B
&I | '
System Management
Interface Forum

PMBus™
Power System Management Protocol
Specification
Part lll - AVSBus

Revision 1.3.1
13 March 2015

www.powerSIG.org

© 2015 System Management Interface Forum, Inc. — All Rights Reserved

Filename: PMBus_Specification_Part_Ill_Rev_1 3 1 20150313.docx
Last saved: 12 Mar 2015, 10:49

PMBus Power System Mgt Protocol Specification — Part Ill — Revision 1.3.1

DISCLAIMER

This specification is provided “as is” with no warranties whatsoever, whether express, implied or
statutory, including but not limited to any warranty of merchantability, non-infringement, or

fitness for any particular purpose, or any warranty otherwise arising out of any proposal,
specification or sample.

In no event will any specification co-owner be liable to any other party for any loss of profits,
loss of use, incidental, consequential, indirect, or special damages arising out of this
specification, whether or not such party had advance notice of the possibility of such damages.
Further, no warranty or representation is made or implied relative to freedom from infringement
of any third party patents when practicing the specification.

Other product and corporate names may be trademarks of other companies and are used only
for explanation and to the owner’s benefit, without intent to infringe.

REVISION HISTORY

REV DATE DESCRIPTION EDITED BY

1.3 17 March 2014 | Revision 1.3, First public release of Part llI Robert V. White
Embedded Power Labs

13.1 13 March 2015 | Second public release Robert V. White
Embedded Power Labs

© 2014 System Management Interface Forum, Inc. Page 2 Of 34
All Rights Reserved

PMBus Power System Mgt Protocol Specification — Part Ill — Revision 1.3.1

Table of Contents

I 1 oo [N o3 1 o] [N PO PPPOPPPPPPPPPPRY 6
ST oY= o o= 1 o S Yoo o PSR 6
1.1.1 SPECIfiCAtiON SIIUCLUIEooiiiiiieieii ettt e e e e et e e e e e e e e anbbeeeaaeeeas 6

1.2.2 WRAL IS INCIUAEA. ..ottt e e e e e e s e aeeeaaaeeas 6

1.1.3 What Is Not Included In The PMBUS SPecCifiCation.............ccccuieerieeiiiiiiiiieeee e ccsviieeeee e, 6

1.2 Specification Changes Since The Last REVISIONcccciiiiiiie it ee e 6

1.3 Where To Send Feedback And COMMENES..........cooiiiiiiiiiii 6

P 4= F= 1= To I B ool N1 o PP RP 7
A R S Tolo] o[PP PP PP PP PP PPPPPPPPPP 7

272 A\ o] o] 1oz o] L= I To Yo U [y g 1= o £ 7

2.3 REfErenCe DOCUMENTScoiiiiieiii ettt e e et e e e e e e e bbb b e e e e e e e e e anbbbr e e e e e e e e e annnrnneeas 7

G T =Y (=Y =T [T LY o] T 1o o 7
3.1 Device, Signal and Parameter NAMES.cccooiiiiiiiiiiiee e e e s st e e e e e s sarrae e e e e e s e snrnaeees 7
3.1.1 AVSBUS SINAl NAMES.....ceteiiiiiee ittt e e e e e e et e e e e e e e s e snbbeaeeaaeeeaannnes 7

3.1.2 Frame EIBMENTScoiii ittt ettt e e e e e e e s bbb e e e e e e e e e annb e e e e e e e e e aaannes 7

3.2 NUMETICAI FOMMIALS. ...eeiiiiie ittt e ettt e e e e e e e bbbttt e e e e e e e anbbbae e e e e e e e e annnreneeas 7
3.2.1 Decimal NUMDBEIS ... 7

3.2.2 Floating Point NUMDEIS ..o 7

3.2.3 BiINAIY NUMIDEIS ...ttt ettt e st e e e et b e e s et b e e e e anbre e e e anees 7

3.2.4 Hexadecimal NUMDEISooiii e e e e e 8

3.2.5 EXAMPIES ... et e et e et e e e e e ab e et e e e e e e e nne 8

TR T = 11 AN o Lo 123 (I @ (o = SRR 8

3.4 Bit And Field HUSTratioNScoooiviiiiiiiiiie 8

3.5 Abbreviations, Acronyms And DefiNItiONS..........ccccuiiiiiiee i 9

4. GeNeral REQUIMEIMENTS ...ttt e ettt e e e e e s e et bttt e e e e e e aabbbbeeeeaaeeaaanbbbbeeeaaesaaannsbnneaaaeesaaannes 11
o R @0 a1 o] 7= g o] SRR 11

4.2 Start Up AN OPEIALIONccoiiiiieiiiiee ettt ettt e e e ettt e e e e e e e saabbe e e e e e e e e e e aanbbeaeeaaeeeaannes 12

T I = 11] o [0 SO OO PR P PP PPPPTPRRPRR 12
S0 A o] Lo (o o YA SRS 12

IV A O 1= - 1o o IO PP PP PP PP T OTPPPTPPPPPNS 13

TR B | o To [SRR PPOPPPPNS 14
LR R T 1Y o o PSPPSR 14

LR I T 1Y o o = PO 14

Bi4 FTAIME SIZB.uuiii ittt ettt e e e e e ettt e e e ettt e e e ettt e e e ettt e e e e ahbe e e e e atbeeeeeaRbe e e e e anreeeeannreeee et 14

5.5 1dle BUS CONAILION.......coiiiiiiiiiiiiiiiieeeeeeee e 14

5.6 Slave REeSYNCRIONIZALIONuviiiii i e s e e e e s s et re e e e e e e e e e nnreeeees 15

T A = 1V T 1= o1 | PP OSR 16

LTS T O 0T (1T S 16

5.9 EIECHICAl INTEITACEeeiiiiiiie ettt e e et e e e e e e s bbb e e e e e e e e e ennneeeeas 16
LR TR R I 1 011 o To PP PUPPPPPPPPN 16

5.9.2 Electrical Drive LEVEIS ... 19

6. PIOLOCOI FUIES ...ttt oottt et e e e e e e e aa b bttt e e e e e e s e aanb bbb e e e e e e e aaannbbeaeaaaeeeaannes 20
L B - = B 10 o od o 1P PP TP PPPTPPPNS 20

6.2 DALA CAPIUIE....ceiiiiiieeeee ettt 20
LTRG-S 20

6.4 UNKNOWN RESOUICE SEIECLONeiiiiiiiiie ittt ettt ettt e e st e e s snbe e e e s snbeeeesaneeeeeene 20

© 2014 System Management Interface Forum, Inc. Page 3 Of 34

All Rights Reserved

PMBus Power System Mgt Protocol Specification — Part Ill — Revision 1.3.1

6.5 UNAVAIlabIE RESOUICE........eeiiiiiiiiie ettt sttt e e s rabe e e s sttt e e s nbbeeeesnbbeeeeanes 21
S SR 4] - 1l of 6o e [RSP 21

L AR 43 - 1 1Y of < PRSP RPRP 21
(o TR] o= o 1 =] o £ = RSP EPRR 22

O I O (O V=T 1103 11 o] T PTTTR 22
RO B - r= Y =1 o F= 1o] o PO PP TPPPRTPPPNS 23
B.11 TYPES OF WIILES ..eeeeiiiiiieiitieie ettt ettt e sttt e sttt e e s sttt e e s sttt e e s st be e e e s sabeeeesaabeeeesasbeeeeeanbeeeesaseaeeennns 23
6.11.1 Write @and COMIMIL.......ceeiiiieiie ettt e e e e e e e e e s et er e e e e e e s s st aeeeeeeeeesssnnseneeeeeeeeaannnes 23

6.11.2 Write and HOId............ccooiiiiii 23

7. Frame DEfINITIONooii ittt e ettt e e e e s e aa bbb et e e e e e e e e aanb bbb eeeaeesaaannbbeneaaaeeaaanne 24
7.1 THE WG FTaME ..ottt e ettt e e sttt e e e s sab e e e e abbe e e e s abbeeeesabbeeeesnnbeeeeaaes 24

A B [S LT To I o = 1 1= T PR 24

7.3 Frame AlIGNIMENT.....oiiiii ittt e ettt e e et e e e s et b et e e e abbe e e e e abbe e e e aabbe e e e s anreeeeaae 26

7.4 StAtUS RESPONSE FIaMEo iiiiiiiiiiie ettt e e e e e ea b b s e e e e e e e aabb i raeeeeeeeeranen 27

T = = Y o[PO PP PPPPTPRRPTR 28
8.1 Voltage Read/Write (Command Data Type = 0000D)........ccccuuriiieeriiiiiiiiireee e crereee e e e e e e 28

8.2 Vout Transition Rate Read/Write (Command Data Type = 0001D)cceeiiiiiiiiiieiiaeeneniiiien. 29

8.3 Current Read (Command Data TYPe = 0010D)cuvvrieiiiiiiiiiiiiee et e e e sieeee e e 29

8.4 Temperature Read (Command Data Type = 0011D).......ccccciiiiieieiiiiiiiiiee e 29

8.5 Voltage Reset (Command Data TYPe 0L00D)cccovriieiiiiiiieiiiie ettt 29

8.6 Power Mode Read/Write (Command Data Type = 0101h).......cceeeiiiiiiiiiiirieeee e 30

8.7 Reserved for future use (Command Data Types 0110b t0 1101D)c..eeeveeeiiiiiiiiiiiiie, 30

8.8 AVSBus Status Read/Write (Command Data Type = 1110D)ccooviiiieeieeeiiiiieeeee e 30

8.9 AVSBus Version Read (Command Data Type = 1111Dh)....ccccccveeeeiiiiiiiiiiieeee e 31
8.10 Manufacturer-Specific Read/Write (Group 1b, Data Types 0000b to 1111D).........ccccceveviveenenns 32

