
TYP is 25°C, BAT = 4.2-V, USB = 0-V, DC_IN = 0-V.

Dropout voltage is the minimum input to output voltage differential needed to maintain regulation at a specified output current. In

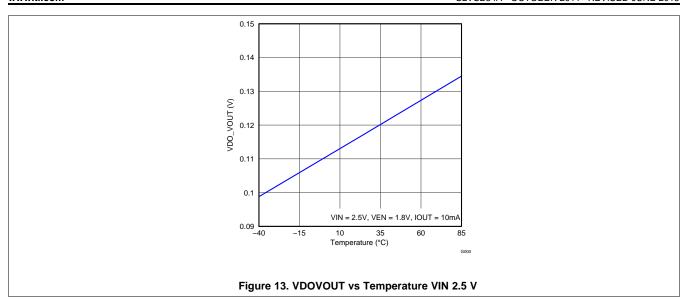
dropout, the output voltage is equal to: $V_{IN} - V_{DROPOUT}$. Dropout voltage is measured at the VIN that causes the output to drop to 100mV below its nominal voltage. For VOUT, the voltage drop across the output switch is included (10mA \times R_{ONVOUT}).



6.6 Typical Characteristics


Table 1. Performance Graphs and Plots

Туре	Description	Figure	
Graph	RON versus VIN (BAT, USB, DC_IN) 25°C	Figure 1	
Graph	RON versus VIN (Any input)	Figure 2	
Graph	Quiescent Current versus Input Voltage (Any input)	Figure 3	
Graph	Operating Current versus Input Voltage (Any Input)	Figure 4	
Scope Plot	t_{OFF} (VIN = 4.2 V, C(VOUT) = 1 uF, 25°C) Figure 5		
Scope Plot	t _{OFF} (VIN = 4.2 V, C(VOUT) = open, 25°C)	Figure 6	
Scope Plot	t _{ON} (VIN = 4.2 V, C(VOUT) = 1 uF, 25°C)	Figure 7	
Scope Plot	t _{ON} (VIN = 4.2 V, C(VOUT) = open, 25°C)	Figure 8	
Graph	LOUT and VOUT versus Temperature at VIN = 4.2 V	Figure 9	
Graph	LOUT and VOUT versus IOUT (VIN = 4.2 V, Temp = 25°C)	Figure 10	
Graph	LOUT Dropout Voltage versus Temperature (VIN = 2.5 V)	Figure 11	
Graph	VOUT Dropout Voltage versus Temperature (VIN = 2.5 V)	Figure 12	
Graph	Output Pulldown Resistance (R _{PD}) versus Temperature (10 mA into VOUT)	Figure 13	



Submit Documentation Feedback

7 Parametric Measurement Information

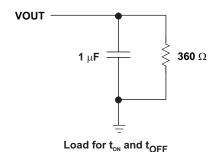


Figure 14. Test Circuit and t_{ON} / t_{OFF} Waveforms

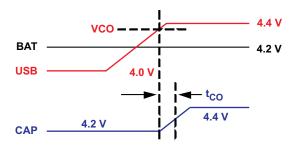


Figure 15. Switchover Timing

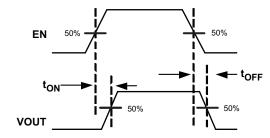
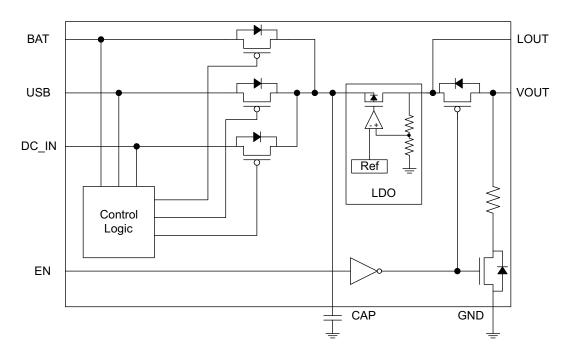


Figure 16. VOUT Enable Timing

Product Folder Links: TPS22933

10



8 Detailed Description

8.1 Overview

The TPS22933 is a triple-input power multiplexer with auto-input selection and a low dropout linear regulator. The device contains three P-channel MOSFETs that can operate over an input voltage range of 2.5 V to 12 V. The TPS22933 automatically selects the highest voltage level (from BAT, USB, and DC_IN) and enables that input to source the LDO. LOUT is an always-on output from the LDO, but VOUT can be switched on and off using the EN pin.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 ON and OFF Control

The EN pin controls the state of the VOUT switch and VOUT pulldown switch. EN has no control over LOUT. Asserting EN enables the VOUT switch and disables the Quick Output Discharge (QOD) switch. Deasserting EN disables the VOUT switch and enables the QOD switch. EN is active high and has a low threshold, making it capable of interfacing with low voltage signals. The EN pin is compatible with standard GPIO Logic threshold and can be used with any microcontroller with 1.2-V, 1.8-V, 2.5-V or 3.3-V GPIOs.