9. Communication From The AVSBuUSs Slave To The AVSBUS MASLENcccccevviiieeiiiiiie e 32
10. PMBUS™ ANd AVSBUS DEVICE MaPPING.......uuueeeieiaiiiiiiiieiieaae ettt e e e e e et ee e e e e e s sbbeaeeeaaa e e s annreeeeas 32
B oo = oY PSPPI 33
AppendixX . SUMMArY OFf CRANGEScoiiiiiiiiiiie et e e e e e e s bbb b e e e e e e e e s e bnbeeeeaaaaeas 34
© 2014 System Management Interface Forum, Inc. Page 4 Of 34

All Rights Reserved

PMBus Power System Mgt Protocol Specification — Part Ill — Revision 1.3.1

Table of Figures

Figure 1. Bit Order WIthin A FIEIeeiiiie et e e snnee s 8
Figure 2. Example AVSBus Topology With One Master And One Slaveccccvveveeee i, 13
Figure 3. Example AVSBus Topology With MUltiple LINKScccooiiiiiieee e 13
Figure 4. AVSBUS 3-Wire MOde CONNECHIONS.......uuuiiiiieiiiiiiieiie e e e e s ettt e e e e e e e s s e e e e e e e s snnraeeeeeeeesannreneees 14
Figure 5. AVSBUS 2-Wire M0OAe CONNECHIONS.......uuuiiiiieeiiiiiiieiiee e e e e cetiree e e e e e s s sitarre e e e e e e e s srnaereeeeeesessnnreneees 14
Figure 6. Timing Diagrams Reference SCheMALICuviiiiiiiiiiiie e 17
Figure 7. Timing diagram for AVS MDAtccuuviiiiiei it e e e s e e e e e e s raae e e e e e e e s snnreaeees 17
Figure 8. Timing diagram fOr AVS_SData.........ccuuiiiiiiiee it e e e e e e e e e eneeaeeas 18
Figure 9. <StatusResponse> COMPOSITIONuuiiiiiiieiiiiiie e et e et e e e e e ebe e e e e e e e e e ennreaeeas 22
Figure 10. WIte Frame SEIUCLUIEvviiiieie it e e e e e s st e e e e e e s e e e e e e e s s aeae e e e e e e e s snnneaneeaeeeesannrnneees 24
Figure 11. Read Frame SIFUCTUIEueiiiiii ittt ettt e e e e e e e bbbt e e e e e e s s bbb be e e e e e e e e annnbeneeas 25
Figure 12. Maximum TRrOUGRPUL.........ouuiii ettt e e e e e enens 27
Figure 13. Last Frame [N A SEOUENCE.ociie i iiiiieeee ettt e e e e e st e e e e e e e s st te e e e e e e e s ssntrrreeeaeeeessnnreaeees 27
Figure 14, StatuS RESPONSE FIAMEuiiiiiiiiiii ettt et e e st e e e b e e e anees 28
Figure 15. First Frame IN A SEOUENCEccuii ittt e e e e e seette e e e e s s st e e e e e e s s e e e e e e e s s anssaaeeeaeeessannnreneees 28
Figure 16. AVSBUS_SEAtUS BIScoiiiiiiiiiiiii ettt e e e e e et e e e e e s s e bbb e e e e e e e e e annreneeas 31
Figure 17. Example Power Management IC With Multiple PAGEs And Multiple AVSBus Ports 33
Table of Tables
Table 1. Bit And Field Representation For Frame lustrations.............ccccociiiiiinic e 8
Table 2. Abbreviations, Acronyms and Definitions Used In This Specificationcccccccvvvviiiiiieeee e, 9
Table 3. Electrical CharaCteriStiCS......uuiii ittt sttt e e st e e e s stbe e e e s ssbeeeeanrbeeeeanes 18
Table 4. EIECtriCal DIHVE LEVEIS........ooiii ettt e et e e e e e s s st ae e e e e e e s e snnsteaeeaaeeseannnes 19
TabIe 5. Frame FIEIAS ...ttt e ettt e e s sttt e e s st be e e e e stbe e e e s ssbeeeesanteeaeanns 25
© 2014 System Management Interface Forum, Inc. Page 5 Of 34

All Rights Reserved

PMBus Power System Mgt Protocol Specification — Part Ill — Revision 1.3.1

1. Introduction

AVSBus is an interface designed to facilitate and expedite point-to-point communication
between an ASIC , FPGA, or other logic, memory, or processor devices and a POL control
device on a system for the purpose of adaptive voltage scaling.

When integrated with PMBus, AVSBus is available for allowing independent control and
monitoring of one or more rails within one slave.

The communication protocol has been designed with provisions for future growth which
include a mechanism for an ASIC to query the version of AVSBus supported. This will
allow firmware to make the best use of new features as AVSBus evolves to satisfy system
needs, and over time it will permit combining different generations of devices on a single
system.

For more information, please see the System Management Interface Forum Web site:
http://www.powerSIG.org.

1.1 Specification Scope
1.1.1 Specification Structure
The PMBus™ specification is in three parts.

Part | includes the general requirements, defines the transport, electrical interface
and timing requirements of hardwired signals for PMBus.

Part 1l defines the command language used with PMBus.

Part I, this document, defines the transport, electrical interface, timing requirements
and command language for AVSBus.

1.1.2 What Is Included

This specification defines two protocols to manage power converters and a power
system via communication over digital communication buses. PMBus can be used
without the AVSBus extension, and AVSBus could be used on a simple system that
does not implement the full PMBus spec, but the two are integrated seamlessly as
AVSBus is a powerful extension to PMBuUS.

1.1.3 What Is Not Included In The PMBus Specification

The PMBus specification is not a definition or specification of:
e A particular power conversion device or family of power conversion devices.
e A specification of any individual or family of integrated circuits.

This specification does not address direct unit to unit communication such as analog
current sharing, real-time analog or digital voltage tracking, and switching frequency
clock signals.

1.2 Specification Changes Since The Last Revision

A summary of the changes between this revision and Revision 1.0 are shown in
Section 12 at the end of this document.

1.3 Where To Send Feedback And Comments

Please send all comments by email to: TechQuestions@smiforum.org.

© 2014 System Management Interface Forum, Inc. Page 6 Of 34
All Rights Reserved

http://www.powersig.org/
mailto:techquestions@smiforum.org

PMBus Power System Mgt Protocol Specification — Part Ill — Revision 1.3.1

2. Related Documents

2.1 Scope

If the requirements of this specification and any of the reference documents are in
conflict, this specification shall have precedence unless otherwise stated.

Referenced documents apply only to the extent that they are referenced.

The latest version and all amendments of the referenced documents at the time the
device is released to manufacturing apply.

2.2 Applicable Documents

Applicable documents include information that is, by extension, part of this specification.

[AO01] PMBus™ Power System Management Protocol, Part |, General Requirements,
Transport And Electrical Interface, Revision 1.3

[A02] PMBus™ Power System Management Protocol, Part [I, Command Language,
Revision 1.3

2.3 Reference Documents

Reference documents have background or supplementary information to this
specification. They do not include requirements or specifications that are considered
part of this document.

None in this revision.

3. Reference Information

3.1 Device, Signal and Parameter Names
3.1.1 AVSBus Signhal Names

The names of AVSBuUSs signals corresponding to physical connections are given as
“AVS”, followed by an underscore (“_"), followed by the signal name. An example is
AVS_Clock.

3.1.2 Frame Elements

Values for frame elements are represented by symbolic names shown in mixed-case
monospaced font, and enclosed in angle brackets, like <CmdDataType> or <Select>.

3.2 Numerical Formats
All numbers are decimal unless explicitly designated otherwise.

3.2.1 Decimal Numbers

Numbers explicitly identified as decimal are identified with a suffix of “d”.
3.2.2 Floating Point Numbers

Numbers explicitly identified as floating point are identified with a suffix of “f”".
3.2.3 Binary Numbers

Numbers in binary format are indicated by a suffix of “b”.

© 2014 System Management Interface Forum, Inc. Page 7 Of 34
All Rights Reserved

PMBus Power System Mgt Protocol Specification — Part Ill — Revision 1.3.1

Unless otherwise indicated, all binary numbers are unsigned. All signed binary
numbers are two’s complement.

3.2.4 Hexadecimal Numbers

Numbers in hexadecimal format are indicated by a suffix of “h”.
3.2.5 Examples

255d & FFh & 11111111b

175d < AFh < 10101111b

1.2f

3.3 Bit And Byte Order

Considering that AVSBus interface frames have fields of multiple sizes, not limited to
multiples of 8 bits, there is no concept of byte when determining the order in which
information is transmitted.

e When a field of data is transmitted, the most significant bit (MSB) is sent first and the
least significant bit (LSB) is sent last, regardless of the number of bits involved. This
way the first bit transmitted corresponds to the sign bit in Two’s Complement
notation.

¢ Fields are transmitted in the order in which they are depicted in the frame illustrations
throughout the document: <StartCode> is sent first, followed by subsequent fields
and ending with the last field on the right hand side of the diagram.

3.4 Bit And Field lllustrations
The transmission of bits within a field is illustrated in this section.

In all cases, the least significant bit is indicated as Bit 0, as shown below.
k——Field—

5(413|2(1(0

MSB LSB

Figure 1. Bit Order Within A Field

This part of the specification describes transactions over AVSBus. The symbols used to
describe the details of those transactions and protocols are shown in Table 1.

Table 1. Bit And Field Representation For Frame lllustrations

Symbol Meaning
|E| A rectangle with no shading indicates data sent from
the host (bus master) to the slave device.

|E| A rectangle with a shaded interior indicates data sent
from the slave device to the bus master.

© 2014 System Management Interface Forum, Inc. Page 8 Of 34
All Rights Reserved

PMBus Power System Mgt Protocol Specification — Part Ill — Revision 1.3.1

Symbol Meaning
3 By default there is a rectangle for each field sent, not
for each bit within a field. Typically the rectangle will
CRC have a number over it indicating the number of bits it
represents.
3 Shown here is the 3-bit CRC used for verifying the
CRC integrity of a transfer. It can be sent by the master or
the slave, so it may be found shaded or clear.
2 The <StartCode> sent from a bus master device to
01 initiate a transfer is the 2-bit code @1b.
2 When slaves send acknowledgement back to the bus
master, they send a 2-bit code, represented by
<SlaveAck> <SlaveAck>.
16 Data fields are identified by a descriptive word, with the
number of bits indicated above, as shown here for a
<Voltage> 16-bit voltage value.

3.5 Abbreviations, Acronyms And Definitions

Table 2. Abbreviations, Acronyms and Definitions Used In This Specification

Term Definition
ACK, Acknowledge. The response from a slave indicating that it has
<SlaveAck> received a transfer. The encoding used for the 2 bits is

explained in Section 6.7.

<AVSBus_Status>

A 16-bit field composed by concatenating multiple status bits.
The associated <CmdDataType> as explained in Section 8.8
describes those flags and how they can be read by the AVSBus
Master.

It should not be confused with <StatusResponse>.

Assert, Asserted

A signal is asserted when the signal is true. See Negate.

AVS Adaptive Voltage Scaling. AVS is used by a device to control
its supply voltage, generally to minimize power consumption for
a given operating condition.

Clear When referring to a bit or bits, this means setting the value to

Zero.

Command Data,

A generic term to refer to the actual data carried in a frame,

<CmdData> which in the most typical case is a voltage setting. Command
codes, selector fields, acknowledgement codes and CRC are
not command data. They provide the context for the command
data to be properly interpreted.
© 2014 System Management Interface Forum, Inc. Page 9 Of 34

All Rights Reserved

PMBus Power System Mgt Protocol Specification — Part Ill — Revision 1.3.1

Term

Definition

Command Data
Type,<CmdDataType>

An identifier used to differentiate between the types of data
contained in the <CmdData> field of a given AVSBus frame,
such as voltage or temperature.

<CRC>

A 3-bit Cyclic Redundancy Code used to detect errors in a
transfer, which allows the receiving device to discard
presumably corrupted data.

Default Store

A non-volatile memory store most typically used by the device
manufacturer to store default values.

Disable,
Disable Output

To instruct the device to stop the power conversion process
and to stop delivering energy to the output. The device's
control circuitry remains active and the device can
communicate via control buses.

Enable,
Enable Output

To instruct the device to start the power conversion process
and to start delivering energy to the output.

Host A host must be an AVSBus Master. There is only one host per
AVSBuUs instantiation.

Inhibit To stop the transfer of energy to the output while a given
condition, such as excessive internal temperature, is present.

LSB Least significant bit

Master A master is a device that issues commands, generates the
clock, and terminates the transfer.

MData Master Data sent via the output port AVS_MData of an AVSBus
Master for sending bits to its AVSBus Slave, which is
connected to the input port AVS_SData of the slave device.
See also SData.

MSB Most significant bit

Negate, Negated

A signal is negated when the signal is false. See Assert.

Selector,<RailSel>

POL Point-of-load.
Rail Generally refers to a power supply output
Rail The identifier for a rail in the device, used as <Selector> in

AVS Commands.

SData Slave Data sent via the output port AVS_SData of an AVSBus
Slave for sending bits to its AVSBus Master, which is
connected to the input port AVS_MData of the master device.
See also MData.
© 2014 System Management Interface Forum, Inc. Page 10 Of 34

All Rights Reserved

PMBus Power System Mgt Protocol Specification — Part Ill — Revision 1.3.1

Term Definition

<Selector> The identifier that indicates what instance of a device’s
resources is the target of a command. <Selector> typically
refers to a rail number, in which case it is depicted as
<RailSel>.

Set When referring to a bit or bits, this means setting the value to
one.

Shut Down Disable or turn off the output. This generally implies that the
output remains off until the device is instructed to turn it back
on. The device’s control circuit remains active and the device
can respond to commands received via control buses.

Slave A slave is a device that is receiving or responding to a
command.

<StartCode> A 2-bit field used to mark the beginning of a Master sub-frame.

<StatusResponse> |A 5-bit field composed by concatenating multiple flags. There
is no associated <CmdDataType>.

The Status Response field will be sent by the AVSBus Slave
twice in every frame, as explained in Section 9.
It should not be confused with <AVSBus_Status>.

X When used to define a binary value, X means that the value of
that bit is a “don’t care” that can be safely ignored.

When used in examples, X means that the example applies to
any value of that bit. Itis a “don’t care” for the purpose of the
example.

4. General Requirements

4.1 Compliance

The AVSBuUs protocol is intended to cover a wide range of power system architectures
and converters, as it can be used stand-alone or as a complement to PMBus.

AVSBus Slaves may not support all of the available features, functions and commands.

To be compliant to the AVSBus specification:

e |f a device accepts an AVSBus command code, it must execute the associated
function as described in Part Ill of the PMBus specification (this document).

¢ If adevice does not accept a given AVSBus command code, it must respond as
described in Section 6.

e A device must support voltage scaling through implementation of writing voltages as
specified in Section 8.1.

e A device configured for 3-wire operation must support reading of <AVSBus_Status>
and sending of <StatusResponse>.

© 2014 System Management Interface Forum, Inc. Page 11 Of 34

All Rights Reserved

PMBus Power System Mgt Protocol Specification — Part Ill — Revision 1.3.1

e A device must implement the Resynchonization mechanism described in Section 5.6.

A device may or may not support additional operations, such as reading or writing Vout
Transition Rate, reading Temperature, or reading Current. This does not affect
compliance.

4.2 Start Up And Operation

AVSBuUs devices, upon application of power, must start up and begin operation in a
controlled manner, as programmed internally or externally, without requiring
communication from either PMBus or AVSBuUS.

Furthermore, enabling and disabling the power conversion process must also occur
independently of AVSBus communication. Control over enabling and disabling power
conversion, as well as all operational parameters, is best achieved through PMBus, with
AVSBuUs relegated to its intended purpose of controlling voltage scaling.

PMBus determines if the AVSBus Master gets control over the settings of the AVSBus
Slave, and can take that control away. However, regardless of whether control is given
to the AVSBus Master or not, PMBus can always read data, and the AVSBus Master
can always read data.

In fact, the AVSBus Master may attempt to write data at any time, but any writes that
occur while AVS has not been given control via PMBus will result in the AVSBus Slave
responding with the <SlaveAck> for “Unavailable Resource”. See Section 6.5 for more
information.

5. Transport

5.1 Topology

AVSBus is a 3-wire communication link designed to provide bidirectional communication
between one powered device (such as an ASIC, FPGA or processor) and one slave for
controlling voltage scaling. The three wires used for communication are AVS_Clock,
AVS_ MData, and AVS_SData.

e AVS MbData is driven by the AVSBus Master and carries data to the slave,
e AVS SData is driven by an AVSBus Slave and carries data to the master, and

e AVS_Clock is driven by the master and clocks data for both the AVS_MData and
AVS_SData lines.

An optional 2-wire unidirectional implementation is allowed using only AVS_Clock and
AVS_MData. In this limited implementation, the AVSBus Master will never receive
acknowledgments, status or data back from a slave device.

Note: AVSBuUSs is behaviorally and electrically similar to SPI bus without chip select lines:
e AVS MData and AVS_SData are equivalent to MOSI and MISO.
e AVS_Clock is equivalent to CLK of the SPI bus.

The only topology supported is one-to-one dedicated link between an AVSBus Slave
and its controlling AVSBus Master.

In the example shown in Figure 2 the ASIC (or FPGA or processor) is the AVSBus
Master and the other device in the link is the AVSBus Slave. The AVSBus Slave may
support one or more voltage rails, each one individually addressable by the AVSBus
Master. In either case each rail may be composed of multiple phases.

© 2014 System Management Interface Forum, Inc. Page 12 Of 34
All Rights Reserved

PMBus Power System Mgt Protocol Specification — Part Ill — Revision 1.3.1

AVSBus
Master

AVSBuUs

AVSBus
Slave

ASIC/FPGA/Processor

Figure 2. Example AVSBus Topology With One Master And One Slave

In the example shown in Figure 3 one ASIC (or FPGA or processor) includes two
AVSBus Masters, each of which communicates by a dedicated link to one AVSBus

slave.

AVSBus AVSBus AVSBus
Master Slave
AVSBus AVSBus AVSBus
Master Slave

ASIC/FPGA/Processor

Figure 3. Example AVSBus Topology With Multiple Links

5.2 Operation

Each type of device in a link performs specific complementary functions:
1. The AVSBus Master must initiate all data transfers.

Besides setting voltages, a master may also use AVSBuUSs to request data of various
types from the slave.

The master must guarantee that AVS_MData is held at a logic value ‘1’ when the
clock is not running: during initialization prior to any bus transfers, as well as during
idling between frames. AVS_MData is not allowed to be at a logic value ‘0’ when the
clock starts.

2. The AVSBus Slave listens for and may respond to master commands but cannot
initiate a transfer under any circumstances.

In general the slave must guarantee that AVS_SData is held at a logic value ‘1’ when
the clock is not running: during initialization prior to any bus transfers, between
frames, as well as at any time during a transfer when the slave is not sending data to
the master. An exception to this rule is that the AVSBus Slave will set AVS_SData to
a logic value ‘0’ when it needs to alert the AVSBus Master to start a frame so that it
can send <StatusResponse>.

See the Section 9 for more details.

© 2014 System Management Interface Forum, Inc.
All Rights Reserved

Page 13 Of 34

PMBus Power System Mgt Protocol Specification — Part Ill — Revision 1.3.1

5.3 Modes

There are two different modes of operation for AVSBus, 3-wire mode and 2-wire mode.

In both modes the pin hames are identical in master and slave and matching pins are

connected to each other.
5.3.1 3-Wire Mode

The 3-wire mode is the complete implementation of AVSBus that allows a master to
receive acknowledgements from slaves in response to write operations, to read back
data and configuration from them, and to receive <StatusResponse> in every frame.

The figure below illustrates a typical implementation.

This mode requires AVS_SData.

AVSBuUs
Master

AVS_Clock

AVS_MData

AVS_SData

AVSBuUs
Slave

Figure 4. AVSBus 3-Wire Mode Connections

5.3.2 2-Wire Mode

V

The 2-wire mode is a partial implementation of AVSBus in which a slave does not
come with the optional AVS_SData output, thus rendering it incapable of sending any

data back to its master.

AVSBus
Master

AVS_Clock

AVS_MData

AVSBus
Slave

Figure 5. AVSBus 2-Wire Mode Connections

5.4 Frame Size

V

AVSBus frames are 64 bits long. There are two different types of frames, as explained

in Section 7.

5.5 Idle Bus Condition

The bus is considered idle in two cases:

© 2014 System Management Interface Forum, Inc.

All Rights Reserved

Page 14 Of 34

PMBus Power System Mgt Protocol Specification — Part Ill — Revision 1.3.1

1. When the clock is suspended between frames.

In this case the state of AVS_MData is a “Don’t care” to the slave, but it is required
that the line be kept high to enable proper detection of <StartCode> when the clock
resumes.

The state of AVS_SData is relevant to the master even when the clock is suspended.
Considering that the slave has no control over when the master may start providing a
clock, a slave that wants to alert the master to the fact that there has been an
important status change will simply change AVS_SData from its default state (Logic
1) to a signaling state (Logic 0), and keep the signaling state until the master initiates
a frame. Except for this interrupt scenario, the slave must keep the line high when
the clock is suspended.

As a consequence both lines must be held high while the clock is suspended, to
support detection of start codes and for requesting a frame.

2. When, even in the presence of a clock, no frames are being transmitted.

Whenever the clock is running AVS_MData must be held high (Logic 1) if the
AVSBus Master is not sending any data. Again that level is a precondition for issuing
the <StartCode> which consists of the two bit sequence 01b. In effect, the first logic
0 encountered while the bus has been in idle condition marks the beginning of a
transfer, as there is no concept of persistent 8-bit boundaries when the clock runs in
idle condition.

Likewise, AVS_SData should be held high (Logic 1) when no frames are being
transmitted by the AVSBus Slave. Just like when the clock is suspended, a slave
that wants to alert the master to the fact that there has been an important status
change will simply change AVS_SData from its default state (Logic 1) to a signaling
state (Logic 0), and keep the signaling state until the master initiates a frame.

To effect this, the AVSBus Slave must be designed to monitor AVS_MData continuously,
not just for the purpose of receiving a new frame, but to guarantee that the state of
AVS_SData does not change between the Ob and the 1b of the 01b sequence for
starting a frame. Conversely, the AVSBus Master must be designed to ignore the value
of AVS_SData while it sends the 01b sequence, as long as it receives either 00b (alert
issued) or 11b (no alert issued). Receiving 01b or 10b would constitute an error.

5.6 Slave Resynchronization

An AVS Slave must implement the resynchronization mechanism to recover in case
noise in the line or some other artifact has caused it to reach an incorrect state.
Receiving 34 clock pulses while AVS_MData is held high will cause a slave to
resynchronize its communication interface, and wait for the next <Start_Code>.

For the resynchronization mechanism to work correctly, the AVSBus Slave must keep
counting ones as long as it is receiving clock pulses, and reset the count whenever it
receives a zero. This will ensure the earliest possible detection of a sequence of 34
ones.

In order to prevent aborting a valid frame through resynchronization when a frame ends
with a few consecutive ones, it is imperative that the counter be reset at the successful
completion of a master sub-frame. In this context successful means that <CRC>
verification passed, ensuring there were no communication errors, independently of
whether the data contained in the frame is valid or not.

© 2014 System Management Interface Forum, Inc. Page 15 Of 34
All Rights Reserved

PMBus Power System Mgt Protocol Specification — Part Ill — Revision 1.3.1

It is recommended for the master to resynchronize the slave at startup, and to do so
periodically afterwards.

5.7 Bus Timeout

AVSBus does not require that slaves implement bus timeout functions. Such a feature
would be useful for detecting when AVS_Clock has stalled so that the slave can take
some protective action, but it would impose additional burdens on the slave which may
be too costly.

Though not required, a mechanism for detecting AVSBus timeout should be given
serious consideration and implemented whenever possible. The purpose of such a
timeout function is for a slave to reset its AVSBuUs interface when it determines that an
ongoing transfer has been effectively aborted because the clock stopped running as
expected. Doing this will get the slave ready to properly detect a future <Start_Code>.
Otherwise, when the master recovers and tries to start sending a brand new frame, the
slave would process the bits it receives as a continuation of whatever frame had been
interrupted. This will make the new frame fail.

It is suggested that AVSBus masters do not simply rely on slaves’ implementation of Bus
Timeout. Instead, they should trigger the Slave Resynchronization mechanism as often
as practical for their application.

5.8 Clocking

The bus can transfer data continuously when needed, which would require an
uninterrupted clock from the master. For periods with no bus activity, the master can
suspend AVS_Clock and then restart it later when needed.

A suspended or inactive clock will be held in a logic ‘0’ state, to ensure that whenever
the clock starts, the first detectable edge is the rising edge.

The following section describes the timing requirements of AVS_Clock.

5.9 Electrical Interface

The AVSBuUs Master always provides AVS_Clock and AVS_MData (Master Data), and it
may or may not have an input for AVS_SData (Slave Data), depending on whether 2-
wire or 3-wire Mode is implemented.

The logic level for data and clock lines must be constant for any given application. An
AVSBus-compliant device will have a predetermined I/O logic level within the specified
range. Since the AVS_Clock and AVS_MData lines are always driven by the master
and AVS_SData is always driven by the slave, there is no need for pull-up resistors for
normal operation. However, it is recommended that the system be designed with weak
pull-up resistors for robustness, so that all three lines are at known voltage levels in case
one of the devices is not powered up or not present.

5.9.1 Timing

The following diagrams and tables illustrate the timing requirements for AVSBus.
Notice that the Slave-to-Master data path is grayed-out in the schematic, since this is
optional functionality. For the same reason, the timing tables have separate figures for
launch and capture by the Master and the Slave.

In this interface, both master and slave launch data from the rising edge of the clock,
and they both capture data using the falling edge.

© 2014 System Management Interface Forum, Inc. Page 16 Of 34
All Rights Reserved

PMBus Power System Mgt Protocol Specification — Part Ill — Revision 1.3.1

AVSBus Master AVSBus Slave
CLOCK > D AVSBus_Clock D CLOCK
ouT . . IN
DATA > D AVSBus_MData D DATA
ouT T IN

AVS_Clock ==~
@ Master __ /|

%
AVS Clock =~ 77
@ Slave ___ |
K tIaunch—master
AVS MData =~~~ 7] | S SSS
@ Master AN
AVS MData™ "~~~

tdelay

Figure 7. Timing diagram for AVS_MData

© 2014 System Management Interface Forum, Inc. Page 17 Of 34
All Rights Reserved

PMBus Power System Mgt Protocol Specification — Part Ill — Revision 1.3.1

t
thigh
AVS Clock =~ fo - ———— \K ____________
@Master __ /| ___________ oo 7/_
I etdelay =
AVS Clock ==~~~ 7/~~~ ~7=7777
@Slave _____/|__________

AVS_SData
@ Master

= tIaunch-slave

N\
)

- trise

tdelay

T- _____________

1:hold—master

Figure 8. Timing diagram for AVS_SData

The timing diagrams, Figure 7 and Figure 8, show a skew in the clock and data lines,
labeled tgeiay, Which corresponds to transmission delays on the board. A comparable
delay affects the data lines. Setup and hold times are measured at the pads of the

master or

the slave, as pertinent.

Table 3. Electrical Characteristics

Parameter |Description Min. Typ. Max. | Units
to Period for active clock 20 200 ns
felock Frequency for active clock 1/t,

thigh Duration of the high-phase of clock 10 ns
tiow Duration of the low-phase of clock t,/2 ns
trise Rise time for data. 1.5%t, 3 ns
tal Fall time for data. 1.5%t, 3 ns
taelay Time for signals to propagate from one 4 ns

device to the other one.

© 2014 System Management Interface Forum, Inc.
All Rights Reserved

Page 18 Of 34

PMBus Power System Mgt Protocol Specification — Part Ill — Revision 1.3.1

Parameter |Description Min. Typ. Max. | Units

Master-to-Slave data path

tiaunch-master | TiMe from rising clock edge in Master 0 2 ns
to data-out transition at Master's data-out
port.

tecapture-siave | Time from falling clock edge in Master taelay 2 + tgelay ns
to data capture inside Slave.

tsetup-Siave Time from data-out edge in Master 2 + tgelay ns
to capture clock edge in Slave.

thold-slave Time from capture clock edge in Slave 2 tiow ns
to data-out edge in Master (for next bit).

Slave-to-Master data path

tiaunch-Slave Time from rising clock edge in Master to 2 + tgelay | 4 + taelay | Note 1 ns
data-out transition at Slave's data-out port.

teapture-master | TiMe from falling clock edge in Master 0 2 ns
to data capture inside Master.

tsetup-Master Time from data-out edge in Slave 2 + tgelay ns
to capture clock edge in Master.

thold-Master Time from capture clock edge in Master 2 tiow ns
to data-out edge in Slave (for next bit).

Note 1: The clock used by the slave is a delayed version of the clock in the master.
For that reason, launching data from the slave starts later than launching from the
master, and relatively speaking, capturing by the master comes earlier. If tyey is large
on a given board, it may be necessary to increase tyg, to compensate and give more
time for the data to go from the slave to the master.

5.9.2 Electrical Drive Levels

The electrical drive levels for AVSBus are independent of those for PMBus. Special
care should be taken to ensure that the power sequencing is robust enough that all
interoperability is not compromised.

The general requirement is that the master will determine the drive levels and the
slave must work with those levels. The simplest way to do this is to have a common
Vpp for the master and the slave I/O circuitry. There are also adaptive detect and drive
level adjustment mechanisms that could be used by the slave to match the drive levels
supplied by the master.

Table 4. Electrical Drive Levels

Parameter

Limits

Description
Min

Max

Units

Comments

© 2014 System Management Interface Forum, Inc.

All Rights Re

served

Page 19 Of 34

PMBus Power System Mgt Protocol Specification — Part Ill — Revision 1.3.1

Limits
Parameter |Description Units |Comments
Min Max

Vob AVS Master bus voltage 0.9 3.63 V 1Vto3.3V+10%
Vi AVSBus signal Input Low 40% Vpp

voltage
Vi AVSBuUs signal Input High 60% Vpp \Y/

voltage
VoL AVSBus signal Output Low 20% Vpp V

voltage
VoH AVSBus signal Output High | 80% Vpp V

voltage
lLEAK-PIN Input Leakage per pin -10 +10 pA

6. Protocol rules

For the rules outlined below there is no distinction between master and slave unless
indicated. Instead, the role of transmitter or receiver that they play at any given time is
what matters.

6.1 Data Launch

A transmitter launches data on the rising edge of the clock.

6.2 Data Capture

A receiver captures data on the falling edge of the clock.

6.3 Data Format

Some AVSBuUs data types represent numeric data, others represent bit fields with
custom encoding. Those representing numeric data use standard Two’s Complement
representation, with data getting sign-extended to fit the data type size. Those that
consist of bit fields are padded with zeroes. In either case the resulting data can be
described as LSB-aligned.

When a PMBus system is configured to use any data format other than Twao’s
Complement (for example, the DIRECT data format), it is up to the manufacturer of the
AVSBus Slave to determine how to make the data conversion to and from Two’s
Complement, and to specify in the documentation any limitations.

6.4 Unknown Resource Selector

An AVSBus Slave that receives a command for an unknown resource will respond with a
special <SlaveAck> code that indicates that no action was taken because the resource
does not exist. See Section 6.7

An unknown resource may be an unsupported <CmdDataType> (e.g., attempting to read
temperature on a device that does not provide temperature values, or to write a read-

© 2014 System Management Interface Forum, Inc.
All Rights Reserved

Page 20 Of 34

PMBus Power System Mgt Protocol Specification — Part Ill — Revision 1.3.1

only data type like temperature or current) or a selector for a non-existing instance (e.g.,
referring to rail 3 when there are only 2 rails).

6.5 Unavailable Resource

An AVSBus Slave that receives a read or a write frame for one of its resources which is
not available will respond with a special <SlaveAck> code that indicates that no action
was taken because the operation cannot be carried out at the present time. See Section

6.7

A resource that is not available may be in a disabled state (e.g., attempting to set a
target voltage on a rail that is turned off) or be busy (e.g., attempting to read temperature
when the A/D converter is occupied in some other measurement and there is no
temperature available to send back).

6.6 <StartCode>

AVS_MData having a default state of ‘1’ sets the conditions for the detection by a slave
of the start of a new frame through a <StartCode> since the first bit of that code is a ‘0’
as indicated in Table 5.

6.7 <SlaveAck>

Whenever an AVSBus Master sends a command, the AVSBus Slave will send back a 2-
bit acknowledgment. The two bits encode the following four states, shown here in order
of precedence:

10b: Bad CRC, no action is taken.

11b: Good CRC, but invalid selector (e.g. unknown resource, or use of the broadcast
selector when not supported), invalid data type (e.g. non-existent command),
incorrect data (e.g. out of range data value) or incorrect action (e.g. attempting to
read a data type that is not readable, or to write to a data type that is read-only). No
action is taken.

01b: Good CRC, valid data (selector, data type, data value are good), but no action
is taken due to resource being unavailable (busy or not allocated to AVSBuSs). It
should be noted that a value that is inherently valid but may be unworkable for the
device must be treated as a good value rather than invalid data. For instance, a
voltage setting that is too high for the current voltage limits and must be clamped will
result on a <SlaveAck> of 01b since effectively the command was executed: The
voltage changed to the clamp value.

00b: Good CRC, valid data (selector, data type, data value are good) and resource
available. Action taken.

The 11b value is effectively a catch-all for multiple conditions that may prevent the slave
from carrying out a command. It is up to the device manufacturer to provide means for
the master to discern the real cause by perhaps setting up a custom data type with more
granularity on those conditions that can make a command fail.

Likewise there may be cases in which a 01b value may not tell the whole story, as in the
example above with voltage clamping. Again, it is up to the device manufacturer to
determine if such conditions warrant issuing special alerts through one of the bits in
<MfrSpcfc_8>.

© 2014 System Management Interface Forum, Inc. Page 21 Of 34
All Rights Reserved

PMBus Power System Mgt Protocol Specification — Part Ill — Revision 1.3.1

6.8 <StatusResponse>

Every time an AVSBus Master initiates a frame, the slave must send back a response
that can be used by the master to assess the general condition of the slave. This is a 5-
bit field formed like this:

1 1 1 1

<Vdone> | <StatusAlert> | <AVS_Control> | <MfrSpcfc_Sttsl> | <MfrSpcfc_Stts2>

Figure 9. <StatusResponse> Composition

Where:

e <VDone> corresponds to the combined <VDone> bits of all active rails, ANDed
together as described in Section 8.8.

e <StatusAlert> indicates that at least one of the status bits in Section 8.8 is
asserted, excluding <VDone>. The AVSBus Master should consider issuing a read
for AVS Status when <StatusAlert> is asserted.

Notice that since <VDone> is sent by itself in the response, it is excluded from the
conditions that cause <StatusAlert> to be set, so as to avoid triggering
unnecessary read operations.

e <AVS_Control> indicates whether AVSBuUs is controlling at least one of the device’'s
output or not. When AVSBuUs is controlling at least one of the outputs, it returns 1b.
When AVSBUS is not in control of any output, it returns Ob.

o <MfrSpcfc_Sttsl> a status bit whose definition is left up to the AVSBus Slave’s
manufacturer. It must be defined with positive logic: the status is considered active
(set) when the value returned is 1b; otherwise it will be returned as Ob.

o <MfrSpcfc_Stts2> another status bit whose definition is left up to the AVSBus
Slave’s manufacturer. It must follow the same rules.

6.9 CRC Verification

Support for 3-bit CRC is required for all AVSBus devices. The transmitter uses the
CRC-3 polynomial on the first 29 bits in a sub-frame, and it generates the CRC code to
send. The receiver then takes the entire sub-frame, including the CRC itself, and uses
the same polynomial to confirm integrity of the data by verifying the CRC.

The polynomial used to calculate the 3-bit CRC is:
CRC(X) = x"0 + x1 + x"3

If data being transferred does not pass CRC verification, the action taken by the receiver
depends on what device is playing that role. Generation and validation of the <CRC>
requires that the shift register be set to all-zeroes prior to the first shift.

An AVSBus Master that receives questionable data from a slave will discard the data. It
should initiate the transfer once more.

An AVSBus Slave that receives questionable command/data from a master will send the
corresponding <SlaveAck> code indicating that the specific action requested was not
performed due to a bad <CRC> and ignore the command/data.

© 2014 System Management Interface Forum, Inc. Page 22 Of 34
All Rights Reserved

PMBus Power System Mgt Protocol Specification — Part Ill — Revision 1.3.1

6.10 Data Validation

It is crucial that an AVSBus Slave be able to protect itself and its loads by determining if
a voltage setting is unacceptable. To that effect it is required that a compliant AVSBus
Slave perform a range check for each voltage write. If the value is larger than the
maximum or smaller than the minimum provided, the slave will respond with the
<SlaveAck> code for “Incorrect Data”, described in Section 6.7

The PMBus commands VOUT_MAX and VOUT_MIN shall be used for providing the
range used by AVSBus for voltage validation.

6.11 Types Of Writes

AVSBus offers two types of writes, one of which offers functionality that allows the
AVSBus Master to synchronize changes across rails in a device. It is important to notice
that the PMBus setting of WRITE_PROTECT does not have any effect on AVSBus
writes. The PMBus WRITE_PROTECT command is not meant to prevent a device from
managing its own power.

6.11.1 Write and Commit

The traditional write operation: This type of write will also commit values held for other
instances of the same command data type as described for “Write and Hold” below.

Every <CmdDataType> that supports writing must support Write and Commit which is
encoded as 00b in <Cmd>.

6.11.2 Write and Hold

A very flexible write operation in which the value carried in the command data field is
stored in a holding area but does not take effect (is not committed). What happens to
the stored value depends on future commands, as follows:

e If avalue is written with Write and Hold for a given instance of a command data
type, a subsequent Write and Commit command for any instance of the same
command data type will cause the value being held to be committed.

¢ If a value is written with Write and Hold for a given instance and then again later
with another Write and Hold command for the same instance, the first value is
discarded and never used. The new value is held to be committed later.

e If a value is written with Write and Hold and then a new value is written for the
same instance with a Write and Commit command, the first value is discarded and
never used.

For example, an AVS Master could use Write and Hold for programming new transition
rates and voltages in 2 rails of a device, and have them there ready for later use. Ata
later time it would issue a Write and Commit command for the transition rate of the
third rail, which would also commit the transition rates of the other two, while the
voltages remain uncommitted.

For a simple AVSBus Slave with only one instance of a command data type, use of the
Write and Hold command is pointless: the only way to commit a value written with it is
to use a command that replaces it.

Supporting Write and Hold, which is encoded as 01b in <Cmd> is not mandatory, unless
clearly stated in this specification for individual command data types.

© 2014 System Management Interface Forum, Inc. Page 23 Of 34
All Rights Reserved

PMBus Power System Mgt Protocol Specification — Part Ill — Revision 1.3.1

7. Frame Definition

The communications protocol consists of two frame layouts: a Write frame and a Read
frame. The frames themselves have two segments (sub-frames): the Master segment
(sent over AVS_MData), which always begins with <StartCode>, and the Slave segment
(sent over AVS_SData).

There is a causal relationship between sub-frames:
e A Master Write sub-frame is immediately followed by a Slave Write sub-frame.
e A Master Read sub-frame is immediately followed by a Slave Read sub-frame.

According to that description, the two sub-frames of a frame happen sequentially one after
the other. This is the default behavior, and it is depicted in the illustrations that
accompany the frame descriptions below, which are followed by detailed field definitions in
Table 5.

7.1 The Write Frame

This type of frame contains the following fields in the Master sub-frame, carried in the
AVS_MbData line:

e <StartCode>

e <Cmd> (Either 00b or 01b in write frames)
e <CmdGroup>

e <CmdDataType>

e <Select>

e <CmdData>

e <CRC>

As well as the Slave sub-frame, carried in the AVS_SData line:
e <SlaveAck>

e Ob

e <StatusResponse>

e <Reserved_21> (Always all 1's)

o <CRC>

2 2 1 4 4 16
|01| 0X |X |<CmdDataType> |<Select>|<CmdData>|<CRC>|

2 1 5 21 3
| <SlaveACK>| 0 | <StatusResp> | <Reserved> |<CRC>|

Figure 10. Write Frame Structure

7.2 The Read Frame

This type of frame contains the following fields in the Master sub-frame, carried in the
AVS_ MData line:

e <StartCode>
e <Cmd> (Always 11b in read frames)
e <CmdGroup>

© 2014 System Management Interface Forum, Inc. Page 24 Of 34
All Rights Reserved

PMBus Power System Mgt Protocol Specification — Part Ill — Revision 1.3.1

e <CmdDataType>

e <Select>

e <Reserved_16> (Always all 1's)

e <CRC>

As well as the Slave sub-frame, carried in the AVS_SData line:

e <SlaveAck>

e Ob

e <StatusResponse>
e <CmdData>

e <Reserved 5> (Always all 1's)

e <CRC»

2 2 1 4

4

16

’Ol| 11| X |<CmdDataType> |<Se1ect> |<Reserved> |<CRC>‘

2 1 5 16 5

3

|<SlaveACK>| 0 | <StatusResp> | <CmdData> | <Reserved> |<CRC>|

Figure 11. Read Frame Structure

Table 5. Frame Fields

: Size _
Field Name (bits) Description
<StartCode> 2 01b is the code that activates the frame-decoding logic.
<Cmd> 2 Command code that determines the action that the master
requires:
e 11b: Read data.
¢ 10b: Reserved.
¢ 0l1lb: Write data and hold, but do not commit (leave
pending).
e 00b: Write data and commit all pending voltage writes.
<CmdGroup> 1 Quialifier to distinguish between two groups of data types:

¢ 0Ob for fully defined AVSBus data types.
¢ 1b for manufacturer-specific data types.

© 2014 System Management Interface Forum, Inc.

All Rights Reserved

Page 25 Of 34

PMBus Power System Mgt Protocol Specification — Part Ill — Revision 1.3.1

. Size o
Field Name (bits) Description

<CmdDataType> 4 Type of data to which <Cmd> applies. For <CmdGroup> = 0Ob,
the data types are:

¢ 0000b: Target rail voltage.

e 0001b: Target rail Vout transition rate.

e 0010b: Rail current (read only).

0011b: Rail temperature (read only).

0100b: Reset rail voltage to default value (write only).
0101b: Rail power mode.

0110b to 1101b: Reserved command data types.
1110b: AVSBuUSs Status

e 1111b: AVSBus Version

For <CmdGroup> = 1b the definition of the data types is found
in the device’s product literature.

<Select> 4 Selector field to differentiate between instances of a command
data type on a device.

e For <CmdGroup> = 0b, this is a rail selector: <RailSel>.
e For <CmdGroup> = 1b, this is left up to the device
manufacturer to specify.

The value 1111b is called a “Broadcast Frame”. It applies to
all instances. For example, it applies to all rails when the
selector corresponds to <RailSel>.

Broadcast only makes sense for writes, not reads, with the
exception of AVSBus Status Read. See Section 8.8.

<CmdData> 16 Data being transferred.

<CRC> 3 A 3-bit field used to detect the presence of errors in the
transmission of a sub-frame.

<Reserved_N> N A number of bits reserved for future use.
Reserved bits must be sent as all 1’s.

<SlaveAck> 2 Response from a slave.

<StatusResponse> 5 AVSBus status bits providing a high-level view of the condition
of the device. For more details, see Section 8.8.

7.3 Frame Alignment

Frames can happen in complete isolation from each other, sequentially one after the
other, or overlapping. How frames occur with respect to each other over time affects the
overall throughput of the bus and determines how the gaps are filled.

In the most efficient use of bandwidth, an AVSBus Master will continually send frames
back to back. This is what such a sequence would look like:

© 2014 System Management Interface Forum, Inc. Page 26 Of 34
All Rights Reserved

PMBus Power System Mgt Protocol Specification — Part Ill — Revision 1.3.1

32 32 32 32

<Master_sub-frame X> | <Master_sub-frame Y> | <Master_sub-frame Z> | <Master_sub-frame A>

32 32 32 32

<Slave_sub-frame W> | <Slave_sub-frame X> | <Slave_sub-frame Y> | <Slave_sub-frame Z>

Figure 12. Maximum Throughput

Notice that the two pieces of Frame_Y in the middle of the diagram happen back to
back, as illustrated earlier for read and for write frames. However, unlike those
illustrations, the AVSBus Master initiated <Master_sub-frame_Y> while the AVSBus
Slave was sending <Slave_sub-frame_X>.

Note that when master and slave sub-frames overlap as described, <StartCode> for the
upcoming frame occurs exactly at the same time as <SlaveAck> for the frame currently
in progress.

This overlapping can continue for as long as there are more frames for the master to
initiate, but sooner or later the AVSBus Master will have nothing to send. When that
occurs, there is no <StartCode> overlapping the last <SlaveAck>. Instead,
AVS_MData must be returned to its default state (high) until the end of the slave sub-
frame. Then since the channel goes idle, both AVS_MData and AVS_SData stay high
indefinitely. This is what the end of a sequence would look like:

32 3 32 Until The Next Frame
<Master_sub-frame X> | <Master_sub-frame Y> All 1's (Idle) All 1's (Idle)

32 32 32 Until The Next Frame
<Slave_sub-frame W> | <Slave sub-frame X> | <Slave_sub-frame Y> All 1's (Idle)

Figure 13. Last Frame In A Sequence.

7.4 Status Response Frame

At some point, after the AVSBus has been idle, there will be more frames to send, and
the first <StartCode> is issued by the AVSBus Master. With the frame definitions we
have so far, there would be no alternative for the AVSBus Slave but to keep AVS_SData
high while it receives the first master sub-frame in a sequence. However, there is a
special type of slave sub-frame created to take advantage of that bandwidth: the Status
Response Frame.

Since this frame is not sent as a response to a master sub-frame, there is no
<SlaveAck> to send. <SlaveAck> is always part of the reply to a master sub-frame, and
in this situation the AVSBus Master is not awaiting a reply. There is no <CmdData>
either, since there is ho read command pending completion. But <StatusResponse>
can bring valuable and timely information to the master, and that is the purpose of the
Status Response Frame.

The Status Response Frame is structured as shown in Figure 14 in the context of a
generic master sub-frame. The zero at the 3rd bit of the frame is followed by the five bits
that make up <StatusResponse> which in turn are followed by all 1's padding to
preserve the frame size, and finally a standard <CRC>.

© 2014 System Management Interface Forum, Inc. Page 27 Of 34
All Rights Reserved

PMBus Power System Mgt Protocol Specification — Part Ill — Revision 1.3.1

2 30

01 <Master_sub-frame fields combined>

2 1 5 21 3
<Prefix> | O | <Status_Resp> | All1l's (Idle) | <CRC>

Figure 14. Status Response Frame

The <Prefix> is a 2-bit placeholder at the beginning of the frame. Only two values are
valid for this prefix.

o If the slave signals an interrupt by lowering AVS_SData prior to the appearance of
<StartCode>, it would naturally be expected to be 00b, providing continuity.

¢ If the slave did not signal an interrupt, AVS_SData is at its default high state when
<StartCode> appears, and it would retain that value so it can be expected to be
11b.

Considering that it is conceivable that the AVSBus Slave may not be ready for the
<StartCode>, it is necessary that the AVSBus Master be designed to watch out for the
AVS_SData set low during the 3rd bit of the first byte of a Status Response frame. As
long as the line is low during that bit, it should accept <StatusResponse> as valid.

<StatusResponse> is formed by concatenating <VDone>, <StatusAlert> and other
flags as outlined in Section 6.8. The format of the Status Response Frame shown here
is directly compatible with the reply of a slave to a command from the master, with two
differences:

e <Prefix> is replaced with <SlaveAck> when the slave is responding to a master
command.

e The all 1's idle field corresponds to the rest of the slave’s response, which is different
for a read than for a write.

Incorporating the concept of the Status Response Frame, the first frame in a sequence
of overlapping frames would appear as shown in Figure 15.

Since Previous Frame 2 32 32
| All 1's (Idle) | <Master_sub-frame A> | <Master_sub-frame B> | <Master_sub-frame C>
Since Previous Frame 32 2 2
| All 1's (Idle) | <StatusResponse_Frame> | <Slave_sub-frame A> j <Slave_sub-frame B> |

Figure 15. First Frame In A Sequence

8. Data Types

This section describes in detail each one of the commands supported by AVSBuUS.

8.1 Voltage Read/Write (Command Data Type = 0000b)

This type allows the AVSBus Master to read or write a new voltage target for a rail on an
AVSBus Slave. See Part Il, Section 12.1 for a full description of the handoff between
AVSBus and PMBus control of the output voltage.

In this case <Select> is <RailSel>, and <CmdData> is <Voltage> which is a 16-bit
unsigned integer field with 1 LSB = 1 mV.

© 2014 System Management Interface Forum, Inc. Page 28 Of 34
All Rights Reserved

PMBus Power System Mgt Protocol Specification — Part Ill — Revision 1.3.1

If the new voltage is too high or too low, as determined by the values set through the
PMBus commands VOUT_MIN and VOUT_MAX, the AVS Slave will respond with the
<SlaveAck> for incorrect data.

8.2 Vout Transition Rate Read/Write (Command Data Type = 0001b)

This type allows the AVSBus Master to read or write a new transition rate for a rail on an
AVSBus Slave.

In this case <Select> is <RailSel>, and <CmdData> is <TransRates> which is a 16-bit
field composed of two fields: <RiseTransRate> and <FallTransRate>. Each field is an
8-bit unsigned integer with 1 LSB = 1 mV/us.

The fields are concatenated in the order they were described: <RiseTransRate> is sent
first, followed by <FallTransRate>.

The AVSBus Slave will use <RiseTransRate> when the rail voltage is increasing, and
<FallTransRate> when the rail voltage is decreasing. When AVSBus is enabled, the
initial transition rates will be specified by the AVSBus Slave manufacturer and given in
the product literature.

8.3 Current Read (Command Data Type = 0010b)

This type allows the AVSBus Master to read the current for a rail on an AVSBus Slave.
Writes are not supported.

In this case <Select> is <RailSel>, and <CmdData> is <Current> which is a 16-bit
unsigned integer field with 1 LSB = 10 mA.

AVSBus does not dictate whether the value being read is filtered in any particular way,
leaving it up to each specific AVSBus Slave’s manufacturer product literature to clearly
describe if filtering is used, and whether it is configurable by PMBus.

8.4 Temperature Read (Command Data Type = 0011b)

This type allows the AVSBus Master to read the temperature for a rail on an AVSBus
Slave. Writes are not supported.

In this case <Select> is <RailSel>, and <CmdData> is <Temperature> which is a 16-
bit signed integer field with 1 LSB = 0.1 °C.

AVSBuUs does not dictate whether the value being read is filtered in any particular way,
leaving it up to each specific AVSBus Slave’s manufacturer product literature to clearly
describe if filtering is used, and whether it is configurable by PMBus.

8.5 Voltage Reset (Command Data Type 0100b)

This type allows the AVSBus Master to force a “Predetermined Value” for an AVSBus
Slave rail, particularly while handling exceptions that could otherwise cause damage.
The device manufacturer must decide how the value is predetermined. Some of the
choices are: Through PMBus, through an AVSBus manufacturer-specific data type,
through external pins. Whatever the method chosen, it must be clearly specified in the
documentation.

Since there is no associated data for this command, <CmdData> must be set to all 0’s.
The predefined value is determined by the manufacturer of the AVSBus Slave.

© 2014 System Management Interface Forum, Inc. Page 29 Of 34
All Rights Reserved

PMBus Power System Mgt Protocol Specification — Part Ill — Revision 1.3.1

Resetting the rail’s voltage through this data type is deemed an emergency reaction to a
problem. As such, it can be assumed that a slave would use the fastest transition rate it
is capable of, disregarding the current Vout Transition Rate setting.

It is envisioned that this command would be particularly useful when used in broadcast
mode to all the rails in a device (by setting <RailSel> to all 1's), giving the AVSBus
Master the ability to reset all rails to their own individual reset values in a single frame.

In this case <Select> is <RailSel>, and <CmdData> is 00h.

8.6 Power Mode Read/Write (Command Data Type = 0101b)

This type allows the AVSBus Master to set the mode of operation for the output of an
AVSBus Slave rail. There are 8 possible settings: four predefined settings referred to as
the “AVSBus Standard Power Modes”, and four manufacturer-specific modes.

In this case, <Select> is <RailSel> and <CmdData> is <PowerMode> which is a 3-bit
field with the following encoding:

e 000b — Maximum Efficiency

e 001b — Reserved

e 010b - Reserved

e 011b — Maximum Power

e 100b to 111b: Manufacturer-specific settings

Following the bit justification rule, the 3-bit <PowerMode> field is aligned on the LSB of
the <CmdData> field, with all preceding bits filled with zeroes.

Power mode is also accessible through the PMBus interface. See Part Il, Section 14.13
for more details.

8.7 Reserved for future use (Command Data Types 0110b to 1101b)

8.8 AVSBus Status Read/Write (Command Data Type = 1110b)

This type allows the AVSBus Master to read the <AVSBus_Status> of an AVSBus Slave,
or to clear the slave’s <AVSBus_Status> by a write. When writing to this data type, all
status bits written with a 1b are cleared. All others remain unchanged. Persistent faults
will be immediately re-asserted.

A clear operation for AVSBus shall not affect the corresponding status bits for PMBus
status registers. This implies that the bits in <AVSBus_Status> that reflect PMBus
status bit must either be copies of those in bits in their own register or that some form of
a mask must be used to present a cleared value to the AVSBus.

The status consists of 16 bits concatenated in the following order as shown in Figure 16:

e <VDone> - A single bit flag that will be Ob while the rail is off or powering up, it will
change to 1b as soon as the voltage has reached the set operating point, and will
again transition to Ob when a new target is committed.

The threshold for determining when the output has reached the target is defined by
the manufacturer of the AVSBus Slave, and must be clearly described in the product
documentation.

o <OCW>-The IOUT_OC_WARNING (Output over-current) flag that is found as bit [5]
of PMBus command STATUS_IOUT.

© 2014 System Management Interface Forum, Inc. Page 30 Of 34
All Rights Reserved

PMBus Power System Mgt Protocol Specification — Part Ill — Revision 1.3.1

<UVW> - The VOUT_UV_WARNING (Output under-voltage) flag that is found as bit
[5] of PMBus command STATUS_VOUT.

e <OTW> - The IOUT_OT_WARNING (Over-temperature) flag that is found as bit [6] of
PMBus command STATUS TEMPERATURE.

e <OPW> - The POUT_OP_WARNING (Output over-power) flag that is found as bit [0]
of PMBus command STATUS IOUT.

e <Reserved_3> - Three bits reserved for future use. Until defined this field should be
returned as 000b.

o <MfrSpcfc_8> - Eight bits whose definition is left up to the AVSBus Slave. They
must be defined with positive logic: the status is considered active (set) when the
value returned is 1b; otherwise it will be returned as 0b.

1 1 1 1 1 3
|<VDONE>| <OCW> | <UVW> | <OTW> | <OPW> |<RESERVED_3>|
[Bit 15] [Bit 8]

8
| <MfrSpcfc_8> |
[Bit 7] [Bit 0]

Figure 16. AVSBus_Status_Bits

For this data type <Select> is <RailSel>, and <CmdData> is <AVSBus_Status>. This
is the only command in which it is possible to set <Select> to all 1's for a read, making it
the only supported broadcast read.The AVSBus Slave simply combines the values of
each status bit for all active rails using a predetermined function, and returns the
resulting value, effectively providing a quick overview of the entire device.

The function depends on the purpose of each status bit, as follows:

e <VDone> bits from all rails are ANDed together so that the resulting value is set to 1b
only when all rails have it set to 1b.

e <OCW> bits from all rails are ORed together so that the resulting value is set to 1b if
any any rail has it set to 1b.

e <UVW> bits from all rails are ORed together so that the resulting value is set to 1b if
any any rail has it set to 1b.

e <OTW> bits from all rails are ORed together so that the resulting value is set to 1b if
any any rail has it set to 1b.

e <OPW> bits from all rails are ORed together so that the resulting value is set to 1b if
any any rail has it set to 1b.

e <Reserved_3> bits are undefined.

e <MfrSpcfc_8> bits will be combined as determined by the manufacturer. The device
documentation must clearly specify the function used.

8.9 AVSBus Version Read (Command Data Type = 1111b)

This type allows the AVSBus Master to read the version of AVSBus implemented by an
AVSBus Slave. For PMBus 1.3, the <AVSBus_Version> value is 0000b.

© 2014 System Management Interface Forum, Inc. Page 31 Of 34
All Rights Reserved

PMBus Power System Mgt Protocol Specification — Part Ill — Revision 1.3.1

Following the bit justification rule, the 4-bit <AVSBus_Version> field is aligned on the
LSB of the <CmdData> field, with all preceding bits filled with zeroes. There is no
selector for AVSBus version. <Select> must be set to all 1's for this command.

8.10 Manufacturer-Specific Read/Write (Group 1b, Data Types 0000b to 1111b)

The definition of <Select> and <CmdData> for each one of these data types is specific to
each device. In all other regards, these commands follow the same frame structure and
protocol rules that apply to Group Ob data types.

The product literature of an AVSBus Slave must clearly identify the manufacturer-
specific data types it supports, together with the size of the fields, their encoding and
whether they allow Read-only, Write-only or Read/Write commands.

9. Communication From The AVSBus Slave To The AVSBus Master

AVSBus devices will never become bus masters for communication with the host. All
transfers are initiated by the master. However, a mechanism for AVSBus Slaves to issue
an interrupt to the AVSBuUs Master is supported so that the slave can send timely status
information to the master. Implementation of this mechanism is not mandatory for
AVSBus Slaves, although support for the status information (<StatusResponse>) is
mandatory for 3-wire mode implementations. See Section 5.3 for more information.

When an AVSBus Slave that supports interrupts determines that it needs the AVSBus
Master to be aware of any special condition, it can simply signal to the AVSBus Master
that it needs a frame to be started. It does this by pulling the AVS_SData line low while
the bus is idle.

It is up to the AVSBus Master to initiate such frame as soon as practical.

10.PMBus™ And AVSBus Device Mapping

Figure 16 shows a hypothetical power management IC. This IC has four controllers that
can provide a control signal, typically a pulse width modulated (PWM) signal, to four
different power stages. As shown, each power stage generates an output voltage but it is
possible that two or more of the power stages could be operated as phases of one
interleaved multi-phase power stage.

This hypothetical IC also has a PMBus™ interface that uses the PAGE command to
individually address the four controllers. The IC also has two AVSBus interface ports.
AVSBus Port 1 is routed within the power management IC to controllers 2 and 3. This
means AVSBus Master 1 is supporting two rails. AVSBus Port 2 is routed only to
controller 4. Controller 1 is controlled only through the PMBus and does not have an
AVSBus port connection.

In order to properly design the power system, the system engineer needs to know which of
the controllers (and their PAGE numbers) are controlled only by the PMBus interface and
which are controlled by both the PMBus and AVSBuUs interfaces. There could also be,
although not shown in this example, outputs that were controlled only by an AVSBus
interface. The information describing the connection of internal elements or controllers or
power management ICs or device to externally connected PMBus and AVSBus shall be
fully described in the product literature.

At this time there is no standard mechanism provided for the details of these connections
to be discoverable by either a PMBus system host or an AVSBus master. This capability

© 2014 System Management Interface Forum, Inc. Page 32 Of 34
All Rights Reserved

PMBus Power System Mgt Protocol Specification — Part Ill — Revision 1.3.1

may be included in a future release of the PMBus and AVSBus standards. Device
manufacturers may provide this capability through manufacturer specific commands.

PMBus™
< —

Power Management IC

PAGE
Switch

Controller 1/ PWML Buck Vourt _ Load 1
PAGE 01h Power Stage o
Controller 2/ PWM2 Buck Vourz -~
PAGE 02h " | Power Stage o
AVSBus Port 1 AVSBuUs AVSBUS
| Master 1
Controller 3/ PWM3 Buck Vours R
PAGE 03h " | Power Stage o
Load 3
Controller 4/ PWM4 Buck Vours R
PAGE 04h " | Power Stage o
AVSBus Port 2 AVSBus AVSBUS

11.Accuracy

Each AVSBus device will specify in its product literature the accuracy with which the target

voltage and other parameters can be set and reported.

© 2014 System Management Interface Forum, Inc.
All Rights Reserved

Master 2

Figure 17. Example Power Management IC With Multiple PAGEs
And Multiple AVSBus Ports

Page 33 Of 34

PMBus Power System Mgt Protocol Specification — Part Ill — Revision 1.3.1

Appendix I. Summary Of Changes

DISCLAIMER: The section is provided for reference only and for the convenience of the reader.
No suggestion, statement or guarantee is made that the description of the changes listed below
is sufficient to design a device compliant with this document.

A summary of the changes made in Part 11l of the PMBus specification from Revision 1.3 to this
revision, 1.3.1, is given below. This is not an exact list of every change made between the two
documents; rather, it is a summary of the changes deemed significant by the editor.

Added clarification to Idle Bus Condition (Section 5.5)

Added clarification to Slave Resynchronization (Section 5.6)

Added clarification to Bus Timeout (Section 5.7)

Added clarification to <SlaveAck> (Section 6.7)

Added clarification to Status Response Frame (Section 7.4)

Added clarification to Voltage Reset (Command Data Type 0100b) (Section 8.5)

Added clarification to AVSBus Status Read/Write (Command Data Type = 1110b) (Section
8.8)

© 2014 System Management Interface Forum, Inc. Page 34 Of 34
All Rights Reserved

	1. Introduction
	1.1 Specification Scope
	1.1.1 Specification Structure
	1.1.2 What Is Included
	1.1.3 What Is Not Included In The PMBus Specification

	1.2 Specification Changes Since The Last Revision
	1.3 Where To Send Feedback And Comments

	2. Related Documents
	2.1 Scope
	2.2 Applicable Documents
	2.3 Reference Documents

	3. Reference Information
	3.1 Device, Signal and Parameter Names
	3.1.1 AVSBus Signal Names
	3.1.2 Frame Elements

	3.2 Numerical Formats
	3.2.1 Decimal Numbers
	3.2.2 Floating Point Numbers
	3.2.3 Binary Numbers
	3.2.4 Hexadecimal Numbers
	3.2.5 Examples

	3.3 Bit And Byte Order
	3.4 Bit And Field Illustrations
	3.5 Abbreviations, Acronyms And Definitions

	4. General Requirements
	4.1 Compliance
	4.2 Start Up And Operation

	5. Transport
	5.1 Topology
	5.2 Operation
	5.3 Modes
	5.3.1 3-Wire Mode
	5.3.2 2-Wire Mode

	5.4 Frame Size
	5.5 Idle Bus Condition
	5.6 Slave Resynchronization
	5.7 Bus Timeout
	5.8 Clocking
	5.9 Electrical Interface
	5.9.1 Timing
	5.9.2 Electrical Drive Levels

	6. Protocol rules
	6.1 Data Launch
	6.2 Data Capture
	6.3 Data Format
	6.4 Unknown Resource Selector
	6.5 Unavailable Resource
	6.7 <SlaveAck>
	6.8 <StatusResponse>
	6.9 CRC Verification
	6.10 Data Validation
	6.11 Types Of Writes
	6.11.1 Write and Commit
	6.11.2 Write and Hold

	7. Frame Definition
	7.1 The Write Frame
	7.2 The Read Frame
	7.3 Frame Alignment
	7.4 Status Response Frame

	8. Data Types
	8.1 Voltage Read/Write (Command Data Type = 0000b)
	8.2 Vout Transition Rate Read/Write (Command Data Type = 0001b)
	8.3 Current Read (Command Data Type = 0010b)
	8.4 Temperature Read (Command Data Type = 0011b)
	8.5 Voltage Reset (Command Data Type 0100b)
	8.6 Power Mode Read/Write (Command Data Type = 0101b)
	8.7 Reserved for future use (Command Data Types 0110b to 1101b)
	8.8 AVSBus Status Read/Write (Command Data Type = 1110b)
	8.9 AVSBus Version Read (Command Data Type = 1111b)
	8.10 Manufacturer-Specific Read/Write (Group 1b, Data Types 0000b to 1111b)

	9. Communication From The AVSBus Slave To The AVSBus Master
	10. PMBus™ And AVSBus Device Mapping
	11. Accuracy
	12. Style Samples (Heading 1) 3/8” Indent
	12.1 Heading 2 Sample
	12.1.1 Heading 3 Sample
	12.1.1.1 Heading 4 Sample