8.3.2 Power Changeover

The TPS22933 LDO is powered by the highest level input. When input voltages change, the TPS22933 may change which input powers the LDO. During initial power up, the input that reaches the highest value first will power the LDO. Once that decision is made, changing between input sources is based on VCO. When an input source becomes VCO over the input currently supplying power to the LDO, changeover will occur and the new, higher input will power the LDO.

8.4 Device Functional Modes

Table 2 and Table 3 show the behavior of the device with various voltage conditions for the inputs and enable pin.

Table 2. Function Table

EN	LDO TO LOUT	LDO TO VOUT	VOUT TO GND
L	ON	OFF	ON
Н	ON	ON	OFF

Table 3. Input Selection Table (V1 > V2 > V3)

ВАТ	USB	DC_IN	LDO SUPPLY
V1	V2 or V3	V2 or V3	BAT
V2 or V3	V1	V2 or V3	USB
V2 or V3	V2 or V3	V1	DC_IN
V1	V1	V1	See (1)

⁽¹⁾ Whichever source achieves the highest level the fastest will supply the LDO.

Product Folder Links: *TPS22933*

Copyright © 2011–2015, Texas Instruments Incorporated

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

9.1.1 LDO Capacitor (for CAP Pin)

An optional capacitor on the CAP pin helps stabilize the integrated LDO. Take care in capacitor sizing to reduce inrush currents. The voltage on the CAP pin will follow the highest input. Since the max input voltage is 12 V, the capacitor voltage rating must be higher than 12 V.

9.1.2 Using the CAP Pin as a Power Output

Figure 17 shows three power inputs multiplexed to source only through the CAP pin. In this case, the LDO outputs are not used (EN is tied low). The highest of the inputs is chosen to drive the voltage at the CAP pin.

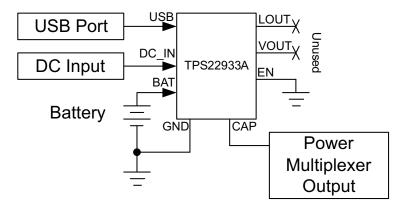


Figure 17. Using the CAP Pin as a Multiplexer Output

9.2 Typical Application

Figure 18 shows three power inputs multiplexed to source the LDO. The LDO always on output (LOUT) is tied to an MSP430. The MSP430 then determines when to enable the switched output (VOUT) by driving the EN pin.

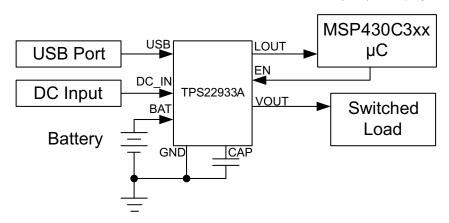


Figure 18. Application Example

Typical Application (continued)

9.2.1 Design Requirements

Table 4 lists the design parameters for TPS22933.

Table 4. Design Parameters

INPUT	VOLTAGE
USB Port	5.0V
DC Input	5.0V
Battery	4.2V

9.2.2 Detailed Design Procedure

Initial power up:

DC_IN = 0 V; USB = 0 V; EN = 0 V

BAT is applied at 4.2 V

LDO power comes from BAT

LOUT = 3.6 V; CAP = 4.2 V; VOUT = 0 V

USB power is connected at 5 V, BAT remains 4.2 V and DC_IN remains 0 V

LDO power is changed from BAT to USB in t_{CO}

LOUT = 3.6 V; CAP = 5 V; VOUT = 0 V

DC_IN power is connected at 5.0 V, BAT remains 4.2 V and USB remains 5 V

No change in LDO power

LOUT = 3.6 V; CAP = 5 V; VOUT = 0 V

EN = VIH, BAT remains 4.2 V, USB remains 5 V and DC IN remains 5 V

LOUT = 3.6 V, CAP = 5 V; VOUT = 3.6 V

USB power is removed, BAT remains 4.2 V and DC_IN remains 5 V

LDO power is changed from USB to DC_IN

LOUT = 3.6 V; CAP = 5 V; VOUT = 3.6 V

DC_IN power is removed, BAT remains 4.2 V and USB remains 0 V:

LDO power is changed from DC_IN to BAT

LOUT = 3.6 V; CAP = 4.2 V; VOUT = 3.6 V

9.2.3 Application Curve

Figure 19 shows the device behavior in the last step of the design procedure, when DC_IN power is removed and the LDO is powered by the battery. The capacitor on the CAP pin discharges as DC_IN is removed but then charges to the battery voltage when the input is automatically switched. LOUT remains a constant 3.6 V throughout this power switching.

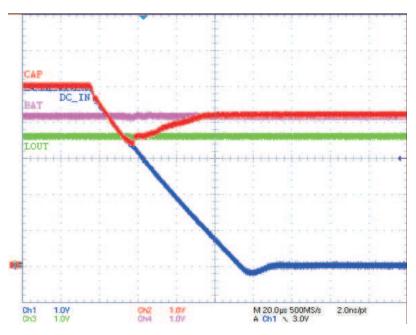


Figure 19. DC_IN Removed, BAT Powers LDO (LOUT = 3.6 V)

10 Power Supply Recommendations

The device is designed to operate with an input voltage range of 2.5 V to 12 V. This supply must be well regulated and placed as close to the device terminals as possible.

11 Layout

11.1 Layout Guidelines

For best performance, all traces should be as short as possible. To be most effective, the input and output capacitors should be placed close to the device to minimize the effects that parasitic trace inductances may have on normal and short-circuit operation. Using wide traces for BAT, USB, DC_IN, LOUT, VOUT, and GND will help minimize the parasitic electrical effects along with minimizing the case to ambient thermal impedance.

11.2 Layout Example

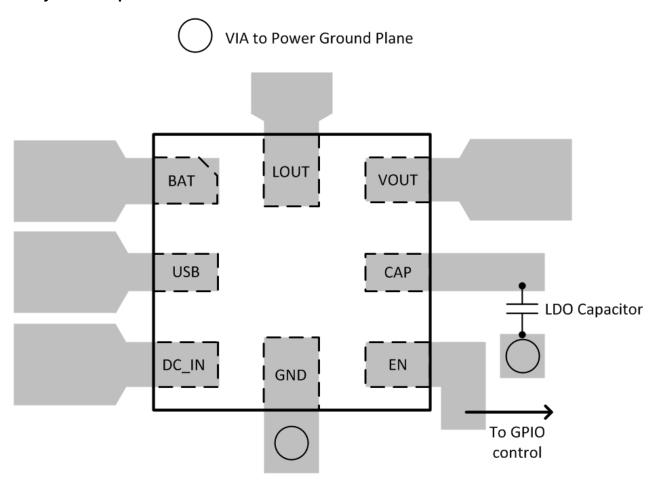


Figure 20. TPS22933 Layout Example

Submit Documentation Feedback

Copyright © 2011–2015, Texas Instruments Incorporated

12 Device and Documentation Support

12.1 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.2 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGE OPTION ADDENDUM

23-Feb-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TPS22933ARSER	ACTIVE	UQFN	RSE	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	4Q	Samples
TPS22933ARSET	ACTIVE	UQFN	RSE	8	250	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	4Q	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

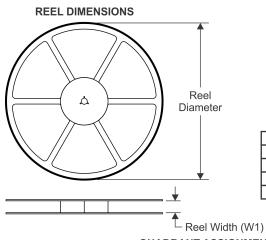
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

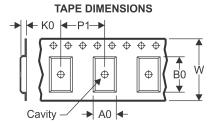
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

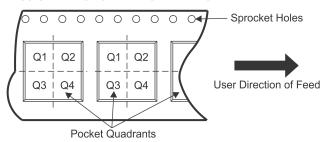
PACKAGE OPTION ADDENDUM


23-Feb-2015

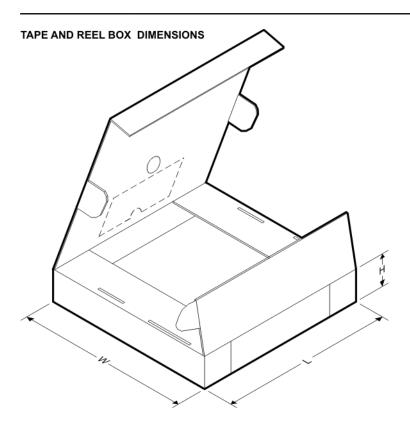

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

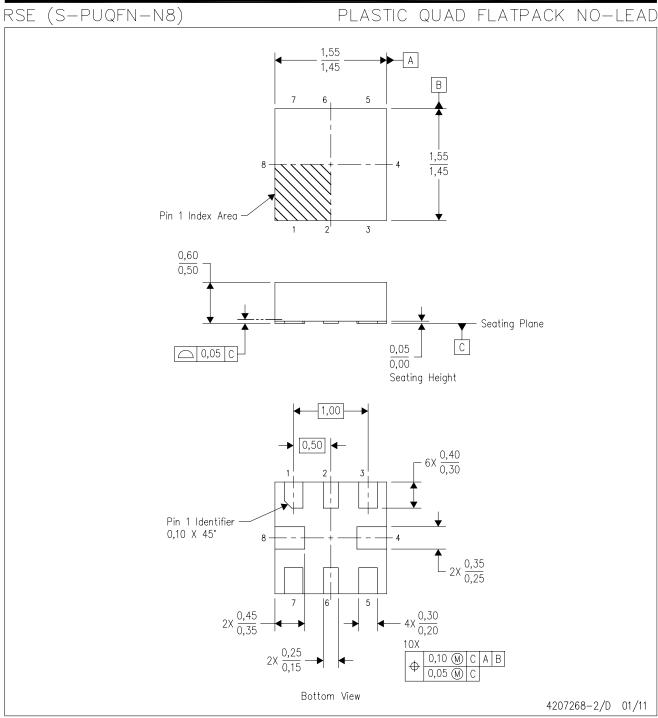
www.ti.com 23-Feb-2015


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

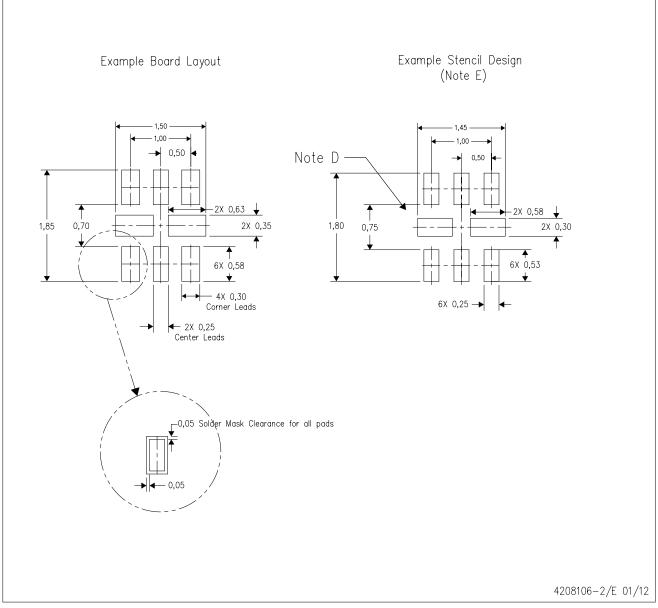
*All dimensions are nominal


ı	7 il differenciate de frontina									_			
	Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	TPS22933ARSER	UQFN	RSE	8	3000	180.0	8.4	1.7	1.7	0.7	4.0	8.0	Q2
	TPS22933ARSET	UQFN	RSE	8	250	180.0	8.4	1.7	1.7	0.7	4.0	8.0	Q2

www.ti.com 23-Feb-2015

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
TPS22933ARSER	UQFN	RSE	8	3000	202.0	201.0	28.0	
TPS22933ARSET	UQFN	RSE	8	250	202.0	201.0	28.0	


NOTES: All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
 C. QFN (Quad Flatpack No-Lead) package configuration.
 D. This package complies to JEDEC MO-288 variation UECD.

RSE (S-PUQFN-N8)

PLASTIC QUAD FLATPACK NO-LEAD

- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Publication IPC-7351 is recommended for alternate designs.
 - D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.
 - E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters.
 - F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
 - G. Side aperture dimensions over-print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity